151
|
Nikolic P, Mudgil P, Harman DG, Whitehall J. Untargeted lipidomic differences between clinical strains of methicillin-sensitive and methicillin-resistant Staphylococcus aureus. Infect Dis (Lond) 2022; 54:497-507. [DOI: 10.1080/23744235.2022.2049863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Philip Nikolic
- School of Medicine, Western Sydney University, Penrith, Australia
| | - Poonam Mudgil
- School of Medicine, Western Sydney University, Penrith, Australia
| | - David G. Harman
- School of Medicine, Western Sydney University, Penrith, Australia
| | - John Whitehall
- School of Medicine, Western Sydney University, Penrith, Australia
| |
Collapse
|
152
|
Pleiotropic actions of phenothiazine drugs are detrimental to Gram-negative bacterial persister cells. Commun Biol 2022; 5:217. [PMID: 35264714 PMCID: PMC8907348 DOI: 10.1038/s42003-022-03172-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/15/2022] [Indexed: 12/28/2022] Open
Abstract
Bacterial persister cells are temporarily tolerant to bactericidal antibiotics but are not necessarily dormant and may exhibit physiological activities leading to cell damage. Based on the link between fluoroquinolone-mediated SOS responses and persister cell recovery, we screened chemicals that target fluoroquinolone persisters. Metabolic inhibitors (e.g., phenothiazines) combined with ofloxacin (OFX) perturbed persister levels in metabolically active cell populations. When metabolically stimulated, intrinsically tolerant stationary phase cells also became OFX-sensitive in the presence of phenothiazines. The effects of phenothiazines on cell metabolism and physiology are highly pleiotropic: at sublethal concentrations, phenothiazines reduce cellular metabolic, transcriptional, and translational activities; impair cell repair and recovery mechanisms; transiently perturb membrane integrity; and disrupt proton motive force by dissipating the proton concentration gradient across the cell membrane. Screening a subset of mutant strains lacking membrane-bound proteins revealed the pleiotropic effects of phenothiazines potentially rely on their ability to inhibit a wide range of critical metabolic proteins. Altogether, our study further highlights the complex roles of metabolism in persister cell formation, survival and recovery, and suggests metabolic inhibitors such as phenothiazines can be selectively detrimental to persister cells.
Collapse
|
153
|
Belardinelli JM, Li W, Martin KH, Zeiler MJ, Lian E, Avanzi C, Wiersma CJ, Nguyen TV, Angala B, de Moura VCN, Jones V, Borlee BR, Melander C, Jackson M. 2-Aminoimidazoles Inhibit Mycobacterium abscessus Biofilms in a Zinc-Dependent Manner. Int J Mol Sci 2022; 23:ijms23062950. [PMID: 35328372 PMCID: PMC8951752 DOI: 10.3390/ijms23062950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Biofilm growth is thought to be a significant obstacle to the successful treatment of Mycobacterium abscessus infections. A search for agents capable of inhibiting M. abscessus biofilms led to our interest in 2-aminoimidazoles and related scaffolds, which have proven to display antibiofilm properties against a number of Gram-negative and Gram-positive bacteria, including Mycobacterium tuberculosis and Mycobacterium smegmatis. The screening of a library of 30 compounds led to the identification of a compound, AB-2-29, which inhibits the formation of M. abscessus biofilms with an IC50 (the concentration required to inhibit 50% of biofilm formation) in the range of 12.5 to 25 μM. Interestingly, AB-2-29 appears to chelate zinc, and its antibiofilm activity is potentiated by the addition of zinc to the culture medium. Preliminary mechanistic studies indicate that AB-2-29 acts through a distinct mechanism from those reported to date for 2-aminoimidazole compounds.
Collapse
Affiliation(s)
- Juan M. Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Kevin H. Martin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (K.H.M.); (B.R.B.)
| | - Michael J. Zeiler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.J.Z.); (C.M.)
| | - Elena Lian
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Crystal J. Wiersma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Tuan Vu Nguyen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA;
| | - Bhanupriya Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Vinicius C. N. de Moura
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Victoria Jones
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Bradley R. Borlee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (K.H.M.); (B.R.B.)
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.J.Z.); (C.M.)
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA;
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
- Correspondence: ; Tel.: +1-(970)-491-3582
| |
Collapse
|
154
|
MacDermott-Opeskin HI, Gupta V, O’Mara ML. Lipid-mediated antimicrobial resistance: a phantom menace or a new hope? Biophys Rev 2022; 14:145-162. [PMID: 35251360 PMCID: PMC8880301 DOI: 10.1007/s12551-021-00912-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
Abstract The proposition of a post-antimicrobial era is all the more realistic with the continued rise of antimicrobial resistance. The development of new antimicrobials is failing to counter the ever-increasing rates of bacterial antimicrobial resistance. This necessitates novel antimicrobials and drug targets. The bacterial cell membrane is an essential and highly conserved cellular component in bacteria and acts as the primary barrier for entry of antimicrobials into the cell. Although previously under-exploited as an antimicrobial target, the bacterial cell membrane is attractive for the development of novel antimicrobials due to its importance in pathogen viability. Bacterial cell membranes are diverse assemblies of macromolecules built around a central lipid bilayer core. This lipid bilayer governs the overall membrane biophysical properties and function of its membrane-embedded proteins. This mini-review will outline the mechanisms by which the bacterial membrane causes and controls resistance, with a focus on alterations in the membrane lipid composition, chemical modification of constituent lipids, and the efflux of antimicrobials by membrane-embedded efflux systems. Thorough insight into the interplay between membrane-active antimicrobials and lipid-mediated resistance is needed to enable the rational development of new antimicrobials. In particular, the union of computational approaches and experimental techniques for the development of innovative and efficacious membrane-active antimicrobials is explored.
Collapse
Affiliation(s)
- Hugo I. MacDermott-Opeskin
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601 Australia
| | - Vrinda Gupta
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601 Australia
| | - Megan L. O’Mara
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
155
|
Landon C, Zhu Y, Mustafi M, Madinier JB, Lelièvre D, Aucagne V, Delmas AF, Weisshaar JC. Real-Time Fluorescence Microscopy on Living E. coli Sheds New Light on the Antibacterial Effects of the King Penguin β-Defensin AvBD103b. Int J Mol Sci 2022; 23:ijms23042057. [PMID: 35216173 PMCID: PMC8880245 DOI: 10.3390/ijms23042057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
(1) Antimicrobial peptides (AMPs) are a promising alternative to conventional antibiotics. Among AMPs, the disulfide-rich β-defensin AvBD103b, whose antibacterial activities are not inhibited by salts contrary to most other β-defensins, is particularly appealing. Information about the mechanisms of action is mandatory for the development and approval of new drugs. However, data for non-membrane-disruptive AMPs such as β-defensins are scarce, thus they still remain poorly understood. (2) We used single-cell fluorescence imaging to monitor the effects of a β-defensin (namely AvBD103b) in real time, on living E. coli, and at the physiological concentration of salts. (3) We obtained key parameters to dissect the mechanism of action. The cascade of events, inferred from our precise timing of membrane permeabilization effects, associated with the timing of bacterial growth arrest, differs significantly from the other antimicrobial compounds that we previously studied in the same physiological conditions. Moreover, the AvBD103b mechanism does not involve significant stereo-selective interaction with any chiral partner, at any step of the process. (4) The results are consistent with the suggestion that after penetrating the outer membrane and the cytoplasmic membrane, AvBD103b interacts non-specifically with a variety of polyanionic targets, leading indirectly to cell death.
Collapse
Affiliation(s)
- Céline Landon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
- Correspondence:
| | - Yanyu Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| | - Mainak Mustafi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| | - Jean-Baptiste Madinier
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Dominique Lelièvre
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Vincent Aucagne
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Agnes F. Delmas
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - James C. Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| |
Collapse
|
156
|
Limwongyut J, Moreland AS, Nie C, Read de Alaniz J, Bazan GC. Amide Moieties Modulate the Antimicrobial Activities of Conjugated Oligoelectrolytes against Gram-negative Bacteria. Chemistry 2022; 11:e202100260. [PMID: 35133087 PMCID: PMC8822875 DOI: 10.1002/open.202100260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/23/2021] [Indexed: 11/18/2022]
Abstract
Cationic conjugated oligoelectrolytes (COEs) are a class of compounds that can be tailored to achieve relevant in vitro antimicrobial properties with relatively low cytotoxicity against mammalian cells. Three distyrylbenzene‐based COEs were designed containing amide functional groups on the side chains. Their properties were compared to two representative COEs with only quaternary ammonium groups. The optimal compound, COE2−3C−C3‐Apropyl, has an antimicrobial efficacy against Escherichia coli with an MIC=2 μg mL−1, even in the presence of human serum albumin low cytotoxicity (IC50=740 μg mL−1) and minimal hemolytic activity. Moreover, we find that amide groups increase interactions between COEs and a bacterial lipid mimic based on calcein leakage assay and allow COEs to readily permeabilize the cytoplasmic membrane of E. coli. These findings suggest that hydrogen bond forming moieties can be further applied in the molecular design of antimicrobial COEs to further improve their selectivity towards bacteria.
