151
|
Weidinger D, Jamal Jameel K, Alisch D, Jacobsen J, Bürger P, Ruhe M, Yusuf F, Rohde S, Störtkuhl K, Kaufmann P, Kronsbein J, Peters M, Hatt H, Giannakis N, Knobloch J. OR2AT4 and OR1A2 counterregulate molecular pathophysiological processes of steroid-resistant inflammatory lung diseases in human alveolar macrophages. Mol Med 2022; 28:150. [PMID: 36503361 PMCID: PMC9743598 DOI: 10.1186/s10020-022-00572-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Therapeutic options for steroid-resistant non-type 2 inflammation in obstructive lung diseases are lacking. Alveolar macrophages are central in the progression of these diseases by releasing proinflammatory cytokines, making them promising targets for new therapeutic approaches. Extra nasal expressed olfactory receptors (ORs) mediate various cellular processes, but clinical data are lacking. This work investigates whether ORs in human primary alveolar macrophages could impact pathophysiological processes and could be considered as therapeutic targets. METHODS Human primary alveolar macrophages were isolated from bronchoalveolar lavages of 50 patients with pulmonary diseases. The expression of ORs was validated using RT-PCR, immunocytochemical staining, and Western blot. Changes in intracellular calcium levels were analyzed in real-time by calcium imaging. A luminescent assay was used to measure the cAMP concentration after OR stimulation. Cytokine secretion was measured in cell supernatants 24 h after stimulation by ELISA. Phagocytic ability was measured by the uptake of fluorescent-labeled beads by flow cytometry. RESULTS We demonstrated the expression of functional OR2AT4 and OR1A2 on mRNA and protein levels. Both ORs were primarily located in the plasma membrane. Stimulation with Sandalore, the ligand of OR2AT4, and Citronellal, the ligand of OR1A2, triggered a transient increase of intracellular calcium and cAMP. In the case of Sandalore, this calcium increase was based on a cAMP-dependent signaling pathway. Stimulation of alveolar macrophages with Sandalore and Citronellal reduced phagocytic capacity and release of proinflammatory cytokines. CONCLUSION These are the first indications for utilizing olfactory receptors as therapeutic target molecules in treating steroid-resistant lung diseases with non-type 2 inflammation.
Collapse
Affiliation(s)
- Daniel Weidinger
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Kaschin Jamal Jameel
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Desiree Alisch
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Julian Jacobsen
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Paul Bürger
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Matthias Ruhe
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Faisal Yusuf
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Simon Rohde
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Klemens Störtkuhl
- grid.5570.70000 0004 0490 981XAG Physiology of Senses, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Peter Kaufmann
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Juliane Kronsbein
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Marcus Peters
- grid.5570.70000 0004 0490 981XDepartment of Molecular Immunology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Hanns Hatt
- grid.5570.70000 0004 0490 981XDepartment of Cell Physiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Nikolaos Giannakis
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Jürgen Knobloch
- grid.5570.70000 0004 0490 981XMedical Clinic III for Pneumology, Allergology and Sleep Medicine, Bergmannsheil University Hospital, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| |
Collapse
|
152
|
Franciosi AN, Tanzler A, Goodwin J, Wilcox PG, Solomon GM, Faro A, McElvaney NG, Downey DG, Quon BS. Diagnostic agreement among experts assessing adults presenting with possible cystic fibrosis: need for improvement and implications for patient care. ERJ Open Res 2022; 8:00227-2022. [PMID: 36655218 PMCID: PMC9835972 DOI: 10.1183/23120541.00227-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/03/2022] [Indexed: 01/21/2023] Open
Abstract
Background Increasing awareness of milder presentations of cystic fibrosis (CF) and greater interest in non-CF bronchiectasis are likely to lead to more CF screening by respiratory clinicians. As a result, adults who may not strictly fulfil CF diagnostic criteria yet display evidence of abnormal CF transmembrane conductance regulator (CFTR) function are being identified. The degree of agreement on diagnosis and care needs in these cases between CF clinicians remains unknown, and has implications for patient care, including access to CFTR modulator therapies. Methods We surveyed adult CF physicians in Canada, the USA, the UK and Ireland, and presented them with anonymised vignettes of adult patients referred for assessment of possible CF. Diagnostic inter-rater agreement over diagnosis, ease of classifying cases and appropriate follow-up was assessed using Krippendorff's reliability coefficient (α). Results Agreement over diagnosis (α=0.282), ease of classification (α= -0.01) and recommended follow-up (α=0.054) was weak. Clinician experience (>10 and 5-10 years versus <5 years) and location (UK and Ireland versus Canada) were associated with higher odds of recommending further testing compared with selecting a formal diagnosis (respectively, OR 2.87; p=0.022, OR 3.74; p=0.013 and OR 3.16; p=0.007). A modified standard of care was recommended in 28.7% of cases labelled as CF. 70% of respondents agreed with the statement that "Accurate distinction between CF and CFTR-related disorder has become significantly more pertinent with the advent of highly effective CFTR modulators". Conclusions Our results demonstrate low diagnostic concordance among CF specialists assessing cases of possible adult CF and highlight an area in need of improvement.
Collapse
Affiliation(s)
- Alessandro N. Franciosi
- Adult Cystic Fibrosis Clinic, St Paul's Hospital, Vancouver, BC, Canada,Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, BC, Canada
| | - April Tanzler
- Adult Cystic Fibrosis Clinic, St Paul's Hospital, Vancouver, BC, Canada
| | - Jodi Goodwin
- Adult Cystic Fibrosis Clinic, St Paul's Hospital, Vancouver, BC, Canada,Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, BC, Canada
| | - Pearce G. Wilcox
- Adult Cystic Fibrosis Clinic, St Paul's Hospital, Vancouver, BC, Canada,Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, BC, Canada
| | - George M. Solomon
- Division of Pulmonary, Allergy and Critical Care Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Albert Faro
- Cystic Fibrosis Foundation, Bethesda, MD, USA
| | - Noel G. McElvaney
- Department of Medicine, Beaumont Hospital, Dublin, Ireland,Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Damian G. Downey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Bradley S. Quon
- Adult Cystic Fibrosis Clinic, St Paul's Hospital, Vancouver, BC, Canada,Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, BC, Canada,Corresponding author: Bradley S. Quon ()
| |
Collapse
|
153
|
Burke ND, Nixon B, Roman SD, Schjenken JE, Walters JLH, Aitken RJ, Bromfield EG. Male infertility and somatic health - insights into lipid damage as a mechanistic link. Nat Rev Urol 2022; 19:727-750. [PMID: 36100661 DOI: 10.1038/s41585-022-00640-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Over the past decade, mounting evidence has shown an alarming association between male subfertility and poor somatic health, with substantial evidence supporting the increased incidence of oncological disease, cardiovascular disease, metabolic disorders and autoimmune diseases in men who have previously received a subfertility diagnosis. This paradigm is concerning, but might also provide a novel window for a crucial health reform in which the infertile phenotype could serve as an indication of potential pathological conditions. One of the major limiting factors in this association is the poor understanding of the molecular features that link infertility with comorbidities across the life course. Enzymes involved in the lipid oxidation process might provide novel clues to reconcile the mechanistic basis of infertility with incident pathological conditions. Building research capacity in this area is essential to enhance the early detection of disease states and provide crucial information about the disease risk of offspring conceived through assisted reproduction.
Collapse
Affiliation(s)
- Nathan D Burke
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
- Priority Research Centre for Drug Development, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Jessica L H Walters
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia.
- Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
154
|
Tomati V, Costa S, Capurro V, Pesce E, Pastorino C, Lena M, Sondo E, Di Duca M, Cresta F, Cristadoro S, Zara F, Galietta LJ, Bocciardi R, Castellani C, Lucanto MC, Pedemonte N. Rescue by elexacaftor-tezacaftor-ivacaftor of the G1244E cystic fibrosis mutation's stability and gating defects are dependent on cell background. J Cyst Fibros 2022:S1569-1993(22)01425-4. [DOI: 10.1016/j.jcf.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
|
155
|
Mésinèle J, Ruffin M, Guillot L, Corvol H. Modifier Factors of Cystic Fibrosis Phenotypes: A Focus on Modifier Genes. Int J Mol Sci 2022; 23:ijms232214205. [PMID: 36430680 PMCID: PMC9698440 DOI: 10.3390/ijms232214205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Although cystic fibrosis (CF) is recognized as a monogenic disease, due to variants within the CFTR (Cystic Fibrosis Transmembrane Regulator) gene, an extreme clinical heterogeneity is described among people with CF (pwCF). Apart from the exocrine pancreatic status, most studies agree that there is little association between CFTR variants and disease phenotypes. Environmental factors have been shown to contribute to this heterogeneity, accounting for almost 50% of the variability of the lung function of pwCF. Nevertheless, pwCF with similar CFTR variants and sharing the same environment (such as in siblings) may have highly variable clinical manifestations not explained by CFTR variants, and only partly explained by environmental factors. It is recognized that genetic variants located outside the CFTR locus, named "modifier genes", influence the clinical expression of the disease. This short review discusses the latest studies that have described modifier factors associated with the various CF phenotypes as well as the response to the recent CFTR modulator therapies.
Collapse
Affiliation(s)
- Julie Mésinèle
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
- Inovarion, 75005 Paris, France
| | - Manon Ruffin
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Loïc Guillot
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
- Correspondence: (L.G.); (H.C.)
| | - Harriet Corvol
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Trousseau, Service de Pneumologie Pédiatrique, 75012 Paris, France
- Correspondence: (L.G.); (H.C.)
| |
Collapse
|
156
|
Sommerburg O, Wielpütz MO. [Update on cystic fibrosis : From neonatal screening to causal treatment]. RADIOLOGIE (HEIDELBERG, GERMANY) 2022; 62:981-994. [PMID: 36278998 DOI: 10.1007/s00117-022-01076-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Cystic fibrosis (CF) is a multiorgan disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Approximately 90% of the morbidity and mortality are caused by pulmonary involvement. The mean life expectancy of patients with CF in 2020 was more than 52 years in Germany. The introduction of neonatal screening for CF and the development of a causally acting CFTR modulator treatment have clearly improved the prognosis of these patients. As an introduction, this article describes important aspects of CF in this context in order to go into details of the CF neonatal screening which was introduced in Germany in 2016.
Collapse
Affiliation(s)
- Olaf Sommerburg
- Sektion für Pädiatrische Pneumologie, Allergologie und Mukoviszdose-Zentrum, Zentrum für Kinder- und Jugendmedizin, Klinik III, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Deutschland.
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Deutschland.
| | - Mark Oliver Wielpütz
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
| |
Collapse
|
157
|
Jilani M, Turcan A, Haspel N, Jagodzinski F. Elucidating the Structural Impacts of Protein InDels. Biomolecules 2022; 12:1435. [PMID: 36291643 PMCID: PMC9599607 DOI: 10.3390/biom12101435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 09/17/2023] Open
Abstract
The effects of amino acid insertions and deletions (InDels) remain a rather under-explored area of structural biology. These variations oftentimes are the cause of numerous disease phenotypes. In spite of this, research to study InDels and their structural significance remains limited, primarily due to a lack of experimental information and computational methods. In this work, we fill this gap by modeling InDels computationally; we investigate the rigidity differences between the wildtype and a mutant variant with one or more InDels. Further, we compare how structural effects due to InDels differ from the effects of amino acid substitutions, which are another type of amino acid mutation. We finish by performing a correlation analysis between our rigidity-based metrics and wet lab data for their ability to infer the effects of InDels on protein fitness.
