151
|
Plata MP, Kang HJ, Zhang S, Kuruganti S, Hsu SJ, Labrador M. Changes in chromatin structure correlate with transcriptional activity of nucleolar rDNA in polytene chromosomes. Chromosoma 2008; 118:303-22. [PMID: 19066928 DOI: 10.1007/s00412-008-0198-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 11/14/2008] [Accepted: 11/19/2008] [Indexed: 12/30/2022]
Abstract
Ribosomal DNA genes (rDNA) are found in tandem arrays of hundreds of repeated genes, but only a fraction of these genes are actively transcribed. The regulatory mechanism controlling the transition between active and inactive rDNA in higher eukaryotes is vital for cell survival. Here, we show that the nucleolus from Drosophila salivary gland cells contains two levels of chromatin organization reflecting differences in transcriptional activity: Decondensed chromatin is highly occupied with TATA-box-binding protein (TBP), phosphorylated H3S10, and acetylated H3K14, suggesting that rDNA in decondensed nucleolar areas is actively transcribed. Condensed chromatin lacks TBP, phosphorylated H3S10, or acetylated H3K14 and is enriched in the rDNA retrotransposons R1 and R2. The data show that R1 and R2 retrotransposons are not actively transcribed in salivary glands and may lead to the epigenetic silencing of flanking rDNA genes and that the silencing mechanisms of these sequences might be partially independent of heterochromatin formation by methylation of histone H3 at lysine 9 and binding of heterochromatin protein 1.
Collapse
Affiliation(s)
- Maria Piedad Plata
- Department of Biochemistry, Cellular and Molecular Biology, M407 Walters Life Sciences, The University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|
152
|
Tremblay M, Teng Y, Paquette M, Waters R, Conconi A. Complementary roles of yeast Rad4p and Rad34p in nucleotide excision repair of active and inactive rRNA gene chromatin. Mol Cell Biol 2008; 28:7504-13. [PMID: 18936173 PMCID: PMC2593431 DOI: 10.1128/mcb.00137-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 02/26/2008] [Accepted: 10/08/2008] [Indexed: 02/03/2023] Open
Abstract
Nucleotide excision repair (NER) removes a plethora of DNA lesions. It is performed by a large multisubunit protein complex that finds and repairs damaged DNA in different chromatin contexts and nuclear domains. The nucleolus is the most transcriptionally active domain, and in yeast, transcription-coupled NER occurs in RNA polymerase I-transcribed genes (rDNA). Here we have analyzed the roles of two members of the xeroderma pigmentosum group C family of proteins, Rad4p and Rad34p, during NER in the active and inactive rDNA. We report that Rad4p is essential for repair in the intergenic spacer, the inactive rDNA coding region, and for strand-specific repair at the transcription initiation site, whereas Rad34p is not. Rad34p is necessary for transcription-coupled NER that starts about 40 nucleotides downstream of the transcription initiation site of the active rDNA, whereas Rad4p is not. Thus, although Rad4p and Rad34p share sequence homology, their roles in NER in the rDNA locus are almost entirely distinct and complementary. These results provide evidences that transcription-coupled NER and global genome NER participate in the removal of UV-induced DNA lesions from the transcribed strand of active rDNA. Furthermore, nonnucleosome rDNA is repaired faster than nucleosome rDNA, indicating that an open chromatin structure facilitates NER in vivo.
Collapse
Affiliation(s)
- Maxime Tremblay
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Poste 7446, Université de Sherbrooke, 3001 12th Ave. Nord, Sherbrooke, QC J1H 5N4, Canada
| | | | | | | | | |
Collapse
|
153
|
Bakshi R, Zaidi SK, Pande S, Hassan MQ, Young DW, Montecino M, Lian JB, van Wijnen AJ, Stein JL, Stein GS. The leukemogenic t(8;21) fusion protein AML1-ETO controls rRNA genes and associates with nucleolar-organizing regions at mitotic chromosomes. J Cell Sci 2008; 121:3981-90. [PMID: 19001502 DOI: 10.1242/jcs.033431] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RUNX1/AML1 is required for definitive hematopoiesis and is frequently targeted by chromosomal translocations in acute myeloid leukemia (AML). The t(8;21)-related AML1-ETO fusion protein blocks differentiation of myeloid progenitors. Here, we show by immunofluorescence microscopy that during interphase, endogenous AML1-ETO localizes to nuclear microenvironments distinct from those containing native RUNX1/AML1 protein. At mitosis, we clearly detect binding of AML1-ETO to nucleolar-organizing regions in AML-derived Kasumi-1 cells and binding of RUNX1/AML1 to the same regions in Jurkat cells. Both RUNX1/AML1 and AML1-ETO occupy ribosomal DNA repeats during interphase, as well as interact with the endogenous RNA Pol I transcription factor UBF1. Promoter cytosine methylation analysis indicates that RUNX1/AML1 binds to rDNA repeats that are more highly CpG methylated than those bound by AML1-ETO. Downregulation by RNA interference reveals that RUNX1/AML1 negatively regulates rDNA transcription, whereas AML1-ETO is a positive regulator in Kasumi-1 cells. Taken together, our findings identify a novel role for the leukemia-related AML1-ETO protein in epigenetic control of cell growth through upregulation of ribosomal gene transcription mediated by RNA Pol I, consistent with the hyper-proliferative phenotype of myeloid cells in AML patients.
Collapse
Affiliation(s)
- Rachit Bakshi
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Affiliation(s)
- Brian McStay
- Biomedical Research Center, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, United Kingdom;
| | - Ingrid Grummt
- Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;
| |
Collapse
|
155
|
Abstract
SummaryOogenesis is a critical event in the formation of female gametes, whose role in development is to transfer genomic information to the next generation. During this process, the gene expression pattern changes dramatically concomitant with genome remodelling, while genomic information is stably maintained. The aim of the present study was to investigate the chromatin architecture in newt oocytes. Using fluorescence microscopy, as well as transmission electron microscopy (TEM), immunohistochemical method and RE-ChIP assay, some peculiar aspects of chromatin and chromosome organization and evolution in crested newt oogenesis were investigated. We focussed our investigations on detection of certain epigenetic modifications (H4 hyperacetylation, H2A ubiquitinylation and cytosine methylation) at the rRNA gene (18S–5.8S–28S) promoter region. Our findings suggest that there is an involvement of some epigenetic modifications as well as of linker histone variants in chromatin architecture dynamics during crested newt oogenesis.
Collapse
|
156
|
Chromatin: linking structure and function in the nucleolus. Chromosoma 2008; 118:11-23. [PMID: 18925405 DOI: 10.1007/s00412-008-0184-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 01/07/2023]
Abstract
The nucleolus is an informative model structure for studying how chromatin-regulated transcription relates to nuclear organisation. In this review, we describe how chromatin controls nucleolar structure through both the modulation of rDNA activity by convergently-evolved remodelling complexes and by direct effects upon rDNA packaging. This packaging not only regulates transcription but may also be important for suppressing internal recombination between tandem rDNA repeats. The identification of nucleolar histone chaperones and novel chromatin proteins by mass spectrometry suggests that structure-specific chromatin components remain to be characterised and may regulate the nucleolus in novel ways. However, it also suggests that there is considerable overlap between nucleolar and non-nucleolar-chromatin components. We conclude that a fuller understanding of nucleolar chromatin will be essential for understanding how gene organisation is linked with nuclear architecture.
Collapse
|
157
|
Woo HR, Richards EJ. Natural variation in DNA methylation in ribosomal RNA genes of Arabidopsis thaliana. BMC PLANT BIOLOGY 2008; 8:92. [PMID: 18783613 PMCID: PMC2551617 DOI: 10.1186/1471-2229-8-92] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 09/10/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND DNA methylation is an important biochemical mark that silences repetitive sequences, such as transposons, and reinforces epigenetic gene expression states. An important class of repetitive genes under epigenetic control in eukaryotic genomes encodes ribosomal RNA (rRNA) transcripts. The ribosomal genes coding for the 45S rRNA precursor of the three largest eukaryotic ribosomal RNAs (18S, 5.8S, and 25-28S) are found in nucleolus organizer regions (NORs), comprised of hundreds to thousands of repeats, only some of which are expressed in any given cell. An epigenetic switch, mediated by DNA methylation and histone modification, turns rRNA genes on and off. However, little is known about the mechanisms that specify and maintain the patterns of NOR DNA methylation. RESULTS Here, we explored the extent of naturally-occurring variation in NOR DNA methylation among accessions of the flowering plant Arabidopsis thaliana. DNA methylation in coding regions of rRNA genes was positively correlated with copy number of 45S rRNA gene and DNA methylation in the intergenic spacer regions. We investigated the inheritance of NOR DNA methylation patterns in natural accessions with hypomethylated NORs in inter-strain crosses and defined three different categories of inheritance in F1 hybrids. In addition, subsequent analysis of F2 segregation for NOR DNA methylation patterns uncovered different patterns of inheritance. We also revealed that NOR DNA methylation in the Arabidopsis accession Bor-4 is influenced by the vim1-1 (variant in methylation 1-1) mutation, but the primary effect is specified by the NORs themselves. CONCLUSION Our results indicate that the NORs themselves are the most significant determinants of natural variation in NOR DNA methylation. However, the inheritance of NOR DNA methylation suggests the operation of a diverse set of mechanisms, including inheritance of parental methylation patterns, reconfiguration of parental NOR DNA methylation, and the involvement of trans-acting modifiers.
