151
|
Mannering SI, Pathiraja V, Kay TWH. The case for an autoimmune aetiology of type 1 diabetes. Clin Exp Immunol 2015; 183:8-15. [PMID: 26313217 DOI: 10.1111/cei.12699] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 01/10/2023] Open
Abstract
Type 1 diabetes (T1D) develops when there are insufficient insulin-producing beta cells to maintain glucose homeostasis. The prevailing view has been that T1D is caused by immune-mediated destruction of the pancreatic beta cells. However, several recent papers have challenged the long-standing paradigm describing T1D as a tissue-specific autoimmune disease. These authors have highlighted the gaps in our knowledge and understanding of the aetiology of T1D in humans. Here we review the evidence and argue the case for the autoimmune basis of human T1D. In particular, recent analysis of human islet-infiltrating T cells brings important new evidence to this question. Further data in support of the autoimmune basis of T1D from many fields, including genetics, experimental therapies and immunology, is discussed. Finally, we highlight some of the persistent questions relating to the pathogenesis of human type 1 diabetes that remain to be answered.
Collapse
Affiliation(s)
- S I Mannering
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - V Pathiraja
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - T W H Kay
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
152
|
Arase N, Arase H. Cellular misfolded proteins rescued from degradation by MHC class II molecules are possible targets for autoimmune diseases. J Biochem 2015; 158:367-72. [DOI: 10.1093/jb/mvv093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/26/2015] [Indexed: 01/22/2023] Open
|
153
|
Andrick BJ, Schwab AI, Cauley B, O'Donnell LA, Meng WS. Predicting Hemagglutinin MHC-II Ligand Analogues in Anti-TNFα Biologics: Implications for Immunogenicity of Pharmaceutical Proteins. PLoS One 2015; 10:e0135451. [PMID: 26270649 PMCID: PMC4536234 DOI: 10.1371/journal.pone.0135451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 07/22/2015] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study was to evaluate the extent of overlapping immunogenic peptides between three pharmaceutical biologics and influenza viruses. Clinical studies have shown that subsets of patients with rheumatoid arthritis (RA) develop anti-drug antibodies towards anti-TNFα biologics. We postulate that common infectious pathogens, including influenza viruses, may sensitize RA patients toward recombinant proteins. We hypothesize that embedded within infliximab (IFX), adalimumab (ADA), and etanercept (ETN) are ligands of class II major histocompatibility complex (MHC-II) that mimic T cell epitopes derived from influenza hemagglutinin (HA). The rationale is that repeated administration of the biologics would reactivate HA-primed CD4 T cells, stimulating B cells to produce cross-reactive antibodies. Custom scripts were constructed using MATLAB to compare MHC-II ligands of HA and the biologics; all ligands were predicted using tools in Immune Epitope Database and Resources (IEDB). We analyzed three HLA-DR1 alleles (0101, 0401 and 1001) that are prominent in RA patients, and two alleles (0103 and 1502) that are not associated with RA. The results indicate that 0401 would present more analogues of HA ligands in the three anti-TNFα biologics compared to the other alleles. The approach led to identification of potential ligands in IFX and ADA that shares sequence homology with a known HA-specific CD4 T cell epitope. We also discovered a peptide in the complementarity-determining region 3 (CDR-3) of ADA that encompasses both a potential CD4 T cell epitope and a known B cell epitope in HA. The results may help generate new hypotheses for interrogating patient variability of immunogenicity of the anti-TNFα drugs. The approach would aid development of new recombinant biologics by identifying analogues of CD4 T cell epitopes of common pathogens at the preclinical stage.
Collapse
Affiliation(s)
- Benjamin J Andrick
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, 15282, United States of America
| | - Alexandra I Schwab
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, 15282, United States of America
| | - Brianna Cauley
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, 15282, United States of America
| | - Lauren A O'Donnell
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, 15282, United States of America
| | - Wilson S Meng
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, 15282, United States of America
| |
Collapse
|
154
|
Yue M, Xu K, Wu MP, Han YP, Huang P, Peng ZH, Wang J, Su J, Yu RB, Li J, Zhang Y. Human Leukocyte Antigen Class II Alleles Are Associated with Hepatitis C Virus Natural Susceptibility in the Chinese Population. Int J Mol Sci 2015; 16:16792-16805. [PMID: 26213920 PMCID: PMC4581170 DOI: 10.3390/ijms160816792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 12/17/2022] Open
Abstract
Human leukocyte antigen (HLA) class II molecule influences host antigen presentation and anti-viral immune response. The aim of this study was to investigate whether single nucleotide polymorphisms (SNPs) within HLA class II gene were associated with different clinical outcomes of hepatitis C virus (HCV) infection. Three HLA class II SNPs (rs3077, rs2395309 and rs2856718) were genotyped by TaqMan assay among Chinese population, including 350 persistent HCV infection patients, 194 spontaneous viral clearance subjects and 973 HCV-uninfected control subjects. After logistic regression analysis, the results indicated that the rs2856718 TC genotype was significantly associated with the protective effect of the HCV natural susceptibility (adjusted OR: 0.712, 95% CI: 0.554-0.914) when compared with reference TT genotype, and this remained significant after false discovery rate (FDR) correction (p = 0.024). Moreover, the protective effect of rs2856718 was observed in dominant genetic models (adjusted OR: 0.726, 95% CI: 0.574-0.920), and this remained significant after FDR correction (p = 0.024). In stratified analysis, a significant decreased risk was found in rs2856718C allele in the male subgroup (adjusted OR: 0.778, 95% CI: 0.627-0.966) and hemodialysis subgroup (adjusted OR: 0.713, 95% CI: 0.552-0.921). Our results indicated that the genetic variations of rs2856718 within the HLA-DQ gene are associated with the natural susceptibility to HCV infection among the Chinese population.
Collapse
Affiliation(s)
- Ming Yue
- Department of Infectious Diseases, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Ke Xu
- Department of Acute Infection Diseases, Jiangsu Province Center for Disease Prevention and Control, Nanjing 210009, China.
| | - Meng-Ping Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Ya-Ping Han
- Department of Infectious Diseases, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Peng Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Zhi-Hang Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jie Wang
- School of Nursing, Nanjing Medical University, Nanjing 211166, China.
| | - Jing Su
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Rong-Bin Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jun Li
- Department of Infectious Diseases, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Yun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Institute of Epidemiology and Microbiology, Huadong Research Institute for Medicine and Biotechnics, Nanjing 210002, China.
| |
Collapse
|
155
|
Sonntag K, Eckert F, Welker C, Müller H, Müller F, Zips D, Sipos B, Klein R, Blank G, Feuchtinger T, Schumm M, Handgretinger R, Schilbach K. Chronic graft-versus-host-disease in CD34(+)-humanized NSG mice is associated with human susceptibility HLA haplotypes for autoimmune disease. J Autoimmun 2015; 62:55-66. [PMID: 26143958 DOI: 10.1016/j.jaut.2015.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/27/2015] [Accepted: 06/07/2015] [Indexed: 11/26/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is a significant hurdle to long-term hematopoietic stem-cell transplantation success. Insights into the pathogenesis and mechanistical investigations of novel therapeutic strategies are limited as appropriate animal models are missing. The immunodeficient NSG mouse - when humanized with human bone marrow, fetal liver and thymus (BLT NSG) - is prone for cGVHD, yet mainly affects the skin. In contrast, the NSG mouse humanized exclusively with CD34(+)-selected, CD3(+)-depleted stem cells (CD34(+)NSG) has neither been described for acute nor chronic GVHD so far. This is the first report about the development of systemic autoimmune cGVHD ≥24 weeks post stem cell receipt involving lung, liver, skin, gingiva and intestine in two NSG cohorts humanized with CD34(+) grafts from different donors. Affected mice presented with sclerodermatous skin, fibrotic lung, severe hepatitis, and massive dental malformation/loss. CD4(+)-dominated, TH2-biased, bulky T-cell infiltrates featured highly skewed T cell receptor (TCR) repertoires, clonal expansions, and autoreactive TCRs. In affected tissues profibrotic IL-13 and -4 dominated over TH1 cytokines IFN-γ and TNF-α. Thus, the time point of manifestation and the phenotype match human systemic pleiotropic sclerodermatous GVHD. The CD34(+)NSG-model's intrinsic deficiency of thymus, thymus-derived regulatory T cells (nTreg) and B cells emphasizes the role of the genetic polymorphism and the cytokines in the pathogenesis of cGVHD. Importantly, the only factor discriminating diseased versus non-diseased CD34(+)NSG cohorts were two risk HLA haplotypes that in human mediate susceptibility for autoimmune disease (psoriasis). Thus, the CD34(+)NSG model may serve as a platform for addressing issues related to the pathophysiology and treatment of human autoimmunity and chronic GVHD.