Collapse
Affiliation(s)
- Muneeba Jilani
- Department of Computer Science, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Alistair Turcan
- Department of Computer Science, Western Washington University, Bellingham, WA 98225, USA
| | - Nurit Haspel
- Department of Computer Science, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Filip Jagodzinski
- Department of Computer Science, Western Washington University, Bellingham, WA 98225, USA
| |
Collapse
|
158
|
Tkemaladze T, Kvaratskhelia E, Ghughunishvili M, Lentze MJ, Abzianidze E, Skrahina V, Rolfs A. Genotype-phenotype correlations of cystic fibrosis in siblings compound heterozygotes for rare variant combinations: Review of literature and case report. Respir Med Case Rep 2022; 40:101750. [PMID: 36238659 PMCID: PMC9550642 DOI: 10.1016/j.rmcr.2022.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 11/01/2022] Open
Abstract
Here, we describe a cystic fibrosis (CF) family with affected siblings, two of whom have a combination of I1234V and 1677delTA variants with classic CF features, the third child with a combination of I1234V and L997F variants with atypical CF, and the apparently healthy mother with a combination of 1677delTA and L997F alleles. Interestingly, the sibling with I1234V and L997F variants had normal sweat test results and had a much milder phenotype than the other two siblings with I1234V and 1677delTA variants, suggesting that this combination is causative for atypical CF. The fact that their mother with the combination of 1677delTA and L997F appears to be healthy suggests that the L997F variant causes different phenotypes in different allele combinations. The current cases show that there is a genotype-phenotype correlation in this disease and underline the importance of genotyping individuals with suspected CF to allow prediction of disease severity and effective treatment.
Collapse
Affiliation(s)
- Tinatin Tkemaladze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Georgia,Department of Pediatrics, Givi Zhvania Pediatric Academic Clinic, Tbilisi State Medical University, Georgia
| | - Eka Kvaratskhelia
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Georgia,Corresponding author. 5 Khvichia str, 0160, Tbilisi, Georgia.
| | - Mariam Ghughunishvili
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Georgia,Department of Pediatrics, Givi Zhvania Pediatric Academic Clinic, Tbilisi State Medical University, Georgia
| | - Michael J. Lentze
- Department of Pediatrics, Children's Hospital Medical Center, University Hospitals Bonn, Germany
| | - Elene Abzianidze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Georgia
| | - Volha Skrahina
- Centogene GmbH, Rostock, Germany,Arcensus, GmbH Rostock, Germany
| | - Arndt Rolfs
- Centogene GmbH, Rostock, Germany,Arcensus, GmbH Rostock, Germany,University of Rostock, Medical Faculty, Rostock, Germany
| |
Collapse
|
159
|
ECFS standards of care on CFTR-related disorders: Updated diagnostic criteria. J Cyst Fibros 2022; 21:908-921. [DOI: 10.1016/j.jcf.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
|
160
|
Miller AC, Harris LM, Cavanaugh JE, Abou Alaiwa M, Stoltz DA, Hornick DB, Polgreen PM. The Rapid Reduction of Infection-Related Visits and Antibiotic Use Among People With Cystic Fibrosis After Starting Elexacaftor-Tezacaftor-Ivacaftor. Clin Infect Dis 2022; 75:1115-1122. [PMID: 35142340 PMCID: PMC9525072 DOI: 10.1093/cid/ciac117] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND People with cystic fibrosis (CF) routinely suffer from recurrent sinopulmonary infections. Such infections require frequent courses of antimicrobials and often involve multidrug-resistant organisms. The goal of this study was to identify real-world evidence for the effectiveness of elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA) in decreasing infection-related visits and antimicrobial use in people with CF. METHODS Using IBM MarketScan data, we identified 389 enrollees with CF who began taking ELX/TEZ/IVA before 1 December 2019 and were enrolled from 1 July 2019 to 14 March 2020. We also identified a comparison population who did not begin ELX/TEZ/IVA during the study period. We compared the following outcomes in the 15 weeks before and after medication initiation: total healthcare visits, inpatient visits, infection-related visits, and antimicrobial prescriptions. We analyzed outcomes using both a case-crossover analysis and a difference-in-differences analysis, to control for underlying trends. RESULTS For the case-crossover analysis, ELX/TEZ/IVA initiation was associated with the following changes over a 15-week period: change in overall healthcare visit dates, -2.5 (95% confidence interval, -3.31 to -1.7); change in inpatient admissions, -0.16 (-.22 to -.10); change in infection-related visit dates, -0.62 (-.93 to -.31); and change in antibiotic prescriptions, -0.78 (-1.03 to -.54). Results from the difference-in-differences approach were similar. CONCLUSIONS We show a rapid reduction in infection-related visits and antimicrobial use among people with CF after starting a therapy that was not explicitly designed to treat infections. Currently, there are >30 000 people living with CF in the United States alone. Given that this therapy is effective for approximately 90% of people with CF, the impact on respiratory infections and antimicrobial use may be substantial.
Collapse
Affiliation(s)
- Aaron C Miller
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Logan M Harris
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | | | | | - David A Stoltz
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Douglas B Hornick
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Philip M Polgreen
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
161
|
Kallemeyn JM, Hartung J, Connolly T, Ickes A, Kotecki B, Van Haandel L, Nazari M, Manjrekar O, Chen S. Development of a Telescoped Alkylation/Reduction Reaction Sequence and an Asymmetric Hydrogenation to Enable the Kilogram Synthesis of ABBV-3748. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jeffrey M. Kallemeyn
- Process Research and Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064, United States
| | - John Hartung
- Process Research and Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064, United States
| | - Timothy Connolly
- Process Research and Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew Ickes
- Process Research and Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064, United States
| | - Brian Kotecki
- Process Research and Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064, United States
| | - Leon Van Haandel
- Analytical Research and Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064, United States
| | - Milad Nazari
- Analytical Research and Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064, United States
| | - Onkar Manjrekar
- Process Research and Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shuang Chen
- Process Research and Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
162
|
Vaccarin C, Gabbia D, Franceschinis E, De Martin S, Roverso M, Bogialli S, Sacchetti G, Tupini C, Lampronti I, Gambari R, Cabrini G, Dechecchi MC, Tamanini A, Marzaro G, Chilin A. Improved Trimethylangelicin Analogs for Cystic Fibrosis: Design, Synthesis and Preliminary Screening. Int J Mol Sci 2022; 23:ijms231911528. [PMID: 36232826 PMCID: PMC9570109 DOI: 10.3390/ijms231911528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
A small library of new angelicin derivatives was designed and synthesized with the aim of bypassing the side effects of trimethylangelicin (TMA), a promising agent for the treatment of cystic fibrosis. To prevent photoreactions with DNA, hindered substituents were inserted at the 4 and/or 6 positions. Unlike the parent TMA, none of the new derivatives exhibited significant cytotoxicity or mutagenic effects. Among the synthesized compounds, the 4-phenylderivative 12 and the 6-phenylderivative 25 exerted a promising F508del CFTR rescue ability. On these compounds, preliminary in vivo pharmacokinetic (PK) studies were carried out, evidencing a favorable PK profile per se or after incorporation into lipid formulations. Therefore, the selected compounds are good candidates for future extensive investigation to evaluate and develop novel CFTR correctors based on the angelicin structure.
Collapse
Affiliation(s)
- Christian Vaccarin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Erica Franceschinis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Chiara Tupini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
- Center of Innovative Therapies for Cystic Fibrosis (InnThera4CF), University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
- Center of Innovative Therapies for Cystic Fibrosis (InnThera4CF), University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Giulio Cabrini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
- Center of Innovative Therapies for Cystic Fibrosis (InnThera4CF), University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Maria Cristina Dechecchi
- Department of Neurosciences, Biomedicine and Movement, Section of Clinical Biochemistry, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy
| | - Anna Tamanini
- Department of Neurosciences, Biomedicine and Movement, Section of Clinical Biochemistry, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
- Center of Innovative Therapies for Cystic Fibrosis (InnThera4CF), University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
163
|
Reporting Two Novel Mutations in Two Iranian Families with Cystic Fibrosis, Molecular and Bioinformatic Analysis. IRANIAN BIOMEDICAL JOURNAL 2022; 26:398-405. [PMID: 35468710 PMCID: PMC9763878 DOI: 10.52547/ibj.3713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Cystic fibrosis (CF) is the most common heredity disease among the Caucasian population. More than 350 known pathogenic variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (NM_000492.4) cause CF. Herein, we report the outcome of our investigation in two unrelated Iranian families with CF patients. Methods We conducted phenotypic examination, segregation, linkage analysis, and CFTR gene sequencing to define causative mutations. Results We found two novel mutations in the present study. The first one was a deletion causing frameshift, c.299delT p.(Leu100Profs*7), and the second one was a missense mutation, c.1857G>T, at nucleotide binding domain 1 of the CFTR protein. Haplotype segregation data supported our new mutation findings. Conclusion Findings of this study expand the spectrum of CFTR pathogenic variations and can improve prenatal diagnosis and genetic counseling for CF.
Collapse
|
164
|
Giacalone VD, Moncada-Giraldo D, Margaroli C, Brown MR, Silva GL, Chandler JD, Peng L, Tirouvanziam R, Guglani L. Pilot study of inflammatory biomarkers in matched induced sputum and bronchoalveolar lavage of 2-year-olds with cystic fibrosis. Pediatr Pulmonol 2022; 57:2189-2198. [PMID: 35637404 DOI: 10.1002/ppul.26023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/08/2022] [Accepted: 05/29/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND In this pilot study, we investigated whether induced sputum (IS) could serve as a viable alternative to bronchoalveolar lavage (BAL) and yield robust inflammatory biomarkers in toddlers with cystic fibrosis (CF) featuring minimal structural lung disease. METHODS We collected IS, BAL (right middle lobe and lingula), and blood, and performed chest computed tomography (CT) scans from 2-year-olds with CF (N = 11), all within a single visit. Inflammatory biomarkers included 20 soluble immune mediators and neutrophil elastase (NE), as well as frequency and phenotype of T cells, monocytes/macrophages, and neutrophils. RESULTS At the molecular level, nine mediators showed similar levels in IS and BAL (CXCL1, CXCL8, IL-1α, IL-1RA, IL-6, CCL2, CXCL10, M-CSF, VEGF-A), four were higher in IS than in BAL (CXCL5, IL-1β, CXCL11, TNFSF10), and two were present in IS, but undetectable in BAL (IL-10, IFN-γ). Meanwhile, soluble NE had lower activity in IS than in BAL. At the cellular level, T-cell frequency was lower in IS than in BAL. Monocytes/macrophages were dominant in IS and BAL with similar frequencies, but differing expression of CD16 (lower in IS), CD115, and surface-associated NE (higher in IS). Neutrophil frequency and phenotype did not differ between IS and BAL. Finally, neutrophil frequency in IS correlated positively with air trapping. CONCLUSIONS IS collected from 2-year-olds with CF yields biomarkers of early airway inflammation with good agreement with BAL, notably with regard to molecular and cellular outcomes related to neutrophils and monocytes/macrophages.
Collapse
Affiliation(s)
- Vincent D Giacalone
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Diego Moncada-Giraldo
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Camilla Margaroli
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Milton R Brown
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - George L Silva
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Joshua D Chandler
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Limin Peng
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, Georgia, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Lokesh Guglani
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | |
Collapse
|
165
|
D'Amore C, Borgo C, Bosello Travain V, Salvi M. KDM2A and KDM3B as Potential Targets for the Rescue of F508del-CFTR. Int J Mol Sci 2022; 23:ijms23179612. [PMID: 36077010 PMCID: PMC9455907 DOI: 10.3390/ijms23179612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding of the cystic fibrosis transmembrane conductance regulator (CFTR), an anion-selective plasma membrane channel that mainly regulates chloride transport in a variety of epithelia. More than 2000 mutations, most of which presumed to be disease-relevant, have been identified in the CFTR gene. The single CFTR mutation F508del (deletion of phenylalanine in position 508) is present in about 90% of global CF patients in at least one allele. F508del is responsible for the defective folding and processing of CFTR, failing to traffic to the plasma membrane and undergoing premature degradation via the ubiquitin–proteasome system. CFTR is subjected to different post-translational modifications (PTMs), and the possibility to modulate these PTMs has been suggested as a potential therapeutic strategy for the functional recovery of the disease-associated mutants. Recently, the PTM mapping of CFTR has identified some lysine residues that may undergo methylation or ubiquitination, suggesting a competition between these two PTMs. Our work hypothesis moves from the idea that favors methylation over ubiquitination, e.g., inhibiting demethylation could be a successful strategy for preventing the premature degradation of unstable CFTR mutants. Here, by using a siRNA library against all the human demethylases, we identified the enzymes whose downregulation increases F508del-CFTR stability and channel function. Our results show that KDM2A and KDM3B downregulation increases the stability of F508del-CFTR and boosts the functional rescue of the channel induced by CFTR correctors.