Collapse
Affiliation(s)
- Hye Ryun Woo
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | - Eric J Richards
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
158
|
Garcia S, Lim KY, Chester M, Garnatje T, Pellicer J, Vallès J, Leitch AR, Kovarík A. Linkage of 35S and 5S rRNA genes in Artemisia (family Asteraceae): first evidence from angiosperms. Chromosoma 2008; 118:85-97. [PMID: 18779974 DOI: 10.1007/s00412-008-0179-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/22/2008] [Accepted: 08/20/2008] [Indexed: 10/24/2022]
Abstract
Typically in plants, the 5S and 35S ribosomal DNA (rDNA) encoding two major ribosomal RNA species occur at separate loci. However, in some algae, bryophytes and ferns, they are at the same locus (linked arranged). Southern blot hybridisation, polymerase chain reactions (PCR), fluorescent in situ hybridisation, cloning and sequencing were used to reveal 5S and 35S rDNA genomic organisation in Artemisia. We observed thousands of rDNA units at two-three loci containing 5S rDNA in an inverted orientation within the inter-genic spacer (IGS) of 35S rDNA. The sequenced clones of 26-18S IGS from Artemisia absinthium appeared to contain a conserved 5S gene insertion proximal to the 26S gene terminus (5S rDNA-1) and a second less conserved 5S insertion (5S rDNA-2) further downstream. Whilst the 5S rDNA-1 showed all the structural features of a functional gene, the 5S-rDNA-2 had a deletion in the internal promoter and probably represents a pseudogene. The linked arrangement probably evolved before the divergence of Artemisia from the rest of Asteraceae (>10 Myrs). This arrangement may have involved retrotransposons and once formed spread via mechanisms of concerted evolution. Heterogeneity in unit structure may reflect ongoing homogenisation of variant unit types without fixation for any particular variant.
Collapse
Affiliation(s)
- Sònia Garcia
- Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Epigenetic regulation of retrotransposons within the nucleolus of Drosophila. Mol Cell Biol 2008; 28:6452-61. [PMID: 18678644 DOI: 10.1128/mcb.01015-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
R2 retrotransposable elements exclusively insert into a conserved region of the tandemly organized 28S rRNA genes. Despite inactivating a subset of these genes, R2 elements have persisted in the ribosomal DNA (rDNA) loci of insects for hundreds of millions of years. Controlling R2 proliferation was addressed in this study using lines of Drosophila simulans previously shown to have either active or inactive R2 retrotransposition. Lines with active retrotransposition were shown to have high R2 transcript levels, which nuclear run-on transcription experiments revealed were due to increased transcription of R2-inserted genes. Crosses between R2 active and inactive lines indicated that an important component of this transcriptional control is linked to or near the rDNA locus, with the R2 transcription level of the inactive parent being dominant. Pulsed-field gel analysis suggested that the R2 active and inactive states were determined by R2 distribution within the locus. Molecular and cytological analyses further suggested that the entire rDNA locus from the active line can be silenced in favor of the locus from the inactive line. This silencing of entire rDNA loci represents an example of the large-scale epigenetic control of transposable elements and shares features with the nucleolar dominance frequently seen in interspecies hybrids.
Collapse
|
160
|
Abstract
Transcription of the major ribosomal RNAs by Pol I (RNA polymerase I) is a key determinant of ribosome biogenesis, driving cell growth and proliferation in eukaryotes. Hundreds of copies of rRNA genes are present in each cell, and there is evidence that the cellular control of Pol I transcription involves adjustments to the number of rRNA genes actively engaged in transcription, as well as to the rate of transcription from each active gene. Chromatin structure is inextricably linked to rRNA gene activity, and the present review highlights recent advances in this area.
Collapse
Affiliation(s)
- Joanna L. Birch
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Joost C.B.M. Zomerdijk
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
161
|
Abstract
The synthesis of ribosomal RNA (rRNA) is carefully tuned to match nutritional conditions. In this issue, Murayama et al. (2008) describe a mechanism that couples the energy status of the cell to heterochromatin formation and silencing of rRNA genes. They show that an altered NAD(+)/NADH ratio in response to glucose starvation regulates the silencing activity of eNoSC, a complex consisting of the NAD(+)-dependent histone deacetylase SIRT1, the histone methyltransferase SUV39H1, and a new protein called nucleomethylin (NML). These results suggest a mechanism that links cell physiology to rDNA silencing, which in turn is a prerequisite for nucleolar integrity and cell survival.
Collapse
Affiliation(s)
- Ingrid Grummt
- Department of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| | | |
Collapse
|
162
|
Li CF, Henderson IR, Song L, Fedoroff N, Lagrange T, Jacobsen SE. Dynamic regulation of ARGONAUTE4 within multiple nuclear bodies in Arabidopsis thaliana. PLoS Genet 2008; 4:e27. [PMID: 18266474 PMCID: PMC2233678 DOI: 10.1371/journal.pgen.0040027] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 12/17/2007] [Indexed: 12/22/2022] Open
Abstract
DNA methylation directed by 24-nucleotide small RNAs involves the small RNA-binding protein ARGONAUTE4 (AGO4), and it was previously shown that AGO4 localizes to nucleolus-adjacent Cajal bodies, sites of snRNP complex maturation. Here we demonstrate that AGO4 also localizes to a second class of nuclear bodies, called AB-bodies, which are found immediately adjacent to condensed 45S ribosomal DNA (rDNA) sequences. AB-bodies also contain other proteins involved in RNA-directed DNA methylation including NRPD1b (a subunit of the RNA Polymerase IV complex, RNA PolIV), NRPD2 (a second subunit of this complex), and the DNA methyltransferase DRM2. These two classes of AGO4 bodies are structurally independent—disruption of one class does not affect the other—suggesting a dynamic regulation of AGO4 within two distinct nuclear compartments in Arabidopsis. Abolishing Cajal body formation in a coilin mutant reduced overall AGO4 protein levels, and coilin dicer-like3 double mutants showed a small decrease in DNA methylation beyond that seen in dicer-like3 single mutants, suggesting that Cajal bodies are required for a fully functioning DNA methylation system in Arabidopsis. Argonautes are components of the RNA interference (RNAi) pathway that bind small interfering RNAs (siRNAs) of 21–24 nucleotide length. In the flowering plant Arabidopsis thaliana, ARGONAUTE4 (AGO4) is involved in gene silencing at the transcriptional level in a process called RNA-directed DNA methylation (RdDM), during which siRNAs cause transcriptional gene repression at complementary sequences. Previously, we found that AGO4 localized to nucleolus-adjacent Cajal bodies, sites of snRNP complex assembly. In this study, we show the existence of a second class of AGO4 nuclear foci, which we call the “AB-bodies,” that is distinct from the Cajal body and is immediately adjacent to the condensed 45S ribosomal DNA (rDNA) loci. In addition to AGO4, AB-bodies also contained NRPD1b and NRPD2 (subunits of the plant-specific RNA polymerase IV complex) and the DNA methyltransferase DRM2. The two different classes of AGO4 nuclear foci are structurally distinct, since the loss of one class did not affect the other. Losing Cajal bodies resulted in the enhancement of the DNA methylation defects seen in the RNA silencing mutant dicer-like3, suggesting Cajal bodies are required for a fully functioning RdDM pathway leading to gene silencing.
Collapse
Affiliation(s)
- Carey F Li
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ian R Henderson
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Liang Song
- Biology Department and Huck Institute of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Nina Fedoroff
- Biology Department and Huck Institute of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Thierry Lagrange
- Laboratoire Génome et Développement de Plantes (LGDP), UMR 5096, Université de Perpignan, Perpignan Cedex, France
| | - Steven E Jacobsen
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
163
|
Kandasamy MK, McKinney EC, Meagher RB. ACTIN-RELATED PROTEIN8 encodes an F-box protein localized to the nucleolus in Arabidopsis. PLANT & CELL PHYSIOLOGY 2008; 49:858-63. [PMID: 18385164 PMCID: PMC2953251 DOI: 10.1093/pcp/pcn053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Arabidopsis encodes six nuclear actin-related proteins (ARPs), among them ARP8 is unique in having an F-box domain and an actin homology domain. Analysis of the ARP8 promoter-beta-glucuronidase (GUS) fusion suggests that ARP8 is ubiquitously expressed in all organs and cell types. Immunocytochemical analysis with ARP8-specific monoclonal antibodies revealed that ARP8 protein is localized to the nucleolus in interphase cells and dispersed in the cytoplasm in mitotic cells. The cell cycle-dependent subcellular patterns of distribution of ARP8 are conserved in other members of Brassicaceae. Our findings provide the first insight into the possible contributions of plant ARP8 to nucleolar functions.