Collapse
Affiliation(s)
- Jakkarin Limwongyut
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Alex S Moreland
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Chenyao Nie
- Department of Chemistry and Chemical Engineering, National University of Singapore, Singapore, 117543, Singapore
| | - Javier Read de Alaniz
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Chemistry and Chemical Engineering, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
157
|
The effects of magainin 2-derived and rationally designed antimicrobial peptides on Mycoplasma pneumoniae. PLoS One 2022; 17:e0261893. [PMID: 35073323 PMCID: PMC8786148 DOI: 10.1371/journal.pone.0261893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
Combating the spread of antimicrobial resistance (AMR) among bacteria requires a new class of antimicrobials, which desirably have a narrow spectrum because of their low propensity for the spread of AMR. Antimicrobial peptides (AMPs), which target the bacterial cell membrane, are promising seeds for novel antimicrobials because the cell membrane is essential for all cells. Previously, we reported the antimicrobial and haemolytic effects of a natural AMP, magainin 2 (Mag2), isolated from the skin of Xenopus laevis (the African clawed frog), four types of synthesised Mag2 derivatives, and three types of rationally designed AMPs on gram-positive and gram-negative bacteria. To identify novel antimicrobial seeds, we evaluated the effect of AMPs on Mycoplasma pneumoniae, which also exhibits AMR. We also evaluated the antimicrobial effects of an AMP, NK2A, which has been reported to have antimicrobial effects on Mycoplasma bovis, in addition to Mag2 and previously synthesised seven AMPs, on four strains of M. pneumoniae using colorimetric, biofilm, and killing assays. We found that three synthesised AMPs, namely 17base-Ac6c, 17base-Hybrid, and Block, had anti-M. pneumoniae (anti-Mp) effect at 8–30 μM, whereas others, including NK2A, did not have any such effect. For the further analysis, the membrane disruption activities of AMPs were measured by propidium iodide (PI) uptake assays, which suggested the direct interaction of AMPs to the cell membrane basically following the colorimetric, biofilm, and killing assay results. PI uptake assay, however, also showed the NK2A strong interaction to cell membrane, indicating unknown anti-Mp determinant factors related to the peptide sequences. Finally, we conclude that anti-Mp effect was not simply determined by the membrane disruption activities of AMPs, but also that the sequence of AMPs were important for killing of M. pneumoniae. These findings would be helpful for the development of AMPs for M. pneumoniae.
Collapse
|
158
|
Verma T, Aggarwal A, Singh S, Sharma S, Sarma SJ. Current challenges and advancements towards discovery and resistance of antibiotics. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
159
|
Aries ML, Cloninger MJ. NMR Hydrophilic Metabolomic Analysis of Bacterial Resistance Pathways Using Multivalent Antimicrobials with Challenged and Unchallenged Wild Type and Mutated Gram-Positive Bacteria. Int J Mol Sci 2021; 22:ijms222413606. [PMID: 34948402 PMCID: PMC8715671 DOI: 10.3390/ijms222413606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
Multivalent membrane disruptors are a relatively new antimicrobial scaffold that are difficult for bacteria to develop resistance to and can act on both Gram-positive and Gram-negative bacteria. Proton Nuclear Magnetic Resonance (1H NMR) metabolomics is an important method for studying resistance development in bacteria, since this is both a quantitative and qualitative method to study and identify phenotypes by changes in metabolic pathways. In this project, the metabolic differences between wild type Bacillus cereus (B. cereus) samples and B. cereus that was mutated through 33 growth cycles in a nonlethal dose of a multivalent antimicrobial agent were identified. For additional comparison, samples for analysis of the wild type and mutated strains of B. cereus were prepared in both challenged and unchallenged conditions. A C16-DABCO (1,4-diazabicyclo-2,2,2-octane) and mannose functionalized poly(amidoamine) dendrimer (DABCOMD) were used as the multivalent quaternary ammonium antimicrobial for this hydrophilic metabolic analysis. Overall, the study reported here indicates that B. cereus likely change their peptidoglycan layer to protect themselves from the highly positively charged DABCOMD. This membrane fortification most likely leads to the slow growth curve of the mutated, and especially the challenged mutant samples. The association of these sample types with metabolites associated with energy expenditure is attributed to the increased energy required for the membrane fortifications to occur as well as to the decreased diffusion of nutrients across the mutated membrane.
Collapse
|
160
|
Dai T, Guo B, Qi G, Xu S, Zhou C, Bazan GC, Liu B. An AIEgen as an Intrinsic Antibacterial Agent for Light-Up Detection and Inactivation of Intracellular Gram-Positive Bacteria. Adv Healthc Mater 2021; 10:e2100885. [PMID: 34369089 DOI: 10.1002/adhm.202100885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/22/2021] [Indexed: 12/22/2022]
Abstract
Infections caused by Gram-positive bacteria, especially those able to invade and survive in host cells, threaten human health severely. It is therefore highly desirable to develop therapeutics that can selectively target and kill intracellular Gram-positive pathogens with minimal toxicity to host cells. Herein, it is described that the aggregation-induced emission luminogen (AIEgen) TPEPy-Et, containing a positively charged pyridinium group and a hydrophobic tetraphenylethylene fragment, is effective for Gram-positive bacteria detection and elimination. The fluorescence of TPEPy-Et is greatly enhanced after incubation with Gram-positive bacteria, which can be used to detect and trace the bacteria in cells. TPEPy-Et also shows excellent killing effects against both extracellular and intracellular Gram-positive bacteria through a membrane depolarization mechanism. The luminescent antibacterial agent TPEPy-Et is thus promising for diagnosis and therapy against intracellular bacterial infection.
Collapse
Affiliation(s)
- Tianjiao Dai
- Integrative Sciences and Engineering Program NUS Graduate School National University of Singapore Singapore 119077 Singapore
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Bingpeng Guo
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Guobin Qi
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Cheng Zhou
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Guillermo C. Bazan
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Bin Liu
- Integrative Sciences and Engineering Program NUS Graduate School National University of Singapore Singapore 119077 Singapore
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| |
Collapse
|
161
|
Mahmud MS, Hossain MS, Ahmed ATMF, Islam MZ, Sarker ME, Islam MR. Antimicrobial and Antiviral (SARS-CoV-2) Potential of Cannabinoids and Cannabis sativa: A Comprehensive Review. Molecules 2021; 26:7216. [PMID: 34885798 PMCID: PMC8658882 DOI: 10.3390/molecules26237216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance has emerged as a global health crisis and, therefore, new drug discovery is a paramount need. Cannabis sativa contains hundreds of chemical constituents produced by secondary metabolism, exerting outstanding antimicrobial, antiviral, and therapeutic properties. This paper comprehensively reviews the antimicrobial and antiviral (particularly against SARS-CoV-2) properties of C. sativa with the potential for new antibiotic drug and/or natural antimicrobial agents for industrial or agricultural use, and their therapeutic potential against the newly emerged coronavirus disease (COVID-19). Cannabis compounds have good potential as drug candidates for new antibiotics, even for some of the WHO's current priority list of resistant pathogens. Recent studies revealed that cannabinoids seem to have stable conformations with the binding pocket of the Mpro enzyme of SARS-CoV-2, which has a pivotal role in viral replication and transcription. They are found to be suppressive of viral entry and viral activation by downregulating the ACE2 receptor and TMPRSS2 enzymes in the host cellular system. The therapeutic potential of cannabinoids as anti-inflammatory compounds is hypothesized for the treatment of COVID-19. However, more systemic investigations are warranted to establish the best efficacy and their toxic effects, followed by preclinical trials on a large number of participants.