Collapse
Affiliation(s)
- Katja Sonntag
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Franziska Eckert
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany; Department of Radiation Oncology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Christian Welker
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Hartmut Müller
- Institute of Pathology, Eberhard Karls University Tübingen, Liebermeisterstraße 8, 72076 Tübingen, Germany
| | - Friederike Müller
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Bence Sipos
- Institute of Pathology, Eberhard Karls University Tübingen, Liebermeisterstraße 8, 72076 Tübingen, Germany
| | - Reinhild Klein
- Laboratory for Immunopathology, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Gregor Blank
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Tobias Feuchtinger
- Pediatric Hematology, Oncology and Stem Cell Transplantation Dr. von Hauner'sches Kinderspital, Ludwig-Maximilian-University Munich, Lindwurmstraße 4, 80337 München, Germany
| | - Michael Schumm
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Rupert Handgretinger
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Karin Schilbach
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany.
| |
Collapse
|
156
|
Riedhammer C, Weissert R. Antigen Presentation, Autoantigens, and Immune Regulation in Multiple Sclerosis and Other Autoimmune Diseases. Front Immunol 2015; 6:322. [PMID: 26136751 PMCID: PMC4470263 DOI: 10.3389/fimmu.2015.00322] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
Antigen presentation is in the center of the immune system, both in host defense against pathogens, but also when the system is unbalanced and autoimmune diseases like multiple sclerosis (MS) develop. It is not just by chance that a major histocompatibility complex gene is the major genetic susceptibility locus in MS; a feature that MS shares with other autoimmune diseases. The exact etiology of the disease, however, has not been fully understood yet. T cells are regarded as the major players in the disease, but most probably a complex interplay of altered central and peripheral tolerance mechanisms, T-cell and B-cell functions, characteristics of putative autoantigens, and a possible interference of environmental factors like microorganisms are at work. In this review, new data on all these different aspects of antigen presentation and their role in MS will be discussed, probable autoantigens will be summarized, and comparisons to other autoimmune diseases will be drawn.
Collapse
Affiliation(s)
- Christine Riedhammer
- Neuroimmunology, Department of Neurology, University of Regensburg , Regensburg , Germany
| | - Robert Weissert
- Neuroimmunology, Department of Neurology, University of Regensburg , Regensburg , Germany
| |
Collapse
|
157
|
Birnbaum ME, Garcia KC. Self-determination in the T cell repertoire. Immunity 2015; 42:8-10. [PMID: 25607452 DOI: 10.1016/j.immuni.2014.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The number of T cells specific for various antigens can vary dramatically. In this issue of Immunity, Nelson et al. (2015) report that these differences might be, at least in part, set by the number of cross-reactive self peptides encountered by T cells during development.
Collapse
Affiliation(s)
- Michael E Birnbaum
- Departments of Molecular and Cellular Physiology and Structural Biology, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
158
|
Regulatory vs. inflammatory cytokine T-cell responses to mutated insulin peptides in healthy and type 1 diabetic subjects. Proc Natl Acad Sci U S A 2015; 112:4429-34. [PMID: 25831495 DOI: 10.1073/pnas.1502967112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Certain class II MHC (MHCII) alleles in mice and humans confer risk for or protection from type 1 diabetes (T1D). Insulin is a major autoantigen in T1D, but how its peptides are presented to CD4 T cells by MHCII risk alleles has been controversial. In the mouse model of T1D, CD4 T cells respond to insulin B-chain peptide (B:9-23) mimotopes engineered to bind the mouse MHCII molecule, IA(g7), in an unfavorable position or register. Because of the similarities between IA(g7) and human HLA-DQ T1D risk alleles, we examined control and T1D subjects with these risk alleles for CD4 T-cell responses to the same natural B:9-23 peptide and mimotopes. A high proportion of new-onset T1D subjects mounted an inflammatory IFN-γ response much more frequently to one of the mimotope peptides than to the natural peptide. Surprisingly, the control subjects bearing an HLA-DQ risk allele also did. However, these control subjects, especially those with only one HLA-DQ risk allele, very frequently made an IL-10 response, a cytokine associated with regulatory T cells. T1D subjects with established disease also responded to the mimotope rather than the natural B:9-23 peptide in proliferation assays and the proliferating cells were highly enriched in certain T-cell receptor sequences. Our results suggest that the risk of T1D may be related to how an HLA-DQ genotype determines the balance of T-cell inflammatory vs. regulatory responses to insulin, having important implications for the use and monitoring of insulin-specific therapies to prevent diabetes onset.
Collapse
|
159
|
Goyette P, Boucher G, Mallon D, Ellinghaus E, Jostins L, Huang H, Ripke S, Gusareva ES, Annese V, Hauser SL, Oksenberg JR, Thomsen I, Leslie S, Daly MJ, Van Steen K, Duerr RH, Barrett JC, McGovern DPB, Schumm LP, Traherne JA, Carrington MN, Kosmoliaptsis V, Karlsen TH, Franke A, Rioux JD. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet 2015; 47:172-9. [PMID: 25559196 PMCID: PMC4310771 DOI: 10.1038/ng.3176] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/04/2014] [Indexed: 02/08/2023]
Abstract
Genome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical human leukocyte antigen (HLA) molecules. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but they have lacked the statistical power to define the architecture of association and causal alleles. To address this, we performed high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn's disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response in the colonic environment in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Philippe Goyette
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | | | - Dermot Mallon
- 1] Department of Surgery, University of Cambridge, Cambridge, UK. [2] National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, Cambridge, UK
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian Albrechts University, Kiel, Germany
| | - Luke Jostins
- 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, UK. [2] Christ Church, University of Oxford, St Aldates, UK
| | - Hailiang Huang
- 1] Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Stephan Ripke
- 1] Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elena S Gusareva
- 1] Systems and Modeling Unit, Montefiore Institute, University of Liege, Liege, Belgium. [2] Bioinformatics and Modeling, GIGA-R (Groupe Interdisciplinaire de Génoprotéomique Appliquée) Research Center, University of Liege, Liege, Belgium
| | - Vito Annese
- 1] Unit of Gastroenterology, IRCCS-CSS (Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza) Hospital, San Giovanni Rotondo, Italy. [2] Unit of Gastroenterology SOD2 (Strutture Organizzative Dipartimentali), Azienda Ospedaliero Universitaria (AOU) Careggi, Florence, Italy
| | - Stephen L Hauser
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Jorge R Oksenberg
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Ingo Thomsen
- Institute of Clinical Molecular Biology, Christian Albrechts University, Kiel, Germany
| | - Stephen Leslie
- 1] Murdoch Children's Research Institute, Parkville, Victoria, Australia. [2] Department of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark J Daly
- 1] Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kristel Van Steen
- 1] Systems and Modeling Unit, Montefiore Institute, University of Liege, Liege, Belgium. [2] Bioinformatics and Modeling, GIGA-R (Groupe Interdisciplinaire de Génoprotéomique Appliquée) Research Center, University of Liege, Liege, Belgium
| | - Richard H Duerr
- 1] Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. [2] Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | | | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - L Philip Schumm
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - James A Traherne
- 1] Cambridge Institute for Medical Research, Cambridge, UK. [2] Department of Pathology, University of Cambridge, Cambridge, UK
| | - Mary N Carrington
- 1] Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. [2] Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Vasilis Kosmoliaptsis
- 1] Department of Surgery, University of Cambridge, Cambridge, UK. [2] National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, Cambridge, UK
| | - Tom H Karlsen
- 1] Research Institute of Internal Medicine, Department of Transplantation Medicine, Division of Cancer, Surgery and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway. [2] Norwegian Primary Sclerosing Cholangitis Research Center, Department of Transplantation Medicine, Division of Cancer, Surgery and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway. [3] K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University, Kiel, Germany
| | - John D Rioux
- 1] Research Center, Montreal Heart Institute, Montreal, Quebec, Canada. [2] Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
160
|
Huang R, Yin J, Chen Y, Deng F, Chen J, Gao X, Liu Z, Yu X, Zheng J. The amino acid variation within the binding pocket 7 and 9 of HLA-DRB1 molecules are associated with primary Sjögren's syndrome. J Autoimmun 2015; 57:53-9. [PMID: 25582848 DOI: 10.1016/j.jaut.2014.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/27/2014] [Indexed: 12/01/2022]
Abstract
Primary Sjögren's syndrome (pSS) is associated with HLA-DRB1 loci, but the association of amino acid variations in the hypervariable region of the HLA-DR β1 chain with pSS is largely unknown. In this study, we aimed to identify the amino acid variations within the hypervariable region of HLA-DRB1 molecule which are associated with the susceptibility to pSS. We sequenced the 2nd exon of the HLA-DRB1 locus in 52 pSS patients and 179 controls. The HLA-DRB1*0803 is the allele that shows the strongest association with pSS in Chinese population (OR = 3.0, P = 2.4 × 10(-4)). Furthermore, amino acid variations within the binding pocket P7 and P9 are associated with the susceptibility to pSS. An interaction between two residues within P7, β47 and β67, is associated with pSS. Structural modeling studies demonstrated that the electrostatics of peptide binding pocket 9 are opposite in pSS-susceptible and -protective HLA-DRB1 alleles. In conclusion, our results suggest that structural heterogeneity of the HLA-DRB1 peptide binding pocket P7 and P9 might play a role in the pathogenesis of pSS.