Collapse
Affiliation(s)
- Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, 35031 Padova, Italy
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, 35031 Padova, Italy
| | | | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, 35031 Padova, Italy
| |
Collapse
|
166
|
Reisi M, Keivanfar M, Rezaie M, Hovsepian S. The association between Sodium Urinary Discharge (FENa) and growth parameters in pediatrics with cystic fibrosis. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:246-251. [PMID: 36051617 PMCID: PMC9428568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Given the association between chronic sodium losses and growth parameters and establishment of normal weight gain and linear growth in patients with cystic fibrosis (CF), in this study, we aimed to evaluate the sodium status in Iranian CF patients and its association with their growth parameters. METHODS In this prospective cross-sectional study, 44 children with CF were included. Serum and urinary sodium and creatinine levels were measured in patients, and the fractional excretion of sodium was calculated. The patients categorized in groups with FENa <0.5%, between 0.5% and 1.5% and >1.5%. Growth parameters were compared in the group, and its association with FENa level was evaluated. RESULTS In this study, 44 (27 boys and 17 girls) children with CF were included. Mean age of the studied population was 55.63 (33.2) months. In the studied patients with CF, 90.9% had a z score of -2_+2 (normal range) for BMI, 72.7% for weight, and 70% for height. From children with CF, 18 (40.9%) had FENa less than 0.5, 17 (38.6%) had FENA between 0.5-1.5, and 9 had FENa >1.5. From studied patients with CF, 16 (88.9%) had normal serum Na levels, but the FENa was ≤0.5. Based on the Spearman correlation test, there was not any significant correlation between FENa classification and the Z score of weight (P=0.92), height (P=0.83), and BMI (P=0.99). CONCLUSION Our findings indicated that most patients with a low level of FENa had normal serum sodium levels. We did not find a significant association between FENa and growth parameters. The association had a trend to be significant for BMI. It is suggested that it may be due to appropriate follow-up of the studied population. However, it is recommended to plan more studies by including healthy subjects to obtain results that are more accurate.
Collapse
Affiliation(s)
- Mohsen Reisi
- Department of Pediatrics, School of Medicine, Isfahan University of Medical Sciences Isfahan, Iran
| | - Majid Keivanfar
- Department of Pediatrics, School of Medicine, Isfahan University of Medical Sciences Isfahan, Iran
| | - Mahboobe Rezaie
- Department of Pediatrics, School of Medicine, Isfahan University of Medical Sciences Isfahan, Iran
| | - Silva Hovsepian
- Department of Pediatrics, School of Medicine, Isfahan University of Medical Sciences Isfahan, Iran
| |
Collapse
|
167
|
Youf R, Nasir A, Müller M, Thétiot F, Haute T, Ghanem R, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Ruthenium(II) Polypyridyl Complexes for Antimicrobial Photodynamic Therapy: Prospects for Application in Cystic Fibrosis Lung Airways. Pharmaceutics 2022; 14:pharmaceutics14081664. [PMID: 36015290 PMCID: PMC9412327 DOI: 10.3390/pharmaceutics14081664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) depends on a variety of parameters notably related to the photosensitizers used, the pathogens to target and the environment to operate. In a previous study using a series of Ruthenium(II) polypyridyl ([Ru(II)]) complexes, we reported the importance of the chemical structure on both their photo-physical/physico-chemical properties and their efficacy for aPDT. By employing standard in vitro conditions, effective [Ru(II)]-mediated aPDT was demonstrated against planktonic cultures of Pseudomonas aeruginosa and Staphylococcus aureus strains notably isolated from the airways of Cystic Fibrosis (CF) patients. CF lung disease is characterized with many pathophysiological disorders that can compromise the effectiveness of antimicrobials. Taking this into account, the present study is an extension of our previous work, with the aim of further investigating [Ru(II)]-mediated aPDT under in vitro experimental settings approaching the conditions of infected airways in CF patients. Thus, we herein studied the isolated influence of a series of parameters (including increased osmotic strength, acidic pH, lower oxygen availability, artificial sputum medium and biofilm formation) on the properties of two selected [Ru(II)] complexes. Furthermore, these compounds were used to evaluate the possibility to photoinactivate P. aeruginosa while preserving an underlying epithelium of human bronchial epithelial cells. Altogether, our results provide substantial evidence for the relevance of [Ru(II)]-based aPDT in CF lung airways. Besides optimized nano-complexes, this study also highlights the various needs for translating such a challenging perspective into clinical practice.
Collapse
Affiliation(s)
- Raphaëlle Youf
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Adeel Nasir
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Tanguy Haute
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Rosy Ghanem
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, University of Siegen, 57076 Siegen, Germany
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- INSERM, Univ Brest, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
- Correspondence:
| |
Collapse
|
168
|
Asadi Jozani K, Kouthouridis S, Hirota JA, Zhang B. Next generation preclinical models of lung development, physiology and disease. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kimia Asadi Jozani
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
| | - Sonya Kouthouridis
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Jeremy Alexander Hirota
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
- Department of Medicine, Division of Respirology McMaster University Hamilton Ontario Canada
- Firestone Institute for Respiratory Health St. Joseph’s Hospital, Hamilton Ontario Canada
| | - Boyang Zhang
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| |
Collapse
|
169
|
Berical A, Lee RE, Lu J, Beermann ML, Le Suer JA, Mithal A, Thomas D, Ranallo N, Peasley M, Stuffer A, Bukis K, Seymour R, Harrington J, Coote K, Valley H, Hurley K, McNally P, Mostoslavsky G, Mahoney J, Randell SH, Hawkins FJ. A multimodal iPSC platform for cystic fibrosis drug testing. Nat Commun 2022; 13:4270. [PMID: 35906215 PMCID: PMC9338271 DOI: 10.1038/s41467-022-31854-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Cystic fibrosis is a monogenic lung disease caused by dysfunction of the cystic fibrosis transmembrane conductance regulator anion channel, resulting in significant morbidity and mortality. The progress in elucidating the role of CFTR using established animal and cell-based models led to the recent discovery of effective modulators for most individuals with CF. However, a subset of individuals with CF do not respond to these modulators and there is an urgent need to develop novel therapeutic strategies. In this study, we generate a panel of airway epithelial cells using induced pluripotent stem cells from individuals with common or rare CFTR variants representative of three distinct classes of CFTR dysfunction. To measure CFTR function we adapt two established in vitro assays for use in induced pluripotent stem cell-derived airway cells. In both a 3-D spheroid assay using forskolin-induced swelling as well as planar cultures composed of polarized mucociliary airway epithelial cells, we detect genotype-specific differences in CFTR baseline function and response to CFTR modulators. These results demonstrate the potential of the human induced pluripotent stem cell platform as a research tool to study CF and in particular accelerate therapeutic development for CF caused by rare variants.
Collapse
Affiliation(s)
- Andrew Berical
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Rhianna E Lee
- Marsico Lung Institute and Cystic Fibrosis Research Center, Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Junjie Lu
- Cystic Fibrosis Foundation, Lexington, MA, 02421, USA
| | - Mary Lou Beermann
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Jake A Le Suer
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Aditya Mithal
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Dylan Thomas
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Nicole Ranallo
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Megan Peasley
- Cystic Fibrosis Foundation, Lexington, MA, 02421, USA
| | - Alex Stuffer
- Cystic Fibrosis Foundation, Lexington, MA, 02421, USA
| | | | | | | | - Kevin Coote
- Cystic Fibrosis Foundation, Lexington, MA, 02421, USA
| | | | - Killian Hurley
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul McNally
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Children's Health Ireland, Dublin, Ireland
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - John Mahoney
- Cystic Fibrosis Foundation, Lexington, MA, 02421, USA
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Finn J Hawkins
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA.
- The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA.
| |
Collapse
|
170
|
Lee RE, Lewis CA, He L, Bulik-Sullivan EC, Gallant SC, Mascenik TM, Dang H, Cholon DM, Gentzsch M, Morton LC, Minges JT, Theile JW, Castle NA, Knowles MR, Kimple AJ, Randell SH. Small molecule eRF3a degraders rescue CFTR nonsense mutations by promoting premature termination codon readthrough. J Clin Invest 2022; 132:154571. [PMID: 35900863 PMCID: PMC9479597 DOI: 10.1172/jci154571] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
The vast majority of people with cystic fibrosis (CF) are now eligible for CF transmembrane regulator (CFTR) modulator therapy. The remaining individuals with CF harbor premature termination codons (PTCs) or rare CFTR variants with limited treatment options. Although the clinical modulator response can be reliably predicted using primary airway epithelial cells, primary cells carrying rare CFTR variants are scarce. To overcome this obstacle, cell lines can be created by overexpression of mouse Bmi-1 and human TERT (hTERT). Using this approach, we developed 2 non-CF and 6 CF airway epithelial cell lines, 3 of which were homozygous for the W1282X PTC variant. The Bmi-1/hTERT cell lines recapitulated primary cell morphology and ion transport function. The 2 F508del-CFTR cell lines responded robustly to CFTR modulators, which was mirrored in the parent primary cells and in the cell donors’ clinical response. Cereblon E3 ligase modulators targeting eukaryotic release factor 3a (eRF3a) rescued W1282X-CFTR function to approximately 20% of WT levels and, when paired with G418, rescued G542X-CFTR function to approximately 50% of WT levels. Intriguingly, eRF3a degraders also diminished epithelial sodium channel (ENaC) function. These studies demonstrate that Bmi-1/hTERT cell lines faithfully mirrored primary cell responses to CFTR modulators and illustrate a therapeutic approach to rescue CFTR nonsense mutations.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Catherine A Lewis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Lihua He
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Emily C Bulik-Sullivan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Samuel C Gallant
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Teresa M Mascenik
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Deborah M Cholon
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Martina Gentzsch
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Lisa C Morton
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - John T Minges
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | | | - Neil A Castle
- Research and Development, Icagen, Durham, United States of America
| | - Michael R Knowles
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Adam J Kimple
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| |
Collapse
|
171
|
Kingston H, Stilp AM, Gordon W, Broome J, Gogarten SM, Ling H, Barnard J, Dugan-Perez S, Ellinor PT, Gabriel S, Germer S, Gibbs RA, Gupta N, Rice K, Smith AV, Zody MC, Blackman SM, Cutting G, Knowles MR, Zhou YH, Rosenfeld M, Gibson RL, Bamshad M, Fohner A, Blue EE. Accounting for population structure in genetic studies of cystic fibrosis. HGG ADVANCES 2022; 3:100117. [PMID: 35647563 PMCID: PMC9136666 DOI: 10.1016/j.xhgg.2022.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
CFTR F508del (c.1521_1523delCTT, p.Phe508delPhe) is the most common pathogenic allele underlying cystic fibrosis (CF), and its frequency varies in a geographic cline across Europe. We hypothesized that genetic variation associated with this cline is overrepresented in a large cohort (N > 5,000) of persons with CF who underwent whole-genome sequencing and that this pattern could result in spurious associations between variants correlated with both the F508del genotype and CF-related outcomes. Using principal-component (PC) analyses, we showed that variation in the CFTR region disproportionately contributes to a PC explaining a relatively high proportion of genetic variance. Variation near CFTR was correlated with population structure among persons with CF, and this correlation was driven by a subset of the sample inferred to have European ancestry. We performed genome-wide association studies comparing persons with CF with one versus two copies of the F508del allele; this allowed us to identify genetic variation associated with the F508del allele and to determine that standard PC-adjustment strategies eliminated the significant association signals. Our results suggest that PC adjustment can adequately prevent spurious associations between genetic variants and CF-related traits and are therefore effective tools to control for population structure even when population structure is confounded with disease severity and a common pathogenic variant.
