151
|
A Diguanylate Cyclase Acts as a Cell Division Inhibitor in a Two-Step Response to Reductive and Envelope Stresses. mBio 2016; 7:mBio.00822-16. [PMID: 27507823 PMCID: PMC4992967 DOI: 10.1128/mbio.00822-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Cell division arrest is a universal checkpoint in response to environmental assaults that generate cellular stress. In bacteria, the cyclic di-GMP (c-di-GMP) signaling network is one of several signal transduction systems that regulate key processes in response to extra-/intracellular stimuli. Here, we find that the diguanylate cyclase YfiN acts as a bifunctional protein that produces c-di-GMP in response to reductive stress and then dynamically relocates to the division site to arrest cell division in response to envelope stress in Escherichia coli YfiN localizes to the Z ring by interacting with early division proteins and stalls cell division by preventing the initiation of septal peptidoglycan synthesis. These studies reveal a new role for a diguanylate cyclase in responding to environmental change, as well as a novel mechanism for arresting cell division. IMPORTANCE While the major role of c-di-GMP signaling is to control the decision to move freely or settle in a biofilm, recent studies show a broader range of output functions for c-di-GMP signaling. This work reports an unexpected second role for YfiN, a conserved diguanylate cyclase in Gram-negative bacteria, known to contribute to persistence in the host. We find that YfiN acts as a cell division inhibitor in response to envelope stress. Unlike known cell division inhibitors, the interaction of YfiN with cell division proteins retains the Z ring at the midcell but prevents septal invagination. The new function of YfiN not only emphasizes the versatility of c-di-GMP signaling but describes a novel mechanism for a cell division checkpoint.
Collapse
|
152
|
Molina-Henares MA, Ramos-González MI, Daddaoua A, Fernández-Escamilla AM, Espinosa-Urgel M. FleQ of Pseudomonas putida KT2440 is a multimeric cyclic diguanylate binding protein that differentially regulates expression of biofilm matrix components. Res Microbiol 2016; 168:36-45. [PMID: 27503246 DOI: 10.1016/j.resmic.2016.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023]
Abstract
The intracellular signal molecule cyclic di-GMP (c-di-GMP) is an important element in regulation of biofilm formation by bacteria. In Pseudomonas aeruginosa, FleQ functions as a c-di-GMP-dependent transcriptional regulator of expression of flagellar genes and the exopolysaccharide (EPS) Pel, a component of the biofilm extracellular matrix. In the plant-beneficial bacterium Pseudomonas putida KT2440, a mutation in fleQ reduces biofilm formation and colonization of plant surfaces. Using isothermal titration calorimetry and electrophoretic mobility shift assays, we show in this work that FleQ of P. putida interacts with c-di-GMP and directly binds the promoter regions of flagellar and EPS genes. Data obtained by analytical gel filtration and ultracentrifugation indicate that FleQ is in multiple oligomeric states in solution (dimers, tetramers and hexamers), which do not show altered equilibrium in the presence of c-di-GMP. DNA binding is independent of c-diGMP, although it is favored by the second messenger in the case of the promoter of the operon responsible for synthesis of the species-specific EPS Pea. Analysis of expression using transcriptional fusions showed an influence of FleQ upon two of the four EPS operons under regular growth conditions. Finally, a consensus sequence for promoter recognition by FleQ in P. putida is also proposed.
Collapse
Affiliation(s)
- María Antonia Molina-Henares
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, Granada 18008, Spain.
| | - María Isabel Ramos-González
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, Granada 18008, Spain.
| | - Abdelali Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, Granada 18008, Spain.
| | - Ana María Fernández-Escamilla
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, Granada 18008, Spain.
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, Granada 18008, Spain.
| |
Collapse
|
153
|
Schirmer T. C-di-GMP Synthesis: Structural Aspects of Evolution, Catalysis and Regulation. J Mol Biol 2016; 428:3683-701. [PMID: 27498163 DOI: 10.1016/j.jmb.2016.07.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/30/2016] [Accepted: 07/31/2016] [Indexed: 10/21/2022]
Abstract
Cellular levels of the second messenger cyclic di-guanosine monophosphate (c-di-GMP) are determined by the antagonistic activities of diguanylate cyclases and specific phosphodiesterases. In a given bacterial organism, there are often multiple variants of the two enzymes, which are tightly regulated by a variety of external and internal cues due to the presence of specialized sensory or regulatory domains. Dependent on the second messenger level, specific c-di-GMP receptors then control fundamental cellular processes, such as bacterial life style, biofilm formation, and cell cycle control. Here, I review the large body of data on structure-function relationships in diguanylate cyclases. Although the catalytic GGDEF domain is related to the respective domain of adenylate cyclases, the catalyzed intermolecular condensation reaction of two GTP molecules requires the formation of a competent GGDEF dimer with the two substrate molecules juxtaposed. This prerequisite appears to constitute the basis for GGDEF regulation with signal-induced changes within the homotypic dimer of the input domain (PAS, GAF, HAMP, etc.), which are structurally coupled with the arrangement of the GGDEF domains via a rigid coiled-coil linker. Alternatively, phosphorylation of a Rec input domain can drive GGDEF dimerization. Both mechanisms allow modular combination of input and output function that appears advantageous for evolution and rationalizes the striking similarities in domain architecture found in diguanylate cyclases and histidine kinases.
Collapse
Affiliation(s)
- Tilman Schirmer
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
154
|
Chen Y, Liu S, Liu C, Huang Y, Chi K, Su T, Zhu D, Peng J, Xia Z, He J, Xu S, Hu W, Gu L. Dcsbis (PA2771) from Pseudomonas aeruginosa is a highly active diguanylate cyclase with unique activity regulation. Sci Rep 2016; 6:29499. [PMID: 27388857 PMCID: PMC4937426 DOI: 10.1038/srep29499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/20/2016] [Indexed: 01/03/2023] Open
Abstract
C-di-GMP (3',5' -Cyclic diguanylic acid) is an important second messenger in bacteria that influences virulence, motility, biofilm formation, and cell division. The level of c-di-GMP in cells is controlled by diguanyl cyclases (DGCs) and phosphodiesterases (PDEs). Here, we report the biochemical functions and crystal structure of the potential diguanylase Dcsbis (PA2771, a diguanylate cyclase with a self-blocked I-site) from Pseudomonas aeruginosa PAO1. The full-length Dcsbis protein contains an N-terminal GAF domain and a C-terminal GGDEF domain. We showed that Dcsbis tightly coordinates cell motility without markedly affecting biofilm formation and is a diguanylate cyclase with a catalytic activity much higher than those of many other DGCs. Unexpectedly, we found that a peptide loop (protecting loop) extending from the GAF domain occupies the conserved inhibition site, thereby largely relieving the product-inhibition effect. A large hydrophobic pocket was observed in the GAF domain, thus suggesting that an unknown upstream signaling molecule may bind to the GAF domain, moving the protecting loop from the I-site and thereby turning off the enzymatic activity.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Shiheng Liu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Cuilan Liu
- Institute for metabolic and neuropsychiatric disorders, Binzhou Medical University, Binzhou, Shandong, 256600, China
| | - Yan Huang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Kaikai Chi
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Tiantian Su
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Deyu Zhu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Jin Peng
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Zhijie Xia
- College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Jing He
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
155
|
López-Villamizar I, Cabezas A, Pinto RM, Canales J, Ribeiro JM, Cameselle JC, Costas MJ. The Characterization of Escherichia coli CpdB as a Recombinant Protein Reveals that, besides Having the Expected 3´-Nucleotidase and 2´,3´-Cyclic Mononucleotide Phosphodiesterase Activities, It Is Also Active as Cyclic Dinucleotide Phosphodiesterase. PLoS One 2016; 11:e0157308. [PMID: 27294396 PMCID: PMC4905662 DOI: 10.1371/journal.pone.0157308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/30/2016] [Indexed: 02/06/2023] Open
Abstract
Endogenous cyclic diadenylate phosphodiesterase activity was accidentally detected in lysates of Escherichia coli BL21. Since this kind of activity is uncommon in Gram-negative bacteria, its identification was undertaken. After partial purification and analysis by denaturing gel electrophoresis, renatured activity correlated with a protein identified by fingerprinting as CpdB (cpdB gene product), which is annotated as 3´-nucleotidase / 2´,3´-cyclic-mononucleotide phosphodiesterase, and it is synthesized as a precursor protein with a signal sequence removable upon export to the periplasm. It has never been studied as a recombinant protein. The coding sequence of mature CpdB was cloned and expressed as a GST fusion protein. The study of the purified recombinant protein, separated from GST, confirmed CpdB annotation. The assay of catalytic efficiencies (kcat/Km) for a large substrate set revealed novel CpdB features, including very high efficiencies for 3´-AMP and 2´,3´-cyclic mononucleotides, and previously unknown activities on cyclic and linear dinucleotides. The catalytic efficiencies of the latter activities, though low in relative terms when compared to the major ones, are far from negligible. Actually, they are perfectly comparable to those of the ‘average’ enzyme and the known, bona fide cyclic dinucleotide phosphodiesterases. On the other hand, CpdB differs from these enzymes in its extracytoplasmic location and in the absence of EAL, HD and DHH domains. Instead, it contains the domains of the 5´-nucleotidase family pertaining to the metallophosphoesterase superfamily, although CpdB lacks 5´-nucleotidase activity. The possibility that the extracytoplasmic activity of CpdB on cyclic dinucleotides could have physiological meaning is discussed.
Collapse
Affiliation(s)
- Iralis López-Villamizar
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Alicia Cabezas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Rosa María Pinto
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - José Canales
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - João Meireles Ribeiro
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - José Carlos Cameselle
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - María Jesús Costas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
- * E-mail:
| |
Collapse
|
156
|
Skotnicka D, Smaldone GT, Petters T, Trampari E, Liang J, Kaever V, Malone JG, Singer M, Søgaard-Andersen L. A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus. PLoS Genet 2016; 12:e1006080. [PMID: 27214040 PMCID: PMC4877007 DOI: 10.1371/journal.pgen.1006080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/04/2016] [Indexed: 11/18/2022] Open
Abstract
Generally, the second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-di-GMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be-at least partially-functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus.