Collapse
Affiliation(s)
- Renliang Huang
- The Medical College of Xiamen University, Xiamen University, 361005 Xiamen, China
| | - Junping Yin
- The Medical College of Xiamen University, Xiamen University, 361005 Xiamen, China
| | - Yan Chen
- The Medical College of Xiamen University, Xiamen University, 361005 Xiamen, China
| | - Fengyuan Deng
- The Medical College of Xiamen University, Xiamen University, 361005 Xiamen, China
| | - Juan Chen
- First Affiliated Hospital of Xiamen University, China
| | - Xing Gao
- Xiamen University Hospital, China
| | - Zuguo Liu
- The Medical College of Xiamen University, Xiamen University, 361005 Xiamen, China
| | - Xinhua Yu
- The Medical College of Xiamen University, Xiamen University, 361005 Xiamen, China; Priority Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany; Airway Research Center North (ARCN), UGMLC, Member of the German Center for Lung Research, Germany
| | - Junfeng Zheng
- The Medical College of Xiamen University, Xiamen University, 361005 Xiamen, China; First Affiliated Hospital of Xiamen University, China.
| |
Collapse
|
161
|
Abstract
Hypoadrenocorticism is an uncommon disease in dogs and rare in humans, where it is known as Addison disease (ADD). The disease is characterized by a deficiency in corticosteroid production from the adrenal cortex, requiring lifelong hormone replacement therapy. When compared with humans, the pathogenesis of hypoadrenocorticism in dogs is not well established, although the evidence supports a similar autoimmune etiology of adrenocortical pathology. Several immune response genes have been implicated in determining susceptibility to Addison disease in humans, some of which are shared with other autoimmune syndromes. Indeed, other types of autoimmune disease are common (approximately 50%) in patients affected with ADD. Several lines of evidence suggest a genetic component to the etiology of canine hypoadrenocorticism. Certain dog breeds are overrepresented in epidemiologic studies, reflecting a likely genetic influence, supported by data from pedigree analysis. Molecular genetic studies have identified similar genes and signaling pathways, involved in ADD in humans, to be also associated with susceptibility to canine hypoadrenocorticism. Immune response genes such as the dog leukocyte antigen (DLA) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) genes seem to be particularly important. It is clear that there are genetic factors involved in determining susceptibility to canine hypoadrenocorticism, although similar to the situation in humans, this is likely to represent a complex genetic disorder.
Collapse
Affiliation(s)
- Alisdair M Boag
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Scotland.
| | - Brian Catchpole
- Department of Pathology and Pathogen Biology, Royal Veterinary College, University of London, Hatfield, UK
| |
Collapse
|
162
|
Kumar A, Sechi LA, Caboni P, Marrosu MG, Atzori L, Pieroni E. Dynamical insights into the differential characteristics of Mycobacterium avium subsp. paratuberculosis peptide binding to HLA-DRB1 proteins associated with multiple sclerosis. NEW J CHEM 2015. [DOI: 10.1039/c4nj01903b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Differential properties of MAP binding to HLA proteins in Sardinian MS patients.
Collapse
Affiliation(s)
- Amit Kumar
- CRS4 Science and Technology Park Polaris
- Biomedicine Dept
- Pula (CA)
- Italy
- Department of Biomedical Sciences
| | - Leonardo A. Sechi
- Department of Biomedical Sciences
- Microbiology and Virology Unit
- University of Sassari
- Sassari
- Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences
- University of Cagliari
- Cagliari
- Italy
| | - Maria Giovanna Marrosu
- Multiple Sclerosis Center
- Department of Public Health and Clinical and Molecular Medicine
- University of Cagliari
- Cagliari
- Italy
| | - Luigi Atzori
- Department of Biomedical Sciences
- Oncology and Molecular Pathology Unit
- University of Cagliari
- Cagliari
- Italy
| | - Enrico Pieroni
- CRS4 Science and Technology Park Polaris
- Biomedicine Dept
- Pula (CA)
- Italy
| |
Collapse
|
163
|
Miyadera H, Ohashi J, Lernmark Å, Kitamura T, Tokunaga K. Cell-surface MHC density profiling reveals instability of autoimmunity-associated HLA. J Clin Invest 2014; 125:275-91. [PMID: 25485681 DOI: 10.1172/jci74961] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 11/06/2014] [Indexed: 12/17/2022] Open
Abstract
Polymorphisms within HLA gene loci are strongly associated with susceptibility to autoimmune disorders; however, it is not clear how genetic variations in these loci confer a disease risk. Here, we devised a cell-surface MHC expression assay to detect allelic differences in the intrinsic stability of HLA-DQ proteins. We found extreme variation in cell-surface MHC density among HLA-DQ alleles, indicating a dynamic allelic hierarchy in the intrinsic stability of HLA-DQ proteins. Using the case-control data for type 1 diabetes (T1D) for the Swedish and Japanese populations, we determined that T1D risk-associated HLA-DQ haplotypes, which also increase risk for autoimmune endocrinopathies and other autoimmune disorders, encode unstable proteins, whereas the T1D-protective haplotypes encode the most stable HLA-DQ proteins. Among the amino acid variants of HLA-DQ, alterations in 47α, the residue that is located on the outside of the peptide-binding groove and acts as a key stability regulator, showed strong association with T1D. Evolutionary analysis suggested that 47α variants have been the target of positive diversifying selection. Our study demonstrates a steep allelic hierarchy in the intrinsic stability of HLA-DQ that is associated with T1D risk and protection, suggesting that HLA instability mediates the development of autoimmune disorders.
Collapse
|
164
|
Abstract
Abstract
The development of neutralizing antibodies against factor VIII (FVIII inhibitors) and factor IX (FIX inhibitors) is the major complication in hemophilia care today. The antibodies neutralize the biological activity of FVIII and FIX and render replacement therapies ineffective. Antibodies are generated as a result of a cascade of tightly regulated interactions between different cells of the innate and the adaptive immune system located in distinct compartments. Any event that modulates the repertoire of specific B or T cells, the activation state of the innate and adaptive immune system, or the migration pattern of immune cells will therefore potentially influence the risk for patients to develop inhibitors. This chapter reviews our current understanding of different pathways of antibody development that result in different qualities of antibodies. Potential differences in differentiation pathways leading to high-affinity neutralizing or low-affinity non-neutralizing antibodies and the potential influence of gene polymorphisms such as HLA haplotype, FVIII haplotype, and polymorphisms of immunoregulatory genes are discussed.
Collapse
|
165
|
Reipert BM. Risky business of inhibitors: HLA haplotypes, gene polymorphisms, and immune responses. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2014; 2014:372-378. [PMID: 25696881 DOI: 10.1182/asheducation-2014.1.372] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The development of neutralizing antibodies against factor VIII (FVIII inhibitors) and factor IX (FIX inhibitors) is the major complication in hemophilia care today. The antibodies neutralize the biological activity of FVIII and FIX and render replacement therapies ineffective. Antibodies are generated as a result of a cascade of tightly regulated interactions between different cells of the innate and the adaptive immune system located in distinct compartments. Any event that modulates the repertoire of specific B or T cells, the activation state of the innate and adaptive immune system, or the migration pattern of immune cells will therefore potentially influence the risk for patients to develop inhibitors. This chapter reviews our current understanding of different pathways of antibody development that result in different qualities of antibodies. Potential differences in differentiation pathways leading to high-affinity neutralizing or low-affinity non-neutralizing antibodies and the potential influence of gene polymorphisms such as HLA haplotype, FVIII haplotype, and polymorphisms of immunoregulatory genes are discussed.
Collapse
|
166
|
Yu X, Zheng R, Zhang J, Shen B, Dong B. Genetic polymorphism of major histocompatibility complex class IIB alleles and pathogen resistance in the giant spiny frog Quasipaa spinosa. INFECTION GENETICS AND EVOLUTION 2014; 28:175-82. [PMID: 25269786 DOI: 10.1016/j.meegid.2014.09.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/28/2014] [Accepted: 09/22/2014] [Indexed: 12/31/2022]
Abstract
Major histocompatibility complex (MHC) genes are candidates for determining disease susceptibility due to their pivotal role in both innate and adaptive immune responses. Accordingly, the association between the genetic variation of MHC genes and the pathogen resistance has been investigated in numerous vertebrates. To date, however, little is reported in amphibians. In this study, we investigate the genetic variation at the MHC class IIB gene in the giant spiny frog Quasipaa spinosa, which has high commercial value in China. The full length of MHC class IIB cDNA was cloned from Q. spinosa by homology cloning and rapid amplification of cDNA end-polymerase chain reaction (RACE-PCR). Two MHC class IIB loci were identified in Q. spinosa. We also developed PCR primers for a portion of the second exon of the MHC class IIB gene. A total of 26 MHC class IIB alleles were identified. The dN rate was significantly higher than the dS rate in the putative peptide-binding region, thereby proving the positive selection hypothesis. In addition, individuals intraperitoneally injected with Aeromonas hydrophila were used to study the association between MHC class IIB alleles and pathogen resistance/susceptibility, to explore the specific alleles in balancing selection. Eighty frogs were used after exposure to A. hydrophila infection. Nine alleles were used to study the association between the alleles and disease resistance. Two alleles, namely, Pasa-DAB(∗)1301 and Pasa-DAB(∗)0901, were significantly associated with resistance against A. hydrophila. This study provides valuable information on the structure of the MHC class IIB gene and confirms the association between MHC class IIB gene alleles and disease resistance to bacterial infection in Q. spinosa. Moreover, pathogen resistance-related MHC markers can be used for the selective breeding of the giant spiny frog.