Collapse
Affiliation(s)
- Hanley Kingston
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
| | - Adrienne M. Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - William Gordon
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jai Broome
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | | | - Hua Ling
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shannon Dugan-Perez
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patrick T. Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02124, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stacey Gabriel
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Namrata Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Albert V. Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - The Cystic Fibrosis Genome Project
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02124, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- New York Genome Center, New York, NY 10013, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27797, USA
- Center for Clinical and Translational Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02124, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- New York Genome Center, New York, NY 10013, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27797, USA
- Center for Clinical and Translational Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Scott M. Blackman
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Garry Cutting
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael R. Knowles
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yi-Hui Zhou
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27797, USA
| | - Margaret Rosenfeld
- Center for Clinical and Translational Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Ronald L. Gibson
- Center for Clinical and Translational Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Michael Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Clinical and Translational Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Alison Fohner
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth E. Blue
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| |
Collapse
|
172
|
Sotnikova EA, Kiseleva AV, Kutsenko VA, Zharikova AA, Ramensky VE, Divashuk MG, Vyatkin YV, Klimushina MV, Ershova AI, Revazyan KZ, Skirko OP, Zaicenoka M, Efimova IA, Pokrovskaya MS, Kopylova OV, Glechan AM, Shalnova SA, Meshkov AN, Drapkina OM. Identification of Pathogenic Variant Burden and Selection of Optimal Diagnostic Method Is a Way to Improve Carrier Screening for Autosomal Recessive Diseases. J Pers Med 2022; 12:jpm12071132. [PMID: 35887629 PMCID: PMC9322704 DOI: 10.3390/jpm12071132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic fibrosis, phenylketonuria, alpha-1 antitrypsin deficiency, and sensorineural hearing loss are among the most common autosomal recessive diseases, which require carrier screening. The evaluation of population allele frequencies (AF) of pathogenic variants in genes associated with these conditions and the choice of the best genotyping method are the necessary steps toward development and practical implementation of carrier-screening programs. We performed custom panel genotyping of 3821 unrelated participants from two Russian population representative samples and three patient groups using real-time polymerase chain reaction (PCR) and next generation sequencing (NGS). The custom panel included 115 known pathogenic variants in the CFTR, PAH, SERPINA1, and GJB2 genes. Overall, 38 variants were detected. The comparison of genotyping platforms revealed the following advantages of real-time PCR: relatively low cost, simple genotyping data analysis, and easier detection of large indels, while NGS showed better accuracy of variants identification and capability for detection of additional pathogenic variants in adjacent regions. A total of 23 variants had significant differences in estimated AF comparing with non-Finnish Europeans from gnomAD. This study provides new AF data for variants associated with the studied disorders and the comparison of genotyping methods for carrier screening.
Collapse
Affiliation(s)
- Evgeniia A. Sotnikova
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
| | - Anna V. Kiseleva
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
- Correspondence:
| | - Vladimir A. Kutsenko
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
| | - Anastasia A. Zharikova
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
| | - Vasily E. Ramensky
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
| | - Mikhail G. Divashuk
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia
| | - Yuri V. Vyatkin
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
- Novosibirsk State University, 1, Pirogova Str., 630090 Novosibirsk, Russia
| | - Marina V. Klimushina
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
| | - Alexandra I. Ershova
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
| | - Karina Z. Revazyan
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
| | - Olga P. Skirko
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
| | - Marija Zaicenoka
- Moscow Institute of Physics and Technology, Dolgoprudny, Institutskiy per.9, 141701 Dolgoprudny, Russia;
| | - Irina A. Efimova
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
| | - Maria S. Pokrovskaya
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
| | - Oksana V. Kopylova
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
| | - Anush M. Glechan
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
| | - Svetlana A. Shalnova
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
| | - Alexey N. Meshkov
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
| | - Oxana M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per.10, Bld. 3, 101000 Moscow, Russia; (E.A.S.); (V.A.K.); (A.A.Z.); (V.E.R.); (M.G.D.); (Y.V.V.); (M.V.K.); (A.I.E.); (K.Z.R.); (O.P.S.); (I.A.E.); (M.S.P.); (O.V.K.); (A.M.G.); (S.A.S.); (A.N.M.); (O.M.D.)
| |
Collapse
|
173
|
Jung HW, Lee I, Lee SH, Morgan K, Parsons D, Donnelley M. Mucociliary Transit Assessment Using Automatic Tracking in Phase Contrast X-Ray Images of Live Mouse Nasal Airways. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Purpose
The rate of mucociliary transit (MCT) is an indicator of the hydration and health of the airways for cystic fibrosis (CF). To determine the effectiveness of cystic fibrosis respiratory therapies, we have developed a novel method to non-invasively quantify the local rate and patterns of MCT behaviour in vivo by using synchrotron phase contrast X-ray imaging (PCXI) to visualise the MCT motion of micron-sized spherical particles deposited onto the airway surfaces of live mice.
Methods
In this study the baseline MCT behaviour was assessed in the nasal airways of CFTR-null and normal mice which were then treated with hypertonic saline (HS) or mannitol. To assess MCT, the particle motion was tracked throughout the synchrotron PCXI sequences using fully-automated custom image analysis software.
Results
There was no significant difference in the MCT rate between normal and CFTR-null mice, but the analysis of MCT particle tracking showed that HS may have a longer duration of action in CFTR-null mice than in the normal mice.
Conclusion
This study demonstrated that changes in MCT rate in CF and normal mouse nasal airways can be measured using PCXI and customised tracking software and used for assessing the effects of airway rehydrating pharmaceutical treatments.
Collapse
|
174
|
Molecular mechanisms of Cystic Fibrosis - how mutations lead to misfunction and guide therapy. Biosci Rep 2022; 42:231430. [PMID: 35707985 PMCID: PMC9251585 DOI: 10.1042/bsr20212006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis, the most common autosomal recessive disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a cAMP-activated chloride and bicarbonate channel that regulates ion and water transport in secretory epithelia. Although all mutations lead to the lack or reduction in channel function, the mechanisms through which this occurs are diverse – ranging from lack of full-length mRNA, reduced mRNA levels, impaired folding and trafficking, targeting to degradation, decreased gating or conductance, and reduced protein levels to decreased half-life at the plasma membrane. Here, we review the different molecular mechanisms that cause cystic fibrosis and detail how these differences identify theratypes that can inform the use of directed therapies aiming at correcting the basic defect. In summary, we travel through CFTR life cycle from the gene to function, identifying what can go wrong and what can be targeted in terms of the different types of therapeutic approaches.
Collapse
|
175
|
Harrison PT. CFTR RNA- and DNA-based therapies. Curr Opin Pharmacol 2022; 65:102247. [PMID: 35709547 DOI: 10.1016/j.coph.2022.102247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/20/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022]
Abstract
This review provides an update on recent developments of RNA- and DNA-based methodologies and their intracellular targets in the context of cystic fibrosis (CF) lung disease. Ultimately, clinical success will require a suitable delivery system, but since the cargo for all these strategies is nucleic acid, it should hopefully be possible to exploit delivery breakthroughs from one study and apply these innovations to other experiments in order to identify the best strategy for everyone with CF. Ultimately, it may be the same approach for everyone, or possibly a number of different strategies tailored to particular mutations or classes/groups of mutations. And whilst the current focus is on CF lung disease, in the longer term the goal is to treat all affected organs in people with CF such as the pancreas, gut, and liver.
Collapse
Affiliation(s)
- Patrick T Harrison
- Department of Physiology, BioSciences Institute, University College Cork, Ireland.
| |
Collapse
|
176
|
Caird R, Williamson M, Yusuf A, Gogoi D, Casey M, McElvaney NG, Reeves EP. Targeting of Glycosaminoglycans in Genetic and Inflammatory Airway Disease. Int J Mol Sci 2022; 23:ijms23126400. [PMID: 35742845 PMCID: PMC9224208 DOI: 10.3390/ijms23126400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/10/2022] Open
Abstract
In the lung, glycosaminoglycans (GAGs) are dispersed in the extracellular matrix (ECM) occupying the interstitial space between the capillary endothelium and the alveolar epithelium, in the sub-epithelial tissue and in airway secretions. In addition to playing key structural roles, GAGs contribute to a number of physiologic processes ranging from cell differentiation, cell adhesion and wound healing. Cytokine and chemokine–GAG interactions are also involved in presentation of inflammatory molecules to respective receptors leading to immune cell migration and airway infiltration. More recently, pathophysiological roles of GAGs have been described. This review aims to discuss the biological roles and molecular interactions of GAGs, and their impact in the pathology of chronic airway diseases, such as cystic fibrosis and chronic obstructive pulmonary disease. Moreover, the role of GAGs in respiratory disease has been heightened by the current COVID-19 pandemic. This review underlines the essential need for continued research aimed at exploring the contribution of GAGs in the development of inflammation, to provide a better understanding of their biological impact, as well as leads in the development of new therapeutic agents.
Collapse
|
177
|
Determination of Cystic Fibrosis Mutation Frequency in Preterm and Term Neonates with Respiratory Tract Problems. Balkan J Med Genet 2022; 24:25-31. [PMID: 36249513 PMCID: PMC9524182 DOI: 10.2478/bjmg-2021-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease. The genetic transition occurs with CF transmembrane conductance regulator (CFTR) gene mutation. We aimed to determine the frequency of CF mutations and also new mutations in the CFTR gene in neonates with respiratory distress. Newborn babies hospitalized due to respiratory distress were included in the patient group. The control group consisted of infants who had no respiratory distress. The CFTR genes of both groups were analyzed using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) methods. A total of 40 patients (20 in the patient group and 20 in the control group) were evaluated. The CFTR gene analysis was normal in 16 neonates in the patient group, whereas in others: A46D (c.137C>A) (n = 1), D1312G (c.3935A>G) (n = 1), R117H (c.350G>A) (n = 1), S1426P (c.4276T>C) (n = 1) heterozygotes were detected; CFTR gene analysis was normal at 14 neonates in the control group, whereas in others: E1228G (c.3683A>G) (n = 1), E217G (c.650A>G) (n = 1), E632TfsX9 (c1894_1895delAG) (n = 1), I807M (c.2421 A>G) (n = 2), S573F (c.1718C>T) (n = 1) heterozygotes were detected. There was no significant difference in the patient and control groups’ CFTR gene analysis (p = 0.340). This study demonstrates the importance of CFTR gene analysis in asymptomatic newborn infants for follow-up and early diagnosis of CFTR-related disorders. In this study, a c.1894_1895delAG (E632TfsX9) heterozygous mutation detected in the CFTR gene in an asymptomatic newborn infant, was first encountered in the literature.
Collapse
|
178
|
Blayac M, Coll P, Urbach V, Fanen P, Epaud R, Lanone S. The Impact of Air Pollution on the Course of Cystic Fibrosis: A Review. Front Physiol 2022; 13:908230. [PMID: 35721541 PMCID: PMC9202997 DOI: 10.3389/fphys.2022.908230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal and widespread autosomal recessive disorder affecting over 80,000 people worldwide. It is caused by mutations of the CFTR gene, which encodes an epithelial anion channel. CF is characterized by a great phenotypic variability which is currently not fully understood. Although CF is genetically determined, the course of the disease might also depend on multiple other factors. Air pollution, whose effects on health and contribution to respiratory diseases are well established, is one environmental factor suspected to modulate the disease severity and influence the lung phenotype of CF patients. This is of particular interest as pulmonary failure is the primary cause of death in CF. The present review discusses current knowledge on the impact of air pollution on CF pathogenesis and aims to explore the underlying cellular and biological mechanisms involved in these effects.
Collapse
Affiliation(s)
- Marion Blayac
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Patrice Coll
- Université Paris Cité and Univ Paris Est Créteil, CNRS, LISA, Paris, France
| | | | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- AP-HP, Hopital Henri-Mondor, Service Génétique, Creteil, France
| | - Ralph Epaud
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Centre Hospitalier Intercommunal, Centre des Maladies Respiratoires Rares (RespiRare®)-CRCM, Creteil, France
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| |
Collapse
|
179
|
Wang C, Anglès F, Balch WE. Triangulating variation in the population to define mechanisms for precision management of genetic disease. Structure 2022; 30:1190-1207.e5. [PMID: 35714602 PMCID: PMC9357173 DOI: 10.1016/j.str.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
To understand mechanistically how the protein fold is shaped by therapeutics to inform precision management of disease, we developed variation-capture (VarC) mapping. VarC triangulates sparse sequence variation information found in the population using Gaussian process regression (GPR)-based machine learning to define the combined pairwise-residue interactions contributing to dynamic protein function in the individual in response to therapeutics. Using VarC mapping, we now reveal the pairwise-residue covariant relationships across the entire protein fold of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) to define the molecular mechanisms of clinically approved CF chemical modulators. We discover an energetically destabilized covariant core containing a di-acidic YKDAD endoplasmic reticulum (ER) exit code that is only weakly corrected by current therapeutics. Our results illustrate that VarC provides a generalizable tool to triangulate information from genetic variation in the population to mechanistically discover therapeutic strategies that guide precision management of the individual.