Collapse
|
164
|
Németh A, Guibert S, Tiwari VK, Ohlsson R, Längst G. Epigenetic regulation of TTF-I-mediated promoter-terminator interactions of rRNA genes. EMBO J 2008; 27:1255-65. [PMID: 18354495 DOI: 10.1038/emboj.2008.57] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 02/28/2008] [Indexed: 11/09/2022] Open
Abstract
Ribosomal RNA synthesis is the eukaryotic cell's main transcriptional activity, but little is known about the chromatin domain organization and epigenetics of actively transcribed rRNA genes. Here, we show epigenetic and spatial organization of mouse rRNA genes at the molecular level. TTF-I-binding sites subdivide the rRNA transcription unit into functional chromatin domains and sharply delimit transcription factor occupancy. H2A.Z-containing nucleosomes occupy the spacer promoter next to a newly characterized TTF-I-binding site. The spacer and the promoter proximal TTF-I-binding sites demarcate the enhancer. DNA from both the enhancer and the coding region is hypomethylated in actively transcribed repeats. 3C analysis revealed an interaction between promoter and terminator regions, which brings the beginning and end of active rRNA genes into close contact. Reporter assays show that TTF-I mediates this interaction, thereby linking topology and epigenetic regulation of the rRNA genes.
Collapse
Affiliation(s)
- Attila Németh
- Department of Biochemistry III, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
165
|
Outeiro TF, Marques O, Kazantsev A. Therapeutic role of sirtuins in neurodegenerative disease. Biochim Biophys Acta Mol Basis Dis 2008; 1782:363-9. [PMID: 18373985 DOI: 10.1016/j.bbadis.2008.02.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 12/17/2022]
Abstract
The sirtuins are a family of enzymes which control diverse and vital cellular functions, including metabolism and aging. Manipulations of sirtuin activities cause activation of anti-apoptotic, anti-inflammatory, anti-stress responses, and the modulation of an aggregation of proteins involved in neurodegenerative disorders. Recently, sirtuins were found to be disease-modifiers in various models of neurodegeneration. However, almost in all instances, the exact mechanisms of neuroprotection remain elusive. Nevertheless, the manipulation of sirtuin activities is appealing as a novel therapeutic strategy for the treatment of currently fatal human disorders such as Alzheimer's and Parkinson's diseases. Here, we review current data which support the putative therapeutic roles of sirtuin in aging and in neurodegenerative diseases and the feasibility of the development of sirtuin-based therapies.
Collapse
Affiliation(s)
- Tiago Fleming Outeiro
- Cellular and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Instituto de Fisiologia, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | |
Collapse
|
166
|
Ahn HJ, Kim S, Nam HW. Nucleolar translocalization of GRA10 of Toxoplasma gondii transfectionally expressed in HeLa cells. THE KOREAN JOURNAL OF PARASITOLOGY 2007; 45:165-74. [PMID: 17876161 PMCID: PMC2526324 DOI: 10.3347/kjp.2007.45.3.165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Toxoplasma gondii GRA10 expressed as a GFP-GRA10 fusion protein in HeLa cells moved to the nucleoli within the nucleus rapidly and entirely. GRA10 was concentrated specifically in the dense fibrillar component of the nucleolus morphologically by the overlap of GFP-GRA10 transfection image with IFA images by monoclonal antibodies against GRA10 (Tg378), B23 (nucleophosmin) and C23 (nucleolin). The nucleolar translocalization of GRA10 was caused by a putative nucleolar localizing sequence (NoLS) of GRA10. Interaction of GRA10 with TATA-binding protein associated factor 1B (TAF1B) in the yeast two-hybrid technique was confirmed by GST pull-down assay and immunoprecipitation assay. GRA10 and TAF1B were also co-localized in the nucleolus after co-transfection. The nucleolar condensation of GRA10 was affected by actinomycin D. Expressed GFP-GRA10 was evenly distributed over the nucleoplasm and the nucleolar locations remained as hollows in the nucleoplasm under a low dose of actinomycin D. Nucleolar localizing and interacting of GRA10 with TAF1B suggested the participation of GRA10 in rRNA synthesis of host cells to favor the parasitism of T. gondii.
Collapse
Affiliation(s)
- Hye-Jin Ahn
- Department of Parasitology and the Catholic Institute of Parasitic Diseases, College of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | | | | |
Collapse
|
167
|
Ansari HA, Ellison NW, Williams WM. Molecular and cytogenetic evidence for an allotetraploid origin of Trifolium dubium (Leguminosae). Chromosoma 2007; 117:159-67. [PMID: 18058119 DOI: 10.1007/s00412-007-0134-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 10/18/2007] [Accepted: 10/23/2007] [Indexed: 11/28/2022]
Abstract
Suckling clover, Trifolium dubium Sibth., is a European grassland legume that has spread to many parts of the world. The present work shows that it is an allotetraploid (2n = 4x = 30) combining the genomes of T. campestre Schreb. (2n = 2x = 14) and T. micranthum Viv. (2n = 2x = 16), two diploid species of similar geographic distribution. T. dubium has two nuclear ITS sequences that closely match those of T. campestre and T. micranthum. Genomic in situ hybridisation using genomic DNA of T. campestre and T. micranthum as probes has differentiated the ancestral sets of chromosomes in T. dubium cells. Comparative fluorescence in situ hybridisation analyses of 5S and 18S-26S rDNA loci were also consistent with an allotetraploid structure of the T. dubium genome. A marked preponderance of ITS repeats from T. campestre over those from T. micranthum indicated that concerted evolution has resulted in partial homogenisation of these sequences by depletion of the T. micranthum-derived 18S-26S rDNA repeats. In parallel with this, the epigenetic phenomenon of nucleolar dominance has been observed in T. dubium such that the chromatin associated with the 18S-26S rDNA loci derived from T. campestre is decondensed (transcriptionally active), whilst that from T. micranthum remains highly condensed throughout the cell cycle. T. dubium, therefore, appears to have arisen by way of hybridisation between forms of the diploid species T. campestre and T. micranthum accompanied by chromosome doubling. The observed genomic changes in rDNA resulting from interspecific hybridisation provide evidence for the process of genome diploidisation in T. dubium.
Collapse
Affiliation(s)
- Helal A Ansari
- Grasslands Research Centre, AgResearch Ltd., Palmerston North, New Zealand.
| | | | | |
Collapse
|
168
|
Grummt I. Different epigenetic layers engage in complex crosstalk to define the epigenetic state of mammalian rRNA genes. Hum Mol Genet 2007; 16 Spec No 1:R21-7. [PMID: 17613545 DOI: 10.1093/hmg/ddm020] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic cells contain several hundred ribosomal RNA (rRNA) genes (rDNA), a fraction of them being silenced by epigenetic mechanisms. The presence of two epigenetically distinct states of rRNA genes provides a unique opportunity to decipher the molecular mechanisms that establish the euchromatic, i.e. transcriptionally active, and the heterochromatic, i.e. transcriptionally silent, state of rDNA. This article summarizes our knowledge of the epigenetic mechanisms that control rDNA transcription and emphasizes how DNA methyltransferases and histone-modifying enzymes work in concert with chromatin-remodeling complexes and RNA-guided mechanisms to establish a specific chromatin structure that defines the transcriptional state of rRNA genes. These studies exemplify the mutual dependence and complex crosstalk among different epigenetic players in the alteration of the chromatin structure during the process of gene activation or silencing.
Collapse
Affiliation(s)
- Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
169
|
Pontes O, Lawrence RJ, Silva M, Preuss S, Costa-Nunes P, Earley K, Neves N, Viegas W, Pikaard CS. Postembryonic establishment of megabase-scale gene silencing in nucleolar dominance. PLoS One 2007; 2:e1157. [PMID: 17987131 PMCID: PMC2048576 DOI: 10.1371/journal.pone.0001157] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 10/20/2007] [Indexed: 11/18/2022] Open
Abstract
Nucleolar dominance is an epigenetic phenomenon in plant and animal genetic hybrids that describes the expression of 45S ribosomal RNA genes (rRNA genes) inherited from only one progenitor due to the silencing of the other progenitor's rRNA genes. rRNA genes are tandemly arrayed at nucleolus organizer regions (NORs) that span millions of basepairs, thus gene silencing in nucleolar dominance occurs on a scale second only to X-chromosome inactivation in female mammals. In Arabidopsis suecica, the allotetraploid hybrid of A. thaliana and A. arenosa, the A. thaliana -derived rRNA genes are subjected to nucleolar dominance and are silenced via repressive chromatin modifications. However, the developmental stage at which nucleolar dominance is established in A. suecica is currently unknown. We show that nucleolar dominance is not apparent in seedling cotyledons formed during embryogenesis but becomes progressively established during early postembryonic development in tissues derived from both the shoot and root apical meristems. The progressive silencing of A. thaliana rRNA genes correlates with the transition of A. thaliana NORs from a decondensed euchromatic state associated with histone H3 that is trimethylated on lysine 4 (H3K4me3) to a highly condensed heterochromatic state in which the NORs are associated with H3K9me2 and 5-methylcytosine-enriched chromocenters. In RNAi-lines in which the histone deacetylases HDA6 and HDT1 are knocked down, the developmentally regulated condensation and inactivation of A. thaliana NORs is disrupted. Collectively, these data demonstrate that HDA6 and HDT1 function in the postembryonic establishment of nucleolar dominance, a process which recurs in each generation.