Collapse
Affiliation(s)
- Xiaoyun Yu
- Institute of Ecology, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Rongquan Zheng
- Institute of Ecology, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| | - Jiayong Zhang
- Institute of Ecology, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Bing Shen
- Institute of Ecology, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Baojuan Dong
- Institute of Ecology, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
167
|
Dørum S, Bodd M, Fallang LE, Bergseng E, Christophersen A, Johannesen MK, Qiao SW, Stamnaes J, de Souza GA, Sollid LM. HLA-DQ Molecules as Affinity Matrix for Identification of Gluten T Cell Epitopes. THE JOURNAL OF IMMUNOLOGY 2014; 193:4497-506. [DOI: 10.4049/jimmunol.1301466] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
168
|
Wen J, Zhang M, Chen J, Zeng C, Cheng D, Liu ZH. HLA-DR overexpression in tubules of renal allografts during early and late renal allograft injuries. EXP CLIN TRANSPLANT 2014; 11:499-506. [PMID: 24344942 DOI: 10.6002/ect.2012.0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES We sought to discover which types of injuries were related to human leukocyte antigen DR expression in acute rejection and late chronic injury in renal allografts. MATERIALS AND METHODS Ninety-two recipients were separated into the early acute rejection group, the late monocyte infiltration group, and the late chronic injury group. Ten subjects with acute cellular rejection received a repeat biopsy. All samples were stained with CD4, CD8, CD20, CD68, and human leukocyte antigen DR by immunochemical staining. Levels of these markers were compared among the subgroups of each group. RESULTS Human leukocyte antigen DR expression was greater in the early C4d-negative acute rejection group than it was in the early C4d-positive acute rejection group. Human leukocyte antigen DR expression was greater during acute rejection than that was on a repeat biopsy. Human leukocyte antigen DR expression was accord with the infiltration of monocyte infiltration in the acute cellular rejection group. Human leukocyte antigen DR expression was greater during late acute rejection than it was in BK virus nephropathy, which was not in accord with monocyte infiltration. Human leukocyte antigen DR expression was greater during chronic rejection than it was in IgAN, BK virus nephropathy, and TA/IF groups, and even in tubular atrophy. CONCLUSIONS Human leukocyte antigen DR expression in renal tubular cells was associated with early acute cellular rejection and was in accord with monocyte infiltration. Human leukocyte antigen DR expression in renal tubular cells during the late phase (especially in tubular atrophy) was a marker of chronic rejection, but was not in accord with monocyte infiltration in renal allografts.
Collapse
Affiliation(s)
- Jiqiu Wen
- Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | | | | | | | | | | |
Collapse
|
169
|
Karl JA, Heimbruch KE, Vriezen CE, Mironczuk CJ, Dudley DM, Wiseman RW, O'Connor DH. Survey of major histocompatibility complex class II diversity in pig-tailed macaques. Immunogenetics 2014; 66:613-23. [PMID: 25129472 DOI: 10.1007/s00251-014-0797-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/11/2014] [Indexed: 12/21/2022]
Abstract
Pig-tailed macaques (Macaca nemestrina) serve as important models for human infectious disease research. Major histocompatibility complex (MHC) class II molecules are important to this research since they present peptides to CD4+ T cells. Despite the importance of characterizing the MHC-II alleles expressed in model species like pig-tailed macaques, to date, less than 150 MHC-II alleles have been named for the six most common classical class II loci (DRA, DRB, DQA, DQB, DPA, and DPB) in this population. Additionally, only a small percentage of these alleles are full-length, making it impossible to use the known sequence for reagent development. To address this, we developed a fast, high-throughput method to discover full-length MHC-II alleles and used it to characterize alleles in 32 pig-tailed macaques. By this method, we identified 128 total alleles across all six loci. We also performed an exon 2-based genotyping assay to validate the full-length sequencing results; this genotyping assay could be optimized for use in determining MHC-II allele frequencies in large cohorts of pig-tailed macaques.
Collapse
Affiliation(s)
- Julie A Karl
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | | | | | | | | | | | | |
Collapse
|
170
|
Marino M, Maiuri MT, Di Sante G, Scuderi F, La Carpia F, Trakas N, Provenzano C, Zisimopoulou P, Ria F, Tzartos SJ, Evoli A, Bartoccioni E. T cell repertoire in DQ5-positive MuSK-positive myasthenia gravis patients. J Autoimmun 2014; 52:113-21. [DOI: 10.1016/j.jaut.2013.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 12/08/2013] [Indexed: 11/26/2022]
|
171
|
Fisher BA, Bang SY, Chowdhury M, Lee HS, Kim JH, Charles P, Venables P, Bae SC. Smoking, the HLA-DRB1 shared epitope and ACPA fine-specificity in Koreans with rheumatoid arthritis: evidence for more than one pathogenic pathway linking smoking to disease. Ann Rheum Dis 2014; 73:741-7. [PMID: 23505239 DOI: 10.1136/annrheumdis-2012-202535] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Data from North European rheumatoid arthritis (RA) populations has suggested a particularly strong association of gene-environment interaction between smoking and HLA-DRB1 shared epitope (SE) with antibodies to citrullinated α-enolase (CEP-1) and vimentin (cVim) peptides. We investigated this further by examining anticitrullinated peptide/protein antibody (ACPA) fine specificity in a Korean cohort, where there are notable differences in the RA-associated HLA-DRB1 alleles. METHODS Antibodies to fibrinogen (cFib), α-enolase (CEP-1) and vimentin (cVim) peptides and cyclic citrullinated peptide (CCP) were measured in 513 cases. The Mann-Whitney U test was used to compare antibody levels. Logistic regression generated ORs for RA in a case-control analysis with 1101 controls. Association of ACPA status and erosion in patients with RA was examined by logistic regression. RESULTS Anti-CCP, CEP-1, cVim and fibrinogen peptides were found in 86.7%, 63.9%, 45.5% and 74.7%, respectively. The number of ACPA and their levels were associated with SE, with evidence of a gene-dosage effect. There was a particular association of smoking with levels of anti-CEP-1. However, a gene-environment interaction was associated with all the ACPA positive subgroups, albeit the highest OR was seen with the anti-CCP+/cVim+ subset. In the absence of SE, smoking only conferred risk for anti-CCP negative subsets. The presence of erosions was not associated with the number of positive ACPA or specificity. CONCLUSIONS The SE governed the magnitude and diversity of the ACPA response, but its interaction with smoking did not exclusively segregate with any of the ACPA specificities studied here. Smoking was associated with RA by SE-dependent and independent effects.
Collapse
Affiliation(s)
- Benjamin A Fisher
- Rheumatology Research Group, University of Birmingham, , Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Schaid DJ, Spraggs CF, McDonnell SK, Parham LR, Cox CJ, Ejlertsen B, Finkelstein DM, Rappold E, Curran J, Cardon LR, Goss PE. Prospective validation of HLA-DRB1*07:01 allele carriage as a predictive risk factor for lapatinib-induced liver injury. J Clin Oncol 2014; 32:2296-303. [PMID: 24687830 DOI: 10.1200/jco.2013.52.9867] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Liver injury is a serious adverse event leading to permanent discontinuation of lapatinib in affected patients. This study aimed to validate previously associated major histocompatibility complex (MHC) variants as predictors of risk of liver injury by using a large, randomized, placebo-controlled trial of lapatinib in human epidermal growth factor receptor 2-positive, early-stage breast cancer (Tykerb Evaluation After Chemotherapy [TEACH]: Lapatinib Versus Placebo In Women With Early-Stage Breast Cancer). PATIENTS AND METHODS The frequency of ALT elevation cases was compared among four MHC variants in 1,194 patients randomly assigned to lapatinib. Cumulative ALT elevation time courses during treatment were also compared between carriers and noncarriers of specified MHC variants. RESULTS In lapatinib-treated patients, there was a significant difference in ALT case incidence between HLA carriers and noncarriers. The highly correlated alleles HLA-DRB1*07:01 and HLA-DQA1*02:01 (study frequency, 22.4%) were associated with ALT elevation (odds ratio, 14) between cases (n = 37) and controls (n = 1,071). These associations strengthened at higher ALT elevation thresholds and in Hy's Law cases. In lapatinib-treated patients, the overall risk for National Cancer Institute-Common Terminology Criteria for Adverse Events grade 3 ALT elevation (> 5× upper limit of normal) was 2.1%; HLA allele carriers had an increased risk of 7.7%; in noncarriers, risk was reduced to 0.5%, comparable to ALT elevation for all patients receiving placebo. The increase in ALT case incidence in the lapatinib arm showed no evidence of plateau during 1 year of lapatinib treatment. CONCLUSION These results validate HLA-DRB1*07:01 allele carriage as a predictor of increased risk of lapatinib-induced liver injury and implicate an immune pathology. The HLA association could support clinical management of patients experiencing hepatotoxicity during lapatinib treatment.
Collapse
Affiliation(s)
- Daniel J Schaid
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Colin F Spraggs
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA.
| | - Shannon K McDonnell
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Laura R Parham
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Charles J Cox
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Bent Ejlertsen
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Dianne M Finkelstein
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Erica Rappold
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Joan Curran
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Lon R Cardon
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Paul E Goss
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| |
Collapse
|
173
|
Looking for celiac disease in Italian women with endometriosis: a case control study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:236821. [PMID: 24804204 PMCID: PMC3988867 DOI: 10.1155/2014/236821] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/10/2014] [Indexed: 12/30/2022]
Abstract
In the last years, a potential link between endometriosis and celiac disease has been hypothesized since these disorders share some similarities, specifically concerning a potential role of oxidative stress, inflammation, and immunological dysfunctions. We investigated the prevalence of celiac disease among Italian women with endometriosis with respect to general population. Consecutive women with a laparoscopic and histological confirmed diagnosis of endometriosis were enrolled; female nurses of our institution, without a known history of endometriosis, were enrolled as controls. IgA endomysial and tissue transglutaminase antibodies measurement and serum total IgA dosage were performed in both groups. An upper digestive endoscopy with an intestinal biopsy was performed in case of antibodies positivity. Presence of infertility, miscarriage, coexistence of other autoimmune diseases, and family history of autoimmune diseases was also investigated in all subjects. Celiac disease was diagnosed in 5 of 223 women with endometriosis and in 2 of 246 controls (2.2% versus 0.8%; P = 0.265). Patients with endometriosis showed a largely higher rate of infertility compared to control group (27.4% versus 2.4%; P < 0.001). Our results confirm that also in Italian population an increased prevalence of celiac disease among patients with endometriosis is found, although this trend does not reach the statistical significance.