Collapse
Affiliation(s)
- Md Sultan Mahmud
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Mohammad Sorowar Hossain
- Biomedical Research Foundation, Dhaka 1230, Bangladesh;
- School of Environment and Life Sciences, Independent University, Dhaka 1229, Bangladesh
| | - A. T. M. Faiz Ahmed
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Zahidul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Emdad Sarker
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Reajul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| |
Collapse
|
162
|
Gao R, Su L, Yu T, Liu J, van der Mei HC, Ren Y, Chen G, Shi L, Peterson BW, Busscher HJ. Encapsulation of Photothermal Nanoparticles in Stealth and pH-Responsive Micelles for Eradication of Infectious Biofilms In Vitro and In Vivo. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3180. [PMID: 34947529 PMCID: PMC8706488 DOI: 10.3390/nano11123180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022]
Abstract
Photothermal nanoparticles can be used for non-antibiotic-based eradication of infectious biofilms, but this may cause collateral damage to tissue surrounding an infection site. In order to prevent collateral tissue damage, we encapsulated photothermal polydopamine-nanoparticles (PDA-NPs) in mixed shell polymeric micelles, composed of stealth polyethylene glycol (PEG) and pH-sensitive poly(β-amino ester) (PAE). To achieve encapsulation, PDA-NPs were made hydrophobic by electrostatic binding of indocyanine green (ICG). Coupling of ICG enhanced the photothermal conversion efficacy of PDA-NPs from 33% to 47%. Photothermal conversion was not affected by micellar encapsulation. No cytotoxicity or hemolytic effects of PEG-PAE encapsulated PDA-ICG-NPs were observed. PEG-PAE encapsulated PDA-ICG-NPs showed good penetration and accumulation in a Staphylococcus aureus biofilm. Penetration and accumulation were absent when nanoparticles were encapsulated in PEG-micelles without a pH-responsive moiety. PDA-ICG-NPs encapsulated in PEG-PAE-micelles found their way through the blood circulation to a sub-cutaneous infection site after tail-vein injection in mice, yielding faster eradication of infections upon near-infrared (NIR) irradiation than could be achieved after encapsulation in PEG-micelles. Moreover, staphylococcal counts in surrounding tissue were reduced facilitating faster wound healing. Thus, the combined effect of targeting and localized NIR irradiation prevented collateral tissue damage while eradicating an infectious biofilm.
Collapse
Affiliation(s)
- Ruifang Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006, China;
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands; (L.S.); (T.Y.); (H.C.v.d.M.); (B.W.P.)
| | - Linzhu Su
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands; (L.S.); (T.Y.); (H.C.v.d.M.); (B.W.P.)
- Key Laboratory of Functional Polymer Materials of Ministry of Education State, Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tianrong Yu
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands; (L.S.); (T.Y.); (H.C.v.d.M.); (B.W.P.)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215006, China;
| | - Jian Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215006, China;
| | - Henny C. van der Mei
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands; (L.S.); (T.Y.); (H.C.v.d.M.); (B.W.P.)
| | - Yijin Ren
- University of Groningen, University Medical Center Groningen, Department of Orthodontics, 9713 AV Groningen, The Netherlands;
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006, China;
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education State, Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry College of Chemistry, Nankai University, Tianjin 300071, China
| | - Brandon W. Peterson
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands; (L.S.); (T.Y.); (H.C.v.d.M.); (B.W.P.)
| | - Henk J. Busscher
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands; (L.S.); (T.Y.); (H.C.v.d.M.); (B.W.P.)
| |
Collapse
|
163
|
Fridianto KT, Li M, Hards K, Negatu DA, Cook GM, Dick T, Lam Y, Go ML. Functionalized Dioxonaphthoimidazoliums: A Redox Cycling Chemotype with Potent Bactericidal Activities against Mycobacterium tuberculosis. J Med Chem 2021; 64:15991-16007. [PMID: 34706190 DOI: 10.1021/acs.jmedchem.1c01383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Disruption of redox homeostasis in mycobacteria causes irreversible stress induction and cell death. Here, we report the dioxonaphthoimidazolium scaffold as a novel redox cycling antituberculosis chemotype with potent bactericidal activity against growing and nutrient-starved phenotypically drug-resistant nongrowing bacteria. Maximal potency was dependent on the activation of the redox cycling quinone by the positively charged scaffold and accessibility to the mycobacterial cell membrane as directed by the lipophilicity and conformational characteristics of the N-substituted side chains. Evidence from microbiological, biochemical, and genetic investigations implicates a redox-driven mode of action that is reliant on the reduction of the quinone by type II NADH dehydrogenase (NDH2) for the generation of bactericidal levels of the reactive oxygen species (ROS). The bactericidal profile of a potent water-soluble analogue 32 revealed good activity against nutrient-starved organisms in the Loebel model of dormancy, low spontaneous resistance mutation frequency, and synergy with isoniazid in the checkerboard assay.
Collapse
Affiliation(s)
| | | | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Dereje A Negatu
- Center for Discovery and Innovation, Hackensack Meridian Health & Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey 07110, United States
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health & Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey 07110, United States.,Department of Microbiology and Immunology, Georgetown University, Washington, District of Columbia 20057, United States
| | | | | |
Collapse
|
164
|
Wang M, Chan EWC, Xu C, Chen K, Yang C, Chen S. Econazole as adjuvant to conventional antibiotics is able to eradicate starvation-induced tolerant bacteria by causing proton motive force dissipation. J Antimicrob Chemother 2021; 77:425-432. [PMID: 34747463 DOI: 10.1093/jac/dkab384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Bacterial antibiotic tolerance is responsible for the recalcitrance of chronic infections. This study aims to investigate a potential drug that can effectively kill antibiotic-tolerant bacteria and evaluate the ability of this drug on the eradication of tolerant cells both in vitro and in vivo. METHODS The in vitro effect of econazole on eradicating starvation-induced tolerant bacterial populations was studied by testing the amount of survival bacteria in the presence of econazole combining conventional antibiotics. Proton motive force (PMF) was determined after econazole treatment by DiOC2(3). Finally, mouse infection models were used to detect the ability of econazole on killing the tolerant populations in vivo. RESULTS Econazole eradicated starvation-induced tolerant cells of various bacterial species within 24 or 96 h when used in combination with conventional antibiotics. Moreover, mouse survival rate drastically increased along with the decrease of in vivo bacterial count after treatment of infected mice with the econazole and ceftazidime combination for 72 h. PMF was found to have dissipated almost completely in econazole-treated cells. CONCLUSIONS Econazole could act in combination with conventional antibiotics to effectively eradicate bacterial tolerant cells. The combined use of econazole and ceftazidime was shown to be effective for eradicating tolerant cells in a mouse infection model. The ability of econazole to eradicate tolerant cells was due to its ability to cause dissipation of bacterial transmembrane PMF. Econazole-mediated PMF disruption is a feasible strategy for the treatment of chronic and recurrent bacterial infections.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chen Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Chen Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
165
|
Wainwright J, Hobbs G, Nakouti I. Persister cells: formation, resuscitation and combative therapies. Arch Microbiol 2021; 203:5899-5906. [PMID: 34739553 PMCID: PMC8590677 DOI: 10.1007/s00203-021-02585-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022]
Abstract
Persister cells, or superfits, have been strongly implicated in the recalcitrance and recurrence of chronic bacterial infection through the dormant (metabolically reduced) phenotype they display and the tolerance to antimicrobial agents this dormancy grants them. The complex biochemical events that lead to the formation of persister cells are not completely understood, though much research has linked the degradation of type II toxin/antitoxin systems and reduced cellular ATP levels to the rise in stress response molecules (where (p)ppGpp is of particular interest), which induce this dormant state. The equally complex mechanism of resuscitation is initiated by the cells’ ability to sense nutrient availability via chemotaxis systems. Levels of secondary messenger proteins (i.e., cAMP) within the cell are reduced to allow the resuscitation of ribosomes, by ribosomal resuscitation factor HflX, to reinstate protein synthesis and, therefore, growth to re-populate. Techniques of superfit eradication utilise one, or more, of three approaches (i) direct killing, (ii) re-sensitising persister cells to conventional antimicrobials, or (iii) prevention of persister formation though few laboratory findings have been translated to clinical practice. This work will outline current findings in the field with a critical approach, where possible.