Collapse
Affiliation(s)
- Olga Pontes
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
- Centro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Technical University of Lisbon, Lisboa, Portugal
| | - Richard J. Lawrence
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Manuela Silva
- Centro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Technical University of Lisbon, Lisboa, Portugal
| | - Sasha Preuss
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Pedro Costa-Nunes
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
- Centro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Technical University of Lisbon, Lisboa, Portugal
| | - Keith Earley
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Nuno Neves
- Centro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Technical University of Lisbon, Lisboa, Portugal
- Secção Autónoma de Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Wanda Viegas
- Centro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Technical University of Lisbon, Lisboa, Portugal
- * To whom correspondence should be addressed. E-mail: (WV); (CSP)
| | - Craig S. Pikaard
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
- * To whom correspondence should be addressed. E-mail: (WV); (CSP)
| |
Collapse
|
170
|
Zhang S, Wang J, Tseng H. Basonuclin regulates a subset of ribosomal RNA genes in HaCaT cells. PLoS One 2007; 2:e902. [PMID: 17878937 PMCID: PMC1975673 DOI: 10.1371/journal.pone.0000902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 08/28/2007] [Indexed: 11/20/2022] Open
Abstract
Basonuclin (Bnc1), a cell-type-specific ribosomal RNA (rRNA) gene regulator, is expressed mainly in keratinocytes of stratified epithelium and gametogenic cells of testis and ovary. Previously, basonuclin was shown in vitro to interact with rRNA gene (rDNA) promoter at three highly conserved sites. Basonuclin's high affinity binding site overlaps with the binding site of a dedicated and ubiquitous Pol I transcription regulator, UBF, suggesting that their binding might interfere with each other if they bind to the same promoter. Knocking-down basonuclin in mouse oocytes eliminated approximately one quarter of RNA polymerase I (Pol I) transcription foci, without affecting the BrU incorporation of the remaining ones, suggesting that basonuclin might regulate a subset of rDNA. Here we show, via chromatin immunoprecipitation (ChIP), that basonuclin is associated with rDNA promoters in HaCaT cells, a spontaneously established human keratinocyte line. Immunoprecipitation data suggest that basonuclin is in a complex that also contains the subunits of Pol I (RPA194, RPA116), but not UBF. Knocking-down basonuclin in HaCaT cells partially impairs the association of RPA194 to rDNA promoter, but not that of UBF. Basonuclin-deficiency also reduces the amount of 47S pre-rRNA, but this effect can be seen only after cell-proliferation related rRNA synthesis has subsided at a higher cell density. DNA sequence of basonuclin-bound rDNA promoters shows single nucleotide polymorphisms (SNPs) that differ from those associated with UBF-bound promoters, suggesting that basonuclin and UBF interact with different subsets of promoters. In conclusion, our results demonstrate basonuclin's functional association with rDNA promoters and its interaction with Pol I in vivo. Our data also suggest that basonuclin-Pol I complex transcribes a subset of rDNA.
Collapse
Affiliation(s)
- Shengliang Zhang
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Junwen Wang
- Center for Bioinformatics, Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hung Tseng
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
171
|
|
172
|
Sigova A, Vagin V, Zamore PD. Measuring the rates of transcriptional elongation in the female Drosophila melanogaster germ line by nuclear run-on. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:335-41. [PMID: 17381314 DOI: 10.1101/sqb.2006.71.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We adapted the nuclear run-on method to measure changes in the rate of RNA polymerase II (pol II) transcription of repetitive elements and transposons in the female germ line of Drosophila melanogaster. Our data indicate that as little as an approximately 1.5-fold change in the rate of transcription can be detected by this method. Our nuclear run-on protocol likely measures changes in transcriptional elongation, because rates of transcription decline with time, consistent with a low rate of pol II re-initiation in the isolated nuclei. Surprisingly, we find that the retrotransposon gypsy and the repetitive sequence mst40 are silenced posttranscriptionally in fly ovaries.
Collapse
Affiliation(s)
- A Sigova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
173
|
Abstract
Evolution of the tandemly repeated ribosomal RNA (rRNA) genes is intriguing because in each species all units within the array are highly uniform in sequence but that sequence differs between species. In this review we summarize the origins of the current models to explain this process of concerted evolution, emphasizing early studies of recombination in yeast and more recent studies in Drosophila and mammalian systems. These studies suggest that unequal crossover is the major driving force in the evolution of the rRNA genes with sister chromatid exchange occurring more often than exchange between homologs. Gene conversion is also believed to play a role; however, direct evidence for its involvement has not been obtained. Remarkably, concerted evolution is so well orchestrated that even transposable elements that insert into a large fraction of the rRNA genes appear to have little effect on the process. Finally, we summarize data that suggest that recombination in the rDNA locus of higher eukaryotes is sufficiently frequent to monitor changes within a few generations.
Collapse
Affiliation(s)
- Thomas H Eickbush
- Department of Biology, University of Rochester, Rochester, New York 14627, USA.
| | | |
Collapse
|
174
|
Suzuki T, Minami N, Kono T, Imai H. Comparison of the RNA polymerase I-, II- and III-dependent transcript levels between nuclear transfer and in vitro fertilized embryos at the blastocyst stage. J Reprod Dev 2007; 53:663-71. [PMID: 17380042 DOI: 10.1262/jrd.19014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cloned animals have been produced in several mammalian species so far, although success rates to term are very low. Aberrations in gene expression derived from abnormal epigenetic status have been thought to be a cause of developmental abnormalities in clones, and several abnormalities in gene expression have already been detected in cloned animals and embryos. In this study, we examined the hypothesis that the poor survival rates of nuclear transfer (NT) embryos are partly due to aberrations in the regulation of expression of genes transcribed by RNA polymerases I and III, in addition to polymerase II. We produced cloned and in vitro fertilized mouse embryos that developed to the blastocyst stage, and the amounts of several genes were analyzed using individual embryos. We found that the amounts of mature 18S ribosomal RNA (rRNA) transcribed by RNA polymerase I were lower in NT embryos than in IVF embryos, but that the amounts of 47S rRNA and intermediates of mature rRNAs were higher in NT embryos. In addition, the amount of 7SK RNA transcribed by RNA polymerase III was lower in NT embryos than in IVF embryos. The transcripts of all but one of the genes transcribed by RNA polymerase II were not noticeably different between NT and IVF embryos. These results suggest that some of the transcripts produced by RNA polymerases I, II and III are aberrantly regulated in NT embryos.
Collapse
Affiliation(s)
- Toru Suzuki
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | |
Collapse
|
175
|
Espada J, Ballestar E, Santoro R, Fraga MF, Villar-Garea A, Németh A, Lopez-Serra L, Ropero S, Aranda A, Orozco H, Moreno V, Juarranz A, Stockert JC, Längst G, Grummt I, Bickmore W, Esteller M. Epigenetic disruption of ribosomal RNA genes and nucleolar architecture in DNA methyltransferase 1 (Dnmt1) deficient cells. Nucleic Acids Res 2007; 35:2191-8. [PMID: 17355984 PMCID: PMC1874631 DOI: 10.1093/nar/gkm118] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/08/2007] [Accepted: 02/09/2007] [Indexed: 12/15/2022] Open
Abstract
The nucleolus is the site of ribosome synthesis in the nucleus, whose integrity is essential. Epigenetic mechanisms are thought to regulate the activity of the ribosomal RNA (rRNA) gene copies, which are part of the nucleolus. Here we show that human cells lacking DNA methyltransferase 1 (Dnmt1), but not Dnmt33b, have a loss of DNA methylation and an increase in the acetylation level of lysine 16 histone H4 at the rRNA genes. Interestingly, we observed that SirT1, a NAD+-dependent histone deacetylase with a preference for lysine 16 H4, interacts with Dnmt1; and SirT1 recruitment to the rRNA genes is abrogated in Dnmt1 knockout cells. The DNA methylation and chromatin changes at ribosomal DNA observed are associated with a structurally disorganized nucleolus, which is fragmented into small nuclear masses. Prominent nucleolar proteins, such as Fibrillarin and Ki-67, and the rRNA genes are scattered throughout the nucleus in Dnmt1 deficient cells. These findings suggest a role for Dnmt1 as an epigenetic caretaker for the maintenance of nucleolar structure.