Collapse
Affiliation(s)
- Chao Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Frédéric Anglès
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
180
|
Abstract
Behavior genetics is a controversial science. For decades, scholars have sought to understand the role of heredity in human behavior and life-course outcomes. Recently, technological advances and the rapid expansion of genomic databases have facilitated the discovery of genes associated with human phenotypes such as educational attainment and substance use disorders. To maximize the potential of this flourishing science, and to minimize potential harms, careful analysis of what it would mean for genes to be causes of human behavior is needed. In this paper, we advance a framework for identifying instances of genetic causes, interpreting those causal relationships, and applying them to advance causal knowledge more generally in the social sciences. Central to thinking about genes as causes is counterfactual reasoning, the cornerstone of causal thinking in statistics, medicine, and philosophy. We argue that within-family genetic effects represent the product of a counterfactual comparison in the same way as average treatment effects (ATEs) from randomized controlled trials (RCTs). Both ATEs from RCTs and within-family genetic effects are shallow causes: They operate within intricate causal systems (non-unitary), produce heterogeneous effects across individuals (non-uniform), and are not mechanistically informative (non-explanatory). Despite these limitations, shallow causal knowledge can be used to improve understanding of the etiology of human behavior and to explore sources of heterogeneity and fade-out in treatment effects.
Collapse
Affiliation(s)
- James W Madole
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- VA Puget Sound Health Care System, Seattle, WA, USA
| | - K Paige Harden
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
181
|
Blaconà G, Raso R, Castellani S, Pierandrei S, Del Porto P, Ferraguti G, Ascenzioni F, Conese M, Lucarelli M. Downregulation of epithelial sodium channel (ENaC) activity in cystic fibrosis cells by epigenetic targeting. Cell Mol Life Sci 2022; 79:257. [PMID: 35462606 PMCID: PMC9035428 DOI: 10.1007/s00018-022-04190-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/31/2022]
Abstract
The pathogenic mechanism of cystic fibrosis (CF) includes the functional interaction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein with the epithelial sodium channel (ENaC). The reduction of ENaC activity may constitute a therapeutic option for CF. This hypothesis was evaluated using drugs that target the protease-dependent activation of the ENaC channel and the transcriptional activity of its coding genes. To this aim we used: camostat, a protease inhibitor; S-adenosyl methionine (SAM), showed to induce DNA hypermethylation; curcumin, known to produce chromatin condensation. SAM and camostat are drugs already clinically used in other pathologies, while curcumin is a common dietary compound. The experimental systems used were CF and non-CF immortalized human bronchial epithelial cell lines as well as human bronchial primary epithelial cells. ENaC activity and SCNN1A, SCNN1B and SCNN1G gene expression were analyzed, in addition to SCNN1B promoter methylation. In both immortalized and primary cells, the inhibition of extracellular peptidases and the epigenetic manipulations reduced ENaC activity. Notably, the reduction in primary cells was much more effective. The SCNN1B appeared to be the best target to reduce ENaC activity, in respect to SCNN1A and SCNN1G. Indeed, SAM treatment resulted to be effective in inducing hypermethylation of SCNN1B gene promoter and in lowering its expression. Importantly, CFTR expression was unaffected, or even upregulated, after treatments. These results open the possibility of CF patients’ treatment by epigenetic targeting.
Collapse
Affiliation(s)
- Giovanna Blaconà
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Raso
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefano Castellani
- Department of Biomedical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Silvia Pierandrei
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Del Porto
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy. .,Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
182
|
Kelly J, Al-Rammahi M, Daly K, Flanagan PK, Urs A, Cohen MC, di Stefano G, Bijvelds MJC, Sheppard DN, de Jonge HR, Seidler UE, Shirazi-Beechey SP. Alterations of mucosa-attached microbiome and epithelial cell numbers in the cystic fibrosis small intestine with implications for intestinal disease. Sci Rep 2022; 12:6593. [PMID: 35449374 PMCID: PMC9023491 DOI: 10.1038/s41598-022-10328-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Defective CFTR leads to accumulation of dehydrated viscous mucus within the small intestine, luminal acidification and altered intestinal motility, resulting in blockage. These changes promote gut microbial dysbiosis, adversely influencing the normal proliferation and differentiation of intestinal epithelial cells. Using Illumina 16S rRNA gene sequencing and immunohistochemistry, we assessed changes in mucosa-attached microbiome and epithelial cell profile in the small intestine of CF mice and a CF patient compared to wild-type mice and non-CF humans. We found increased abundance of pro-inflammatory Escherichia and depletion of beneficial secondary bile-acid producing bacteria in the ileal mucosa-attached microbiome of CFTR-null mice. The ileal mucosa in a CF patient was dominated by a non-aeruginosa Pseudomonas species and lacked numerous beneficial anti-inflammatory and short-chain fatty acid-producing bacteria. In the ileum of both CF mice and a CF patient, the number of absorptive enterocytes, Paneth and glucagon-like peptide 1 and 2 secreting L-type enteroendocrine cells were decreased, whereas stem and goblet cell numbers were increased. These changes in mucosa-attached microbiome and epithelial cell profile suggest that microbiota-host interactions may contribute to intestinal CF disease development with implications for therapy.
Collapse
Affiliation(s)
- Jennifer Kelly
- Department of Infection Biology and Microbiomes, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Miran Al-Rammahi
- Department of Infection Biology and Microbiomes, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Al-Qadisiyah, Al Diwaniyah, 58002, Iraq
| | - Kristian Daly
- Department of Infection Biology and Microbiomes, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Paul K Flanagan
- Arrowe Park University Teaching Hospital NHS Trust, Wirral, CH49 5PE, UK.,Gastrointestinal and Liver Services, Aintree University Hospital, Lower Lane, Liverpool, Merseyside, L9 7AL, UK
| | - Arun Urs
- Sheffield Children's Hospital NHS Trust, Western Bank, Sheffield, S10 2TH, UK
| | - Marta C Cohen
- Histopathology Department, Sheffield Children's Hospital NHS Trust, Western Bank, Sheffield, S10 2TH, UK
| | - Gabriella di Stefano
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625, Hannover, Germany
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Ursula E Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625, Hannover, Germany
| | - Soraya P Shirazi-Beechey
- Department of Infection Biology and Microbiomes, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| |
Collapse
|
183
|
Altamura C, Conte D, Carratù MR, Desaphy JF. Target mutation-driven drug discovery. Curr Med Chem 2022; 29:5156-5158. [PMID: 35440295 DOI: 10.2174/1389450123666220418111200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, I-70124 Italy
| | | | - Maria Rosaria Carratù
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, I-70124 Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, I-70124 Italy
| |
Collapse
|
184
|
Cerebral Polymorphisms for Lateralisation: Modelling the Genetic and Phenotypic Architectures of Multiple Functional Modules. Symmetry (Basel) 2022. [DOI: 10.3390/sym14040814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent fMRI and fTCD studies have found that functional modules for aspects of language, praxis, and visuo-spatial functioning, while typically left, left and right hemispheric respectively, frequently show atypical lateralisation. Studies with increasing numbers of modules and participants are finding increasing numbers of module combinations, which here are termed cerebral polymorphisms—qualitatively different lateral organisations of cognitive functions. Polymorphisms are more frequent in left-handers than right-handers, but it is far from the case that right-handers all show the lateral organisation of modules described in introductory textbooks. In computational terms, this paper extends the original, monogenic McManus DC (dextral-chance) model of handedness and language dominance to multiple functional modules, and to a polygenic DC model compatible with the molecular genetics of handedness, and with the biology of visceral asymmetries found in primary ciliary dyskinesia. Distributions of cerebral polymorphisms are calculated for families and twins, and consequences and implications of cerebral polymorphisms are explored for explaining aphasia due to cerebral damage, as well as possible talents and deficits arising from atypical inter- and intra-hemispheric modular connections. The model is set in the broader context of the testing of psychological theories, of issues of laterality measurement, of mutation-selection balance, and the evolution of brain and visceral asymmetries.
Collapse
|
185
|
Anglès F, Wang C, Balch WE. Spatial covariance analysis reveals the residue-by-residue thermodynamic contribution of variation to the CFTR fold. Commun Biol 2022; 5:356. [PMID: 35418593 PMCID: PMC9008016 DOI: 10.1038/s42003-022-03302-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Although the impact of genome variation on the thermodynamic properties of function on the protein fold has been studied in vitro, it remains a challenge to assign these relationships across the entire polypeptide sequence in vivo. Using the Gaussian process regression based principle of Spatial CoVariance, we globally assign on a residue-by-residue basis the biological thermodynamic properties that contribute to the functional fold of CFTR in the cell. We demonstrate the existence of a thermodynamically sensitive region of the CFTR fold involving the interface between NBD1 and ICL4 that contributes to its export from endoplasmic reticulum. At the cell surface a new set of residues contribute uniquely to the management of channel function. These results support a general 'quality assurance' view of global protein fold management as an SCV principle describing the differential pre- and post-ER residue interactions contributing to compartmentalization of the energetics of the protein fold for function. Our results set the stage for future analyses of the quality systems managing protein sequence-to-function-to-structure broadly encompassing genome design leading to protein function in complex cellular relationships responsible for diversity and fitness in biology in response to the environment.
Collapse
Affiliation(s)
- Frédéric Anglès
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Chao Wang
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - William E Balch
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
186
|
Gong J, He G, Wang C, Bartlett C, Panjwani N, Mastromatteo S, Lin F, Keenan K, Avolio J, Halevy A, Shaw M, Esmaeili M, Côté-Maurais G, Adam D, Bégin S, Bjornson C, Chilvers M, Reisman J, Price A, Parkins M, van Wylick R, Berthiaume Y, Bilodeau L, Mateos-Corral D, Hughes D, Smith MJ, Morrison N, Brusky J, Tullis E, Stephenson AL, Quon BS, Wilcox P, Leung WM, Solomon M, Sun L, Brochiero E, Moraes TJ, Gonska T, Ratjen F, Rommens JM, Strug LJ. Genetic evidence supports the development of SLC26A9 targeting therapies for the treatment of lung disease. NPJ Genom Med 2022; 7:28. [PMID: 35396391 PMCID: PMC8993824 DOI: 10.1038/s41525-022-00299-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
Over 400 variants in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) are CF-causing. CFTR modulators target variants to improve lung function, but marked variability in response exists and current therapies do not address all CF-causing variants highlighting unmet needs. Alternative epithelial ion channel/transporters such as SLC26A9 could compensate for CFTR dysfunction, providing therapeutic targets that may benefit all individuals with CF. We investigate the relationship between rs7512462, a marker of SLC26A9 activity, and lung function pre- and post-treatment with CFTR modulators in Canadian and US CF cohorts, in the general population, and in those with chronic obstructive pulmonary disease (COPD). Rs7512462 CC genotype is associated with greater lung function in CF individuals with minimal function variants (for which there are currently no approved therapies; p = 0.008); and for gating (p = 0.033) and p.Phe508del/ p.Phe508del (p = 0.006) genotypes upon treatment with CFTR modulators. In parallel, human nasal epithelia with CC and p.Phe508del/p.Phe508del after Ussing chamber analysis of a combination of approved and experimental modulator treatments show greater CFTR function (p = 0.0022). Beyond CF, rs7512462 is associated with peak expiratory flow in a meta-analysis of the UK Biobank and Spirometa Consortium (p = 2.74 × 10-44) and provides p = 0.0891 in an analysis of COPD case-control status in the UK Biobank defined by spirometry. These findings support SLC26A9 as a therapeutic target to improve lung function for all people with CF and in individuals with other obstructive lung diseases.