Collapse
Affiliation(s)
- Dorota Skotnicka
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gregory T. Smaldone
- Department of Microbiology and Molecular Genetics, University of California - Davis, Davis, California, United States of America
| | - Tobias Petters
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Eleftheria Trampari
- Molecular Microbiology Department, John Innes Centre, Norwich, United Kingdom
| | - Jennifer Liang
- Department of Microbiology and Molecular Genetics, University of California - Davis, Davis, California, United States of America
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Jacob G. Malone
- Molecular Microbiology Department, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Mitchell Singer
- Department of Microbiology and Molecular Genetics, University of California - Davis, Davis, California, United States of America
- * E-mail: (MS); (LSA)
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- * E-mail: (MS); (LSA)
| |
Collapse
|
157
|
The Inhibitory Site of a Diguanylate Cyclase Is a Necessary Element for Interaction and Signaling with an Effector Protein. J Bacteriol 2016; 198:1595-603. [PMID: 27002135 DOI: 10.1128/jb.00090-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/14/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Many bacteria contain large cyclic diguanylate (c-di-GMP) signaling networks made of diguanylate cyclases (DGCs) and phosphodiesterases that can direct cellular activities sensitive to c-di-GMP levels. While DGCs synthesize c-di-GMP, many DGCs also contain an autoinhibitory site (I-site) that binds c-di-GMP to halt excess production of this small molecule, thus controlling the amount of c-di-GMP available to bind to target proteins in the cell. Many DGCs studied to date have also been found to signal for a specific c-di-GMP-related process, and although recent studies have suggested that physical interaction between DGCs and target proteins may provide this signaling fidelity, the importance of the I-site has not yet been incorporated into this model. Our results from Pseudomonas fluorescens indicate that mutation of residues at the I-site of a DGC disrupts the interaction with its target receptor. By creating various substitutions to a DGC's I-site, we show that signaling between a DGC (GcbC) and its target protein (LapD) is a combined function of the I-site-dependent protein-protein interaction and the level of c-di-GMP production. The dual role of the I-site in modulating DGC activity as well as participating in protein-protein interactions suggests caution in interpreting the function of the I-site as only a means to negatively regulate a cyclase. These results implicate the I-site as an important positive and negative regulatory element of DGCs that may contribute to signaling specificity. IMPORTANCE Some bacteria contain several dozen diguanylate cyclases (DGCs), nearly all of which signal to specific receptors using the same small molecule, c-di-GMP. Signaling specificity in these networks may be partially driven by physical interactions between DGCs and their receptors, in addition to the autoinhibitory site of DGCs preventing the overproduction of c-di-GMP. In this study, we show that disruption of the autoinhibitory site of a DGC in Pseudomonas fluorescens can result in the loss of interactions with its target receptor and reduced biofilm formation, despite increased production of c-di-GMP. Our findings implicate the autoinhibitory site as both an important feature for signaling specificity through the regulation of c-di-GMP production and a necessary element for the physical interaction between a diguanylate cyclase and its receptor.
Collapse
|
158
|
Kim HS, Cha E, Kim Y, Jeon YH, Olson BH, Byun Y, Park HD. Raffinose, a plant galactoside, inhibits Pseudomonas aeruginosa biofilm formation via binding to LecA and decreasing cellular cyclic diguanylate levels. Sci Rep 2016; 6:25318. [PMID: 27141909 PMCID: PMC4855137 DOI: 10.1038/srep25318] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/15/2016] [Indexed: 12/16/2022] Open
Abstract
Biofilm formation on biotic or abiotic surfaces has unwanted consequences in medical, clinical, and industrial settings. Treatments with antibiotics or biocides are often ineffective in eradicating biofilms. Promising alternatives to conventional agents are biofilm-inhibiting compounds regulating biofilm development without toxicity to growth. Here, we screened a biofilm inhibitor, raffinose, derived from ginger. Raffinose, a galactotrisaccharide, showed efficient biofilm inhibition of Pseudomonas aeruginosa without impairing its growth. Raffinose also affected various phenotypes such as colony morphology, matrix formation, and swarming motility. Binding of raffinose to a carbohydrate-binding protein called LecA was the cause of biofilm inhibition and altered phenotypes. Furthermore, raffinose reduced the concentration of the second messenger, cyclic diguanylate (c-di-GMP), by increased activity of a c-di-GMP specific phosphodiesterase. The ability of raffinose to inhibit P. aeruginosa biofilm formation and its molecular mechanism opens new possibilities for pharmacological and industrial applications.
Collapse
Affiliation(s)
- Han-Shin Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, South Korea
| | - Eunji Cha
- School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, South Korea
| | - YunHye Kim
- College of Pharmacy, Korea University, Sejong-ro 2511, Jochiwon-eup, Sejong, 339-700, South Korea
| | - Young Ho Jeon
- College of Pharmacy, Korea University, Sejong-ro 2511, Jochiwon-eup, Sejong, 339-700, South Korea
| | - Betty H. Olson
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong-ro 2511, Jochiwon-eup, Sejong, 339-700, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, South Korea
| |
Collapse
|
159
|
Mann TH, Seth Childers W, Blair JA, Eckart MR, Shapiro L. A cell cycle kinase with tandem sensory PAS domains integrates cell fate cues. Nat Commun 2016; 7:11454. [PMID: 27117914 PMCID: PMC4853435 DOI: 10.1038/ncomms11454] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 03/22/2016] [Indexed: 11/11/2022] Open
Abstract
All cells must integrate sensory information to coordinate developmental events in space and time. The bacterium Caulobacter crescentus uses two-component phospho-signalling to regulate spatially distinct cell cycle events through the master regulator CtrA. Here, we report that CckA, the histidine kinase upstream of CtrA, employs a tandem-PAS domain sensor to integrate two distinct spatiotemporal signals. Using CckA reconstituted on liposomes, we show that one PAS domain modulates kinase activity in a CckA density-dependent manner, mimicking the stimulation of CckA kinase activity that occurs on its transition from diffuse to densely packed at the cell poles. The second PAS domain interacts with the asymmetrically partitioned second messenger cyclic-di-GMP, inhibiting kinase activity while stimulating phosphatase activity, consistent with the selective inactivation of CtrA in the incipient stalked cell compartment. The integration of these spatially and temporally regulated signalling events within a single signalling receptor enables robust orchestration of cell-type-specific gene regulation. The membrane-bound kinase CckA controls the activity of the Caulobacter crescentus master regulator CtrA, which in turn coordinates asymmetric cell division. Here, the authors show that CckA contains two sensory domains that have distinct sensitivities to fluctuations in cyclic-di-GMP concentration and subcellular niche.
Collapse
Affiliation(s)
- Thomas H Mann
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - W Seth Childers
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jimmy A Blair
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, USA
| | - Michael R Eckart
- Stanford Protein and Nucleic Acid Facility, Beckman Center, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
160
|
Xu M, Yang X, Yang XA, Zhou L, Liu TZ, Fan Z, Jiang T. Structural insights into the regulatory mechanism of the Pseudomonas aeruginosa YfiBNR system. Protein Cell 2016; 7:403-16. [PMID: 27113583 PMCID: PMC4887326 DOI: 10.1007/s13238-016-0264-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/10/2016] [Indexed: 11/29/2022] Open
Abstract
YfiBNR is a recently identified bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) signaling system in opportunistic pathogens. It is a key regulator of biofilm formation, which is correlated with prolonged persistence of infection and antibiotic drug resistance. In response to cell stress, YfiB in the outer membrane can sequester the periplasmic protein YfiR, releasing its inhibition of YfiN on the inner membrane and thus provoking the diguanylate cyclase activity of YfiN to induce c-di-GMP production. However, the detailed regulatory mechanism remains elusive. Here, we report the crystal structures of YfiB alone and of an active mutant YfiBL43P complexed with YfiR with 2:2 stoichiometry. Structural analyses revealed that in contrast to the compact conformation of the dimeric YfiB alone, YfiBL43P adopts a stretched conformation allowing activated YfiB to penetrate the peptidoglycan (PG) layer and access YfiR. YfiBL43P shows a more compact PG-binding pocket and much higher PG binding affinity than wild-type YfiB, suggesting a tight correlation between PG binding and YfiB activation. In addition, our crystallographic analyses revealed that YfiR binds Vitamin B6 (VB6) or L-Trp at a YfiB-binding site and that both VB6 and L-Trp are able to reduce YfiBL43P-induced biofilm formation. Based on the structural and biochemical data, we propose an updated regulatory model of the YfiBNR system.
Collapse
Affiliation(s)
- Min Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuan Yang
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiu-An Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tie-Zheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zusen Fan
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tao Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
161
|
Abstract
Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms.
Collapse
|
162
|
Yang F, Qian S, Tian F, Chen H, Hutchins W, Yang CH, He C. The GGDEF-domain protein GdpX1 attenuates motility, exopolysaccharide production and virulence in Xanthomonas oryzae pv. oryzae. J Appl Microbiol 2016; 120:1646-57. [PMID: 26929398 DOI: 10.1111/jam.13115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/01/2016] [Accepted: 02/18/2016] [Indexed: 12/15/2022]
Abstract
AIMS Cyclic di-GMP (c-di-GMP), a ubiquitous bacterial second messenger that is synthesized by diguanylate cyclase (DGC) with the GGDEF-domain, regulates diverse virulence phenotypes in pathogenic bacteria. Although 11 genes encoding GGDEF-domain proteins have been shown in the genome of Xanthomonas oryzae pv. oryzae (Xoo) strain PXO99(A) , the causal pathogen of bacterial blight of rice, however, little is known about their roles in the c-di-GMP regulation of virulence in the pathogen. GdpX1, one of the GGDEF-domain proteins in Xoo was investigated in this study to reveal its regulatory function of bacterial virulence expression through genetic analysis. METHODS AND RESULTS GdpX1 was functionally characterized in virulence expression through deletion and overexpression analysis. Bioinformatics analysis revealed the GGDEF-domain in GdpX1 was well conserved, indicating it is a putative DGC. Deletion of gdpX1 resulted in significant increases in virulence, exopolysaccharide (EPS) production and flagellar motility. In contrast, overexpression of gdpX1 dramatically reduced these virulence phenotypes. qRT-PCR analysis showed genes related to the type III secretion system (T3SS), EPS synthesis, and flagellar motility, were up-regulated in ∆gdpX1 and down-regulated in the gdpX1-overexpressed strains. In addition, overexpression of gdpX1 promoted biofilm formation and xylanase activity. CONCLUSION GdpX1 is the first GGDEF-domain protein functionally characterized in Xoo, which functions as a negative regulator of bacterial virulence via suppression of virulence-related gene transcription. SIGNIFICANCE AND IMPACT OF THE STUDY Identification and functional characterization of GdpX1 provided additional insights into molecular mechanisms of c-di-GMP regulation of bacterial virulence expression.