Collapse
Affiliation(s)
- Jesús Espada
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| | - Esteban Ballestar
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| | - Raffaella Santoro
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| | - Mario F. Fraga
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| | - Ana Villar-Garea
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| | - Attila Németh
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| | - Lidia Lopez-Serra
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| | - Santiago Ropero
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| | - Agustin Aranda
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| | - Helena Orozco
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| | - Vanessa Moreno
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| | - Angeles Juarranz
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| | - Juan Carlos Stockert
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| | - Gernot Längst
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| | - Ingrid Grummt
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| | - Wendy Bickmore
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| | - Manel Esteller
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain, Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany, Adolf Butenandt Institute, Department of Molecular Biology, Ludwig-Maximilians University, D-8036 Munchen, Germany, Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Valencia, Spain, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain and MRC Human Genetics Unit, Western General Hospital, EH4 2XU Edinburgh, UK
| |
Collapse
|
176
|
Preuss S, Pikaard CS. rRNA gene silencing and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. ACTA ACUST UNITED AC 2007; 1769:383-92. [PMID: 17439825 PMCID: PMC2000449 DOI: 10.1016/j.bbaexp.2007.02.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/25/2007] [Accepted: 02/27/2007] [Indexed: 01/25/2023]
Abstract
Ribosomal RNA (rRNA) gene transcription accounts for most of the RNA in prokaryotic and eukaryotic cells. In eukaryotes, there are hundreds (to thousands) of rRNA genes tandemly repeated head-to-tail within nucleolus organizer regions (NORs) that span millions of basepairs. These nucleolar rRNA genes are transcribed by RNA Polymerase I (Pol I) and their expression is regulated according to the physiological need for ribosomes. Regulation occurs at several levels, one of which is an epigenetic on/off switch that controls the number of active rRNA genes. Additional mechanisms then fine-tune transcription initiation and elongation rates to dictate the total amount of rRNA produced per gene. In this review, we focus on the DNA and histone modifications that comprise the epigenetic on/off switch. In both plants and animals, this system is important for controlling the dosage of active rRNA genes. The dosage control system is also responsible for the chromatin-mediated silencing of one parental set of rRNA genes in genetic hybrids, a large-scale epigenetic phenomenon known as nucleolar dominance.
Collapse
Affiliation(s)
| | - Craig S. Pikaard
- *Author to whom correspondence should be addressed: , phone: 314-935-7569, FAX: 314-935-4432
| |
Collapse
|
177
|
|
178
|
Mongelard F, Bouvet P. Nucleolin: a multiFACeTed protein. Trends Cell Biol 2007; 17:80-6. [PMID: 17157503 DOI: 10.1016/j.tcb.2006.11.010] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 11/30/2006] [Indexed: 11/28/2022]
Abstract
Nucleolin is an abundant, ubiquitously expressed protein that is found in various cell compartments, especially in the nucleolus, of which it is a major component. This multifunctional protein has been described as being a part of many pathways, from interactions with viruses at the cellular membrane to essential processing of the ribosomal RNA in the nucleolus. However, most of the molecular details of these different functions are not understood. Here, we focus on the role of nucleolin in transcription, especially some recent findings describing the protein as a histone chaperone [with functional similarity to the facilitates chromatin transcription (FACT) complex] and a chromatin co-remodeler. These new properties could help reconcile discrepancies in the literature regarding the role of nucleolin in transcription.
Collapse
Affiliation(s)
- Fabien Mongelard
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69007 Lyon, France
| | | |
Collapse
|
179
|
Abstract
Mammalian cells contain approximately 400 copies of the ribosomal RNA genes organized as tandem, head-to-tail repeats spread among 6-8 chromosomes. Only a subset of the genes is transcribed at any given time. Experimental evidence suggests that, in a specific cell type, only a fraction of the genes exists in a conformation that can be transcribed. An increasing body of study indicates that eukaryotic ribosomal RNA genes exist in either a heterochromatic nucleosomal state or in open euchromatic states in which they can be, or are, transcribed. This review will attempt to summarize our current understanding of the structure and organization of ribosomal chromatin.
Collapse
Affiliation(s)
- Sui Huang
- Department of Cell and Molecular Biology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
180
|
Commar LS, Bicudo HE, Rahal P, Ceron CR. Differential transcription of ribosomal cistrons denoting nucleolar dominance in hybrids of Drosophila mulleri and Drosophila navojoa (mulleri complex, Repleta group). Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000600028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
181
|
Dali-Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J. Sirtuins: the 'magnificent seven', function, metabolism and longevity. Ann Med 2007; 39:335-45. [PMID: 17701476 DOI: 10.1080/07853890701408194] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The sirtuin family of histone deacetylases (HDACs) was named after their homology to the Saccharomyces cerevisiae gene silent information regulator 2 (Sir2). In the yeast, Sir2 has been shown to mediate the effects of calorie restriction on the extension of life span and high levels of Sir2 activity promote longevity. Like their yeast homologs, the mammalian sirtuins (SIRT1-7) are class III HDACs and require NAD(+) as a cofactor to deacetylate substrates ranging from histones to transcriptional regulators. Through this activity, sirtuins are shown to regulate important biological processes ranging from apoptosis, adipocyte and muscle differentiation, and energy expenditure to gluconeogenesis. We review here the current knowledge regarding the role of sirtuins in metabolism, longevity, and discuss the possible therapeutic applications that could result from the understanding of their function in different organs and pathologies.
Collapse
Affiliation(s)
- Nassim Dali-Youcef
- Institut de Génétique et de Biologie Moléculaire et Cellulaire de Strasbourg (IGBMC), INSERM/CNRS/ULP, Illkirch, France
| | | | | | | | | | | |
Collapse
|
182
|
Li J, Längst G, Grummt I. NoRC-dependent nucleosome positioning silences rRNA genes. EMBO J 2006; 25:5735-41. [PMID: 17139253 PMCID: PMC1698900 DOI: 10.1038/sj.emboj.7601454] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 10/25/2006] [Indexed: 12/29/2022] Open
Abstract
Previous studies have established that the Snf2h-containing chromatin remodeling complex NoRC mediates epigenetic silencing of a subset of rRNA genes (rDNA) by recruiting enzymatic activities that modify histones and methylate DNA. Here we have analyzed nucleosome positions at the murine rDNA promoter and show that active and silent rDNA copies are characterized not only by specific epigenetic marks but also by differently positioned nucleosomes. At active genes the promoter-bound nucleosome covers nucleotides from -157 to -2, whereas at silent genes the nucleosome is positioned 25 nucleotides further downstream. We provide evidence that NoRC is the molecular machine that shifts the promoter-bound nucleosome downstream of the transcription start site into a translational position that is unfavorable for transcription complex formation.
Collapse
Affiliation(s)
- Junwei Li
- German Cancer Research Center, Division of Molecular Biology of the Cell II, Heidelberg, Germany
| | - Gernot Längst
- Institut für Biochemie, Genetik und Mikrobiologie, Regensburg, Germany
| | - Ingrid Grummt
- German Cancer Research Center, Division of Molecular Biology of the Cell II, Heidelberg, Germany
- Molecular Biology of the Cell II, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. Tel.: +49 6221 423423; Fax: +49 6221 423404; E-mail:
| |
Collapse
|
183
|
Abstract
Ribosomal RNA transcription was one of the first model systems for molecular characterization of a transcription regulatory mechanism and certainly one of the best studied in the widest range of organisms. In multicellular organisms, however, the issue of cell-type-specific regulation of rRNA transcription has not been well addressed. Here I propose that a systematic study of cell-type-specific regulation of rRNA transcription may reveal new regulatory mechanisms that have not been previously realized. Specifically, issues concerning the cell-type-specific requirement for rRNA production, the universality of Pol I transcription complex and the division of rDNA into regulatory subdomains are discussed.