Collapse
|
174
|
Exploring T cell reactivity to gliadin in young children with newly diagnosed celiac disease. Autoimmune Dis 2014; 2014:927190. [PMID: 24724018 PMCID: PMC3958769 DOI: 10.1155/2014/927190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/14/2022] Open
Abstract
Class II major histocompatibility molecules confer disease risk in Celiac disease (CD) by presenting gliadin peptides to CD4 T cells in the small intestine. Deamidation of gliadin peptides by tissue transglutaminase creates immunogenic peptides presented by HLA-DQ2 and DQ8 molecules to activate proinflammatory CD4 T cells. Detecting gliadin specific T cell responses from the peripheral blood has been challenging due to low circulating frequencies and heterogeneity in response to gliadin epitopes. We investigated the peripheral T cell responses to alpha and gamma gliadin epitopes in young children with newly diagnosed and untreated CD. Using peptide/MHC recombinant protein constructs, we are able to robustly stimulate CD4 T cell clones previously derived from intestinal biopsies of CD patients. These recombinant proteins and a panel of α- and γ-gliadin peptides were used to assess T cell responses from the peripheral blood. Proliferation assays using peripheral blood mononuclear cells revealed more CD4 T cell responses to α-gliadin than γ-gliadin peptides with a single deamidated α-gliadin peptide able to identify 60% of CD children. We conclude that it is possible to detect T cell responses without a gluten challenge or in vitro stimulus other than antigen, when measuring proliferative responses.
Collapse
|
175
|
Autoantibodies to IgG/HLA class II complexes are associated with rheumatoid arthritis susceptibility. Proc Natl Acad Sci U S A 2014; 111:3787-92. [PMID: 24567378 DOI: 10.1073/pnas.1401105111] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specific HLA class II alleles are strongly associated with susceptibility to rheumatoid arthritis (RA); however, how HLA class II regulates susceptibility to RA has remained unclear. Recently, we found a unique function of HLA class II molecules: their ability to aberrantly transport cellular misfolded proteins to the cell surface without processing to peptides. Rheumatoid factor (RF) is an autoantibody that binds to denatured IgG or Fc fragments of IgG and is detected in 70-80% of RA patients but also in patients with other diseases. Here, we report that intact IgG heavy chain (IgGH) is transported to the cell surface by HLA class II via association with the peptide-binding groove and that IgGH/HLA class II complexes are specifically recognized by autoantibodies in RF-positive sera from RA patients. In contrast, autoantibodies in RF-positive sera from non-RA individuals did not bind to IgGH/HLA class II complexes. Of note, a strong correlation between autoantibody binding to IgG complexed with certain HLA-DR alleles and the odds ratio for that allele's association with RA was observed (r = 0.81; P = 4.6 × 10(-5)). Our findings suggest that IgGH complexed with certain HLA class II alleles is a target for autoantibodies in RA, which might explain why these HLA class II alleles confer susceptibility to RA.
Collapse
|
176
|
Kovalchuka L, Eglite J, Zalite M, Lucenko I, Logina I, Karelis G, Viksna L, Krumina A. The frequency of HLA-DR alleles in patients with tick-borne disease from Latvia. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2052-5958-2-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
177
|
Scally SW, Petersen J, Law SC, Dudek NL, Nel HJ, Loh KL, Wijeyewickrema LC, Eckle SBG, van Heemst J, Pike RN, McCluskey J, Toes RE, La Gruta NL, Purcell AW, Reid HH, Thomas R, Rossjohn J. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. ACTA ACUST UNITED AC 2013; 210:2569-82. [PMID: 24190431 PMCID: PMC3832918 DOI: 10.1084/jem.20131241] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Rheumatoid arthritis (RA) is strongly associated with the human leukocyte antigen (HLA)-DRB1 locus that possesses the shared susceptibility epitope (SE) and the citrullination of self-antigens. We show how citrullinated aggrecan and vimentin epitopes bind to HLA-DRB1*04:01/04. Citrulline was accommodated within the electropositive P4 pocket of HLA-DRB1*04:01/04, whereas the electronegative P4 pocket of the RA-resistant HLA-DRB1*04:02 allomorph interacted with arginine or citrulline-containing epitopes. Peptide elution studies revealed P4 arginine-containing peptides from HLA-DRB1*04:02, but not from HLA-DRB1*04:01/04. Citrullination altered protease susceptibility of vimentin, thereby generating self-epitopes that are presented to T cells in HLA-DRB1*04:01(+) individuals. Using HLA-II tetramers, we observed citrullinated vimentin- and aggrecan-specific CD4(+) T cells in the peripheral blood of HLA-DRB1*04:01(+) RA-affected and healthy individuals. In RA patients, autoreactive T cell numbers correlated with disease activity and were deficient in regulatory T cells relative to healthy individuals. These findings reshape our understanding of the association between citrullination, the HLA-DRB1 locus, and T cell autoreactivity in RA.
Collapse
Affiliation(s)
- Stephen W Scally
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Tsai S, Santamaria P. MHC Class II Polymorphisms, Autoreactive T-Cells, and Autoimmunity. Front Immunol 2013; 4:321. [PMID: 24133494 PMCID: PMC3794362 DOI: 10.3389/fimmu.2013.00321] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/22/2013] [Indexed: 01/13/2023] Open
Abstract
Major histocompatibility complex (MHC) genes, also known as human leukocyte antigen genes (HLA) in humans, are the prevailing contributors of genetic susceptibility to autoimmune diseases such as Type 1 Diabetes (T1D), multiple sclerosis, and rheumatoid arthritis, among others (1–3). Although the pathways through which MHC molecules afford autoimmune risk or resistance remain to be fully mapped out, it is generally accepted that they do so by shaping the central and peripheral T-cell repertoires of the host toward autoimmune proclivity or resistance, respectively. Disease-predisposing MHC alleles would both spare autoreactive thymocytes from central tolerance and bias their development toward a pathogenic phenotype. Protective MHC alleles, on the other hand, would promote central deletion of autoreactive thymocytes and skew their development toward non-pathogenic phenotypes. This interpretation of the data is at odds with two other observations: that in MHC-heterozygous individuals, resistance is dominant over susceptibility; and that it is difficult to understand how deletion of one or a few clonal autoreactive T-cell types would suffice to curb autoimmune responses driven by hundreds if not thousands of autoreactive T-cell specificities. This review provides an update on current advances in our understanding of the mechanisms underlying MHC class II-associated autoimmune disease susceptibility and/or resistance and attempts to reconcile these seemingly opposing concepts.
Collapse
Affiliation(s)
- Sue Tsai
- Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, Julia McFarlane Diabetes Research Centre, Snyder Institute for Chronic Diseases, University of Calgary , Calgary, AB , Canada
| | | |
Collapse
|
179
|
Chen YH, Huang YS, Chien WH, Chen CH. Association analysis of the major histocompatibility complex, class II, DQ β1 gene, HLA-DQB1, with narcolepsy in Han Chinese patients from Taiwan. Sleep Med 2013; 14:1393-7. [PMID: 24157097 DOI: 10.1016/j.sleep.2013.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/15/2013] [Accepted: 06/20/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND Narcolepsy is a rare, chronic, disabling neuropsychiatric disorder characterized by excessive daytime sleepiness, cataplexy, hypnagogic hallucinations, sleep paralysis, and abnormal rapid eye movement sleep. It is strongly associated with the HLA-DQB1(∗)06:02 allele in various ethnic groups. Our study aimed to investigate the allelic spectrum of HLA-DQB1 in a sample of Han Chinese patients with narcolepsy and control subjects from Taiwan. METHODS We determined the genotype of the major histocompatibility complex, class II, DQ β1 gene, HLA-DQB1, in 72 narcolepsy subjects (44 men, 28 women), including 52 narcolepsy subjects with cataplexy (narcolepsy+cataplexy), 20 narcolepsy subjects without cataplexy (narcolepsy-cataplexy), and 194 control subjects (94 men, 100 women) using a sequence-specific oligonucleotide-probe hybridization technique. RESULTS We found a strong HLA-DQB1(∗)06:02 association in narcolepsy+cataplexy subjects (odds ratio [OR], 321.4 [95% confidence interval {CI}, 70.7-1461.4]). The association was less prominent in narcolepsy-cataplexy subjects (OR, 6.9 [95% CI, 2.4-20.1]). In addition to the DQB1(∗)06:02, we found that (∗)03:01 also was a predisposing allele (OR, 2.0 [95% CI, 1.1-3.7]) in narcolepsy+cataplexy subjects, though the (∗)06:01 was a predisposing allele (OR, 2.8 [95% CI, 1.2-6.7]) in narcolepsy-cataplexy subjects. Furthermore, we found a significant overrepresentation of DQB1(∗)06:02 homozygotes in narcolepsy+cataplexy subjects. CONCLUSIONS Our data add further support to the strong association of the HLA-DQB1(∗)06:02 allele with narcolepsy, especially in narcolepsy+cataplexy patients. Our study also indicates additional HLA-DQB1 alleles may modify the presentation of narcolepsy+cataplexy patients, such as DQB1(∗)03:01 and DQB1(∗)06:01 in our study. Our results are limited by the small sample size and can only be considered as preliminary findings.