Collapse
Affiliation(s)
- F Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - S Qian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - F Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - H Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - W Hutchins
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - C-H Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - C He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
163
|
Glantz ST, Carpenter EJ, Melkonian M, Gardner KH, Boyden ES, Wong GKS, Chow BY. Functional and topological diversity of LOV domain photoreceptors. Proc Natl Acad Sci U S A 2016; 113:E1442-51. [PMID: 26929367 PMCID: PMC4801262 DOI: 10.1073/pnas.1509428113] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Light-oxygen-voltage sensitive (LOV) flavoproteins are ubiquitous photoreceptors that mediate responses to environmental cues. Photosensory inputs are transduced into signaling outputs via structural rearrangements in sensor domains that consequently modulate the activity of an effector domain or multidomain clusters. Establishing the diversity in effector function and sensor-effector topology will inform what signaling mechanisms govern light-responsive behaviors across multiple kingdoms of life and how these signals are transduced. Here, we report the bioinformatics identification of over 6,700 candidate LOV domains (including over 4,000 previously unidentified sequences from plants and protists), and insights from their annotations for ontological function and structural arrangements. Motif analysis identified the sensors from ∼42 million ORFs, with strong statistical separation from other flavoproteins and non-LOV members of the structurally related Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim family. Conserved-domain analysis determined putative light-regulated function and multidomain topologies. We found that for certain effectors, sensor-effector linker length is discretized based on both phylogeny and the preservation of α-helical heptad repeats within an extended coiled-coil linker structure. This finding suggests that preserving sensor-effector orientation is a key determinant of linker length, in addition to ancestry, in LOV signaling structure-function. We found a surprisingly high prevalence of effectors with functions previously thought to be rare among LOV proteins, such as regulators of G protein signaling, and discovered several previously unidentified effectors, such as lipases. This work highlights the value of applying genomic and transcriptomic technologies to diverse organisms to capture the structural and functional variation in photosensory proteins that are vastly important in adaptation, photobiology, and optogenetics.
Collapse
Affiliation(s)
- Spencer T Glantz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Eric J Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Michael Melkonian
- Institute of Botany, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, City College of New York, New York, NY 10031; Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031; Biochemistry, Chemistry and Biology Programs, Graduate Center, The City University of New York, New York, NY 10031
| | - Edward S Boyden
- The Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; McGovern Institute for Brain Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; Department of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2E1; BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
164
|
Supramolecular polymer formation by cyclic dinucleotides and intercalators affects dinucleotide enzymatic processing. Future Sci OA 2016; 2:FSO93. [PMID: 28031943 PMCID: PMC5137846 DOI: 10.4155/fso.15.93] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/09/2015] [Indexed: 01/10/2023] Open
Abstract
Background: Cyclic dinucleotides form supramolecular aggregates with intercalators, and this property could be utilized in nanotechnology and medicine. Methods & results: Atomic force microscopy and electrophoretic mobility shift assays were used to show that cyclic diguanylic acid (c-di-GMP) forms G-wires in the presence of intercalators. The average fluorescence lifetime of thiazole orange, when bound to c-di-GMP was greater than when bound to DNA G-quadruplexes or dsDNA. The stability of c-di-GMP supramolecular polymers is dependent on both the nature of the cation present and the intercalator. C-di-GMP or cyclic diadenylic acid/intercalator complexes are more resistant to cleavage by YybT, a phosphodiesterase, than the uncomplexed nucleotides. Conclusion: Cleavage of bacterial cyclic dinucleotides could be slowed down via complexation with small molecules and that this could be utilized for diverse applications in nanotechnology and medicine. Lay abstract: Bacteria respond to a changing environment and nutrient availability by regulating key metabolic processes. Cyclic dinucleotides are now understood to play pivotal roles in transmitting information about the environment to macromolecular targets, which modulate the bacterial phenotype. In this paper, we demonstrate that these important bacterial second messengers can be aggregated with other small molecules and this process could potentially be used to affect how bacteria sense the environment.
Collapse
|
165
|
Lee HM, Liao CT, Chiang YC, Chang YY, Yeh YT, Du SC, Hsiao YM. Characterization of genes encoding proteins containing HD-related output domain in Xanthomonas campestris pv. campestris. Antonie van Leeuwenhoek 2016; 109:509-22. [PMID: 26821378 DOI: 10.1007/s10482-016-0656-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/19/2016] [Indexed: 11/30/2022]
Abstract
The Gram-negative plant pathogen Xanthomonas campestris pv. campestris (Xcc) is the causative agent of black rot in crucifers. The production of Xcc virulence factors is regulated by Clp and RpfF. HD-related output domain (HDOD) is a protein domain of unknown biochemical function. The genome of Xcc encodes three proteins (GsmR, HdpA, and HdpB) with an HDOD. The GsmR has been reported to play a role in the general stress response and cell motility and its expression is positively regulated by Clp. Here, the function and transcription of hdpA and hdpB were characterized. Mutation of hdpA resulted in enhanced bacterial attachment. In addition, the expression of hdpA was positively regulated by RpfF but not by Clp, subject to catabolite repression and affected by several stress conditions. However, mutational analysis and reporter assay showed that hdpB had no effect on the production of a range of virulence factors and its expression was independent of Clp and RpfF. The results shown here not only extend the previous work on RpfF regulation to show that it influences the expression of hdpA in Xcc, but also expand knowledge of the function of the HDOD containing proteins in bacteria.
Collapse
Affiliation(s)
- Hsien-Ming Lee
- Institute of Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Ying-Chuan Chiang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Yu-Yin Chang
- Institute of Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Yu-Tzu Yeh
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Shin-Chiao Du
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan.
| |
Collapse
|
166
|
Benedetti I, de Lorenzo V, Nikel PI. Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes. Metab Eng 2016; 33:109-118. [DOI: 10.1016/j.ymben.2015.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/02/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022]
|
167
|
Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2015; 113:E209-18. [PMID: 26712005 DOI: 10.1073/pnas.1523148113] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial biofilm formation during chronic infections confers increased fitness, antibiotic tolerance, and cytotoxicity. In many pathogens, the transition from a planktonic lifestyle to collaborative, sessile biofilms represents a regulated process orchestrated by the intracellular second-messenger c-di-GMP. A main effector for c-di-GMP signaling in the opportunistic pathogen Pseudomonas aeruginosa is the transcription regulator FleQ. FleQ is a bacterial enhancer-binding protein (bEBP) with a central AAA+ ATPase σ(54)-interaction domain, flanked by a C-terminal helix-turn-helix DNA-binding motif and a divergent N-terminal receiver domain. Together with a second ATPase, FleN, FleQ regulates the expression of flagellar and exopolysaccharide biosynthesis genes in response to cellular c-di-GMP. Here we report structural and functional data that reveal an unexpected mode of c-di-GMP recognition that is associated with major conformational rearrangements in FleQ. Crystal structures of FleQ's AAA+ ATPase domain in its apo-state or bound to ADP or ATP-γ-S show conformations reminiscent of the activated ring-shaped assemblies of other bEBPs. As revealed by the structure of c-di-GMP-complexed FleQ, the second messenger interacts with the AAA+ ATPase domain at a site distinct from the ATP binding pocket. c-di-GMP interaction leads to active site obstruction, hexameric ring destabilization, and discrete quaternary structure transitions. Solution and cell-based studies confirm coupling of the ATPase active site and c-di-GMP binding, as well as the functional significance of crystallographic interprotomer interfaces. Taken together, our data offer unprecedented insight into conserved regulatory mechanisms of gene expression under direct c-di-GMP control via FleQ and FleQ-like bEBPs.
Collapse
|
168
|
Contribution of Physical Interactions to Signaling Specificity between a Diguanylate Cyclase and Its Effector. mBio 2015; 6:e01978-15. [PMID: 26670387 PMCID: PMC4676286 DOI: 10.1128/mbio.01978-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cyclic diguanylate (c-di-GMP) is a bacterial second messenger that controls multiple cellular processes. c-di-GMP networks have up to dozens of diguanylate cyclases (DGCs) that synthesize c-di-GMP along with many c-di-GMP-responsive target proteins that can bind and respond to this signal. For such networks to have order, a mechanism(s) likely exists that allow DGCs to specifically signal their targets, and it has been suggested that physical interactions might provide such specificity. Our results show a DGC from Pseudomonas fluorescens physically interacting with its target protein at a conserved interface, and this interface can be predictive of DGC-target protein interactions. Furthermore, we demonstrate that physical interaction is necessary for the DGC to maximally signal its target. If such “local signaling” is a theme for even a fraction of the DGCs used by bacteria, it becomes possible to posit a model whereby physical interaction allows a DGC to directly signal its target protein, which in turn may help curtail undesired cross talk with other members of the network. An important question in microbiology is how bacteria make decisions using a signaling network made up of proteins that make, break, and bind the second messenger c-di-GMP, which is responsible for controlling many cellular behaviors. Previous work has shown that a given DGC enzyme will signal for specific cellular outputs, despite making the same diffusible molecule as its sibling DGCs in the unpartitioned space of the bacterial cell. Understanding how one DGC differentiates its output from the dozens of other such enzymes in the cell is synonymous with understanding a large component of the bacterial decision-making machinery. We present evidence for a helix on a DGC used to physically associate with its target protein, which is necessary to achieve maximal signaling.
Collapse
|
169
|
Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium Sinorhizobium meliloti. J Bacteriol 2015; 198:521-35. [PMID: 26574513 DOI: 10.1128/jb.00795-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Sinorhizobium meliloti undergoes major lifestyle changes between planktonic states, biofilm formation, and symbiosis with leguminous plant hosts. In many bacteria, the second messenger 3',5'-cyclic di-GMP (c-di-GMP, or cdG) promotes a sessile lifestyle by regulating a plethora of processes involved in biofilm formation, including motility and biosynthesis of exopolysaccharides (EPS). Here, we systematically investigated the role of cdG in S. meliloti Rm2011 encoding 22 proteins putatively associated with cdG synthesis, degradation, or binding. Single mutations in 21 of these genes did not cause evident changes in biofilm formation, motility, or EPS biosynthesis. In contrast, manipulation of cdG levels by overproducing endogenous or heterologous diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) affected these processes and accumulation of N-Acyl-homoserine lactones in the culture supernatant. Specifically, individual overexpression of the S. meliloti genes pleD, SMb20523, SMb20447, SMc01464, and SMc03178 encoding putative DGCs and of SMb21517 encoding a single-domain PDE protein had an impact and resulted in increased levels of cdG. Compared to the wild type, an S. meliloti strain that did not produce detectable levels of cdG (cdG(0)) was more sensitive to acid stress. However, it was symbiotically potent, unaffected in motility, and only slightly reduced in biofilm formation. The SMc01790-SMc01796 locus, homologous to the Agrobacterium tumefaciens uppABCDEF cluster governing biosynthesis of a unipolarly localized polysaccharide, was found to be required for cdG-stimulated biofilm formation, while the single-domain PilZ protein McrA was identified as a cdG receptor protein involved in regulation of motility. IMPORTANCE We present the first systematic genome-wide investigation of the role of 3',5'-cyclic di-GMP (c-di-GMP, or cdG) in regulation of motility, biosynthesis of exopolysaccharides, biofilm formation, quorum sensing, and symbiosis in a symbiotic alpha-rhizobial species. Phenotypes of an S. meliloti strain unable to produce cdG (cdG(0)) demonstrated that this second messenger is not essential for root nodule symbiosis but may contribute to acid tolerance. Our data further suggest that enhanced levels of cdG promote sessility of S. meliloti and uncovered a single-domain PilZ protein as regulator of motility.