Collapse
Affiliation(s)
- Jack Wainwright
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Glyn Hobbs
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Ismini Nakouti
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| |
Collapse
|
166
|
Staphylococcal Bacterial Persister Cells, Biofilms, and Intracellular Infection Are Disrupted by JD1, a Membrane-Damaging Small Molecule. mBio 2021; 12:e0180121. [PMID: 34634935 PMCID: PMC8510524 DOI: 10.1128/mbio.01801-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Rates of antibiotic and multidrug resistance are rapidly rising, leaving fewer options for successful treatment of bacterial infections. In addition to acquiring genetic resistance, many pathogens form persister cells, form biofilms, and/or cause intracellular infections that enable bacteria to withstand antibiotic treatment and serve as a source of recurring infections. JD1 is a small molecule previously shown to kill Gram-negative bacteria under conditions where the outer membrane and/or efflux pumps are disrupted. We show here that JD1 rapidly disrupts membrane potential and kills Gram-positive bacteria. Further investigation revealed that treatment with JD1 disrupts membrane barrier function and causes aberrant membranous structures to form. Additionally, exposure to JD1 reduced the number of Staphylococcus aureus and Staphylococcus epidermidis viable persister cells within broth culture by up to 1,000-fold and reduced the matrix and cell volume of biofilms that had been established for 24 h. Finally, we show that JD1 reduced the number of recoverable methicillin-resistant S. aureus organisms from infected cells. These observations indicate that JD1 inhibits staphylococcal cells in difficult-to-treat growth stages as well as, or better than, current clinical antibiotics. Thus, JD1 shows the importance of testing compounds under conditions that are relevant to infection, demonstrates the utility that membrane-targeting compounds have against multidrug-resistant bacteria, and indicates that small molecules that target bacterial cell membranes may serve as potent broad-spectrum antibacterials.
Collapse
|
167
|
Ji P, Wang TY, Luo GF, Chen WH, Zhang XZ. A tumor-cell biomimetic nanoplatform embedding biological enzymes for enhanced metabolic therapy. Chem Commun (Camb) 2021; 57:9398-9401. [PMID: 34528964 DOI: 10.1039/d1cc03494d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A tumor cell membrane-camouflaged therapeutic system was fabricated to eliminate tumors by embedding apyrase and glucose oxidase (GOx) into zeolitic imidazolate framework-8 (ZIF-8) nanoparticles for tumor-targeted metabolic therapy. Experimental results demonstrated that these functional nanoparticles could disturb the energy supply of tumor cells by depleting ATP and glucose and efficiently induce tumor cell death.
Collapse
Affiliation(s)
- Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Tian-Yang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
168
|
Mohamed Z, Shin JH, Ghosh S, Sharma AK, Pinnock F, Bint E Naser Farnush S, Dörr T, Daniel S. Clinically Relevant Bacterial Outer Membrane Models for Antibiotic Screening Applications. ACS Infect Dis 2021; 7:2707-2722. [PMID: 34227387 DOI: 10.1021/acsinfecdis.1c00217] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance is a growing global health concern that has been increasing in prevalence over the past few decades. In Gram-negative bacteria, the outer membrane is an additional barrier through which antibiotics must traverse to kill the bacterium. In addition, outer membrane features and properties, like membrane surface charge, lipopolysaccharide (LPS) length, and membrane porins, can be altered in response to antibiotics and therefore, further mediate resistance. Model membranes have been used to mimic bacterial membranes to study antibiotic-induced membrane changes but often lack the compositional complexity of the actual outer membrane. Here, we developed a surface-supported membrane platform using outer membrane vesicles (OMVs) from clinically relevant Gram-negative bacteria and use it to characterize membrane biophysical properties and investigate its interaction with antibacterial compounds. We demonstrate that this platform maintains critical features of outer membranes, like fluidity, while retaining complex membrane components, like OMPs and LPS, which are central to membrane-mediated antibiotic resistance. This platform offers a non-pathogenic, cell-free surface to study such phenomena that is compatible with advanced microscopy and surface characterization tools like quartz crystal microbalance. We confirm these OMV bilayers recapitulate membrane interactions (or lack thereof) with the antibiotic compounds polymyxin B, bacitracin, and vancomycin, validating their use as representative models for the bacterial surface. By forming OMV bilayers from different strains, we envision that this platform could be used to investigate underlying biophysical differences in outer membranes leading to resistance, to screen and identify membrane-active antibiotics, or for the development of phage technologies targeting a particular membrane surface component.
Collapse
Affiliation(s)
- Zeinab Mohamed
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York United States
| | - Jung-Ho Shin
- Weill Institute for Cell and Molecular Biology and Department of Microbiology, Cornell University, Ithaca, New York United States
| | - Surajit Ghosh
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York United States
| | - Abhishek K Sharma
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York United States
| | - Ferra Pinnock
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York United States
| | - Samavi Bint E Naser Farnush
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York United States
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology and Department of Microbiology, Cornell University, Ithaca, New York United States
| | - Susan Daniel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York United States
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York United States
| |
Collapse
|
169
|
Tang Q, Yang C, Li W, Zhang Y, Wang X, Wang W, Ma Z, Zhang D, Jin Y, Lin D. Evaluation of Short-Chain Antimicrobial Peptides With Combined Antimicrobial and Anti-inflammatory Bioactivities for the Treatment of Zoonotic Skin Pathogens From Canines. Front Microbiol 2021; 12:684650. [PMID: 34456884 PMCID: PMC8386128 DOI: 10.3389/fmicb.2021.684650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
The incidence of zoonotic Staphylococcus pseudintermedius and Microsporum canis infections is rapidly growing worldwide in the context of an increasing frequency of close contact between animals and humans, presenting challenges in both human and veterinary medicine. Moreover, the development of microbial resistance and emergence of recalcitrant biofilms, accompanied by the insufficiency of new antimicrobial agents, have become major obstacles in treating superficial skin infections caused by various microbes including S. pseudintermedius and M. canis. Over recent years, the prospects of antimicrobial peptides as emerging antimicrobials to combat microbial infections have been demonstrated. In our study, two novel short-chain peptides, namely, allomyrinasin and andricin B, produced by Allomyrina dichotoma and Andrias davidianus, were revealed to exhibit potent antimicrobial efficacy against clinical isolates of S. pseudintermedius and M. canis with remarkable and rapid fungicidal and bactericidal effects, while allomyrinasin exhibited inhibition of biofilm formation and eradication of mature biofilm. These peptides displayed synergistic activity when combined with amoxicillin and terbinafine against S. pseudintermedius and M. canis. Cytoplasmic leakage via cytomembrane permeabilization serves as a mechanism of action. Extremely low hemolytic activity and serum stability in vitro, as well as superior anti-infective efficacy in reducing bacterial counts and relieving the inflammatory response in vivo, were detected. The potent antibacterial, antifungal, and anti-inflammatory activities of allomyrinasin and andricin B might indicate promising anti-infective alternatives for the treatment of S. pseudintermedius and M. canis infections in the context of human and veterinary medicine.
Collapse
Affiliation(s)
- Qiyu Tang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chunyi Yang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weitian Li
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuhang Zhang
- Key Lab of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinying Wang
- Modern Animal Research Center, Nanjing University, Nanjing, China
| | - Weixin Wang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhiling Ma
- Research and Development Department, Artron BioResearch Inc., Vancouver, BC, Canada
| | - Di Zhang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Degui Lin
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
170
|
Dwivedi GR, Rai R, Pratap R, Singh K, Pati S, Sahu SN, Kant R, Darokar MP, Yadav DK. Drug resistance reversal potential of multifunctional thieno[3,2-c]pyran via potentiation of antibiotics in MDR P. aeruginosa. Biomed Pharmacother 2021; 142:112084. [PMID: 34449308 DOI: 10.1016/j.biopha.2021.112084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022] Open
Abstract
We explored the antibacterial potential (alone and combination) against multidrug resistant (MDR) Pseudomonas aeruginosa isolates KG-P2 using synthesized thieno[3,2-c]pyran-2-ones in combination with different antibiotics. Out of 14 compounds, two compounds (3g and 3l) abridged the MIC of tetracycline (TET) by 16 folds. Compounds was killing the KG-P2 cells, in time dependent manner, lengthened post-antibiotic effect (PAE) of TET and found decreased the mutant prevention concentration (MPC) of TET. In ethidium bromide efflux experiment, two compounds repressed the drug transporter (efflux pumps) which is further supported by molecular docking of these compounds with efflux complex MexAB-OprM. In another study, these compounds inhibited the synthesis of biofilm.
Collapse
Affiliation(s)
- Gaurav Raj Dwivedi
- Microbiology Department, ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur 273013, India.
| | - Reeta Rai
- Department of Biochemistry, AIIMS Ansari Nagar, New Delhi 110029, India
| | - Ramendra Pratap
- Department of Chemistry, North campus University of Delhi, Delhi 110007, India.
| | - Khusbu Singh
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - Sanghamitra Pati
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - Satya Narayan Sahu
- Government College Balrampur, Balrampur-Ramanujganj, Chhattisgarh 497119, India
| | - Rajni Kant
- Microbiology Department, ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur 273013, India
| | - Mahendra P Darokar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, ̥Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India
| | - Dharmendra K Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon 21924, Republic of Korea.
| |
Collapse
|
171
|
Schrank CL, Wilt IK, Monteagudo Ortiz C, Haney BA, Wuest WM. Using membrane perturbing small molecules to target chronic persistent infections. RSC Med Chem 2021; 12:1312-1324. [PMID: 34458737 PMCID: PMC8372208 DOI: 10.1039/d1md00151e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
After antibiotic treatment, a subpopulation of bacteria often remains and can lead to recalcitrant infections. This subpopulation, referred to as persisters, evades antibiotic treatment through numerous mechanisms such as decreased uptake of small molecules and slowed growth. Membrane perturbing small molecules have been shown to eradicate persisters as well as render these populations susceptible to antibiotic treatment. Chemotype similarities have emerged suggesting amphiphilic heteroaromatic compounds possess ideal properties to increase membrane fluidity and such molecules warrant further investigation as effective agents or potentiators against persister cells.