Collapse
Affiliation(s)
- Yun-Hsiang Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | | | | | | |
Collapse
|
180
|
Howell WM. HLA and disease: guilt by association. Int J Immunogenet 2013; 41:1-12. [DOI: 10.1111/iji.12088] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/10/2013] [Indexed: 02/06/2023]
Affiliation(s)
- W. M. Howell
- Department of Histocompatibility and Immunogenetics; NHS Blood and Transplant; Newcastle upon Tyne UK
| |
Collapse
|
181
|
Wu YL, Ding YP, Gao J, Tanaka Y, Zhang W. Risk factors and primary prevention trials for type 1 diabetes. Int J Biol Sci 2013; 9:666-79. [PMID: 23904791 PMCID: PMC3729009 DOI: 10.7150/ijbs.6610] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/09/2013] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease resulting in the designated immune destruction of insulin producing β-cells, usually diagnosed in youth, and associated with important psychological, familial, and social disorders. Once diagnosed, patients need lifelong insulin treatment and will experience multiple disease-associated complications. There is no cure for T1DM currently. The last decade has witnessed great progress in elucidating the causes and treatment of the disease based on numerous researches both in rodent models of spontaneous diabetes and in humans. This article summarises our current understanding of the pathogenesis of T1DM, the roles of the immune system, genes, environment and other factors in the continuing and rapid increase in T1DM incidence at younger ages in humans. In addition, we discuss the strategies for primary and secondary prevention trials of T1DM. The purpose of this review is to provide an overview of this disorder's pathogenesis, risk factors that cause the disease, as well as to bring forward an ideal approach to prevent and cure the disorder.
Collapse
Affiliation(s)
- Yan-Ling Wu
- Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, PR China.
| | | | | | | | | |
Collapse
|
182
|
Xu K, Wang J, Elango N, Yi SV. The evolution of lineage-specific clusters of single nucleotide substitutions in the human genome. Mol Phylogenet Evol 2013; 69:276-85. [PMID: 23770436 DOI: 10.1016/j.ympev.2013.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 05/17/2013] [Accepted: 06/04/2013] [Indexed: 11/25/2022]
Abstract
Genomic regions harboring large numbers of human-specific single nucleotide substitutions are of significant interest since they are potential genomic foci underlying the evolution of human-specific traits as well as human adaptive evolution. Previous studies aimed to identify such regions either used pre-defined genomic locations such as coding sequences and conserved genomic elements or employed sliding window methods. Such approaches may miss clusters of substitutions occurring in regions other than those pre-defined locations, or not be able to distinguish human-specific clusters of substitutions from regions of generally high substitution rates. Here, we conduct a 'maximal segment' analysis to scan the whole human genome to identify clusters of human-specific substitutions that occurred since the divergence of the human and the chimpanzee genomes. This method can identify species-specific clusters of substitutions while not relying on pre-defined regions. We thus identify thousands of clusters of human-specific single nucleotide substitutions. The evolution of such clusters is driven by a combination of several different evolutionary processes including increased regional mutation rate, recombination-associated processes, and positive selection. These newly identified regions of human-specific substitution clusters include large numbers of previously identified human accelerated regions, and exhibit significant enrichments of genes involved in several developmental processes. Our study provides a useful tool to study the evolution of the human genome.
Collapse
Affiliation(s)
- Ke Xu
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
183
|
HIRSCHFIELD GIDEONM, CHAPMAN ROGERW, KARLSEN TOMH, LAMMERT FRANK, LAZARIDIS KONSTANTINOSN, MASON ANDREWL. The genetics of complex cholestatic disorders. Gastroenterology 2013; 144:1357-74. [PMID: 23583734 PMCID: PMC3705954 DOI: 10.1053/j.gastro.2013.03.053] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/24/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023]
Abstract
Cholestatic liver diseases are caused by a range of hepatobiliary insults and involve complex interactions among environmental and genetic factors. Little is known about the pathogenic mechanisms of specific cholestatic diseases, which has limited our ability to manage patients with these disorders. However, recent genome-wide studies have provided insight into the pathogenesis of gallstones, primary biliary cirrhosis, and primary sclerosing cholangitis. A lithogenic variant in the gene that encodes the hepatobiliary transporter ABCG8 has been identified as a risk factor for gallstone disease; this variant has been associated with altered cholesterol excretion and metabolism. Other variants of genes encoding transporters that affect the composition of bile have been associated with cholestasis, namely ABCB11, which encodes the bile salt export pump, and ABCB4, which encodes hepatocanalicular phosphatidylcholine floppase. In contrast, studies have associated primary biliary cirrhosis and primary sclerosing cholangitis with genes encoding major histocompatibility complex proteins and identified loci associated with microbial sensing and immune regulatory pathways outside this region, such as genes encoding IL12, STAT4, IRF5, IL2 and its receptor (IL2R), CD28, and CD80. These discoveries have raised interest in the development of reagents that target these gene products. We review recent findings from genetic studies of patients with cholestatic liver disease. Future characterization of genetic variants in animal models, stratification of risk alleles by clinical course, and identification of interacting environmental factors will increase our understanding of these complex cholestatic diseases.
Collapse
Affiliation(s)
- GIDEON M. HIRSCHFIELD
- Centre for Liver Research, National Institute for Health Research Biomedical Research Unit, University of Birmingham, Birmingham, England
| | - ROGER W. CHAPMAN
- Department of Gastroenterology, John Radcliffe Hospital, Oxford, England
| | - TOM H. KARLSEN
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - FRANK LAMMERT
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - KONSTANTINOS N. LAZARIDIS
- Center for Basic Research in Digestive Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - ANDREW L. MASON
- Centre of Excellence in Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
184
|
Lenz TL, Eizaguirre C, Kalbe M, Milinski M. EVALUATING PATTERNS OF CONVERGENT EVOLUTION AND TRANS-SPECIES POLYMORPHISM AT MHC IMMUNOGENES IN TWO SYMPATRIC STICKLEBACK SPECIES. Evolution 2013; 67:2400-12. [DOI: 10.1111/evo.12124] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/26/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Tobias L. Lenz
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Str 2 24306 Plön Germany
| | - Christophe Eizaguirre
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Str 2 24306 Plön Germany
- Department of Evolutionary Ecology of Marine Fishes; GEOMAR
- Helmholtz Center for Ocean Research; Düsternbrooker Weg 20 24105 Kiel Germany
| | - Martin Kalbe
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Str 2 24306 Plön Germany
| | - Manfred Milinski
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Str 2 24306 Plön Germany
| |
Collapse
|
185
|
Preferential HLA-DRB1*11–dependent presentation of CUB2-derived peptides by ADAMTS13-pulsed dendritic cells. Blood 2013; 121:3502-10. [DOI: 10.1182/blood-2012-09-456780] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Key Points
ADAMTS13 derived peptides presented on HLA-DR; implications for acquired TTP. CUB2 domain peptide binds to risk-allele HLA-DRB1*11.
Collapse
|
186
|
Spraggs CF, Xu CF, Hunt CM. Genetic characterization to improve interpretation and clinical management of hepatotoxicity caused by tyrosine kinase inhibitors. Pharmacogenomics 2013; 14:541-54. [DOI: 10.2217/pgs.13.24] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) represent important therapeutic alternatives to, or combinations with, traditional cytotoxic chemotherapy. Despite their selective molecular targeting and demonstrated clinical benefit, TKIs produce a range of serious adverse events, including drug-induced liver injury, that require careful patient management to maintain treatment benefit without harm. Genetic characterization of serious adverse events can identify mechanisms of injury and improve safety risk management. This review presents pharmacogenetic comparisons of two approved TKIs, lapatinib and pazopanib, which reveal different mechanisms of injury and inform the characteristics and risk of serious liver injury in treated patients. The data presented demonstrate the utility of genetic studies to investigate drug-induced liver injury and potentially support its management in patients.