Collapse
Affiliation(s)
- Jiafen Gong
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Gengming He
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Cheng Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Claire Bartlett
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Naim Panjwani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Scott Mastromatteo
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Fan Lin
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Katherine Keenan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie Avolio
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anat Halevy
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michelle Shaw
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohsen Esmaeili
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Guillaume Côté-Maurais
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Stéphanie Bégin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | - Mark Chilvers
- British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Joe Reisman
- The Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - April Price
- The Children's Hospital, London Health Science Centre, London, ON, Canada
| | | | | | - Yves Berthiaume
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Lara Bilodeau
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec City, QC, Canada
| | | | | | - Mary J Smith
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Nancy Morrison
- Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | - Janna Brusky
- Department of Pediatrics, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | | - Melinda Solomon
- Respiratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Lei Sun
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Theo J Moraes
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Respiratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Tanja Gonska
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Felix Ratjen
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Johanna M Rommens
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lisa J Strug
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada.
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
187
|
Pino-Argumedo MI, Fischer AJ, Hilkin BM, Gansemer ND, Allen PD, Hoffman EA, Stoltz DA, Welsh MJ, Abou Alaiwa MH. Elastic mucus strands impair mucociliary clearance in cystic fibrosis pigs. Proc Natl Acad Sci U S A 2022; 119:e2121731119. [PMID: 35324331 PMCID: PMC9060506 DOI: 10.1073/pnas.2121731119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/22/2022] [Indexed: 01/18/2023] Open
Abstract
SignificanceIn many lung diseases, increased amounts of and/or abnormal mucus impair mucociliary clearance, a key defense against inhaled and aspirated material. Submucosal glands lining cartilaginous airways secrete mucus strands that are pulled by cilia until they break free from the duct and sweep upward toward the larynx, carrying particulates. In cystic fibrosis (CF) pigs, progressive clearance of insufflated microdisks was repeatedly interrupted as microdisks abruptly recoiled. Aerosolizing a reducing agent to break disulfide bonds linking mucins ruptured mucus strands, freeing them from submucosal gland ducts and allowing cilia to propel them up the airways. These findings highlight the abnormally increased elasticity of CF mucus and suggest that agents that break disulfide bonds might have value in lung diseases with increased mucus.
Collapse
Affiliation(s)
- Maria I. Pino-Argumedo
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Anthony J. Fischer
- Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Brieanna M. Hilkin
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Patrick D. Allen
- Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Eric A. Hoffman
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| | - David A. Stoltz
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Michael J. Welsh
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- HHMI, University of Iowa, Iowa City, IA 52242
| | - Mahmoud H. Abou Alaiwa
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
188
|
Raraigh KS, Paul KC, Goralski JL, Worthington EN, Faino AV, Sciortino S, Wang Y, Aksit MA, Ling H, Osorio DL, Onchiri FM, Patel SU, Merlo CA, Montemayor K, Gibson RL, West NE, Thakerar A, Bridges RJ, Sheppard DN, Sharma N, Cutting GR. CFTR bearing variant p.Phe312del exhibits function inconsistent with phenotype and negligible response to ivacaftor. JCI Insight 2022; 7:148841. [PMID: 35315358 PMCID: PMC8986068 DOI: 10.1172/jci.insight.148841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
The chloride channel dysfunction caused by deleterious cystic fibrosis transmembrane conductance regulator (CFTR) variants generally correlates with severity of cystic fibrosis (CF). However, 3 adults bearing the common severe variant p.Phe508del (legacy: F508del) and a deletion variant in an ivacaftor binding region of CFTR (p.Phe312del; legacy: F312del) manifested only elevated sweat chloride concentration (sw[Cl-]; 87-105 mEq/L). A database review of 25 individuals with F312del and a CF-causing variant revealed elevated sw[Cl-] (75-123 mEq/L) and variable CF features. F312del occurs at a higher-than-expected frequency in the general population, confirming that individuals with F312del and a CF-causing variant do not consistently develop overt CF features. In primary nasal cells, CFTR bearing F312del and F508del generated substantial chloride transport (66.0% ± 4.5% of WT-CFTR) but did not respond to ivacaftor. Single-channel analysis demonstrated that F312del did not affect current flow through CFTR, minimally altered gating, and ablated the ivacaftor response. When expressed stably in CF bronchial epithelial (CFBE41o-) cells, F312del-CFTR demonstrated residual function (50.9% ± 3.3% WT-CFTR) and a subtle decrease in forskolin response compared with WT-CFTR. F312del provides an exception to the established correlation between CFTR chloride transport and CF phenotype and informs our molecular understanding of ivacaftor response.
Collapse
Affiliation(s)
| | | | - Jennifer L Goralski
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erin N Worthington
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anna V Faino
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Stanley Sciortino
- California Department of Public Health, Genetic Disease Screening Program, Richmond, California, USA
| | - Yiting Wang
- University of Bristol, Bristol, United Kingdom
| | | | - Hua Ling
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | - Amita Thakerar
- Rosalind Franklin University of Medicine and Science, Center for Genetic Diseases, North Chicago, Illinois, USA
| | - Robert J Bridges
- Rosalind Franklin University of Medicine and Science, Center for Genetic Diseases, North Chicago, Illinois, USA
| | | | | | | |
Collapse
|
189
|
McDonald EF, Woods H, Smith ST, Kim M, Schoeder CT, Plate L, Meiler J. Structural Comparative Modeling of Multi-Domain F508del CFTR. Biomolecules 2022; 12:biom12030471. [PMID: 35327663 PMCID: PMC8946492 DOI: 10.3390/biom12030471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/07/2022] Open
Abstract
Cystic fibrosis (CF) is a rare genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial anion channel expressed in several vital organs. Absence of functional CFTR results in imbalanced osmotic equilibrium and subsequent mucus build up in the lungs-which increases the risk of infection and eventually causes death. CFTR is an ATP-binding cassette (ABC) transporter family protein composed of two transmembrane domains (TMDs), two nucleotide binding domains (NBDs), and an unstructured regulatory domain. The most prevalent patient mutation is the deletion of F508 (F508del), making F508del CFTR the primary target for current FDA approved CF therapies. However, no experimental multi-domain F508del CFTR structure has been determined and few studies have modeled F508del using multi-domain WT CFTR structures. Here, we used cryo-EM density data and Rosetta comparative modeling (RosettaCM) to compare a F508del model with published experimental data on CFTR NBD1 thermodynamics. We then apply this modeling method to generate multi-domain WT and F508del CFTR structural models. These models demonstrate the destabilizing effects of F508del on NBD1 and the NBD1/TMD interface in both the inactive and active conformation of CFTR. Furthermore, we modeled F508del/R1070W and F508del bound to the CFTR corrector VX-809. Our models reveal the stabilizing effects of VX-809 on multi-domain models of F508del CFTR and pave the way for rational design of additional drugs that target F508del CFTR for treatment of CF.
Collapse
Affiliation(s)
- Eli Fritz McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; (E.F.M.); (C.T.S.); (L.P.)
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; (H.W.); (S.T.S.)
| | - Hope Woods
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; (H.W.); (S.T.S.)
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37235, USA;
| | - Shannon T. Smith
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; (H.W.); (S.T.S.)
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37235, USA;
| | - Minsoo Kim
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37235, USA;
| | - Clara T. Schoeder
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; (E.F.M.); (C.T.S.); (L.P.)
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; (H.W.); (S.T.S.)
- Leipzig Medical School, Leipzig University, 04109 Leipzig, Germany
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; (E.F.M.); (C.T.S.); (L.P.)
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; (E.F.M.); (C.T.S.); (L.P.)
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; (H.W.); (S.T.S.)
- Leipzig Medical School, Leipzig University, 04109 Leipzig, Germany
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
- Institute for Drug Discovery, Leipzig University, 04109 Leipzig, Germany
- Correspondence: ; Tel.: +1-(615)-936-2211
| |
Collapse
|
190
|
Mercier J, Calmel C, Mésinèle J, Sutanto E, Merabtene F, Longchampt E, Sage E, Kicic A, Boëlle PY, Corvol H, Ruffin M, Guillot L. SLC6A14 Impacts Cystic Fibrosis Lung Disease Severity via mTOR and Epithelial Repair Modulation. Front Mol Biosci 2022; 9:850261. [PMID: 35372502 PMCID: PMC8965518 DOI: 10.3389/fmolb.2022.850261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis (CF), due to pathogenic variants in CFTR gene, is associated with chronic infection/inflammation responsible for airway epithelium alteration and lung function decline. Modifier genes induce phenotype variability between people with CF (pwCF) carrying the same CFTR variants. Among these, the gene encoding for the amino acid transporter SLC6A14 has been associated with lung disease severity and age of primary airway infection by the bacteria Pseudomonas aeruginosa. In this study, we investigated whether the single nucleotide polymorphism (SNP) rs3788766, located within SLC6A14 promoter, is associated with lung disease severity in a large French cohort of pwCF. We also studied the consequences of this SNP on SLC6A14 promoter activity using a luciferase reporter and the role of SLC6A14 in the mechanistic target of rapamycin kinase (mTOR) signaling pathway and airway epithelial repair. We confirm that SLC6A14 rs3788766 SNP is associated with lung disease severity in pwCF (p = 0.020; n = 3,257, pancreatic insufficient, aged 6-40 years old), with the minor allele G being deleterious. In bronchial epithelial cell lines deficient for CFTR, SLC6A14 promoter activity is reduced in the presence of the rs3788766 G allele. SLC6A14 inhibition with a specific pharmacological blocker reduced 3H-arginine transport, mTOR phosphorylation, and bronchial epithelial repair rates in wound healing assays. To conclude, our study highlights that SLC6A14 genotype might affect lung disease severity of people with cystic fibrosis via mTOR and epithelial repair mechanism modulation in the lung.
Collapse
Affiliation(s)
- Julia Mercier
- Sorbonne Université, Inserm, Centre de Recherche Saint Antoine, CRSA, Paris, France
| | - Claire Calmel
- Sorbonne Université, Inserm, Centre de Recherche Saint Antoine, CRSA, Paris, France
| | - Julie Mésinèle
- Sorbonne Université, Inserm, Centre de Recherche Saint Antoine, CRSA, Paris, France
- Sorbonne Université, Inserm, Institut Pierre Louis D'épidémiologie et de Santé Publique, IPLESP, APHP, Hôpital Saint-Antoine, Paris, France
| | - Erika Sutanto
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
| | - Fatiha Merabtene
- Sorbonne Université, Inserm, Centre de Recherche Saint Antoine, CRSA, Paris, France
| | | | - Edouard Sage
- Départment de Chirurgie Thoracique et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
- UMR 0892 UVSQ-INRAE, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Anthony Kicic
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Pierre-Yves Boëlle
- Sorbonne Université, Inserm, Institut Pierre Louis D'épidémiologie et de Santé Publique, IPLESP, APHP, Hôpital Saint-Antoine, Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm, Centre de Recherche Saint Antoine, CRSA, Paris, France
- AP-HP, Hôpital Trousseau, Service de Pneumologie Pédiatrique, Paris, France
| | - Manon Ruffin
- Sorbonne Université, Inserm, Centre de Recherche Saint Antoine, CRSA, Paris, France
| | - Loïc Guillot
- Sorbonne Université, Inserm, Centre de Recherche Saint Antoine, CRSA, Paris, France
| |
Collapse
|
191
|
Rasul MF, Hussen BM, Salihi A, Ismael BS, Jalal PJ, Zanichelli A, Jamali E, Baniahmad A, Ghafouri-Fard S, Basiri A, Taheri M. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol Cancer 2022; 21:64. [PMID: 35241090 PMCID: PMC8892709 DOI: 10.1186/s12943-021-01487-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) shows the opportunity to treat a diverse array of untreated various genetic and complicated disorders. Therapeutic genome editing processes that target disease-causing genes or mutant genes have been greatly accelerated in recent years as a consequence of improvements in sequence-specific nuclease technology. However, the therapeutic promise of genome editing has yet to be explored entirely, many challenges persist that increase the risk of further mutations. Here, we highlighted the main challenges facing CRISPR/Cas9-based treatments and proposed strategies to overcome these limitations, for further enhancing this revolutionary novel therapeutics to improve long-term treatment outcome human health.