Collapse
Affiliation(s)
| | - Ingrid K Wilt
- Department of Chemistry Emory University Atlanta GA 30322 USA
| | | | | | - William M Wuest
- Department of Chemistry Emory University Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine Atlanta GA 30322 USA
| |
Collapse
|
172
|
Terekhova N, Khailova LS, Rokitskaya TI, Nazarov PA, Islamov DR, Usachev KS, Tatarinov DA, Mironov VF, Kotova EA, Antonenko YN. Trialkyl(vinyl)phosphonium Chlorophenol Derivatives as Potent Mitochondrial Uncouplers and Antibacterial Agents. ACS OMEGA 2021; 6:20676-20685. [PMID: 34396013 PMCID: PMC8359139 DOI: 10.1021/acsomega.1c02909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 05/08/2023]
Abstract
Trialkyl phosphonium derivatives of vinyl-substituted p-chlorophenol were synthesized here by a recently developed method of preparing quaternary phosphonium salts from phosphine oxides using Grignard reagents. All the derivatives with a number (n) of carbon atoms in phosphonium alkyl substituents varying from 4 to 7 showed pronounced uncoupling activity in isolated rat liver mitochondria at micromolar concentrations, with a tripentyl derivative being the most effective both in accelerating respiration and causing membrane potential collapse, as well as in provoking mitochondrial swelling in a potassium-acetate medium. Remarkably, the trialkyl phosphonium derivatives with n from 4 to 7 also proved to be rather potent antibacterial agents. Methylation of the chlorophenol hydroxyl group suppressed the effects of P555 and P444 on the respiration and membrane potential of mitochondria but not those of P666, thereby suggesting a mechanistic difference in the mitochondrial uncoupling by these derivatives, which was predominantly protonophoric (carrier-like) in the case of P555 and P444 but detergent-like with P666. The latter was confirmed by the carboxyfluorescein leakage assay on model liposomal membranes.
Collapse
Affiliation(s)
- Natalia
V. Terekhova
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Lyudmila S. Khailova
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Tatyana I. Rokitskaya
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Pavel A. Nazarov
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Daut R. Islamov
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Konstantin S. Usachev
- Institute
of Fundamental Medicine and Biology, Kazan
Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Dmitry A. Tatarinov
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Vladimir F. Mironov
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russian Federation
| | - Elena A. Kotova
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Yuri N. Antonenko
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| |
Collapse
|
173
|
Lu CH, Shiau CW, Chang YC, Kung HN, Wu JC, Lim CH, Yeo HH, Chang HC, Chien HS, Huang SH, Hung WK, Wei JR, Chiu HC. SC5005 dissipates the membrane potential to kill Staphylococcus aureus persisters without detectable resistance. J Antimicrob Chemother 2021; 76:2049-2056. [PMID: 33855344 DOI: 10.1093/jac/dkab114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/13/2021] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES In the past few decades, multiple-antibiotic-resistant Staphylococcus aureus has emerged and quickly spread in hospitals and communities worldwide. Additionally, the formation of antibiotic-tolerant persisters and biofilms further reduces treatment efficacy. Previously, we identified a sorafenib derivative, SC5005, with bactericidal activity against MRSA in vitro and in vivo. Here, we sought to elucidate the resistance status, mode of action and anti-persister activity of this compound. METHODS The propensity of S. aureus to develop SC5005 resistance was evaluated by assessment of spontaneous resistance and by multi-passage selection. The mode of action of SC5005 was investigated using macromolecular synthesis, LIVE/DEAD and ATPlite assays and DiOC2(3) staining. The effect of SC5005 on the mammalian cytoplasmic membrane was measured using haemolytic and lactate dehydrogenase (LDH) assays and flow cytometry. RESULTS SC5005 depolarized and permeabilized the bacterial cytoplasmic membrane, leading to reduced ATP production. Because of this mode of action, no resistance of S. aureus to SC5005 was observed after constant exposure to sub-lethal concentrations for 200 passages. The membrane-perturbing activity of SC5005 was specific to bacteria, as no significant haemolysis or release of LDH from human HT-29 cells was detected. Additionally, compared with other bactericidal antibiotics, SC5005 exhibited superior activity in eradicating both planktonic and biofilm-embedded S. aureus persisters. CONCLUSIONS Because of its low propensity for resistance development and potent persister-eradicating activity, SC5005 is a promising lead compound for developing new therapies for biofilm-related infections caused by S. aureus.
Collapse
Affiliation(s)
- Chieh-Hsien Lu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yung-Chi Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Hsiu-Ni Kung
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Jui-Ching Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10021, Taiwan
| | - Chui-Hian Lim
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Hui-Hui Yeo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Han-Chu Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Han-Sheng Chien
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Sheng-Hsuan Huang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10021, Taiwan
| | - Wei-Kang Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Jun-Rong Wei
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10021, Taiwan
| |
Collapse
|
174
|
Sarkar P, Basak D, Mukherjee R, Bandow JE, Haldar J. Alkyl-Aryl-Vancomycins: Multimodal Glycopeptides with Weak Dependence on the Bacterial Metabolic State. J Med Chem 2021; 64:10185-10202. [PMID: 34233118 DOI: 10.1021/acs.jmedchem.1c00449] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resistance to last-resort antibiotics such as vancomycin for Gram-positive bacterial infections necessitates the development of new therapeutics. Furthermore, the ability of bacteria to survive antibiotic therapy through formation of biofilms and persister cells complicates treatment. Toward this, we report alkyl-aryl-vancomycins (AAVs), with high potency against vancomycin-resistant enterococci and staphylococci. Unlike vancomycin, the lead compound AAV-qC10 was bactericidal and weakly dependent on bacterial metabolism. This resulted in complete eradication of non-growing cells of MRSA and disruption of its biofilms. In addition to inhibiting cell wall biosynthesis like vancomycin, AAV-qC10 also depolarizes and permeabilizes the membrane. More importantly, the compound delocalized the cell division protein MinD, thereby impairing bacterial growth through multiple pathways. The potential of AAV-qC10 is exemplified by its superior efficacy against MRSA in a murine thigh infection model as compared to vancomycin. This work paves the way for structural optimization and drug development for combating drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Debajyoti Basak
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, Bochum 44780, Germany
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
175
|
Niu H, Yee R, Cui P, Zhang S, Tian L, Shi W, Sullivan D, Zhu B, Zhang W, Zhang Y. Identification and Ranking of Clinical Compounds with Activity Against Log-phase Growing Uropathogenic Escherichia coli. Curr Drug Discov Technol 2021; 17:191-196. [PMID: 30088449 DOI: 10.2174/1570163815666180808115501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) is a major cause of Urinary Tract Infections (UTIs). Due to increasing antibiotic-resistance among UPEC bacteria, new treatment options for UTIs are urgently needed. OBJECTIVE To identify new agents targeting growing bacteria that may be used for the treatment of antibiotic-resistant UTIs. METHODS We screened a clinical compound library consisting of 1,524 compounds using a high throughput 96-well plate assay and ranked the activities of the selected agents according to their MICs against the UPEC strain UTI89. RESULTS We identified 33 antibiotics which were active against log-phase clinical UPEC strain UTI89. Among the selected antibiotics, there were 12 fluoroquinolone antibiotics (tosufloxacin, levofloxacin, sparfloxacin, clinafloxacin, pazufloxacin, gatifloxacin, enrofloxacin, lomefloxacin, norfloxacin, fleroxacin, flumequine, ciprofloxacin), 15 beta-lactam or cephalosporin antibiotics (cefmenoxime, cefotaxime, ceftizoxime, cefotiam, cefdinir, cefoperazone, cefpiramide, cefamandole, cefixime, ceftibuten, cefmetazole, cephalosporin C, aztreonam, piperacillintazobactam, mezlocillin), 3 tetracycline antibiotics (meclocycline, doxycycline, tetracycline), 2 membrane-acting agents (colistin and clofoctol), and 1 protein synthesis inhibitor (amikacin). Among them, the top 7 hits were colistin, tosufloxacin, levofloxacin, sparfloxacin, clinafloxacin, cefmenoxime and pazufloxacin, where clinafloxacin and pazufloxacin were the newly identified agents active against UPEC strain UTI89. We validated the key results obtained with UTI89 on two other UTI strains CFT073 and KTE181 and found that they all had comparable MICs for fluoroquinolones while CFT073 and KTE181 were more susceptible to cephalosporin antibiotics and tetracycline antibiotics but were less susceptible to colistin than UTI89. CONCLUSION Our findings provide possible effective drug candidates for the more effective treatment of antibiotic-resistant UTIs.