Collapse
|
170
|
Abstract
The importance of cyclic di-GMP (c-di-GMP) and its control of biofilm matrix assembly and production has been a focal point of researchers in recent history. In this issue, Cooley et al. (Cooley RB, Smith TJ, Leung W, Tierney V, Borlee BR, O'Toole GA, Sondermann H, J Bacteriol 198:66-77, http://dx.doi.org/10.1128/JB.00369-15) demonstrate that two c-di-GMP controlled features of Pseudomonas aeruginosa, the periplasmic protease LapG and the surface adhesin CdrA, are linked. CdrA is shown to be a substrate of LapG, with LapG activity controlled by intracellular c-di-GMP levels. This commentary discusses the significance of this finding.
Collapse
|
171
|
Systematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems. PLoS Pathog 2015; 11:e1005232. [PMID: 26506097 PMCID: PMC4624772 DOI: 10.1371/journal.ppat.1005232] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/25/2015] [Indexed: 11/30/2022] Open
Abstract
Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates a variety of complex processes through a diverse set of c-di-GMP receptor proteins. We have utilized a systematic approach to identify c-di-GMP receptors from the pathogen Vibrio cholerae using the Differential Radial Capillary Action of Ligand Assay (DRaCALA). The DRaCALA screen identified a majority of known c-di-GMP binding proteins in V. cholerae and revealed a novel c-di-GMP binding protein, MshE (VC0405), an ATPase associated with the mannose sensitive hemagglutinin (MSHA) type IV pilus. The known c-di-GMP binding proteins identified by DRaCALA include diguanylate cyclases, phosphodiesterases, PilZ domain proteins and transcription factors VpsT and VpsR, indicating that the DRaCALA-based screen of open reading frame libraries is a feasible approach to uncover novel receptors of small molecule ligands. Since MshE lacks the canonical c-di-GMP-binding motifs, a truncation analysis was utilized to locate the c-di-GMP binding activity to the N-terminal T2SSE_N domain. Alignment of MshE homologs revealed candidate conserved residues responsible for c-di-GMP binding. Site-directed mutagenesis of these candidate residues revealed that the Arg9 residue is required for c-di-GMP binding. The ability of c-di-GMP binding to MshE to regulate MSHA dependent processes was evaluated. The R9A allele, in contrast to the wild type MshE, was unable to complement the ΔmshE mutant for the production of extracellular MshA to the cell surface, reduction in flagella swimming motility, attachment to surfaces and formation of biofilms. Testing homologs of MshE for binding to c-di-GMP identified the type II secretion ATPase of Pseudomonas aeruginosa (PA14_29490) as a c-di-GMP receptor, indicating that type II secretion and type IV pili are both regulated by c-di-GMP. Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates important bacterial functions, including virulence, antibiotic resistance, biofilm formation and cell division. The list of known c-di-GMP receptors is clearly incomplete. Here we utilized a systematic and unbiased biochemical approach to identify c-di-GMP receptors from the 3,812 genes of the Vibrio cholerae genome. Results from this analysis identified most known c-di-GMP receptors as well as MshE, a protein not known to interact with c-di-GMP. The c-di-GMP binding site was identified at the N-terminus of MshE and requires a conserved arginine residue in the 9th position. MshE is the ATPase that powers the secretion of the MshA pili onto the surface of the bacteria. We show that c-di-GMP binding to MshE is required for MshA export and the function of the pili in attachment and biofilm formation. ATPases responsible for related processes such as type IV pili and type II secretion were also tested for c-di-GMP binding, which identified the P. aeruginosa ATPase PA14_29490 as another c-di-GMP binding protein. These findings reveal a new class of c-di-GMP receptor and raise the possibility that c-di-GMP regulate membrane complexes through direct interaction with related type II secretion and type IV pili ATPases.
Collapse
|
172
|
Tarnawski M, Barends TRM, Schlichting I. Structural analysis of an oxygen-regulated diguanylate cyclase. ACTA ACUST UNITED AC 2015; 71:2158-77. [PMID: 26527135 DOI: 10.1107/s139900471501545x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/18/2015] [Indexed: 11/10/2022]
Abstract
Cyclic di-GMP is a bacterial second messenger that is involved in switching between motile and sessile lifestyles. Given the medical importance of biofilm formation, there has been increasing interest in understanding the synthesis and degradation of cyclic di-GMPs and their regulation in various bacterial pathogens. Environmental cues are detected by sensing domains coupled to GGDEF and EAL or HD-GYP domains that have diguanylate cyclase and phosphodiesterase activities, respectively, producing and degrading cyclic di-GMP. The Escherichia coli protein DosC (also known as YddV) consists of an oxygen-sensing domain belonging to the class of globin sensors that is coupled to a C-terminal GGDEF domain via a previously uncharacterized middle domain. DosC is one of the most strongly expressed GGDEF proteins in E. coli, but to date structural information on this and related proteins is scarce. Here, the high-resolution structural characterization of the oxygen-sensing globin domain, the middle domain and the catalytic GGDEF domain in apo and substrate-bound forms is described. The structural changes between the iron(III) and iron(II) forms of the sensor globin domain suggest a mechanism for oxygen-dependent regulation. The structural information on the individual domains is combined into a model of the dimeric DosC holoprotein. These findings have direct implications for the oxygen-dependent regulation of the activity of the cyclase domain.
Collapse
Affiliation(s)
- Miroslaw Tarnawski
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Thomas R M Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
173
|
c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. Nat Rev Microbiol 2015; 13:749-60. [PMID: 26499894 DOI: 10.1038/nrmicro3546] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The complex life cycle of streptomycetes involves two distinct filamentous cell forms: the growing (or vegetative) hyphae and the reproductive (or aerial) hyphae, which differentiate into long chains of spores. Until recently, little was known about the signalling pathways that regulate the developmental transitions leading to sporulation. In this Review, we discuss important new insights into these pathways that have led to the emergence of a coherent regulatory network, focusing on the erection of aerial hyphae and the synchronous cell division event that produces dozens of unigenomic spores. In particular, we highlight the role of cyclic di-GMP (c-di-GMP) in controlling the initiation of development, and the role of the master regulator BldD in mediating c-di-GMP signalling.
Collapse
|
174
|
Yuan X, Khokhani D, Wu X, Yang F, Biener G, Koestler BJ, Raicu V, He C, Waters CM, Sundin GW, Tian F, Yang CH. Cross-talk between a regulatory small RNA, cyclic-di-GMP signalling and flagellar regulator FlhDC for virulence and bacterial behaviours. Environ Microbiol 2015; 17:4745-63. [PMID: 26462993 DOI: 10.1111/1462-2920.13029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 12/01/2022]
Abstract
Dickeya dadantii is a globally dispersed phytopathogen which causes diseases on a wide range of host plants. This pathogen utilizes the type III secretion system (T3SS) to suppress host defense responses, and secretes pectate lyase (Pel) to degrade the plant cell wall. Although the regulatory small RNA (sRNA) RsmB, cyclic diguanylate monophosphate (c-di-GMP) and flagellar regulator have been reported to affect the regulation of these two virulence factors or multiple cell behaviours such as motility and biofilm formation, the linkage between these regulatory components that coordinate the cell behaviours remain unclear. Here, we revealed a sophisticated regulatory network that connects the sRNA, c-di-GMP signalling and flagellar master regulator FlhDC. We propose multi-tiered regulatory mechanisms that link the FlhDC to the T3SS through three distinct pathways including the FlhDC-FliA-YcgR3937 pathway; the FlhDC-EcpC-RpoN-HrpL pathway; and the FlhDC-rsmB-RsmA-HrpL pathway. Among these, EcpC is the most dominant factor for FlhDC to positively regulate T3SS expression.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Devanshi Khokhani
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Xiaogang Wu
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Gabriel Biener
- Department of Physics, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Benjamin J Koestler
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Valerica Raicu
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA.,Department of Physics, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA
| |
Collapse
|
175
|
Bloom-Ackermann Z, Ganin H, Kolodkin-Gal I. Quorum-sensing Cascades Governing Bacterial Multicellular Communities. Isr J Chem 2015. [DOI: 10.1002/ijch.201400106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
176
|
Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proc Natl Acad Sci U S A 2015; 112:E5048-57. [PMID: 26305945 DOI: 10.1073/pnas.1507245112] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We show that pGpG inhibits a PDE-A from Pseudomonas aeruginosa. In a dual DGC and PDE-A reaction, excess pGpG extends the half-life of c-di-GMP, indicating that removal of pGpG is critical for c-di-GMP homeostasis. Thus, we sought to identify the PDE-B enzyme(s) responsible for pGpG degradation. A differential radial capillary action of ligand assay-based screen for pGpG binding proteins identified oligoribonuclease (Orn), an exoribonuclease that hydrolyzes two- to five-nucleotide-long RNAs. Purified Orn rapidly converts pGpG into GMP. To determine whether Orn is the primary enzyme responsible for degrading pGpG, we assayed cell lysates of WT and ∆orn strains of P. aeruginosa PA14 for pGpG stability. The lysates from ∆orn showed 25-fold decrease in pGpG hydrolysis. Complementation with WT, but not active site mutants, restored hydrolysis. Accumulation of pGpG in the ∆orn strain could inhibit PDE-As, increasing c-di-GMP concentration. In support, we observed increased transcription from the c-di-GMP-regulated pel promoter. Additionally, the c-di-GMP-governed auto-aggregation and biofilm phenotypes were elevated in the ∆orn strain in a pel-dependent manner. Finally, we directly detect elevated pGpG and c-di-GMP in the ∆orn strain. Thus, we identified that Orn serves as the primary PDE-B enzyme that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway.