Collapse
Affiliation(s)
- Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq.,Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Bnar Saleh Ismael
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Kurdistan region, Erbil, Iraq
| | - Paywast Jamal Jalal
- Biology Department, College of Science, University of Sulaimani, Sulaimani, Iraq
| | - Anna Zanichelli
- Department of Biomedical Sciences, University of Westminster, London, UK
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
192
|
Colecraft HM, Trimmer JS. Controlling ion channel function with renewable recombinant antibodies. J Physiol 2022; 600:2023-2036. [PMID: 35238051 PMCID: PMC9058206 DOI: 10.1113/jp282403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
Selective ion channel modulators play a critical role in physiology in defining the contribution of specific ion channels to physiological function and as proof of concept for novel therapeutic strategies. Antibodies are valuable research tools that have broad uses including defining the expression and localization of ion channels in native tissue, and capturing ion channel proteins for subsequent analyses. In this review, we detail how renewable and recombinant antibodies can be used to control ion channel function. We describe the different forms of renewable and recombinant antibodies that have been used and the mechanisms by which they modulate ion channel function. We highlight the use of recombinant antibodies that are expressed intracellularly (intrabodies) as genetically-encoded tools to control ion channel function. We also offer perspectives of avenues of future research that may be opened by the application of emerging technologies for engineering recombinant antibodies for enhanced utility in ion channel research. Overall, this review provides insights that may help stimulate and guide interested researchers to develop and incorporate renewable and recombinant antibodies as valuable tools to control ion channel function. Abstract figure legend Two different approaches for controlling ion channel function using renewable recombinant antibodies. On the left, an externally applied intact IgG antibody (purple) binds to an extracellular domain of an ion channel (light blue) to control ion channel function. On the right, a genetically-encoded intrabody, in this example a camelid nanobody (green) fused to an effector molecule (red) binds to an intracellular auxiliary subunit of an ion channel (dark blue) to control ion channel function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - James S Trimmer
- Department of Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| |
Collapse
|
193
|
Ferrell KC, Johansen MD, Triccas JA, Counoupas C. Virulence Mechanisms of Mycobacterium abscessus: Current Knowledge and Implications for Vaccine Design. Front Microbiol 2022; 13:842017. [PMID: 35308378 PMCID: PMC8928063 DOI: 10.3389/fmicb.2022.842017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium abscessus is a member of the non-tuberculous mycobacteria (NTM) group, responsible for chronic infections in individuals with cystic fibrosis (CF) or those otherwise immunocompromised. While viewed traditionally as an opportunistic pathogen, increasing research into M. abscessus in recent years has highlighted its continued evolution into a true pathogen. This is demonstrated through an extensive collection of virulence factors (VFs) possessed by this organism which facilitate survival within the host, particularly in the harsh environment of the CF lung. These include VFs resembling those of other Mycobacteria, and non-mycobacterial VFs, both of which make a notable contribution in shaping M. abscessus interaction with the host. Mycobacterium abscessus continued acquisition of VFs is cause for concern and highlights the need for novel vaccination strategies to combat this pathogen. An effective M. abscessus vaccine must be suitably designed for target populations (i.e., individuals with CF) and incorporate current knowledge on immune correlates of protection against M. abscessus infection. Vaccination strategies must also build upon lessons learned from ongoing efforts to develop novel vaccines for other pathogens, particularly Mycobacterium tuberculosis (M. tb); decades of research into M. tb has provided insight into unconventional and innovative vaccine approaches that may be applied to M. abscessus. Continued research into M. abscessus pathogenesis will be critical for the future development of safe and effective vaccines and therapeutics to reduce global incidence of this emerging pathogen.
Collapse
Affiliation(s)
- Kia C. Ferrell
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- *Correspondence: Kia C. Ferrell,
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute, University of Technology, Sydney, NSW, Australia
- Faculty of Science, School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - James A. Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Claudio Counoupas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Claudio Counoupas,
| |
Collapse
|
194
|
Merjaneh L, Hasan S, Kasim N, Ode KL. The role of modulators in cystic fibrosis related diabetes. J Clin Transl Endocrinol 2022; 27:100286. [PMID: 34917484 PMCID: PMC8668978 DOI: 10.1016/j.jcte.2021.100286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/15/2021] [Accepted: 11/27/2021] [Indexed: 11/21/2022] Open
Abstract
The development and introduction of modulator therapies have completely shifted the paradigm for the treatment of cystic fibrosis (CF). Highly effective modulator therapies have driven marked improvements in lung function, exacerbation rate, weight and quality of life in CF patients. However, their effect on CF related diabetes (CFRD) is not well delineated. The role of CF transmembrane conductance regulator (CFTR) in CFRD pathogenesis is inadequately understood and research aimed at deciphering the underlying mechanisms of CFRD continues to evolve. In this review, we summarize what is known regarding the effect of CFTR modulators on CFRD. Small studies using ivacaftor monotherapy in gating mutations have revealed improvement in insulin secretion, glucose tolerance and/or decrease in insulin requirement. However, lumacaftor/ivacaftor studies (primarily in delta F 508 homozygous) have not revealed significant improvement in CFRD or glucose tolerance. No studies are yet available regarding the effect of the highly effective triple therapy (elexacaftor/tezacaftor/ivacaftor) on CFRD or insulin secretion. CFTR modulators might affect development or progression of CFRD through many mechanisms including improving insulin secretion by correcting the CFTR defect directly, improving ductal function, reducing islet inflammation, and improving incretin secretion or by enhancing insulin sensitivity via reduced systemic inflammation and increased physical activity driven by improved lung function and quality of life. On the other hand, they can stimulate appetite and improve gastrointestinal function resulting in increased caloric intake and absorption, driving excessive weight gain and potentially increased insulin resistance. If the defect in insulin secretion is reversible then it is possible that initiation of CFTR modulators at a younger age might help prevent CFRD. Despite the advances in CF management, CFRD remains a challenge and knowledge continues to evolve. Future studies will drive better understanding of the role of highly effective CFTR modulators in CFRD.
Collapse
Affiliation(s)
- Lina Merjaneh
- Division of Endocrinology, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Sana Hasan
- Department of Endocrinology and Metabolism, Cleveland Clinic Foundation, Cleveland, OH
| | - Nader Kasim
- Division of Pediatric Diabetes and Endocrinology, Helen Devos Children’s Hospital, Spectrum Health, Grand Rapids, MI, USA
| | - Katie Larson Ode
- Division of Endocrinology, Department of Pediatrics, University of Iowa Stead Family Children’s Hospital, Iowa City, IA, USA
| |
Collapse
|
195
|
Parodi A, Righetti G, Pesce E, Salis A, Tomati V, Pastorino C, Tasso B, Benvenuti M, Damonte G, Pedemonte N, Cichero E, Millo E. Journey on VX-809-Based Hybrid Derivatives towards Drug-like F508del-CFTR Correctors: From Molecular Modeling to Chemical Synthesis and Biological Assays. Pharmaceuticals (Basel) 2022; 15:ph15030274. [PMID: 35337072 PMCID: PMC8955485 DOI: 10.3390/ph15030274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease affecting the lungs and pancreas and causing progressive damage. CF is caused by mutations abolishing the function of CFTR, a protein whose role is chloride’s mobilization in the epithelial cells of various organs. Recently a therapy focused on small molecules has been chosen as a main approach to contrast CF, designing and synthesizing compounds acting as misfolding (correctors) or defective channel gating (potentiators). Multi-drug therapies have been tested with different combinations of the two series of compounds. Previously, we designed and characterized two series of correctors, namely, hybrids, which were conceived including the aminoarylthiazole (AAT) core, merged with the benzodioxole carboxamide moiety featured by VX-809. In this paper, we herein proceeded with molecular modeling studies guiding the design of a new third series of hybrids, featuring structural variations at the thiazole moiety and modifications on position 4. These derivatives were tested in different assays including a YFP functional assay on models F508del-CFTR CFBE41o-cells, alone and in combination with VX-445, and by using electrophysiological techniques on human primary bronchial epithelia to demonstrate their F508del-CFTR corrector ability. This study is aimed (i) at identifying three molecules (9b, 9g, and 9j), useful as novel CFTR correctors with a good efficacy in rescuing the defect of F508del-CFTR; and (ii) at providing useful information to complete the structure–activity study within all the three series of hybrids as possible CFTR correctors, supporting the development of pharmacophore modelling studies, taking into account all the three series of hybrids. Finally, in silico evaluation of the hybrids pharmacokinetic (PK) properties contributed to highlight hybrid developability as drug-like correctors.
Collapse
Affiliation(s)
- Alice Parodi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Giada Righetti
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.R.); (B.T.)
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.P.); (V.T.); (N.P.)
| | - Annalisa Salis
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.P.); (V.T.); (N.P.)
| | - Cristina Pastorino
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy;
| | - Bruno Tasso
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.R.); (B.T.)
| | - Mirko Benvenuti
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Gianluca Damonte
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.P.); (V.T.); (N.P.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.R.); (B.T.)
- Correspondence: (E.C.); (E.M.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
- Correspondence: (E.C.); (E.M.)
| |
Collapse
|
196
|
Poerio N, Riva C, Olimpieri T, Rossi M, Lorè NI, De Santis F, Henrici De Angelis L, Ciciriello F, D’Andrea MM, Lucidi V, Cirillo DM, Fraziano M. Combined Host- and Pathogen-Directed Therapy for the Control of Mycobacterium abscessus Infection. Microbiol Spectr 2022; 10:e0254621. [PMID: 35080463 PMCID: PMC8791191 DOI: 10.1128/spectrum.02546-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium abscessus is the etiological agent of severe pulmonary infections in vulnerable patients, such as those with cystic fibrosis (CF), where it represents a relevant cause of morbidity and mortality. Treatment of pulmonary infections caused by M. abscessus remains extremely difficult, as this species is resistant to most classes of antibiotics, including macrolides, aminoglycosides, rifamycins, tetracyclines, and β-lactams. Here, we show that apoptotic body like liposomes loaded with phosphatidylinositol 5-phosphate (ABL/PI5P) enhance the antimycobacterial response, both in macrophages from healthy donors exposed to pharmacological inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) and in macrophages from CF patients, by enhancing phagosome acidification and reactive oxygen species (ROS) production. The treatment with liposomes of wild-type as well as CF mice, intratracheally infected with M. abscessus, resulted in about a 2-log reduction of pulmonary mycobacterial burden and a significant reduction of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF). Finally, the combination treatment with ABL/PI5P and amikacin, to specifically target intracellular and extracellular bacilli, resulted in a further significant reduction of both pulmonary mycobacterial burden and inflammatory response in comparison with the single treatments. These results offer the conceptual basis for a novel therapeutic regimen based on antibiotic and bioactive liposomes, used as a combined host- and pathogen-directed therapeutic strategy, aimed at the control of M. abscessus infection, and of related immunopathogenic responses, for which therapeutic options are still limited. IMPORTANCE Mycobacterium abscessus is an opportunistic pathogen intrinsically resistant to many antibiotics, frequently linked to chronic pulmonary infections, and representing a relevant cause of morbidity and mortality, especially in immunocompromised patients, such as those affected by cystic fibrosis. M. abscessus-caused pulmonary infection treatment is extremely difficult due to its high toxicity and long-lasting regimen with life-impairing side effects and the scarce availability of new antibiotics approved for human use. In this context, there is an urgent need for the development of an alternative therapeutic strategy that aims at improving the current management of patients affected by chronic M. abscessus infections. Our data support the therapeutic value of a combined host- and pathogen-directed therapy as a promising approach, as an alternative to single treatments, to simultaneously target intracellular and extracellular pathogens and improve the clinical management of patients infected with multidrug-resistant pathogens such as M. abscessus.