Collapse
Affiliation(s)
- Colin F Spraggs
- Genetics, Quantitative Sciences, GlaxoSmithKline Research & Development, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK.
| | - Chun-Fang Xu
- Genetics, Quantitative Sciences, GlaxoSmithKline Research & Development, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Christine M Hunt
- Clinical Safety Systems, GlaxoSmithKline Research & Development, Research Triangle Park, NC, USA
- Duke University, Durham, NC, USA
| |
Collapse
|
187
|
Yin Y, Li Y, Mariuzza RA. Structural basis for self-recognition by autoimmune T-cell receptors. Immunol Rev 2013; 250:32-48. [PMID: 23046121 DOI: 10.1111/imr.12002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
T-cell receptors (TCRs) recognize peptides presented by major histocompatibility complex molecules (pMHC) to discriminate between foreign and self-antigens. Whereas T-cell recognition of foreign peptides is essential for protection against microbial pathogens, recognition of self-peptides by T cells that have escaped negative selection in the thymus can lead to autoimmune disease. Structural studies of autoimmune TCR-pMHC complexes have provided insights into the mechanisms underlying self-recognition and escape from thymic deletion. Two broad categories of self-reactive TCRs can be clearly distinguished: (i) TCRs with altered binding topologies to self-pMHC and (ii) TCRs that bind self-pMHC in the canonical diagonal orientation, but where there are structural defects or suboptimal anchors in the self-ligand. For both categories, however, the overall stability of the autoimmune TCR-pMHC complex is markedly reduced compared to anti-microbial complexes, allowing the autoreactive T cells to evade negative selection, yet retain the ability to be activated by self-antigens in target organs. Additionally, the structures provide insights into TCR cross-reactivity, which can contribute to autoimmunity by increasing the likelihood of self-pMHC recognition. Efforts are now underway to understand the impact of structural alterations in autoimmune TCR-pMHC complexes on higher order assemblies involved in TCR signaling, as well as on immunological synapse formation.
Collapse
Affiliation(s)
- Yiyuan Yin
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | | | | |
Collapse
|
188
|
Pompeu YA, Stewart JD, Mallal S, Phillips E, Peters B, Ostrov DA. The structural basis of HLA-associated drug hypersensitivity syndromes. Immunol Rev 2013; 250:158-66. [PMID: 23046128 DOI: 10.1111/j.1600-065x.2012.01163.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent data suggest alternative mechanisms that promote human leukocyte antigen (HLA)-associated drug syndromes. Hypersensitive responses have been attributed to drug interactions with HLA molecules, peptides presented by HLA molecules and T-cell antigen receptors. Definition of an increasing number of HLA-associated drug syndromes suggests that polymorphism in the antigen-binding cleft residues influence recognition of specific drugs. Recent data demonstrate that small molecule drugs bind within the antigen-binding cleft of HLA in a manner that alters the repertoire of HLA-bound peptide ligands. This drug recognition mechanism permits presentation of self-peptides to which the host has not been tolerized. This altered repertoire mechanism is analogous to massive polyclonal T-cell responses occurring in mismatched HLA organ transplantation in which the drug in effect creates a novel HLA allele. Alteration of the self-peptide repertoire by HLA-binding small molecules may be the mechanistic basis for a diverse set of deleterious T-cell responses since the antigen-binding cleft has structural features that are compatible with binding drug-like small molecules. Small molecule drugs that bind elements of the trimolecular complex (T-cell receptor, peptide, and HLA) may cause short- and long-term adverse effects by a diverse set of mechanisms.
Collapse
Affiliation(s)
- Yuri A Pompeu
- Department of Chemistry, University of Florida, Gainesville, USA
| | | | | | | | | | | |
Collapse
|
189
|
Shimane K, Kochi Y, Suzuki A, Okada Y, Ishii T, Horita T, Saito K, Okamoto A, Nishimoto N, Myouzen K, Kubo M, Hirakata M, Sumida T, Takasaki Y, Yamada R, Nakamura Y, Kamatani N, Yamamoto K. An association analysis of HLA-DRB1 with systemic lupus erythematosus and rheumatoid arthritis in a Japanese population: effects of *09:01 allele on disease phenotypes. Rheumatology (Oxford) 2013; 52:1172-82. [DOI: 10.1093/rheumatology/kes427] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
190
|
Antidiabetogenic MHC class II promotes the differentiation of MHC-promiscuous autoreactive T cells into FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A 2013; 110:3471-6. [PMID: 23401506 DOI: 10.1073/pnas.1211391110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polymorphisms in MHC class II molecules, in particular around β-chain position-57 (β57), afford susceptibility/resistance to multiple autoimmune diseases, including type 1 diabetes, through obscure mechanisms. Here, we show that the antidiabetogenic MHC class II molecule I-A(b) affords diabetes resistance by promoting the differentiation of MHC-promiscuous autoreactive CD4(+) T cells into disease-suppressing natural regulatory T cells, in a β56-67-regulated manner. We compared the tolerogenic and antidiabetogenic properties of CD11c promoter-driven transgenes encoding I-A(b) or a form of I-A(b) carrying residues 56-67 of I-Aβ(g7) (I-A(b-g7)) in wild-type nonobese diabetic (NOD) mice, as well as NOD mice coexpressing a diabetogenic and I-A(g7)-restricted, but MHC-promiscuous T-cell receptor (4.1). Both I-A transgenes protected NOD and 4.1-NOD mice from diabetes. However, whereas I-A(b) induced 4.1-CD4(+) thymocyte deletion and 4.1-CD4(+)Foxp3(+) regulatory T-cell development, I-A(b-g7) promoted 4.1-CD4(+)Foxp3(+) Treg development without inducing clonal deletion. Furthermore, non-T-cell receptor transgenic NOD.CD11cP-I-A(b) and NOD.CD11cP-IA(b-g7) mice both exported regulatory T cells with superior antidiabetogenic properties than wild-type NOD mice. We propose that I-A(b), and possibly other protective MHC class II molecules, afford disease resistance by engaging a naturally occurring constellation of MHC-promiscuous autoreactive T-cell clonotypes, promoting their deviation into autoregulatory T cells.
Collapse
|
191
|
Kumar N, Kaur G, Tandon N, Kanga U, Mehra NK. Genomic evaluation of HLA-DR3+ haplotypes associated with type 1 diabetes. Ann N Y Acad Sci 2013; 1283:91-6. [PMID: 23387390 DOI: 10.1111/nyas.12019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have defined three sets of HLA-DR3(+) haplotypes that provide maximum risk of type 1 disease development in Indians: (1) a diverse array of B8-DR3 haplotypes, (2) A33-B58-DR3 haplotype, and (3) A2-B50-DR3 occurring most predominantly in this population. Further analysis has revealed extensive diversity in B8-DR3 haplotypes, particularly at the HLA-A locus, in contrast to the single fixed HLA-A1-B8-DR3 haplotype (generally referred to as AH8.1) reported in Caucasians. However, the classical AH8.1 haplotype was rare and differed from the Caucasian counterpart at multiple loci. In our study, HLA-A26-B8-DR3 (AH8.2) was the most common B8-DR3 haplotype constituting >50% of the total B8-DR3 haplotypes. Further, A2-B8-DR3 contributed the maximum risk (RR = 48.7) of type 1 diabetes, followed by A2-B50-DR3 (RR = 9.4), A33-B58-DR3 (RR = 6.6), A24-B8-DR3 (RR = 4.5), and A26-B8-DR3 (RR = 4.2). Despite several differences, the disease-associated haplotypes in Indian and Caucasian populations share a frozen DR3-DQ2 block, suggesting a common ancestor from which multiple haplotypes evolved independently.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | | | | | |
Collapse
|
192
|
Meydan C, Otu HH, Sezerman OU. Prediction of peptides binding to MHC class I and II alleles by temporal motif mining. BMC Bioinformatics 2013; 14 Suppl 2:S13. [PMID: 23368521 PMCID: PMC3549809 DOI: 10.1186/1471-2105-14-s2-s13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND MHC (Major Histocompatibility Complex) is a key player in the immune response of most vertebrates. The computational prediction of whether a given antigenic peptide will bind to a specific MHC allele is important in the development of vaccines for emerging pathogens, the creation of possibilities for controlling immune response, and for the applications of immunotherapy. One of the problems that make this computational prediction difficult is the detection of the binding core region in peptides, coupled with the presence of bulges and loops causing variations in the total sequence length. Most machine learning methods require the sequences to be of the same length to successfully discover the binding motifs, ignoring the length variance in both motif mining and prediction steps. In order to overcome this limitation, we propose the use of time-based motif mining methods that work position-independently. RESULTS The prediction method was tested on a benchmark set of 28 different alleles for MHC class I and 27 different alleles for MHC class II. The obtained results are comparable to the state of the art methods for both MHC classes, surpassing the published results for some alleles. The average prediction AUC values are 0.897 for class I, and 0.858 for class II. CONCLUSIONS Temporal motif mining using partial periodic patterns can capture information about the sequences well enough to predict the binding of the peptides and is comparable to state of the art methods in the literature. Unlike neural networks or matrix based predictors, our proposed method does not depend on peptide length and can work with both short and long fragments. This advantage allows better use of the available training data and the prediction of peptides of uncommon lengths.
Collapse
Affiliation(s)
- Cem Meydan
- Bioengineering Department, Sabanci University, 34956, Istanbul, Turkey
| | | | | |
Collapse
|
193
|
Potaczek DP, Kabesch M. Current concepts of IgE regulation and impact of genetic determinants. Clin Exp Allergy 2013; 42:852-71. [PMID: 22909159 DOI: 10.1111/j.1365-2222.2011.03953.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunoglobulin E (IgE) mediated immune responses seem to be directed against parasites and neoplasms, but are best known for their involvement in allergies. The IgE network is tightly controlled at different levels as outlined in this review. Genetic determinants were suspected to influence IgE regulation and IgE levels considerably for many years. Linkage and candidate gene studies suggested a number of loci and genes to correlate with total serum IgE levels, and recently genome-wide association studies (GWAS) provided the power to identify genetic determinants for total serum IgE levels: 1q23 (FCER1A), 5q31 (RAD50, IL13, IL4), 12q13 (STAT6), 6p21.3 (HLA-DRB1) and 16p12 (IL4R, IL21R). In this review, we analyse the potential role of these GWAS hits in the IgE network and suggest mechanisms of how genes and genetic variants in these loci may influence IgE regulation.