Collapse
Affiliation(s)
- Hung Tseng
- Department of Dermatology, Department of Cell and Developmental Biology, Center for Research on Reproduction and Women's Health, University of Pennsylvania, CRB Room 242B, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
184
|
Kopp K, Gasiorowski JZ, Chen D, Gilmore R, Norton JT, Wang C, Leary DJ, Chan EKL, Dean DA, Huang S. Pol I transcription and pre-rRNA processing are coordinated in a transcription-dependent manner in mammalian cells. Mol Biol Cell 2006; 18:394-403. [PMID: 17108330 PMCID: PMC1783775 DOI: 10.1091/mbc.e06-03-0249] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pre-rRNA synthesis and processing are key steps in ribosome biogenesis. Although recent evidence in yeast suggests that these two processes are coupled, the nature of their association is unclear. In this report, we analyze the coordination between rDNA transcription and pre-rRNA processing in mammalian cells. We found that pol I transcription factor UBF interacts with pre-rRNA processing factors as analyzed by immunoprecipitations, and the association depends on active rRNA synthesis. In addition, injections of plasmids containing the human rDNA promoter and varying lengths of 18S rDNA into HeLa nuclei show that pol I transcription machinery can be recruited to rDNA promoters regardless of the product that is transcribed, whereas subgroups of pre-rRNA processing factors are recruited to plasmids only when specific pre-rRNA fragments are produced. Our observations suggest a model for sequential recruitment of pol I transcription factors and pre-rRNA processing factors to elongating pre-rRNA on an as-needed basis rather than corecruitment to sites of active transcription.
Collapse
Affiliation(s)
- K Kopp
- Department of Cell and Molecular Biology, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Ye J, Eickbush TH. Chromatin structure and transcription of the R1- and R2-inserted rRNA genes of Drosophila melanogaster. Mol Cell Biol 2006; 26:8781-90. [PMID: 17000772 PMCID: PMC1636831 DOI: 10.1128/mcb.01409-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
About half of the rRNA gene units (rDNA units) of Drosophila melanogaster are inserted by the retrotransposable elements R1 and R2. Because transcripts to R1 and R2 were difficult to detect on blots and electron microscopic observations of rRNA synthesis suggested that only uninserted rDNA units were transcribed, it has long been postulated that inserted rDNA units are in a repressed (inactive) chromatin structure. Studies described here suggest that inserted and uninserted units are equally accessible to DNase I and micrococcal nuclease and contain similar levels of histone H3 and H4 acetylation and H3K9 methylation. These studies have low sensitivity, because psoralen cross-linking suggested few (estimated <10%) of the rDNA units of any type are transcriptionally active. Nuclear run-on experiments revealed that R1-inserted and R2-inserted units are activated for transcription at about 1/5 and 1/10, respectively, the rate of uninserted units. Most transcription complexes of the inserted units terminate within the elements, thus explaining why previous molecular and electron microscopic methods indicated inserted units are seldom transcribed. The accumulating data suggest that all units within small regions of the rDNA loci are activated for transcription, with most control over R1 and R2 activity involving steps downstream of transcription initiation.
Collapse
Affiliation(s)
- Junqiang Ye
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
186
|
Oakes ML, Johzuka K, Vu L, Eliason K, Nomura M. Expression of rRNA genes and nucleolus formation at ectopic chromosomal sites in the yeast Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:6223-38. [PMID: 16880531 PMCID: PMC1592796 DOI: 10.1128/mcb.02324-05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed yeast strains in which rRNA gene repeats are integrated at ectopic sites in the presence or absence of the native nucleolus. At all three ectopic sites analyzed, near centromere CEN5, near the telomere of chromosome VI-R, and in middle of chromosome V-R (mid-V-R), a functional nucleolus was formed, and no difference in the expression of rRNA genes was observed. When two ribosomal DNA (rDNA) arrays are present, one native and the other ectopic, there is codominance in polymerase I (Pol I) transcription. We also examined the expression of a single rDNA repeat integrated into ectopic loci in strains with or without the native RDN1 locus. In a strain with reduced rRNA gene copies at RDN1 (approximately 40 copies), the expression of a single rRNA gene copy near the telomere was significantly reduced relative to the other ectopic sites, suggesting a less-efficient recruitment of the Pol I machinery from the RDN1 locus. In addition, we found a single rRNA gene at mid-V-R was as active as that within the 40-copy RDN1. Combined with the results of activity analysis of a single versus two tandem copies at CEN5, we conclude that tandem repetition is not required for efficient rRNA gene transcription.
Collapse
Affiliation(s)
- Melanie L Oakes
- Department of Biological Chemistry, University of California at Irvine, 240D Medical Sciences I, Irvine, CA 92697-1700, USA
| | | | | | | | | |
Collapse
|
187
|
Majumder S, Ghoshal K, Datta J, Smith DS, Bai S, Jacob ST. Role of DNA methyltransferases in regulation of human ribosomal RNA gene transcription. J Biol Chem 2006; 281:22062-22072a. [PMID: 16735507 PMCID: PMC2243234 DOI: 10.1074/jbc.m601155200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have previously demonstrated that the expression of human ribosomal RNA genes (rDNA) in normal and cancer cells is differentially regulated by methylation of the promoter CpG islands. Furthermore, we showed that the methyl CpG-binding protein MBD2 plays a selective role in the methylation-mediated block in rDNA expression. Here, we analyzed the role of three functional mammalian DNA methyltransferases (DNMTs) in regulating the rDNA promoters activity. Immunofluorescence analysis and biochemical fractionation showed that all three DNMTs (DNMT1, DNMT3A, and DNMT3B) are associated with the inactive rDNA in the nucleolus. Although DNMTs associate with both methylated and unmethylated rDNA promoters, DNMT1 preferentially associates with the methylated genes. The rDNA primary transcript level was significantly elevated in DNMT1-/- or DNMT3B-/- human colon carcinoma (HCT116) cells. Southern blot analysis demonstrated a moderate level of rDNA promoter hypomethylation in DNMT1-/- cells and a dramatic loss of rDNA promoter methylation in double knockout cells. Transient overexpression of DNMT1 or DNMT3B suppressed the luciferase expression from both methylated and unmethylated pHrD-IRES-Luc, a reporter plasmid where the rDNA promoter drives luciferase expression. DNMT1-mediated suppression of the unmethylated promoter involves de novo methylation of the promoter, whereas histone deacetylase 2 cooperates with DNMT1 to inhibit the methylated rDNA promoter. Unlike DNMT1, both the wild type and catalytically inactive DNMT3B mutant can suppress rDNA promoter irrespective of its methylation status. DNMT3B-mediated suppression of the rDNA promoter also involves histone deacetylation. Treatment of HCT116 cells with Decitabine (a DNMT inhibitor) or trichostatin A (a histone deacetylase inhibitor) up-regulated endogenous rDNA expression. These inhibitors synergistically activated methylated pHrD-IRES-Luc, whereas they exhibited additive effects on the unmethylated promoter. These results demonstrate localization of DNMTs with the inactive rDNA in the nucleolus, the specific role of DNMT1 and DNMT3B in rDNA expression and the differential regulation of rDNA expression from the methylated and unmethylated rDNA promoters.
Collapse
Affiliation(s)
- Sarmila Majumder
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210.
| | - Kalpana Ghoshal
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Jharna Datta
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - David Spencer Smith
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Shoumei Bai
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Samson T Jacob
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
188
|
Li CF, Pontes O, El-Shami M, Henderson IR, Bernatavichute YV, Chan SWL, Lagrange T, Pikaard CS, Jacobsen SE. An ARGONAUTE4-Containing Nuclear Processing Center Colocalized with Cajal Bodies in Arabidopsis thaliana. Cell 2006; 126:93-106. [PMID: 16839879 DOI: 10.1016/j.cell.2006.05.032] [Citation(s) in RCA: 290] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/07/2006] [Accepted: 05/17/2006] [Indexed: 11/17/2022]
Abstract
ARGONAUTE4 (AGO4) and RNA polymerase IV (Pol IV) are required for DNA methylation guided by 24 nucleotide small interfering RNAs (siRNAs) in Arabidopsis thaliana. Here we show that AGO4 localizes to nucleolus-associated bodies along with the Pol IV subunit NRPD1b; the small nuclear RNA (snRNA) binding protein SmD3; and two markers of Cajal bodies, trimethylguanosine-capped snRNAs and the U2 snRNA binding protein U2B''. AGO4 interacts with the C-terminal domain of NRPD1b, and AGO4 protein stability depends on upstream factors that synthesize siRNAs. AGO4 is also found, along with the DNA methyltransferase DRM2, throughout the nucleus at presumed DNA methylation target sites. Cajal bodies are conserved sites for the maturation of ribonucleoprotein complexes. Our results suggest a function for Cajal bodies as a center for the assembly of an AGO4/NRPD1b/siRNA complex, facilitating its function in RNA-directed gene silencing at target loci.