Collapse
Affiliation(s)
- Noemi Poerio
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Camilla Riva
- Emerging Bacteria Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Olimpieri
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Marco Rossi
- Emerging Bacteria Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Nicola I. Lorè
- Emerging Bacteria Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Fabiana Ciciriello
- Department of Pediatric Medicine, Cystic Fibrosis Complex Operating Unit, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Marco M. D’Andrea
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Vincenzina Lucidi
- Department of Pediatric Medicine, Cystic Fibrosis Complex Operating Unit, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Daniela M. Cirillo
- Emerging Bacteria Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Maurizio Fraziano
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
197
|
Kauser S, Keyte R, Mantzios M, Egan H. A Qualitative Exploration into Experiences and Attitudes Regarding Psychosocial Challenges, Self-compassion, and Mindfulness in a Population of Adults with Cystic Fibrosis. J Clin Psychol Med Settings 2022; 29:898-910. [PMID: 35147829 DOI: 10.1007/s10880-022-09859-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
Abstract
To investigate the current psychosocial challenges faced by adults with Cystic Fibrosis (CF), while exploring attitudes and experiences of mindfulness and self-compassion. Mindfulness and self-compassion are important resources for supporting psychological and physical well-being, yet there is limited research exploring these positive psychology concepts in CF literature. Twenty UK domiciled adults with a diagnosis of CF, took part in a semi-structured interview. Using a thematic analysis approach, four themes were developed: (a) "I didn't expect to be here": Surpassing the CF life expectancy, (b) "Am I psychologically bringing this upon myself?": Psychological complexities of CF, (c) "I've had to really learn to be kind to myself": The importance of compassion and being self-compassionate, (d) "I think it's a great tool": The benefits of practising mindfulness. This research demonstrates a robust need for increased integration of accessible psychological practices into routine CF-care and self-care for adults with CF. Particularly, practises and interventions that draw on the concepts of mindfulness and self-compassion, which may benefit patient's health and wellbeing profoundly.
Collapse
Affiliation(s)
- S Kauser
- Department of Psychology, Faculty of Business, Law and Social Sciences, Birmingham City University, The Curzon Building, 4 Cardigan St., Birmingham, B4 7BD, UK.
| | - R Keyte
- Department of Psychology, Faculty of Business, Law and Social Sciences, Birmingham City University, The Curzon Building, 4 Cardigan St., Birmingham, B4 7BD, UK
| | - M Mantzios
- Department of Psychology, Faculty of Business, Law and Social Sciences, Birmingham City University, The Curzon Building, 4 Cardigan St., Birmingham, B4 7BD, UK
| | - H Egan
- Department of Psychology, Faculty of Business, Law and Social Sciences, Birmingham City University, The Curzon Building, 4 Cardigan St., Birmingham, B4 7BD, UK
| |
Collapse
|
198
|
Di Bonaventura G, Lupetti V, Verginelli F, Giancristofaro S, Barbieri R, Gherardi G, Pompilio A. Repurposing the Veterinary Antibiotic Apramycin for Antibacterial and Antibiofilm Activity Against Pseudomonas aeruginosa From Cystic Fibrosis Patients. Front Microbiol 2022; 12:801152. [PMID: 35185826 PMCID: PMC8851335 DOI: 10.3389/fmicb.2021.801152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: To evaluate the in vitro antibacterial, antibiofilm, and antivirulence activities of apramycin, comparatively to tobramycin, against a set of P. aeruginosa from chronically infected cystic fibrosis (CF) patients. Methods The activity of antibiotics against planktonic cells was assessed by performing MIC, MBC, and time-kill assays. The activity against mature biofilms was evaluated, in a microtiter plate, both in terms of dispersion (crystal violet assay) and residual viability (viable cell count). The effect of drug exposure on selected P. aeruginosa virulence genes expression was assessed by real-time Reverse Transcription quantitative PCR (RT-qPCR). Results Apramycin MIC90 and MBC90 values were found at least fourfold lower than those for tobramycin. A comparable trend was observed for mucoid strains. Only 4 out of 24 strains (16.6%) showed an apramycin MIC higher than the epidemiological cut-off value of 64 mg/L, whereas a higher resistance rate was observed for tobramycin (62.5%; p < 0.01 vs. apramycin). In time-kill analyses, both aminoglycosides were found bactericidal, although apramycin showed a more rapid effect and did not allow for regrowth. Apramycin generally stimulated biofilm biomass formation, whereas tobramycin showed opposite trends depending on the strain tested. Both drugs caused a highly significant, dose-dependent reduction of biofilm viability, regardless of strain and concentration tested. The exposure to apramycin and tobramycin caused increased expression of mexA and mexC (multidrug efflux pumps), whereas tobramycin specifically increased the expression of aprA (alkaline protease) and toxA (exotoxin A). Neither apramycin nor tobramycin showed cytotoxic potential toward IB3-1 bronchial epithelial CF cells. Conclusion Our results warrant future pharmacokinetic and pharmacodynamic studies for supporting the rationale to repurpose apramycin, a veterinary aminoglycoside, for CF lung infections.
Collapse
Affiliation(s)
- Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- *Correspondence: Giovanni Di Bonaventura,
| | - Veronica Lupetti
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Fabio Verginelli
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Fabio Verginelli,
| | - Sara Giancristofaro
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Rosemary Barbieri
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | | | - Arianna Pompilio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
199
|
Fan Z, Pitmon E, Wen L, Miller J, Ehinger E, Herro R, Liu W, Chen J, Mikulski Z, Conrad DJ, Marki A, Orecchioni M, Kumari P, Zhu YP, Marcovecchio PM, Hedrick CC, Hodges CA, Rathinam VA, Wang K, Ley K. Bone Marrow Transplantation Rescues Monocyte Recruitment Defect and Improves Cystic Fibrosis in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:745-752. [PMID: 35031577 PMCID: PMC8855460 DOI: 10.4049/jimmunol.1901171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Cystic fibrosis (CF) is an inherited life-threatening disease accompanied by repeated lung infections and multiorgan inflammation that affects tens of thousands of people worldwide. The causative gene, cystic fibrosis transmembrane conductance regulator (CFTR), is mutated in CF patients. CFTR functions in epithelial cells have traditionally been thought to cause the disease symptoms. Recent work has shown an additional defect: monocytes from CF patients show a deficiency in integrin activation and adhesion. Because monocytes play critical roles in controlling infections, defective monocyte function may contribute to CF progression. In this study, we demonstrate that monocytes from CFTRΔF508 mice (CF mice) show defective adhesion under flow. Transplanting CF mice with wild-type (WT) bone marrow after sublethal irradiation replaced most (60-80%) CF monocytes with WT monocytes, significantly improved survival, and reduced inflammation. WT/CF mixed bone marrow chimeras directly demonstrated defective CF monocyte recruitment to the bronchoalveolar lavage and the intestinal lamina propria in vivo. WT mice reconstituted with CF bone marrow also show lethality, suggesting that the CF defect in monocytes is not only necessary but also sufficient to cause disease. We also show that monocyte-specific knockout of CFTR retards weight gains and exacerbates dextran sulfate sodium-induced colitis. Our findings show that providing WT monocytes by bone marrow transfer rescues mortality in CF mice, suggesting that similar approaches may mitigate disease in CF patients.
Collapse
Affiliation(s)
- Zhichao Fan
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Elise Pitmon
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Lai Wen
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| | - Jacqueline Miller
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| | - Erik Ehinger
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| | - Rana Herro
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Wei Liu
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Ju Chen
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA
| | - Douglas J Conrad
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Alex Marki
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| | - Puja Kumari
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Yanfang Peipei Zhu
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| | - Paola M Marcovecchio
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| | - Craig A Hodges
- Department of Genetics and Genome Sciences, Cystic Fibrosis Mouse Models Core, School of Medicine, Case Western Reserve University, Cleveland, OH; and
| | - Vijay A Rathinam
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Kepeng Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA;
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| |
Collapse
|
200
|
Lim SH, Snider J, Birimberg‐Schwartz L, Ip W, Serralha JC, Botelho HM, Lopes‐Pacheco M, Pinto MC, Moutaoufik MT, Zilocchi M, Laselva O, Esmaeili M, Kotlyar M, Lyakisheva A, Tang P, López Vázquez L, Akula I, Aboualizadeh F, Wong V, Grozavu I, Opacak‐Bernardi T, Yao Z, Mendoza M, Babu M, Jurisica I, Gonska T, Bear CE, Amaral MD, Stagljar I. CFTR interactome mapping using the mammalian membrane two-hybrid high-throughput screening system. Mol Syst Biol 2022; 18:e10629. [PMID: 35156780 PMCID: PMC8842165 DOI: 10.15252/msb.202110629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a chloride and bicarbonate channel in secretory epithelia with a critical role in maintaining fluid homeostasis. Mutations in CFTR are associated with Cystic Fibrosis (CF), the most common lethal autosomal recessive disorder in Caucasians. While remarkable treatment advances have been made recently in the form of modulator drugs directly rescuing CFTR dysfunction, there is still considerable scope for improvement of therapeutic effectiveness. Here, we report the application of a high-throughput screening variant of the Mammalian Membrane Two-Hybrid (MaMTH-HTS) to map the protein-protein interactions of wild-type (wt) and mutant CFTR (F508del), in an effort to better understand CF cellular effects and identify new drug targets for patient-specific treatments. Combined with functional validation in multiple disease models, we have uncovered candidate proteins with potential roles in CFTR function/CF pathophysiology, including Fibrinogen Like 2 (FGL2), which we demonstrate in patient-derived intestinal organoids has a significant effect on CFTR functional expression.
Collapse
Affiliation(s)
- Sang Hyun Lim
- Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of BiochemistryUniversity of TorontoTorontoONCanada
| | - Jamie Snider
- Donnelly CentreUniversity of TorontoTorontoONCanada
| | - Liron Birimberg‐Schwartz
- Programme in Translational MedicineThe Hospital for Sick ChildrenTorontoONCanada
- Division of Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of TorontoTorontoONCanada
| | - Wan Ip
- Programme in Translational MedicineThe Hospital for Sick ChildrenTorontoONCanada
| | - Joana C Serralha
- Faculty of SciencesBioISI‐Biosystems and Integrative Sciences InstituteUniversity of LisboaLisboaPortugal
- Faculty of Life Sciences and MedicineSchool of Bioscience EducationKing’s College LondonLondonUK
| | - Hugo M Botelho
- Faculty of SciencesBioISI‐Biosystems and Integrative Sciences InstituteUniversity of LisboaLisboaPortugal
| | - Miquéias Lopes‐Pacheco
- Faculty of SciencesBioISI‐Biosystems and Integrative Sciences InstituteUniversity of LisboaLisboaPortugal
| | - Madalena C Pinto
- Faculty of SciencesBioISI‐Biosystems and Integrative Sciences InstituteUniversity of LisboaLisboaPortugal
| | - Mohamed Taha Moutaoufik
- Department of Biochemistry, Research and Innovation CentreUniversity of ReginaReginaSKCanada
| | - Mara Zilocchi
- Department of Biochemistry, Research and Innovation CentreUniversity of ReginaReginaSKCanada
| | - Onofrio Laselva
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| | - Mohsen Esmaeili
- Program in Genetics and Genome BiologyThe Hospital for Sick ChildrenTorontoONCanada
| | - Max Kotlyar
- Osteoarthritis Research ProgramDivision of Orthopedic SurgerySchroeder Arthritis InstituteUniversity Health NetworkTorontoONCanada
- Data Science Discovery Centre for Chronic DiseasesKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | | | | | | | - Indira Akula
- Donnelly CentreUniversity of TorontoTorontoONCanada
| | | | | | - Ingrid Grozavu
- Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of BiochemistryUniversity of TorontoTorontoONCanada
| | | | - Zhong Yao
- Donnelly CentreUniversity of TorontoTorontoONCanada
| | - Meg Mendoza
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation CentreUniversity of ReginaReginaSKCanada
| | - Igor Jurisica
- Osteoarthritis Research ProgramDivision of Orthopedic SurgerySchroeder Arthritis InstituteUniversity Health NetworkTorontoONCanada
- Data Science Discovery Centre for Chronic DiseasesKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Departments of Medical Biophysics and Computer ScienceUniversity of TorontoTorontoONCanada
- Institute of NeuroimmunologySlovak Academy of SciencesBratislavaSlovakia
| | - Tanja Gonska
- Programme in Translational MedicineThe Hospital for Sick ChildrenTorontoONCanada
- Division of Gastroenterology, Hepatology and NutritionDepartment of PediatricsUniversity of TorontoTorontoONCanada
| | - Christine E Bear
- Department of BiochemistryUniversity of TorontoTorontoONCanada
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| | - Margarida D Amaral
- Faculty of SciencesBioISI‐Biosystems and Integrative Sciences InstituteUniversity of LisboaLisboaPortugal
| | - Igor Stagljar
- Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of BiochemistryUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
- Mediterranean Institute for Life SciencesSplitCroatia
- School of MedicineUniversity of SplitSplitCroatia
| |
Collapse
|