Collapse
|
177
|
Genome-Based Comparison of Cyclic Di-GMP Signaling in Pathogenic and Commensal Escherichia coli Strains. J Bacteriol 2015; 198:111-26. [PMID: 26303830 DOI: 10.1128/jb.00520-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/21/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED The ubiquitous bacterial second messenger cyclic di-GMP (c-di-GMP) has recently become prominent as a trigger for biofilm formation in many bacteria. It is generated by diguanylate cyclases (DGCs; with GGDEF domains) and degraded by specific phosphodiesterases (PDEs; containing either EAL or HD-GYP domains). Most bacterial species contain multiples of these proteins with some having specific functions that are based on direct molecular interactions in addition to their enzymatic activities. Escherichia coli K-12 laboratory strains feature 29 genes encoding GGDEF and/or EAL domains, resulting in a set of 12 DGCs, 13 PDEs, and four enzymatically inactive "degenerate" proteins that act by direct macromolecular interactions. We present here a comparative analysis of GGDEF/EAL domain-encoding genes in 61 genomes of pathogenic, commensal, and probiotic E. coli strains (including enteric pathogens such as enteroaggregative, enterohemorrhagic, enteropathogenic, enterotoxigenic, and adherent and invasive Escherichia coli and the 2011 German outbreak O104:H4 strain, as well as extraintestinal pathogenic E. coli, such as uropathogenic and meningitis-associated E. coli). We describe additional genes for two membrane-associated DGCs (DgcX and DgcY) and four PDEs (the membrane-associated PdeT, as well as the EAL domain-only proteins PdeW, PdeX, and PdeY), thus showing the pangenome of E. coli to contain at least 35 GGDEF/EAL domain proteins. A core set of only eight proteins is absolutely conserved in all 61 strains: DgcC (YaiC), DgcI (YliF), PdeB (YlaB), PdeH (YhjH), PdeK (YhjK), PdeN (Rtn), and the degenerate proteins CsrD and CdgI (YeaI). In all other GGDEF/EAL domain genes, diverse point and frameshift mutations, as well as small or large deletions, were discovered in various strains. IMPORTANCE Our analysis reveals interesting trends in pathogenic Escherichia coli that could reflect different host cell adherence mechanisms. These may either benefit from or be counteracted by the c-di-GMP-stimulated production of amyloid curli fibers and cellulose. Thus, EAEC, which adhere in a "stacked brick" biofilm mode, have a potential for high c-di-GMP accumulation due to DgcX, a strongly expressed additional DGC. In contrast, EHEC and UPEC, which use alternative adherence mechanisms, tend to have extra PDEs, suggesting that low cellular c-di-GMP levels are crucial for these strains under specific conditions. Overall, our study also indicates that GGDEF/EAL domain proteins evolve rapidly and thereby contribute to adaptation to host-specific and environmental niches of various types of E. coli.
Collapse
|
178
|
Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2015; 112:11359-64. [PMID: 26305928 DOI: 10.1073/pnas.1421450112] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The second messenger cyclic diguanylate (c-di-GMP) controls diverse cellular processes among bacteria. Diguanylate cyclases synthesize c-di-GMP, whereas it is degraded by c-di-GMP-specific phosphodiesterases (PDEs). Nearly 80% of these PDEs are predicted to depend on the catalytic function of glutamate-alanine-leucine (EAL) domains, which hydrolyze a single phosphodiester group in c-di-GMP to produce 5'-phosphoguanylyl-(3',5')-guanosine (pGpG). However, to degrade pGpG and prevent its accumulation, bacterial cells require an additional nuclease, the identity of which remains unknown. Here we identify oligoribonuclease (Orn)-a 3'→5' exonuclease highly conserved among Actinobacteria, Beta-, Delta- and Gammaproteobacteria-as the primary enzyme responsible for pGpG degradation in Pseudomonas aeruginosa cells. We found that a P. aeruginosa Δorn mutant had high intracellular c-di-GMP levels, causing this strain to overexpress extracellular polymers and overproduce biofilm. Although recombinant Orn degraded small RNAs in vitro, this enzyme had a proclivity for degrading RNA oligomers comprised of two to five nucleotides (nanoRNAs), including pGpG. Corresponding with this activity, Δorn cells possessed highly elevated pGpG levels. We found that pGpG reduced the rate of c-di-GMP degradation in cell lysates and inhibited the activity of EAL-dependent PDEs (PA2133, PvrR, and purified recombinant RocR) from P. aeruginosa. This pGpG-dependent inhibition was alleviated by the addition of Orn. These data suggest that elevated levels of pGpG exert product inhibition on EAL-dependent PDEs, thereby increasing intracellular c-di-GMP in Δorn cells. Thus, we propose that Orn provides homeostatic control of intracellular pGpG under native physiological conditions and that this activity is fundamental to c-di-GMP signal transduction.
Collapse
|
179
|
Trampari E, Stevenson CEM, Little RH, Wilhelm T, Lawson DM, Malone JG. Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP. J Biol Chem 2015; 290:24470-83. [PMID: 26265469 PMCID: PMC4591828 DOI: 10.1074/jbc.m115.661439] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 01/03/2023] Open
Abstract
The widespread second messenger molecule cyclic di-GMP (cdG) regulates the transition from motile and virulent lifestyles to sessile, biofilm-forming ones in a wide range of bacteria. Many pathogenic and commensal bacterial-host interactions are known to be controlled by cdG signaling. Although the biochemistry of cyclic dinucleotide metabolism is well understood, much remains to be discovered about the downstream signaling pathways that induce bacterial responses upon cdG binding. As part of our ongoing research into the role of cdG signaling in plant-associated Pseudomonas species, we carried out an affinity capture screen for cdG binding proteins in the model organism Pseudomonas fluorescens SBW25. The flagella export AAA+ ATPase FliI was identified as a result of this screen and subsequently shown to bind specifically to the cdG molecule, with a KD in the low micromolar range. The interaction between FliI and cdG appears to be very widespread. In addition to FliI homologs from diverse bacterial species, high affinity binding was also observed for the type III secretion system homolog HrcN and the type VI ATPase ClpB2. The addition of cdG was shown to inhibit FliI and HrcN ATPase activity in vitro. Finally, a combination of site-specific mutagenesis, mass spectrometry, and in silico analysis was used to predict that cdG binds to FliI in a pocket of highly conserved residues at the interface between two FliI subunits. Our results suggest a novel, fundamental role for cdG in controlling the function of multiple important bacterial export pathways, through direct allosteric control of export ATPase proteins.
Collapse
Affiliation(s)
| | - Clare E M Stevenson
- the Biological Chemistry Department, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | - Thomas Wilhelm
- the Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom, and
| | - David M Lawson
- the Biological Chemistry Department, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Jacob G Malone
- From the Molecular Microbiology Department and the School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
180
|
An Essential Poison: Synthesis and Degradation of Cyclic Di-AMP in Bacillus subtilis. J Bacteriol 2015; 197:3265-74. [PMID: 26240071 DOI: 10.1128/jb.00564-15] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Gram-positive bacteria synthesize the second messenger cyclic di-AMP (c-di-AMP) to control cell wall and potassium homeostasis and to secure the integrity of their DNA. In the firmicutes, c-di-AMP is essential for growth. The model organism Bacillus subtilis encodes three diadenylate cyclases and two potential phosphodiesterases to produce and degrade c-di-AMP, respectively. Among the three cyclases, CdaA is conserved in nearly all firmicutes, and this enzyme seems to be responsible for the c-di-AMP that is required for cell wall homeostasis. Here, we demonstrate that CdaA localizes to the membrane and forms a complex with the regulatory protein CdaR and the glucosamine-6-phosphate mutase GlmM. Interestingly, cdaA, cdaR, and glmM form a gene cluster that is conserved throughout the firmicutes. This conserved arrangement and the observed interaction between the three proteins suggest a functional relationship. Our data suggest that GlmM and GlmS are involved in the control of c-di-AMP synthesis. These enzymes convert glutamine and fructose-6-phosphate to glutamate and glucosamine-1-phosphate. c-di-AMP synthesis is enhanced if the cells are grown in the presence of glutamate compared to that in glutamine-grown cells. Thus, the quality of the nitrogen source is an important signal for c-di-AMP production. In the analysis of c-di-AMP-degrading phosphodiesterases, we observed that both phosphodiesterases, GdpP and PgpH (previously known as YqfF), contribute to the degradation of the second messenger. Accumulation of c-di-AMP in a gdpP pgpH double mutant is toxic for the cells, and the cells respond to this accumulation by inactivation of the diadenylate cyclase CdaA. IMPORTANCE Bacteria use second messengers for signal transduction. Cyclic di-AMP (c-di-AMP) is the only second messenger known so far that is essential for a large group of bacteria. We have studied the regulation of c-di-AMP synthesis and the role of the phosphodiesterases that degrade this second messenger. c-di-AMP synthesis strongly depends on the nitrogen source: glutamate-grown cells produce more c-di-AMP than glutamine-grown cells. The accumulation of c-di-AMP in a strain lacking both phosphodiesterases is toxic and results in inactivation of the diadenylate cyclase CdaA. Our results suggest that CdaA is the critical diadenylate cyclase that produces the c-di-AMP that is both essential and toxic upon accumulation.
Collapse
|
181
|
Yan F, Fojtikova V, Man P, Stranava M, Martínková M, Du Y, Huang D, Shimizu T. Catalytic enhancement of the heme-based oxygen-sensing phosphodiesterase EcDOS by hydrogen sulfide is caused by changes in heme coordination structure. Biometals 2015; 28:637-52. [PMID: 25804428 DOI: 10.1007/s10534-015-9847-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/13/2015] [Indexed: 02/05/2023]
Abstract
EcDOS is a heme-based O2-sensing phosphodiesterase in which O2 binding to the heme iron complex in the N-terminal domain substantially enhances catalysis toward cyclic-di-GMP, which occurs in the C-terminal domain. Here, we found that hydrogen sulfide enhances the catalytic activity of full-length EcDOS, possibly owing to the admixture of 6-coordinated heme Fe(III)-SH(-) and Fe(II)-O2 complexes generated during the reaction. Alanine substitution at Met95, the axial ligand for the heme Fe(II) complex, converted the heme Fe(III) complex into the heme Fe(III)-SH(-) complex, but the addition of Na2S did not further reduce it to the heme Fe(II) complex of the Met95Ala mutant, and no subsequent formation of the heme Fe(II)-O2 complex was observed. In contrast, a Met95His mutant formed a stable heme Fe(II)-O2 complex in response to the same treatment. An Arg97Glu mutant, containing a glutamate substitution at the amino acid that interacts with O2 in the heme Fe(II)-O2 complex, formed a stable heme Fe(II) complex in response to Na2S, but this complex failed to bind O2. Interestingly, the addition of Na2S promoted formation of verdoheme (oxygen-incorporated, modified protoporphyrin IX) in an Arg97Ile mutant. Catalytic enhancement by Na2S was similar for Met95 mutants and the wild type, but significantly lower for the Arg97 mutants. Thus, this study shows the first isolation of spectrometrically separated, stable heme Fe(III)-SH(-), heme Fe(II) and heme Fe(II)-O2 complexes of full-length EcDOS with Na2S, and confirms that external-ligand-bound, 6-coordinated heme Fe(III)-SH(-) or heme Fe(II)-O2 complexes critically contribute to the Na2S-induced catalytic enhancement of EcDOS.