Collapse
Affiliation(s)
- Carey Fei Li
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Li C, Mueller JE, Bryk M. Sir2 represses endogenous polymerase II transcription units in the ribosomal DNA nontranscribed spacer. Mol Biol Cell 2006; 17:3848-59. [PMID: 16807355 PMCID: PMC1593162 DOI: 10.1091/mbc.e06-03-0205] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Silencing at the rDNA, HM loci, and telomeres in Saccharomyces cerevisiae requires histone-modifying enzymes to create chromatin domains that are refractory to recombination and RNA polymerase II transcription machineries. To explore how the silencing factor Sir2 regulates the composition and function of chromatin at the rDNA, the association of histones and RNA polymerase II with the rDNA was measured by chromatin immunoprecipitation. We found that Sir2 regulates not only the levels of K4-methylated histone H3 at the rDNA but also the levels of total histone H3 and RNA polymerase II. Furthermore, our results demonstrate that the ability of Sir2 to limit methylated histones at the rDNA requires its deacetylase activity. In sir2Delta cells, high levels of K4-trimethylated H3 at the rDNA nontranscribed spacer are associated with the expression of transcription units in the nontranscribed spacer by RNA polymerase II and with previously undetected alterations in chromatin structure. Together, these data suggest a model where the deacetylase activity of Sir2 prevents euchromatinization of the rDNA and silences naturally occurring intergenic transcription units whose expression has been associated with disruption of cohesion complexes and repeat amplification at the rDNA.
Collapse
Affiliation(s)
- Chonghua Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - John E. Mueller
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Mary Bryk
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| |
Collapse
|
190
|
Mayer C, Schmitz KM, Li J, Grummt I, Santoro R. Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol Cell 2006; 22:351-61. [PMID: 16678107 DOI: 10.1016/j.molcel.2006.03.028] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 02/17/2006] [Accepted: 03/23/2006] [Indexed: 12/22/2022]
Abstract
Transcripts originating from the intergenic spacer (IGS) that separates rRNA genes (rDNA) have been known for two decades; their biological role, however, is largely unknown. Here we show that IGS transcripts are required for establishing and maintaining a specific heterochromatic configuration at the promoter of a subset of rDNA arrays. The mechanism of action appears to be mediated through the interaction of TIP5, the large subunit of the chromatin remodeling complex NoRC, with 150-300 nucleotide RNAs that are complementary in sequence to the rDNA promoter. Mutations that abrogate RNA binding of TIP5 impair the association of NoRC with rDNA and fail to promote H3K9&H4K20 methylation and HP1 recruitment. Knockdown of IGS transcripts abolishes the nucleolar localization of NoRC, decreases DNA methylation, and enhances rDNA transcription. The results reveal an important contribution of processed IGS transcripts in chromatin structure and epigenetic control of the rDNA locus.
Collapse
Affiliation(s)
- Christine Mayer
- German Cancer Research Center, Division of Molecular Biology of the Cell II, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
191
|
Raska I, Shaw PJ, Cmarko D. Structure and function of the nucleolus in the spotlight. Curr Opin Cell Biol 2006; 18:325-34. [PMID: 16687244 DOI: 10.1016/j.ceb.2006.04.008] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
The nucleolus is the most obvious and clearly differentiated nuclear sub-compartment. It is where ribosome biogenesis takes place, but it is becoming clear that the nucleolus also has non-ribosomal functions. In this review we discuss recent progress in our understanding of how both ribosome biosynthesis and some non-ribosomal functions relate to observable nucleolar structure. We still do not have detailed enough information about the in situ organization of the various processes taking place in the nucleolus. However, the present power of light and electron microscopy techniques means that a description of the organization of nucleolar processes at the molecular level is now achievable, and the time is ripe for such an effort.
Collapse
Affiliation(s)
- Ivan Raska
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic.
| | | | | |
Collapse
|
192
|
Earley K, Lawrence RJ, Pontes O, Reuther R, Enciso AJ, Silva M, Neves N, Gross M, Viegas W, Pikaard CS. Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev 2006; 20:1283-93. [PMID: 16648464 PMCID: PMC1472903 DOI: 10.1101/gad.1417706] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nucleolar dominance describes the silencing of one parental set of ribosomal RNA (rRNA) genes in a genetic hybrid, an epigenetic phenomenon that occurs on a scale second only to X-chromosome inactivation in mammals. An RNA interference (RNAi) knockdown screen revealed that the predicted Arabidopsis histone deacetylase, HDA6, is required for rRNA gene silencing in nucleolar dominance. In vivo, derepression of silenced rRNA genes upon knockdown of HDA6 is accompanied by nucleolus organizer region (NOR) decondensation, loss of promoter cytosine methylation, and replacement of histone H3 Lys 9 (H3K9) dimethylation with H3K4 trimethylation, H3K9 acetylation, H3K14 acetylation, and histone H4 tetra-acetylation. Consistent with these in vivo results, purified HDA6 deacetylates lysines modified by histone acetyltransferases whose substrates include H3K14, H4K5, and H4K12. HDA6 localizes, in part, to the nucleolus, supporting a model whereby HDA6 erases histone acetylation as a key step in an epigenetic switch mechanism that silences rRNA genes through concerted histone and DNA modifications.
Collapse
Affiliation(s)
- Keith Earley
- Biology Department, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Flowers JM, Burton RS. Ribosomal RNA gene silencing in interpopulation hybrids of Tigriopus californicus: nucleolar dominance in the absence of intergenic spacer subrepeats. Genetics 2006; 173:1479-86. [PMID: 16648582 PMCID: PMC1526681 DOI: 10.1534/genetics.106.058719] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A common feature of interspecific animal and plant hybrids is the uniparental silencing of ribosomal RNA gene transcription, or nucleolar dominance. A leading explanation for the genetic basis of nucleolar dominance in animal hybrids is the enhancer-imbalance model. The model proposes that limiting transcription factors are titrated by a greater number of enhancer-bearing subrepeat elements in the intergenic spacer (IGS) of the dominant cluster of genes. The importance of subrepeats for nucleolar dominance has repeatedly been supported in competition assays between Xenopus laevis and X. borealis minigene constructs injected into oocytes. However, a more general test of the importance of IGS subrepeats for nuclear dominance in vivo has not been conducted. In this report, rRNA gene expression was examined in interpopulation hybrids of the marine copepod Tigriopus californicus. This species offers a rare opportunity to test the role of IGS subrepeats in nucleolar dominance because the internal subrepeat structure, found in the IGS of virtually all animal and plant species, is absent in T. californicus. Our results clearly establish that nucleolar dominance occurs in F1 and F2 interpopulation hybrids of this species. In the F2 generation, nucleolar dominance appears to break down in some hybrids in a fashion that is inconsistent with a transcription factor titration model. These results are significant because they indicate that nucleolar dominance can be established and maintained without enhancer-bearing repeat elements in the IGS. This challenges the generality of the enhancer-imbalance model for nucleolar dominance and suggests that dominance of rRNA transcription in animals may be determined by epigenetic factors as has been established in plants.
Collapse
MESH Headings
- Animals
- Cell Nucleolus/genetics
- Cell Nucleolus/metabolism
- Chimera/genetics
- Chimera/metabolism
- Copepoda/genetics
- Copepoda/metabolism
- Crosses, Genetic
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/metabolism
- DNA, Ribosomal Spacer/genetics
- DNA, Ribosomal Spacer/metabolism
- Gene Silencing
- Genes, rRNA
- Genetic Variation
- Polymorphism, Single Nucleotide
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Temperature
- Transcription, Genetic
Collapse
Affiliation(s)
- Jonathan M Flowers
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, California 92037, USA.
| | | |
Collapse
|
194
|
Angelov D, Bondarenko VA, Almagro S, Menoni H, Mongélard F, Hans F, Mietton F, Studitsky VM, Hamiche A, Dimitrov S, Bouvet P. Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes. EMBO J 2006; 25:1669-79. [PMID: 16601700 PMCID: PMC1440837 DOI: 10.1038/sj.emboj.7601046] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 02/21/2006] [Indexed: 11/09/2022] Open
Abstract
Remodeling machines play an essential role in the control of gene expression, but how their activity is regulated is not known. Here we report that the nuclear protein nucleolin possesses a histone chaperone activity and that this factor greatly enhances the activity of the chromatin remodeling machineries SWI/SNF and ACF. Interestingly, nucleolin is able to induce the remodeling by SWI/SNF of macroH2A, but not of H2ABbd nucleosomes, which are otherwise resistant to remodeling. This new histone chaperone promotes the destabilization of the histone octamer, helping the dissociation of a H2A-H2B dimer, and stimulates the SWI/SNF-mediated transfer of H2A-H2B dimers. Furthermore, nucleolin facilitates transcription through the nucleosome, which is reminiscent of the activity of the FACT complex. This work defines new functions for histone chaperones in chromatin remodeling and regulation of transcription and explains how nucleolin could act on transcription.