Collapse
Affiliation(s)
- Hongxia Niu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Rebecca Yee
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Peng Cui
- Key Laboratory of Medical Molecular Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuo Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Lili Tian
- Beijing Research Institute for Tuberculosis Control, Beijing, China
| | - Wanliang Shi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, United States
| | - David Sullivan
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Bingdong Zhu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wenhong Zhang
- Key Laboratory of Medical Molecular Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
176
|
Patel A, Dey S, Shokeen K, Karpiński TM, Sivaprakasam S, Kumar S, Manna D. Sulfonium-based liposome-encapsulated antibiotics deliver a synergistic antibacterial activity. RSC Med Chem 2021; 12:1005-1015. [PMID: 34223166 PMCID: PMC8221259 DOI: 10.1039/d1md00091h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/01/2021] [Indexed: 12/29/2022] Open
Abstract
The devastating antibacterial infections, coupled with their antibiotic resistance abilities, emphasize the need for effective antibacterial therapeutics. In this prospect, liposomal delivery systems have been employed in improving the efficacy of the antibacterial agents. The liposome-based antibiotics enhance the therapeutic potential of the new or existing antibiotics and reduce their adverse effects. The current study describes the development of sulfonium-based antibacterial lipids that demonstrate the delivery of existing antibiotics. The presence of cationic sulfonium moieties and inherent membrane targeting abilities of the lipids could help reduce the antibiotic resistance abilities of the bacteria and deliver the antibiotics to remove the infectious pathogens electively. The transmission electron microscopic images and dynamic light scattering analyses revealed the liposome formation abilities of the sulfonium-based amphiphilic compounds in the aqueous medium. The effectiveness of the compounds was tested against the Gram-negative and Gram-positive bacterial strains. The viability of the bacterial cells was remarkably reduced in the presence of the compounds. The sulfonium-based compounds with pyridinium moiety and long hydrocarbon chains showed the most potent antibacterial activities among the tested compounds. Mechanistic studies revealed the membrane-targeted bactericidal activities of the compounds. The potent compound also showed tetracycline and amoxicillin encapsulation and sustained release profiles in the physiologically relevant medium. The tetracycline and amoxicillin-encapsulated lipid showed much higher antibacterial activities than the free antibiotics at similar concentrations, emphasizing the usefulness of the synergistic effect of sulfonium-based lipid and the antibiotics, signifying that the sulfonium lipid penetrated the bacterial membrane and increased the cellular uptake of the antibiotics. The potent lipid also showed therapeutic potential, as it is less toxic to mammalian cells (like HeLa and HaCaT cells) at concentrations higher than their minimum inhibitory concentration values against S. aureus, E. coli, and MRSA. Hence, the sulfonium-based lipid exemplifies a promising framework for assimilating various warheads, and provides a potent antibacterial material.
Collapse
Affiliation(s)
- Anjali Patel
- Indian Institute of Technology Guwahati, Centre for the Environment Guwahati Assam India
| | - Subhasis Dey
- Biological Chemistry Laboratory, Indian Institute of Technology Guwahati, Chemistry Guwahati Assam India
| | - Kamal Shokeen
- Indian Institute of Technology Guwahati, Biosciences and Bioengineering Guwahati Assam India
| | - Tomasz M Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences Wieniawskiego Poznań Poland
| | | | - Sachin Kumar
- Indian Institute of Technology Guwahati, Biosciences and Bioengineering Guwahati Assam India
| | - Debasis Manna
- Indian Institute of Technology Guwahati, Centre for the Environment Guwahati Assam India
- Biological Chemistry Laboratory, Indian Institute of Technology Guwahati, Chemistry Guwahati Assam India
| |
Collapse
|
177
|
Totsingan F, Liu F, Gross RA. Structure-Activity Relationship Assessment of Sophorolipid Ester Derivatives against Model Bacteria Strains. Molecules 2021; 26:3021. [PMID: 34069408 PMCID: PMC8158775 DOI: 10.3390/molecules26103021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/27/2022] Open
Abstract
Sophorolipids (SLs) are glycolipids that consist of a hydrophilic sophorose head group covalently linked to a hydrophobic fatty acid tail. They are produced by fermentation of non-pathogenic yeasts such as Candida Bombicola. The fermentation products predominantly consist of the diacetylated lactonic form that coexists with the open-chain acidic form. A systematic series of modified SLs were prepared by ring opening of natural lactonic SL with n-alkanols of varying chain length under alkaline conditions and lipase-selective acetylation of sophorose primary hydroxyl groups. The antimicrobial activity of modified SLs against Gram-positive human pathogens was a function of the n-alkanol length, as well as the degree of sophorose acetylation at the primary hydroxyl sites. Modified SLs were identified with promising antimicrobial activities against Gram-positive human pathogens with moderate selectivity (therapeutic index, TI = EC50/MICB. cereus = 6-33). SL-butyl ester exhibited the best antimicrobial activity (MIC = 12 μM) and selectivity (TI = 33) among all SLs tested. Kinetic studies revealed that SL-ester derivatives kill B. cereus in a time-dependent manner resulting in greater than a 3-log reduction in cell number within 1 h at 2×MIC. In contrast, lactonic SL required 3 h to achieve the same efficiency.
Collapse
Affiliation(s)
- Filbert Totsingan
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fei Liu
- Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
| |
Collapse
|
178
|
Hemmingsen LM, Julin K, Ahsan L, Basnet P, Johannessen M, Škalko-Basnet N. Chitosomes-In-Chitosan Hydrogel for Acute Skin Injuries: Prevention and Infection Control. Mar Drugs 2021; 19:269. [PMID: 34065943 PMCID: PMC8150996 DOI: 10.3390/md19050269] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023] Open
Abstract
Burns and other skin injuries are growing concerns as well as challenges in an era of antimicrobial resistance. Novel treatment options to improve the prevention and eradication of infectious skin biofilm-producing pathogens, while enhancing wound healing, are urgently needed for the timely treatment of infection-prone injuries. Treatment of acute skin injuries requires tailoring of formulation to assure both proper skin retention and the appropriate release of incorporated antimicrobials. The challenge remains to formulate antimicrobials with low water solubility, which often requires carriers as the primary vehicle, followed by a secondary skin-friendly vehicle. We focused on widely used chlorhexidine formulated in the chitosan-infused nanocarriers, chitosomes, incorporated into chitosan hydrogel for improved treatment of skin injuries. To prove our hypothesis, lipid nanocarriers and chitosan-comprising nanocarriers (≈250 nm) with membrane-active antimicrobial chlorhexidine were optimized and incorporated into chitosan hydrogel. The biological and antibacterial effects of both vesicles and a vesicles-in-hydrogel system were evaluated. The chitosomes-in-chitosan hydrogel formulation demonstrated promising physical properties and were proven safe. Additionally, the chitosan-based systems, both chitosomes and chitosan hydrogel, showed an improved antimicrobial effect against S. aureus and S. epidermidis compared to the formulations without chitosan. The novel formulation could serve as a foundation for infection prevention and bacterial eradication in acute wounds.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (L.M.H.); (L.A.)
| | - Kjersti Julin
- Research Group for Host-Microbe Interaction, Department of Medical Biology, University of Tromsø The Arctic University of Norway, Sykehusvegen 44, 9037 Tromsø, Norway; (K.J.); (M.J.)
| | - Luqman Ahsan
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (L.M.H.); (L.A.)
| | - Purusotam Basnet
- IVF Clinic, Department of Obstetrics and Gynecology, University Hospital of North Norway, Sykehusvegen 38, 9019 Tromsø, Norway;
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, University of Tromsø The Arctic University of Norway, Sykehusvegen 44, 9037 Tromsø, Norway; (K.J.); (M.J.)