Collapse
Affiliation(s)
- Fang Yan
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Chin KH, Liang JM, Yang JG, Shih MS, Tu ZL, Wang YC, Sun XH, Hu NJ, Liang ZX, Dow JM, Ryan RP, Chou SH. Structural Insights into the Distinct Binding Mode of Cyclic Di-AMP with SaCpaA_RCK. Biochemistry 2015; 54:4936-51. [PMID: 26171638 DOI: 10.1021/acs.biochem.5b00633] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cyclic di-AMP (c-di-AMP) is a relatively new member of the family of bacterial cyclic dinucleotide second messengers. It has attracted significant attention in recent years because of the abundant roles it plays in a variety of Gram-positive bacteria. The structural features that allow diverse bacterial proteins to bind c-di-AMP are not fully understood. Here we report the biophysical and structural studies of c-di-AMP in complex with a bacterial cation-proton antiporter (CpaA) RCK (regulator of the conductance of K(+)) protein from Staphylococcus aureus (Sa). The crystal structure of the SaCpaA_RCK C-terminal domain (CTD) in complex with c-di-AMP was determined to a resolution of 1.81 Å. This structure revealed two well-liganded water molecules, each interacting with one of the adenine bases by a unique H2Olp-π interaction to stabilize the complex. Sequence blasting using the SaCpaA_RCK primary sequence against the bacterial genome database returned many CpaA analogues, and alignment of these sequences revealed that the active site residues are all well-conserved, indicating a universal c-di-AMP binding mode for CpaA_RCK. A proteoliposome activity assay using the full-length SaCpaA membrane protein indicated that c-di-AMP binding alters its antiporter activity by approximately 40%. A comparison of this structure to all other reported c-di-AMP-receptor complex structures revealed that c-di-AMP binds to receptors in either a "U-shape" or "V-shape" mode. The two adenine rings are stabilized in the inner interaction zone by a variety of CH-π, cation-π, backbone-π, or H2Olp-π interaction, but more commonly in the outer interaction zone by hydrophobic CH-π or π-π interaction. The structures determined to date provide an understanding of the mechanisms by which a single c-di-AMP can interact with a variety of receptor proteins, and how c-di-AMP binds receptor proteins in a special way different from that of c-di-GMP.
Collapse
Affiliation(s)
- Ko-Hsin Chin
- †National Chung Hsing University Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Juin-Ming Liang
- ‡Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Jauo-Guey Yang
- ‡Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Min-Shao Shih
- ‡Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Zhi-Le Tu
- ‡Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Yu-Chuang Wang
- ‡Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Xing-Han Sun
- ‡Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Nien-Jen Hu
- ‡Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Zhao-Xun Liang
- §School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - J Maxwell Dow
- ∥School of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Robert P Ryan
- ⊥Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, U.K
| | - Shan-Ho Chou
- †National Chung Hsing University Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, ROC.,‡Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| |
Collapse
|
183
|
Liang ZX. The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites. Nat Prod Rep 2015; 32:663-83. [PMID: 25666534 DOI: 10.1039/c4np00086b] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cyclic dinucleotide c-di-GMP has emerged in the last decade as a prevalent intracellular messenger that orchestrates the transition between the motile and sessile lifestyles of many bacterial species. The motile-to-sessile transition is often associated with the formation of extracellular matrix-encased biofilm, an organized community of bacterial cells that often contributes to antibiotic resistance and host-pathogen interaction. It is increasingly clear that c-di-GMP controls motility, biofilm formation and bacterial pathogenicity partially through regulating the production of exopolysaccharides (EPS) and small-molecule secondary metabolites. This review summarizes our current understanding of the regulation of EPS biosynthesis by c-di-GMP in a diversity of bacterial species and highlights the emerging role of c-di-GMP in the biosynthesis of small-molecule secondary metabolites.
Collapse
Affiliation(s)
- Zhao-Xun Liang
- Division of Structural Biology & Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551.
| |
Collapse
|
184
|
Logical-continuous modelling of post-translationally regulated bistability of curli fiber expression in Escherichia coli. BMC SYSTEMS BIOLOGY 2015. [PMID: 26201334 PMCID: PMC4511525 DOI: 10.1186/s12918-015-0183-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Bacteria have developed a repertoire of signalling mechanisms that enable adaptive responses to fluctuating environmental conditions. The formation of biofilm, for example, allows persisting in times of external stresses, e.g. induced by antibiotics or a lack of nutrients. Adhesive curli fibers, the major extracellular matrix components in Escherichia coli biofilms, exhibit heterogeneous expression in isogenic cells exposed to identical external conditions. The dynamical mechanisms underlying this heterogeneity remain poorly understood. In this work, we elucidate the potential role of post-translational bistability as a source for this heterogeneity. RESULTS We introduce a structured modelling workflow combining logical network topology analysis with time-continuous deterministic and stochastic modelling. The aim is to evaluate the topological structure of the underlying signalling network and to identify and analyse model parameterisations that satisfy observations from a set of genetic knockout experiments. Our work supports the hypothesis that the phenotypic heterogeneity of curli expression in biofilm cells is induced by bistable regulation at the post-translational level. Stochastic modelling suggests diverse noise-induced switching behaviours between the stable states, depending on the expression levels of the c-di-GMP-producing (diguanylate cyclases, DGCs) and -degrading (phosphodiesterases, PDEs) enzymes and reveals the quantitative difference in stable c-di-GMP levels between distinct phenotypes. The most dominant type of behaviour is characterised by a fast switching from curli-off to curli-on with a slow switching in the reverse direction and the second most dominant type is a long-term differentiation into curli-on or curli-off cells. This behaviour may implicate an intrinsic feature of the system allowing for a fast adaptive response (curli-on) versus a slow transition to the curli-off state, in line with experimental observations. CONCLUSION The combination of logical and continuous modelling enables a thorough analysis of different determinants of bistable regulation, i.e. network topology and biochemical kinetics, and allows for an incorporation of experimental data from heterogeneous sources. Our approach yields a mechanistic explanation for the phenotypic heterogeneity of curli fiber expression. Furthermore, the presented work provides a detailed insight into the interactions between the multiple DGC- and PDE-type enzymes and the role of c-di-GMP in dynamical regulation of cellular decisions.
Collapse
|
185
|
Richter AM, Povolotsky TL, Wieler LH, Hengge R. Cyclic-di-GMP signalling and biofilm-related properties of the Shiga toxin-producing 2011 German outbreak Escherichia coli O104:H4. EMBO Mol Med 2015; 6:1622-37. [PMID: 25361688 PMCID: PMC4287979 DOI: 10.15252/emmm.201404309] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In 2011, nearly 4,000 people in Germany were infected by Shiga toxin (Stx)-producing Escherichia coli O104:H4 with > 22% of patients developing haemolytic uraemic syndrome (HUS). Genome sequencing showed the outbreak strain to be related to enteroaggregative E. coli (EAEC), suggesting its high virulence results from EAEC-typical strong adherence and biofilm formation combined to Stx production. Here, we report that the outbreak strain contains a novel diguanylate cyclase (DgcX)--producing the biofilm-promoting second messenger c-di-GMP--that shows higher expression than any other known E. coli diguanylate cyclase. Unlike closely related E. coli, the outbreak strain expresses the c-di-GMP-controlled biofilm regulator CsgD and amyloid curli fibres at 37°C, but is cellulose-negative. Moreover, it constantly generates derivatives with further increased and deregulated production of CsgD and curli. Since curli fibres are strongly proinflammatory, with cellulose counteracting this effect, high c-di-GMP and curli production by the outbreak O104:H4 strain may enhance not only adherence but may also contribute to inflammation, thereby facilitating entry of Stx into the bloodstream and to the kidneys where Stx causes HUS.
Collapse
Affiliation(s)
- Anja M Richter
- Institute of Biology / Microbiology Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tatyana L Povolotsky
- Institute of Biology / Microbiology Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lothar H Wieler
- Institute of Microbiology and Epizootics Freie Universität Berlin, Berlin, Germany
| | - Regine Hengge
- Institute of Biology / Microbiology Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
186
|
Shimizu T, Huang D, Yan F, Stranava M, Bartosova M, Fojtíková V, Martínková M. Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors. Chem Rev 2015; 115:6491-533. [PMID: 26021768 DOI: 10.1021/acs.chemrev.5b00018] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Toru Shimizu
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
- §Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 983-8551, Japan
| | - Dongyang Huang
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fang Yan
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Martin Stranava
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Martina Bartosova
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Veronika Fojtíková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Markéta Martínková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| |
Collapse
|
187
|
Systematic Nomenclature for GGDEF and EAL Domain-Containing Cyclic Di-GMP Turnover Proteins of Escherichia coli. J Bacteriol 2015; 198:7-11. [PMID: 26148715 DOI: 10.1128/jb.00424-15] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent years, Escherichia coli has served as one of a few model bacterial species for studying cyclic di-GMP (c-di-GMP) signaling. The widely used E. coli K-12 laboratory strains possess 29 genes encoding proteins with GGDEF and/or EAL domains, which include 12 diguanylate cyclases (DGC), 13 c-di-GMP-specific phosphodiesterases (PDE), and 4 "degenerate" enzymatically inactive proteins. In addition, six new GGDEF and EAL (GGDEF/EAL) domain-encoding genes, which encode two DGCs and four PDEs, have recently been found in genomic analyses of commensal and pathogenic E. coli strains. As a group of researchers who have been studying the molecular mechanisms and the genomic basis of c-di-GMP signaling in E. coli, we now propose a general and systematic dgc and pde nomenclature for the enzymatically active GGDEF/EAL domain-encoding genes of this model species. This nomenclature is intuitive and easy to memorize, and it can also be applied to additional genes and proteins that might be discovered in various strains of E. coli in future studies.