Collapse
Affiliation(s)
- Dimitar Angelov
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| | - Vladimir A Bondarenko
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA
| | - Sébastien Almagro
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| | - Hervé Menoni
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| | - Fabien Mongélard
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| | - Fabienne Hans
- Institut Albert Bonniot, INSERM U309, La Tronche Cedex, France
| | - Flore Mietton
- Institut Albert Bonniot, INSERM U309, La Tronche Cedex, France
| | - Vasily M Studitsky
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA
| | - Ali Hamiche
- Institut André Lwoff, CNRS UPR 9079, Villejuif, France
| | - Stefan Dimitrov
- Laboratoire Joliot-Curie, Lyon, France
- Institut Albert Bonniot, INSERM U309, La Tronche Cedex, France
| | - Philippe Bouvet
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| |
Collapse
|
195
|
Meraner J, Lechner M, Loidl A, Goralik-Schramel M, Voit R, Grummt I, Loidl P. Acetylation of UBF changes during the cell cycle and regulates the interaction of UBF with RNA polymerase I. Nucleic Acids Res 2006; 34:1798-806. [PMID: 16582105 PMCID: PMC1421502 DOI: 10.1093/nar/gkl101] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The upstream binding factor UBF, an activator of RNA polymerase I transcription, is posttranslationally modified by phosphorylation and acetylation. We found that in NIH3T3 cells, UBF is acetylated in S-phase but not in G1-phase. To assess the role of acetylation in regulation of UBF activity, we have established an NIH3T3 cell line that inducibly overexpresses HDAC1. Both in vivo and in vitro, HDAC1 efficiently hypoacetylates UBF. Immunoprecipitation with antibodies against the Pol I-associated factor PAF53 co-precipitated UBF in mock cells but not in cells overexpressing HDAC1. Pull-down experiments showed that acetylation of UBF augments the interaction with Pol I. Consistent with acetylation of UBF being important for association of PAF53 and recruitment of Pol I, the level of Pol I associated with rDNA and pre-rRNA synthesis were reduced in cells overexpressing HDAC1. The results suggest that acetylation and deacetylation of UBF regulate rRNA synthesis during cell cycle progression.
Collapse
Affiliation(s)
| | | | | | | | - Renate Voit
- Division of Molecular Biology of the Cell II, German Cancer Research CenterD-69120 Heidelberg, Germany
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research CenterD-69120 Heidelberg, Germany
| | - Peter Loidl
- To whom correspondence should be addressed. +43 512 507 3600; Fax: +43 512 507 9880;
| |
Collapse
|
196
|
Gallardo MH, González CA, Cebrián I. Molecular cytogenetics and allotetraploidy in the red vizcacha rat, Tympanoctomys barrerae (Rodentia, Octodontidae). Genomics 2006; 88:214-21. [PMID: 16580173 DOI: 10.1016/j.ygeno.2006.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/08/2006] [Accepted: 02/14/2006] [Indexed: 11/24/2022]
Abstract
The theoretical impossibility of polyploidy in mammals was overturned by the discovery of tetraploidy in the red vizcacha rat, Tympanoctomys barrerae (2n = 102). As a consequence of genome duplication, remarkably increased cell dimensions are observed in the spermatozoa and in different somatic cell lines of this species. Locus duplication had been previously demonstrated by in situ PCR and Southern blot analysis of single-copy genes. Here, we corroborate duplication of loci in multiple-copy (major rDNAs) and single-copy (Hoxc8) genes by fluorescence in situ hybridization. We also demonstrate that nucleolar dominance, a large-scale epigenetic silencing phenomenon characteristic of allopolyploids, explains the presence of only one Ag-NOR chromosome pair in T. barrerae. Nucleolar dominance, together with the chromosomal heteromorphism detected in the G-banding pattern and synaptonemal complexes of the species' diploid-like meiosis, consistently indicates allotetraploidy. Allotetraploidization can coherently explain the peculiarities of gene silencing, cell dimensions, and karyotypic features of T. barrerae that remain unexplained by assuming diploidy and a large genome size attained by the dispersion of repetitive sequences.
Collapse
Affiliation(s)
- M H Gallardo
- Instituto de Ecología y Evolución, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.
| | | | | |
Collapse
|
197
|
Percipalle P, Farrants AKO. Chromatin remodelling and transcription: be-WICHed by nuclear myosin 1. Curr Opin Cell Biol 2006; 18:267-74. [PMID: 16574391 DOI: 10.1016/j.ceb.2006.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/07/2006] [Accepted: 03/13/2006] [Indexed: 01/29/2023]
Abstract
Transcription in eukaryotic cells requires dynamic changes of chromatin structure to facilitate or prevent RNA polymerase access to active genes. These structural modifications rely on the concerted action of ATP-dependent chromatin-remodelling complexes and histone-modifying enzymes, which generate a chromatin configuration that is either compatible with transcription (euchromatin) or incompatible (heterochromatin). Insights into how these structural changes might be coordinated for RNA polymerase I (pol I) genes come from the discoveries of the nucleolar-remodelling complex (NoRC) and B-WICH--a high molecular weight fraction of the WSTF/SNF2h chromatin-remodelling complex. NoRC produces a repressive chromatin state; B-WICH, together with nuclear myosin 1, activates pol I transcription directly on chromatin templates and might also function in the maintenance of ribosomal chromatin structure.
Collapse
Affiliation(s)
- Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, P.O. Box 285, Stockholm SE-171 77, Sweden.
| | | |
Collapse
|
198
|
Clarke AS, Samal E, Pillus L. Distinct roles for the essential MYST family HAT Esa1p in transcriptional silencing. Mol Biol Cell 2006; 17:1744-57. [PMID: 16436512 PMCID: PMC1415314 DOI: 10.1091/mbc.e05-07-0613] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Among acetyltransferases, the MYST family enzyme Esa1p is distinguished for its essential function and contribution to transcriptional activation and DNA double-stranded break repair. Here we report that Esa1p also plays a key role in silencing RNA polymerase II (Pol II)-transcribed genes at telomeres and within the ribosomal DNA (rDNA) of the nucleolus. These effects are mediated through Esa1p's HAT activity and correlate with changes within the nucleolus. Esa1p is enriched within the rDNA, as is the NAD-dependent protein deacetylase Sir2p, and the acetylation levels of key Esa1p histone targets are reduced in the rDNA in esa1 mutants. Although mutants of both ESA1 and SIR2 have enhanced rates of rDNA recombination, esa1 effects are more modest yet result in distinct structural changes of rDNA chromatin. Surprisingly, increased expression of ESA1 can bypass the requirement for Sir2p in rDNA silencing, suggesting that these two enzymes with seemingly opposing activities both contribute to achieve optimal nucleolar chromatin structure and function.
Collapse
Affiliation(s)
- Astrid S Clarke
- Division of Biological Sciences, UCSD Cancer Center and Center for Molecular Genetics, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
199
|
Galetzka D, Tralau T, Stein R, Haaf T. Expression ofDNMT3A transcripts and nucleolar localization of DNMT3A protein in human testicular and fibroblast cells suggest a role for de novo DNA methylation in nucleolar inactivation. J Cell Biochem 2006; 98:885-94. [PMID: 16453278 DOI: 10.1002/jcb.20798] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcriptional silencing during differentiation of human male germ cells and serum starvation of human fibroblasts is controlled by epigenetic mechanisms that involve de novo DNA methylation. It is associated with high expression of different transcripts of the DNA methyltransferase 3A (DNMT3A) gene that encode two isoforms with de novo methyltransferase activity and one without catalytic activity. Western blots revealed that DNMT3A protein (with catalytic domain) is present at low levels in several tissues and at increased levels in testicular cells and growth-arrested fibroblasts. Immunofluorescence experiments localized DNMT3A to discrete nucleolar foci in B spermatogonia and resting fibroblasts. The data here suggest a role for de novo DNA methylation in nucleolar inactivation.
Collapse
Affiliation(s)
- Danuta Galetzka
- Institute for Human Genetics, Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
200
|
Conconi A, Paquette M, Fahy D, Bespalov VA, Smerdon MJ. Repair-independent chromatin assembly onto active ribosomal genes in yeast after UV irradiation. Mol Cell Biol 2005; 25:9773-83. [PMID: 16260595 PMCID: PMC1280247 DOI: 10.1128/mcb.25.22.9773-9783.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin rearrangements occur during repair of cyclobutane pyrimidine dimers (CPDs) by nucleotide excision repair (NER). Thereafter, the original structure must be restored to retain normal genomic functions. How NER proceeds through nonnucleosomal chromatin and how open chromatin is reestablished after repair are unknown. We analyzed NER in ribosomal genes (rDNA), which are present in multiple copies but only a fraction are actively transcribed and nonnucleosomal. We show that removal of CPDs is fast in the active rDNA and that chromatin reorganization occurs during NER. Furthermore, chromatin assembles on nonnucleosomal rDNA during the early events of NER but in the absence of DNA repair. The resumption of transcription after removal of CPDs correlates with the reappearance of nonnucleosomal chromatin. To date, only the passage of replication machinery was thought to package ribosomal genes in nucleosomes. In this report, we show that early events after formation of UV photoproducts in DNA also promote chromatin assembly.
Collapse
Affiliation(s)
- Antonio Conconi
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Poste 7446, Université de Sherbrooke, 3001 12th Ave. Nord, Sherbrooke, QC J1H 5N4, Canada.
| | | | | | | | | |
Collapse
|