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (L.M.H.); (L.A.)
| |
Collapse
|
179
|
Herschede SR, Gneid H, Dent T, Jaeger EB, Lawson LB, Busschaert N. Bactericidal urea crown ethers target phosphatidylethanolamine membrane lipids. Org Biomol Chem 2021; 19:3838-3843. [PMID: 33949594 DOI: 10.1039/d1ob00263e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An increasing number of people are infected with antibiotic-resistant bacteria each year, sometimes with fatal consequences. In this manuscript, we report a novel urea-functionalized crown ether that can bind to the bacterial lipid phosphatidylethanolamine (PE), facilitate PE flip-flop and displays antibacterial activity against the Gram-positive bacterium Bacillus cereus with a minimum inhibitory concentration comparable to that of the known PE-targeting lantibiotic duramycin.
Collapse
Affiliation(s)
- Sarah R Herschede
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Hassan Gneid
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Taylor Dent
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Ellen B Jaeger
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Louise B Lawson
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Nathalie Busschaert
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| |
Collapse
|
180
|
Yu T, Xianyu Y. Array-Based Biosensors for Bacteria Detection: From the Perspective of Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006230. [PMID: 33870615 DOI: 10.1002/smll.202006230] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Indexed: 05/24/2023]
Abstract
Array-based biosensors have shown as effective and powerful tools to distinguish intricate mixtures with infinitesimal differences among analytes such as nucleic acids, proteins, microorganisms, and other biomolecules. In array-based bacterial sensing, the recognition of bacteria is the initial step that can crucially influence the analytical performance of a biosensor array. Bacteria recognition as well as the signal readout and mathematical analysis are indispensable to ensure the discrimination ability of array-based biosensors. Strategies for bacteria recognition mainly include the specific interaction between biomolecules and the corresponding receptors on bacteria, the noncovalent interaction between materials and bacteria, and the specific targeting of bacterial metabolites. In this review, recent advances in array-based bacteria sensors are discussed from the perspective of bacteria recognition relying on the characteristics of different bacteria. Principles of bacteria recognition and signal readout for bacteria detection are highlighted as well as the discussion on future trends in array-based biosensors.
Collapse
Affiliation(s)
- Ting Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China
| |
Collapse
|
181
|
Onime LA, Oyama LB, Thomas BJ, Gani J, Alexander P, Waddams KE, Cookson A, Fernandez-Fuentes N, Creevey CJ, Huws SA. The rumen eukaryotome is a source of novel antimicrobial peptides with therapeutic potential. BMC Microbiol 2021; 21:105. [PMID: 33832427 PMCID: PMC8034185 DOI: 10.1186/s12866-021-02172-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The rise of microbial antibiotic resistance is a leading threat to the health of the human population. As such, finding new approaches to tackle these microbes, including development of novel antibiotics is vital. RESULTS In this study, we mined a rumen eukaryotic metatranscriptomic library for novel Antimicrobial peptides (AMPs) using computational approaches and thereafter characterised the therapeutic potential of the AMPs. We identified a total of 208 potentially novel AMPs from the ruminal eukaryotome, and characterised one of those, namely Lubelisin. Lubelisin (GIVAWFWRLAR) is an α-helical peptide, 11 amino acid long with theoretical molecular weight of 1373.76 D. In the presence of Lubelisin, strains of methicillin-resistant Staphylococcus aureus (MRSA) USA300 and EMRSA-15 were killed within 30 min of exposure with ≥103 and 104 CFU/mL reduction in viable cells respectively. Cytotoxicity of Lubelisin against both human and sheep erythrocytes was low resulting in a therapeutic index of 0.43. Membrane permeabilisation assays using propidium iodide alongside transmission electron microscopy revealed that cytoplasmic membrane damage may contribute to the antimicrobial activities of Lubelisin. CONCLUSIONS We demonstrate that the rumen eukaryotome is a viable source for the discovery of antimicrobial molecules for the treatment of bacterial infections and further development of these may provide part of the potential solution to the ongoing problem of antimicrobial resistance. The role of these AMPs in the ecological warfare within the rumen is also currently unknown.
Collapse
Affiliation(s)
- Lucy A Onime
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Linda B Oyama
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | - Benjamin J Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | - Jurnorain Gani
- Institute of Infection and Immunity, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Peter Alexander
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | - Kate E Waddams
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Alan Cookson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA, UK
| | - Christopher J Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | - Sharon A Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK.
| |
Collapse
|
182
|
Lade H, Kim JS. Bacterial Targets of Antibiotics in Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2021; 10:398. [PMID: 33917043 PMCID: PMC8067735 DOI: 10.3390/antibiotics10040398] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most prevalent bacterial pathogens and continues to be a leading cause of morbidity and mortality worldwide. MRSA is a commensal bacterium in humans and is transmitted in both community and healthcare settings. Successful treatment remains a challenge, and a search for new targets of antibiotics is required to ensure that MRSA infections can be effectively treated in the future. Most antibiotics in clinical use selectively target one or more biochemical processes essential for S. aureus viability, e.g., cell wall synthesis, protein synthesis (translation), DNA replication, RNA synthesis (transcription), or metabolic processes, such as folic acid synthesis. In this review, we briefly describe the mechanism of action of antibiotics from different classes and discuss insights into the well-established primary targets in S. aureus. Further, several components of bacterial cellular processes, such as teichoic acid, aminoacyl-tRNA synthetases, the lipid II cycle, auxiliary factors of β-lactam resistance, two-component systems, and the accessory gene regulator quorum sensing system, are discussed as promising targets for novel antibiotics. A greater molecular understanding of the bacterial targets of antibiotics has the potential to reveal novel therapeutic strategies or identify agents against antibiotic-resistant pathogens.
Collapse
Affiliation(s)
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Korea;
| |
Collapse
|
183
|
Tyagi A, Mishra A. Methacrylamide based antibiotic polymers with no detectable bacterial resistance. SOFT MATTER 2021; 17:3404-3416. [PMID: 33645619 DOI: 10.1039/d0sm02176h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The growing number of multidrug-resistant pathogens is a major healthcare concern. In search of alternatives to antibiotics, synthetic mimics of antimicrobial peptides (SMAMPs) in the form of antimicrobial polymers have gained tremendous attention. Here, we report the synthesis of a set of 7 amphiphilic water-soluble cationic copolymers using aminopropyl methacrylamide and benzyl methacrylamide repeat units that show significant antibacterial activity. The antibacterial activity was evaluated using a broth microdilution assay against S. aureus and E. coli, while toxicity to mammalian cells was quantified by hemolysis assay with human red blood cells (RBCs). We find that the antibacterial activity and selectivity of the polymers depends on the mole fraction of aromatic benzyl units (fbenzyl) and the average molecular weight (Mn). Polymers with fbenzyl of 0.10 and 0.19, named AB-10 and AB-19 respectively, exhibited the highest antibacterial efficacy without inducing hemolysis and were chosen for further study. Liposome dye leakage study and observations from confocal and scanning electron microscopy indicate that the AB polymers killed bacterial cells primarily by disrupting the cytoplasmic membrane. No resistant mutants of E. coli and S. aureus were obtained with AB-19 in a 30 day serial passage study.
Collapse
Affiliation(s)
- Anju Tyagi
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | | |
Collapse
|
184
|
OMN6 a novel bioengineered peptide for the treatment of multidrug resistant Gram negative bacteria. Sci Rep 2021; 11:6603. [PMID: 33758343 PMCID: PMC7988117 DOI: 10.1038/s41598-021-86155-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/11/2021] [Indexed: 01/31/2023] Open
Abstract
New antimicrobial agents are urgently needed, especially to eliminate multidrug resistant Gram-negative bacteria that stand for most antibiotic-resistant threats. In the following study, we present superior properties of an engineered antimicrobial peptide, OMN6, a 40-amino acid cyclic peptide based on Cecropin A, that presents high efficacy against Gram-negative bacteria with a bactericidal mechanism of action. The target of OMN6 is assumed to be the bacterial membrane in contrast to small molecule-based agents which bind to a specific enzyme or bacterial site. Moreover, OMN6 mechanism of action is effective on Acinetobacter baumannii laboratory strains and clinical isolates, regardless of the bacteria genotype or resistance-phenotype, thus, is by orders-of-magnitude, less likely for mutation-driven development of resistance, recrudescence, or tolerance. OMN6 displays an increase in stability and a significant decrease in proteolytic degradation with full safety margin on erythrocytes and HEK293T cells. Taken together, these results strongly suggest that OMN6 is an efficient, stable, and non-toxic novel antimicrobial agent with the potential to become a therapy for humans.