Collapse
|
188
|
Druzhinin SY, Tran NT, Skalenko KS, Goldman SR, Knoblauch JG, Dove SL, Nickels BE. A Conserved Pattern of Primer-Dependent Transcription Initiation in Escherichia coli and Vibrio cholerae Revealed by 5' RNA-seq. PLoS Genet 2015; 11:e1005348. [PMID: 26131907 PMCID: PMC4488433 DOI: 10.1371/journal.pgen.1005348] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022] Open
Abstract
Transcription initiation that involves the use of a 2- to ~4-nt oligoribonucleotide primer, “primer-dependent initiation,” (PDI) has been shown to be widely prevalent at promoters of genes expressed during the stationary phase of growth in Escherichia coli. However, the extent to which PDI impacts E. coli physiology, and the extent to which PDI occurs in other bacteria is not known. Here we establish a physiological role for PDI in E. coli as a regulatory mechanism that modulates biofilm formation. We further demonstrate using high-throughput sequencing of RNA 5′ ends (5′ RNA-seq) that PDI occurs in the pathogenic bacterium Vibrio cholerae. A comparative global analysis of PDI in V. cholerae and E. coli reveals that the pattern of PDI is strikingly similar in the two organisms. In particular, PDI is detected in stationary phase, is not detected in exponential phase, and is preferentially apparent at promoters carrying the sequence T−1A+1 or G−1G+1 (where position +1 corresponds to the position of de novo initiation). Our findings demonstrate a physiological role for PDI and suggest PDI may be widespread among Gammaproteobacteria. We propose that PDI in both E. coli and V. cholerae occurs though a growth phase-dependent process that leads to the preferential generation of the linear dinucleotides 5´-UA-3´ and 5´-GG-3´. Primer-dependent transcription initiation, PDI, refers to an alternative mechanism of transcription initiation whereby the first phosphodiester bond within the nascent RNA is formed between a 2- to ~4-nt RNA primer and an incoming nucleoside triphosphate. Although PDI has been shown to occur in E. coli, the impact of PDI on E. coli physiology, and the extent to which PDI occurs in other bacteria is unknown. Here we establish that PDI modulates the ability of E. coli to form biofilms, a surface attached community of bacteria encased in a polymeric matrix. We further describe a significantly improved RNA-seq based method for the detection of PDI in cells. Using this method we document the occurrence of PDI in the pathogenic bacterium Vibrio cholerae. We further show that the pattern of PDI in V. cholerae is identical to that observed in E. coli, suggesting that PDI in these two organisms may occur through a conserved process that produces identical populations of 2- to ~4-nt RNA primers. Our findings suggest PDI may be widespread in Gammaproteobacteria.
Collapse
Affiliation(s)
- Sergey Y. Druzhinin
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ngat T. Tran
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kyle S. Skalenko
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Seth R. Goldman
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jared G. Knoblauch
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SLD); (BEN)
| | - Bryce E. Nickels
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (SLD); (BEN)
| |
Collapse
|
189
|
A Pterin-Dependent Signaling Pathway Regulates a Dual-Function Diguanylate Cyclase-Phosphodiesterase Controlling Surface Attachment in Agrobacterium tumefaciens. mBio 2015; 6:e00156. [PMID: 26126849 PMCID: PMC4488946 DOI: 10.1128/mbio.00156-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The motile-to-sessile transition is an important lifestyle switch in diverse bacteria and is often regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). In general, high c-di-GMP concentrations promote attachment to surfaces, whereas cells with low levels of signal remain motile. In the plant pathogen Agrobacterium tumefaciens, c-di-GMP controls attachment and biofilm formation via regulation of a unipolar polysaccharide (UPP) adhesin. The levels of c-di-GMP in A. tumefaciens are controlled in part by the dual-function diguanylate cyclase-phosphodiesterase (DGC-PDE) protein DcpA. In this study, we report that DcpA possesses both c-di-GMP synthesizing and degrading activities in heterologous and native genetic backgrounds, a binary capability that is unusual among GGDEF-EAL domain-containing proteins. DcpA activity is modulated by a pteridine reductase called PruA, with DcpA acting as a PDE in the presence of PruA and a DGC in its absence. PruA enzymatic activity is required for the control of DcpA and through this control, attachment and biofilm formation. Intracellular pterin analysis demonstrates that PruA is responsible for the production of a novel pterin species. In addition, the control of DcpA activity also requires PruR, a protein encoded directly upstream of DcpA with a predicted molybdopterin-binding domain. PruR is hypothesized to be a potential signaling intermediate between PruA and DcpA through an as-yet-unidentified mechanism. This study provides the first prokaryotic example of a pterin-mediated signaling pathway and a new model for the regulation of dual-function DGC-PDE proteins. IMPORTANCE Pathogenic bacteria often attach to surfaces and form multicellular communities called biofilms. Biofilms are inherently resilient and can be difficult to treat, resisting common antimicrobials. Understanding how bacterial cells transition to the biofilm lifestyle is essential in developing new therapeutic strategies. We have characterized a novel signaling pathway that plays a dominant role in the regulation of biofilm formation in the model pathogen Agrobacterium tumefaciens. This control pathway involves small metabolites called pterins, well studied in eukaryotes, but this is the first example of pterin-dependent signaling in bacteria. The described pathway controls levels of an important intracellular second messenger (cyclic diguanylate monophosphate) that regulates key bacterial processes such as biofilm formation, motility, and virulence. Pterins control the balance of activity for an enzyme that both synthesizes and degrades the second messenger. These findings reveal a complex, multistep pathway that modulates this enzyme, possibly identifying new targets for antibacterial intervention.
Collapse
|
190
|
Fei N, Häussinger D, Blümli S, Laventie BJ, Bizzini LD, Zimmermann K, Jenal U, Gillingham D. Catalytic carbene transfer allows the direct customization of cyclic purine dinucleotides. Chem Commun (Camb) 2015; 50:8499-502. [PMID: 24946836 DOI: 10.1039/c4cc01919a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We describe a simple method for the direct modification of nucleobases in cyclic purine dinucleotides, important signalling molecules in both prokaryotes and eukaryotes. The method tolerates all members of the cyclic dinucleotide family and could be used to modulate their function or introduce useful side-chains such as fluorophores and photo-crosslinking groups.
Collapse
Affiliation(s)
- Na Fei
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Commichau FM, Dickmanns A, Gundlach J, Ficner R, Stülke J. A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Mol Microbiol 2015; 97:189-204. [PMID: 25869574 DOI: 10.1111/mmi.13026] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2015] [Indexed: 12/28/2022]
Abstract
Second messengers are key components of many signal transduction pathways. In addition to cyclic AMP, ppGpp and cyclic di-GMP, many bacteria use also cyclic di-AMP as a second messenger. This molecule is synthesized by distinct classes of diadenylate cyclases and degraded by phosphodiesterases. The control of the intracellular c-di-AMP pool is very important since both a lack of this molecule and its accumulation can inhibit growth of the bacteria. In many firmicutes, c-di-AMP is essential, making it the only known essential second messenger. Cyclic di-AMP is implicated in a variety of functions in the cell, including cell wall metabolism, potassium homeostasis, DNA repair and the control of gene expression. To understand the molecular mechanisms behind these functions, targets of c-di-AMP have been identified and characterized. Interestingly, c-di-AMP can bind both proteins and RNA molecules. Several proteins that interact with c-di-AMP are required to control the intracellular potassium concentration. In Bacillus subtilis, c-di-AMP also binds a riboswitch that controls the expression of a potassium transporter. Thus, c-di-AMP is the only known second messenger that controls a biological process by interacting with both a protein and the riboswitch that regulates its expression. Moreover, in Listeria monocytogenes c-di-AMP controls the activity of pyruvate carboxylase, an enzyme that is required to replenish the citric acid cycle. Here, we review the components of the c-di-AMP signaling system.
Collapse
Affiliation(s)
- Fabian M Commichau
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077, Göttingen, Germany
| | - Jan Gundlach
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| |
Collapse
|
192
|
Xie Q, Zhao F, Liu H, Shan Y, Liu F. A label-free and self-assembled electrochemical biosensor for highly sensitive detection of cyclic diguanylate monophosphate (c-di-GMP) based on RNA riboswitch. Anal Chim Acta 2015; 882:22-6. [PMID: 26043087 DOI: 10.1016/j.aca.2015.04.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/15/2015] [Accepted: 04/30/2015] [Indexed: 12/26/2022]
Abstract
Cyclic diguanylate monophosphate (c-di-GMP) is an important second messenger that regulates a variety of complex physiological processes involved in motility, virulence, biofilm formation and cell cycle progression in several bacteria. Herein we report a simple label-free and self-assembled RNA riboswitch-based biosensor for sensitive and selective detection of c-di-GMP. The detectable concentration range of c-di-GMP is from 50 nM to 1 μM with a detection limit of 50 nM.
Collapse
Affiliation(s)
- Qingyun Xie
- Single Molecule Nanometry Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China(1)
| | - Fulin Zhao
- Single Molecule Nanometry Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China(1)
| | - Hongrui Liu
- Single Molecule Nanometry Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China(1)
| | - Yanke Shan
- Single Molecule Nanometry Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China(1)
| | - Fei Liu
- Single Molecule Nanometry Laboratory, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China(1).
| |
Collapse
|
193
|
The Xanthomonas oryzae pv. oryzae PilZ Domain Proteins Function Differentially in Cyclic di-GMP Binding and Regulation of Virulence and Motility. Appl Environ Microbiol 2015; 81:4358-67. [PMID: 25911481 DOI: 10.1128/aem.04044-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/10/2015] [Indexed: 12/17/2022] Open
Abstract
The PilZ domain proteins have been demonstrated to be one of the major types of receptors mediating cyclic di-GMP (c-di-GMP) signaling pathways in several pathogenic bacteria. However, little is known about the function of PilZ domain proteins in c-di-GMP regulation of virulence in the bacterial blight pathogen of rice Xanthomonas oryzae pv. oryzae. Here, the roles of PilZ domain proteins PXO_00049 and PXO_02374 in c-di-GMP binding, regulation of virulence and motility, and subcellular localization were characterized in comparison with PXO_02715, identified previously as an interactor with the c-di-GMP receptor Filp to regulate virulence. The c-di-GMP binding motifs in the PilZ domains were conserved in PXO_00049 and PXO_02374 but were less well conserved in PXO_02715. PXO_00049 and PXO_02374 but not PXO_02715 proteins bound to c-di-GMP with high affinity in vitro, and the R(141) and R(10) residues in the PilZ domains of PXO_00049 and PXO_02374, respectively, were crucial for c-di-GMP binding. Gene deletion of PXO_00049 and PXO_02374 resulted in significant increases in virulence and hrp gene transcription, indicating their negative regulation of virulence via type III secretion system expression. All mutants showed significant changes in sliding motility but not exopolysaccharide production and biofilm formation. In trans expression of the full-length open reading frame (ORF) of each gene in the relevant mutants led to restoration of the phenotype to wild-type levels. Moreover, PXO_00049 and PXO_02374 displayed mainly multisite subcellular localizations, whereas PXO_02715 showed nonpolar distributions in the X. oryzae pv. oryzae cells. Therefore, this study demonstrated the different functions of the PilZ domain proteins in mediation of c-di-GMP regulation of virulence and motility in X. oryzae pv. oryzae.