Collapse
Affiliation(s)
- D P Potaczek
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
194
|
Abstract
Type 1 diabetes (T1D) represents 10 to 15% of all forms of diabetes. Its incidence shows a consistent rise in all countries under survey. Evidence for autoimmunity in human T1D relies on the detection of insulitis, of islet cell antibodies, of activated β-cell-specific T lymphocytes and on the association of T1D with a restricted set of class II major histocompatibility complex (MHC) alleles. However, mechanisms that initiate the failure of immune tolerance to β-cell autoantigens remain elusive in common forms of T1D. T1D commonly develop as a multifactorial disease in which environmental factors concur with a highly multigenic background. The disease is driven by the activation of T-lymphocytes against pancreatic β-cells. Several years elapse between initial triggering of the autoimmune response to β cells, as evidenced by the appearance or islet cell autoantibodies, and the onset of clinical diabetes, defining a prediabetes stage. Active mechanisms hold back autoreactive effector T-cells in prediabetes, in particular a subset of CD4+ T-cells (T(reg)) and other regulatory T-cells, such as invariant NKT cells. There is evidence in experimental models that systemic or local infections can trigger autoimmune reactions to β-cells. However, epidemiological observations that have accumulated over years have failed to identify undisputable environmental factors that trigger T1D. Moreover, multiple environmental factors may intervene in the disease evolution and protective as weel as triggering environmental factors may be involved. Available models also indicate that local signals within the islets are required for full-blown diabetes to develop. Many autoantigens that are expressed by β-cells but also by the other endocrine islet cells and by neurons are recognized by lymphocytes along the development of T1D. The immune image of β-cells is that of native components of the β-cell membrane, as seen by B-lymphocytes, and of fragments of intracellular β-cell proteins in the form of peptides loaded onto class I MHC molecules on the β-cell surface and class I and class II molecules onto professional antigen presenting cells. Given the key role of T lymphocytes in T1D, the cartography of autoantigen-derived peptides that are presented to class I-restricted CD8(+) T-cells and class II-restricted CD4(+) T-cells is of outmost importance and is a necessary step in the development of diagnostic T-cell assays and of immunotherapy of T1D.
Collapse
|
195
|
Salimi N, Fleri W, Peters B, Sette A. The immune epitope database: a historical retrospective of the first decade. Immunology 2012; 137:117-23. [PMID: 22681406 DOI: 10.1111/j.1365-2567.2012.03611.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As the amount of biomedical information available in the literature continues to increase, databases that aggregate this information continue to grow in importance and scope. The population of databases can occur either through fully automated text mining approaches or through manual curation by human subject experts. We here report our experiences in populating the National Institute of Allergy and Infectious Diseases sponsored Immune Epitope Database and Analysis Resource (IEDB, http://iedb.org), which was created in 2003, and as of 2012 captures the epitope information from approximately 99% of all papers published to date that describe immune epitopes (with the exception of cancer and HIV data). This was achieved using a hybrid model based on automated document categorization and extensive human expert involvement. This task required automated scanning of over 22 million PubMed abstracts followed by classification and curation of over 13 000 references, including over 7000 infectious disease-related manuscripts, over 1000 allergy-related manuscripts, roughly 4000 related to autoimmunity, and 1000 transplant/alloantigen-related manuscripts. The IEDB curation involves an unprecedented level of detail, capturing for each paper the actual experiments performed for each different epitope structure. Key to enabling this process was the extensive use of ontologies to ensure rigorous and consistent data representation as well as interoperability with other bioinformatics resources, including the Protein Data Bank, Chemical Entities of Biological Interest, and the NIAID Bioinformatics Resource Centers. A growing fraction of the IEDB data derives from direct submissions by research groups engaged in epitope discovery, and is being facilitated by the implementation of novel data submission tools. The present explosion of information contained in biological databases demands effective query and display capabilities to optimize the user experience. Accordingly, the development of original ways to query the database, on the basis of ontologically driven hierarchical trees, and display of epitope data in aggregate in a biologically intuitive yet rigorous fashion is now at the forefront of the IEDB efforts. We also highlight advances made in the realm of epitope analysis and predictive tools available in the IEDB.
Collapse
Affiliation(s)
- Nima Salimi
- La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
196
|
de Bakker PIW, Raychaudhuri S. Interrogating the major histocompatibility complex with high-throughput genomics. Hum Mol Genet 2012; 21:R29-36. [PMID: 22976473 PMCID: PMC3459647 DOI: 10.1093/hmg/dds384] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 09/06/2012] [Indexed: 12/11/2022] Open
Abstract
The major histocompatibility complex (MHC) region on the short arm of chromosome 6 harbors the largest number of replicated associations across the human genome for a wide range of diseases, but the functional basis for these associations is still poorly understood. One fundamental challenge in fine-mapping associations to functional alleles is the enormous sequence diversity and broad linkage disequilibrium of the MHC, both of which hamper the cost-effective interrogation in large patient samples and the identification of causal variants. In this review, we argue that there is now a valuable opportunity to leverage existing genome-wide association study (GWAS) datasets for in-depth investigation to identify independent effects in the MHC. Application of imputation to GWAS data facilitates comprehensive interrogation of the classical human leukocyte antigen (HLA) loci. These datasets are, in many cases, sufficiently large to give investigators the ability to disentangle effects at different loci. We also explain how querying variation at individual amino acid positions for association can be powerful and expand traditional analyses that focus only on the classical HLA types.
Collapse
Affiliation(s)
- Paul I W de Bakker
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | |
Collapse
|
197
|
Andreatta M, Nielsen M. Characterizing the binding motifs of 11 common human HLA-DP and HLA-DQ molecules using NNAlign. Immunology 2012; 136:306-11. [PMID: 22352343 DOI: 10.1111/j.1365-2567.2012.03579.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Compared with HLA-DR molecules, the specificities of HLA-DP and HLA-DQ molecules have only been studied to a limited extent. The description of the binding motifs has been mostly anecdotal and does not provide a quantitative measure of the importance of each position in the binding core and the relative weight of different amino acids at a given position. The recent publication of larger data sets of peptide-binding to DP and DQ molecules opens the possibility of using data-driven bioinformatics methods to accurately define the binding motifs of these molecules. Using the neural network-based method NNAlign, we characterized the binding specificities of five HLA-DP and six HLA-DQ among the most frequent in the human population. The identified binding motifs showed an overall concurrence with earlier studies but revealed subtle differences. The DP molecules revealed a large overlap in the pattern of amino acid preferences at core positions, with conserved hydrophobic/aromatic anchors at P1 and P6, and an additional hydrophobic anchor at P9 in some variants. These results confirm the existence of a previously hypothesized supertype encompassing the most common DP alleles. Conversely, the binding motifs for DQ molecules appear more divergent, displaying unconventional anchor positions and in some cases rather unspecific amino acid preferences.
Collapse
Affiliation(s)
- Massimo Andreatta
- Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark.
| | | |
Collapse
|
198
|
Moreno-Vranich A, Patarroyo ME. Steric–electronic effects in malarial peptides inducing sterile immunity. Biochem Biophys Res Commun 2012; 423:857-62. [DOI: 10.1016/j.bbrc.2012.06.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
|
199
|
Magira EE, Papasteriades C, Kanterakis S, Toubis M, Roussos C, Monos DS. HLA-A and HLA-DRB1 amino acid polymorphisms are associated with susceptibility and protection to pulmonary tuberculosis in a Greek population. Hum Immunol 2012; 73:641-6. [DOI: 10.1016/j.humimm.2012.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 03/08/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
|
200
|
Burke DT, Kozloff KM, Chen S, West JL, Wilkowski JM, Goldstein SA, Miller RA, Galecki AT. Dissection of complex adult traits in a mouse synthetic population. Genome Res 2012; 22:1549-57. [PMID: 22588897 PMCID: PMC3409268 DOI: 10.1101/gr.135582.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Finding the causative genetic variations that underlie complex adult traits is a significant experimental challenge. The unbiased search strategy of genome-wide association (GWAS) has been used extensively in recent human population studies. These efforts, however, typically find only a minor fraction of the genetic loci that are predicted to affect variation. As an experimental model for the analysis of adult polygenic traits, we measured a mouse population for multiple phenotypes and conducted a genome-wide search for effector loci. Complex adult phenotypes, related to body size and bone structure, were measured as component phenotypes, and each subphenotype was associated with a genomic spectrum of candidate effector loci. The strategy successfully detected several loci for the phenotypes, at genome-wide significance, using a single, modest-sized population (N = 505). The effector loci each explain 2%–10% of the measured trait variation and, taken together, the loci can account for over 25% of a trait's total population variation. A replicate population (N = 378) was used to confirm initially observed loci for one trait (femur length), and, when the two groups were merged, the combined population demonstrated increased power to detect loci. In contrast to human population studies, our mouse genome-wide searches find loci that individually explain a larger fraction of the observed variation. Also, the additive effects of our detected mouse loci more closely match the predicted genetic component of variation. The genetic loci discovered are logical candidates for components of the genetic networks having evolutionary conservation with human biology.
Collapse
Affiliation(s)
- David T Burke
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | |
Collapse
|