Collapse
|
194
|
Yang X, Yang XA, Xu M, Zhou L, Fan Z, Jiang T. Crystal structures of YfiR from Pseudomonas aeruginosa in two redox states. Biochem Biophys Res Commun 2015; 461:14-20. [PMID: 25849887 DOI: 10.1016/j.bbrc.2015.03.160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/28/2015] [Indexed: 10/23/2022]
Abstract
YfiBNR is a recently identified c-di-GMP regulatory system involved in bacterial biofilm formation. The periplasmic protein YfiR inhibits the diguanylate cyclase activity of the inner membrane protein YfiN, whereas YfiB in the outer membrane can release this inhibition by sequestration of YfiR. In addition, this system may respond to anoxic conditions via YfiR, although the detailed mechanism is still unknown. Here we report crystal structures of Pseudomonas aeruginosa YfiR in the absence and presence of oxidative glutathione. Our structures reveal the overall folding of YfiR for the first time and demonstrate that YfiR exist as a dimer. Comparison of the two structures in different redox states revealed a broken/formation of one disulfide bond (Cys71-Cys110) and local conformational change around the other one (Cys145-Cys152). Mutagenesis studies indicated that Cys145-Cys152 plays an important role in maintaining the correct folding of YfiR.
Collapse
Affiliation(s)
- Xuan Yang
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiu-An Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Lei Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zusen Fan
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Tao Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
195
|
Laventie BJ, Nesper J, Ahrné E, Glatter T, Schmidt A, Jenal U. Capture compound mass spectrometry--a powerful tool to identify novel c-di-GMP effector proteins. J Vis Exp 2015. [PMID: 25867682 DOI: 10.3791/51404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Considerable progress has been made during the last decade towards the identification and characterization of enzymes involved in the synthesis (diguanylate cyclases) and degradation (phosphodiesterases) of the second messenger c-di-GMP. In contrast, little information is available regarding the molecular mechanisms and cellular components through which this signaling molecule regulates a diverse range of cellular processes. Most of the known effector proteins belong to the PilZ family or are degenerated diguanylate cyclases or phosphodiesterases that have given up on catalysis and have adopted effector function. Thus, to better define the cellular c-di-GMP network in a wide range of bacteria experimental methods are required to identify and validate novel effectors for which reliable in silico predictions fail. We have recently developed a novel Capture Compound Mass Spectrometry (CCMS) based technology as a powerful tool to biochemically identify and characterize c-di-GMP binding proteins. This technique has previously been reported to be applicable to a wide range of organisms(1). Here we give a detailed description of the protocol that we utilize to probe such signaling components. As an example, we use Pseudomonas aeruginosa, an opportunistic pathogen in which c-di-GMP plays a critical role in virulence and biofilm control. CCMS identified 74% (38/51) of the known or predicted components of the c-di-GMP network. This study explains the CCMS procedure in detail, and establishes it as a powerful and versatile tool to identify novel components involved in small molecule signaling.
Collapse
Affiliation(s)
| | - Jutta Nesper
- Focal Area Infection Biology, Biozentrum of the University of Basel
| | - Erik Ahrné
- Proteomics Core Facility, Biozentrum of the University of Basel
| | - Timo Glatter
- Proteomics Core Facility, Biozentrum of the University of Basel
| | | | - Urs Jenal
- Focal Area Infection Biology, Biozentrum of the University of Basel;
| |
Collapse
|
196
|
Cursino L, Athinuwat D, Patel KR, Galvani CD, Zaini PA, Li Y, De La Fuente L, Hoch HC, Burr TJ, Mowery P. Characterization of the Xylella fastidiosa PD1671 gene encoding degenerate c-di-GMP GGDEF/EAL domains, and its role in the development of Pierce's disease. PLoS One 2015; 10:e0121851. [PMID: 25811864 PMCID: PMC4374697 DOI: 10.1371/journal.pone.0121851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/16/2015] [Indexed: 01/09/2023] Open
Abstract
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce's disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms. Here we examine the role in X. fastidiosa virulence of an uncharacterized gene, PD1671, annotated as a two-component response regulator with potential GGDEF and EAL domains. GGDEF domains are found in c-di-GMP diguanylate cyclases while EAL domains are found in phosphodiesterases, and these domains are for c-di-GMP production and turnover, respectively. Functional analysis of the PD1671 gene revealed that it affected multiple X. fastidiosa virulence-related phenotypes. A Tn5 PD1671 mutant had a hypervirulent phenotype in grapevines presumably due to enhanced expression of gum genes leading to increased exopolysaccharide levels that resulted in elevated biofilm formation. Interestingly, the PD1671 mutant also had decreased motility in vitro but did not show a reduced distribution in grapevines following inoculation. Given these responses, the putative PD1671 protein may be a negative regulator of X. fastidiosa virulence.
Collapse
Affiliation(s)
- Luciana Cursino
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
| | - Dusit Athinuwat
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Kelly R. Patel
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
| | - Cheryl D. Galvani
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
| | - Paulo A. Zaini
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Yaxin Li
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Leonardo De La Fuente
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Harvey C. Hoch
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Thomas J. Burr
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Patricia Mowery
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
- * E-mail:
| |
Collapse
|
197
|
Structural basis of functional diversification of the HD-GYP domain revealed by the Pseudomonas aeruginosa PA4781 protein, which displays an unselective bimetallic binding site. J Bacteriol 2015; 197:1525-35. [PMID: 25691523 DOI: 10.1128/jb.02606-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED The intracellular level of the bacterial secondary messenger cyclic di-3',5'-GMP (c-di-GMP) is determined by a balance between its biosynthesis and degradation, the latter achieved via dedicated phosphodiesterases (PDEs) bearing a characteristic EAL or HD-GYP domain. We here report the crystal structure of PA4781, one of the three Pseudomonas aeruginosa HD-GYP proteins, which we have previously characterized in vitro. The structure shows a bimetallic active site whose metal binding mode is different from those of both HD-GYP PDEs characterized so far. Purified PA4781 does not contain iron in the active site as for other HD-GYPs, and we show that it binds to a wide range of transition metals with similar affinities. Moreover, the structural features of PA4781 indicate that this is preferentially a pGpG binding protein, as we previously suggested. Our results point out that the structural features of HD-GYPs are more complex than predicted so far and identify the HD-GYP domain as a conserved scaffold which has evolved to preferentially interact with a partner GGDEF but which harbors different functions obtained through diversification of the active site. IMPORTANCE In bacteria, the capability to form biofilms, responsible for increased pathogenicity and antibiotic resistance, is almost universally stimulated by the second messenger cyclic di-GMP (c-di-GMP). To design successful strategies for targeting biofilm formation, a detailed characterization of the enzymes involved in c-di-GMP metabolism is crucial. We solved the structure of the HD-GYP domain of PA4781 from Pseudomonas aeruginosa, involved in c-di-GMP degradation. This is the third structure of this class of phosphodiesterases to be solved, and with respect to its homologues, it shows significant differences both in the nature and in the binding mode of the coordinated metals, indicating that HD-GYP proteins are able to fine-tune their function, thereby increasing the chances of the microorganism to adapt to different environmental needs.
Collapse
|
198
|
Castro M, Deane SM, Ruiz L, Rawlings DE, Guiliani N. Diguanylate cyclase null mutant reveals that C-Di-GMP pathway regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus. PLoS One 2015; 10:e0116399. [PMID: 25689133 PMCID: PMC4331095 DOI: 10.1371/journal.pone.0116399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/09/2014] [Indexed: 01/06/2023] Open
Abstract
An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process.
Collapse
Affiliation(s)
- Matías Castro
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Shelly M. Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Lina Ruiz
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Douglas E. Rawlings
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Nicolas Guiliani
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
199
|
Novel functions of (p)ppGpp and Cyclic di-GMP in mycobacterial physiology revealed by phenotype microarray analysis of wild-type and isogenic strains of Mycobacterium smegmatis. Appl Environ Microbiol 2015; 81:2571-8. [PMID: 25636840 DOI: 10.1128/aem.03999-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The bacterial second messengers (p)ppGpp and bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) regulate important functions, such as transcription, virulence, biofilm formation, and quorum sensing. In mycobacteria, they regulate long-term survival during starvation, pathogenicity, and dormancy. Recently, a Pseudomonas aeruginosa strain lacking (p)ppGpp was shown to be sensitive to multiple classes of antibiotics and defective in biofilm formation. We were interested to find out whether Mycobacterium smegmatis strains lacking the gene for either (p)ppGpp synthesis (ΔrelMsm) or c-di-GMP synthesis (ΔdcpA) would display similar phenotypes. We used phenotype microarray technology to compare the growth of the wild-type and the knockout strains in the presence of several antibiotics. Surprisingly, the ΔrelMsm and ΔdcpA strains showed enhanced survival in the presence of many antibiotics, but they were defective in biofilm formation. These strains also displayed altered surface properties, like impaired sliding motility, rough colony morphology, and increased aggregation in liquid cultures. Biofilm formation and surface properties are associated with the presence of glycopeptidolipids (GPLs) in the cell walls of M. smegmatis. Thin-layer chromatography analysis of various cell wall fractions revealed that the levels of GPLs and polar lipids were reduced in the knockout strains. As a result, the cell walls of the knockout strains were significantly more hydrophobic than those of the wild type and the complemented strains. We hypothesize that reduced levels of GPLs and polar lipids may contribute to the antibiotic resistance shown by the knockout strains. Altogether, our data suggest that (p)ppGpp and c-di-GMP may be involved in the metabolism of glycopeptidolipids and polar lipids in M. smegmatis.
Collapse
|
200
|
Tschowri N, Schumacher MA, Schlimpert S, Chinnam NB, Findlay KC, Brennan RG, Buttner MJ. Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell 2015; 158:1136-1147. [PMID: 25171413 PMCID: PMC4151990 DOI: 10.1016/j.cell.2014.07.022] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/27/2014] [Accepted: 07/17/2014] [Indexed: 11/25/2022]
Abstract
The cyclic dinucleotide c-di-GMP is a signaling molecule with diverse functions in cellular physiology. Here, we report that c-di-GMP can assemble into a tetramer that mediates the effective dimerization of a transcription factor, BldD, which controls the progression of multicellular differentiation in sporulating actinomycete bacteria. BldD represses expression of sporulation genes during vegetative growth in a manner that depends on c-di-GMP-mediated dimerization. Structural and biochemical analyses show that tetrameric c-di-GMP links two subunits of BldD through their C-terminal domains, which are otherwise separated by ∼10 Å and thus cannot effect dimerization directly. Binding of the c-di-GMP tetramer by BldD is selective and requires a bipartite RXD-X8-RXXD signature. The findings indicate a unique mechanism of protein dimerization and the ability of nucleotide signaling molecules to assume alternative oligomeric states to effect different functions. c-di-GMP controls development in the multicellular bacteria Streptomyces c-di-GMP developmental signaling is directly mediated by the master regulator BldD A heretofore unseen tetrameric form of c-di-GMP binds BldD to effect its dimerization BldD-(c-di-GMP) represses transcription of sporulation genes during vegetative growth
Collapse
Affiliation(s)
- Natalia Tschowri
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Naga Babu Chinnam
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kim C Findlay
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|