Collapse
|
185
|
Podoll J, Olson J, Wang W, Wang X. A Cell-Free Screen for Bacterial Membrane Disruptors Identifies Mefloquine as a Novel Antibiotic Adjuvant. Antibiotics (Basel) 2021; 10:315. [PMID: 33803571 PMCID: PMC8002938 DOI: 10.3390/antibiotics10030315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Antibacterial discovery efforts have lagged far behind the need for new antibiotics. An approach that has gained popularity recently is targeting bacterial phospholipid membranes. We leveraged the differences between bacterial and mammalian phospholipid compositions to develop a high-throughput screen that identifies agents that selectively disrupt bacterial membranes while leaving mammalian membranes intact. This approach was used to screen 4480 compounds representing a subset of the Maybridge HitFinderTM V.11 Collection and the Prestwick Chemical Drug Library®. The screen identified 35 "positives" (0.8% hit rate) that preferentially damage bacterial model membranes. Among these, an antimalarial compound, mefloquine, and an aminoglycoside, neomycin, were identified. Further investigation of mefloquine's activity against Staphylococcus aureus showed that it has little antibiotic activity on its own but can alter membrane fluidity, thereby potentiating a β-lactam antibiotic, oxacillin, against both methicillin-susceptible and methicillin-resistant S. aureus. This study indicates that our cell-free screening approach is a promising platform for discovering bacterial membrane disruptors as antibacterials antibiotic adjuvants.
Collapse
Affiliation(s)
| | | | | | - Xiang Wang
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA; (J.P.); (J.O.); (W.W.)
| |
Collapse
|
186
|
Rowe SE, Beam JE, Conlon BP. Recalcitrant Staphylococcus aureus Infections: Obstacles and Solutions. Infect Immun 2021; 89:e00694-20. [PMID: 33526569 PMCID: PMC8090968 DOI: 10.1128/iai.00694-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antibiotic treatment failure of Staphylococcus aureus infections is very common. In addition to genetically encoded mechanisms of antibiotic resistance, numerous additional factors limit the efficacy of antibiotics in vivo Identifying and removing the barriers to antibiotic efficacy are of major importance, as even if new antibiotics become available, they will likely face the same barriers to efficacy as their predecessors. One major obstacle to antibiotic efficacy is the proficiency of S. aureus to enter a physiological state that is incompatible with antibiotic killing. Multiple pathways leading to antibiotic tolerance and the formation of tolerant subpopulations called persister cells have been described for S. aureus Additionally, S. aureus is a versatile pathogen that can infect numerous tissues and invade a variety of cell types, of which some are poorly penetrable to antibiotics. It is therefore unlikely that there will be a single solution to the problem of recalcitrant S. aureus infection. Instead, specific approaches may be required for targeting tolerant cells within different niches, be it through direct targeting of persister cells, sensitization of persisters to conventional antibiotics, improved penetration of antibiotics to particular niches, or any combination thereof. Here, we examine two well-described reservoirs of antibiotic-tolerant S. aureus, the biofilm and the macrophage, the barriers these environments present to antibiotic efficacy, and potential solutions to the problem.
Collapse
Affiliation(s)
- Sarah E Rowe
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jenna E Beam
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian P Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
187
|
Nunes RS, Vila-Viçosa D, Costa PJ. Halogen Bonding: An Underestimated Player in Membrane–Ligand Interactions. J Am Chem Soc 2021; 143:4253-4267. [DOI: 10.1021/jacs.0c12470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rafael Santana Nunes
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diogo Vila-Viçosa
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Paulo J. Costa
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| |
Collapse
|
188
|
Wenzel M, Dekker MP, Wang B, Burggraaf MJ, Bitter W, van Weering JRT, Hamoen LW. A flat embedding method for transmission electron microscopy reveals an unknown mechanism of tetracycline. Commun Biol 2021; 4:306. [PMID: 33686188 PMCID: PMC7940657 DOI: 10.1038/s42003-021-01809-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Transmission electron microscopy of cell sample sections is a popular technique in microbiology. Currently, ultrathin sectioning is done on resin-embedded cell pellets, which consumes milli- to deciliters of culture and results in sections of randomly orientated cells. This is problematic for rod-shaped bacteria and often precludes large-scale quantification of morphological phenotypes due to the lack of sufficient numbers of longitudinally cut cells. Here we report a flat embedding method that enables observation of thousands of longitudinally cut cells per single section and only requires microliter culture volumes. We successfully applied this technique to Bacillus subtilis, Escherichia coli, Mycobacterium bovis, and Acholeplasma laidlawii. To assess the potential of the technique to quantify morphological phenotypes, we monitored antibiotic-induced changes in B. subtilis cells. Surprisingly, we found that the ribosome inhibitor tetracycline causes membrane deformations. Further investigations showed that tetracycline disturbs membrane organization and localization of the peripheral membrane proteins MinD, MinC, and MreB. These observations are not the result of ribosome inhibition but constitute a secondary antibacterial activity of tetracycline that so far has defied discovery.
Collapse
Affiliation(s)
- Michaela Wenzel
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands.
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands.
- Chemical Biology, Department for Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Marien P Dekker
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands
| | - Biwen Wang
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Maroeska J Burggraaf
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines, and Systems, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands.
| | - Leendert W Hamoen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
189
|
Liu Y, Tong Z, Shi J, Li R, Upton M, Wang Z. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics 2021; 11:4910-4928. [PMID: 33754035 PMCID: PMC7978324 DOI: 10.7150/thno.56205] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance has been a global health challenge that threatens our ability to control and treat life-threatening bacterial infections. Despite ongoing efforts to identify new drugs or alternatives to antibiotics, no new classes of antibiotic or their alternatives have been clinically approved in the last three decades. A combination of antibiotics and non-antibiotic compounds that could inhibit bacterial resistance determinants or enhance antibiotic activity offers a sustainable and effective strategy to confront multidrug-resistant bacteria. In this review, we provide a brief overview of the co-evolution of antibiotic discovery and the development of bacterial resistance. We summarize drug-drug interactions and uncover the art of repurposing non-antibiotic drugs as potential antibiotic adjuvants, including discussing classification and mechanisms of action, as well as reporting novel screening platforms. A pathogen-by-pathogen approach is then proposed to highlight the critical value of drug repurposing and its therapeutic potential. Finally, general advantages, challenges and development trends of drug combination strategy are discussed.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Drake Circus, Plymouth, UK
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
190
|
Thankappan B, Sivakumar J, Asokan S, Ramasamy M, Pillai MM, Selvakumar R, Angayarkanni J. Dual antimicrobial and anticancer activity of a novel synthetic α-helical antimicrobial peptide. Eur J Pharm Sci 2021; 161:105784. [PMID: 33677023 DOI: 10.1016/j.ejps.2021.105784] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 12/01/2022]
Abstract
Antimicrobial peptides (AMPs) are increasingly sought-after and researched antimicrobial agents due to its desired pharmacological properties and the continuous diminishing efficacy of antibiotics. In addition to this line of research, the aim of the present study is to determine the antimicrobial and anticancer activity of a de novo designed α-helical peptide. Circular dichroism showed 100% helical nature of the peptide in 10 mM SDS. Notably, the peptide exerted significant antimicrobial activity against the reference and antibiotic-resistant clinical isolates belonging to Pseudomonas sp. at a MIC and MBC of 2 and 8 μM, respectively. The progressive disruption and disturbance of cell membrane in the overall topography was observed in the scanning electron microscopy (SEM) micrographs of Pseudomonas aeruginosa ATCC 27853 treated with the peptide as compared to untreated control. The results of time-kill kinetics showed complete lysis at 3x MIC after 50 min of incubation of the microbe with the peptide. Moreover, the peptide did not lyse human RBCs even at the highest concentration of the peptide (10 mM) and retained its activity upon treatment at 0.5 mg/ml trypsin. Cancer cell lines, viz. A549 and MCF-7 were also found to be sensitive to peptide activity showing 50% reduction in survivability at 4 and 2 μM, respectively; however, L929 cells were unaffected. Drastic membrane permeability and necrotic mode of lysis of peptide-treated-A549 cells were affirmed by propidium iodide and live/dead cell staining. The results showed that the designed peptide could be an efficient drug molecule for clinical studies subjected to successful experiments on animal models.
Collapse
Affiliation(s)
- Bency Thankappan
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Jeyarajan Sivakumar
- Department of Pathology, University of Michigan, Annabor, 48108, United States
| | - Sridhar Asokan
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Mahendran Ramasamy
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Mamatha M Pillai
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641 004, Tamil Nadu, India
| | - R Selvakumar
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641 004, Tamil Nadu, India
| | - Jayaraman Angayarkanni
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| |
Collapse
|
191
|
Gauni B, Mehariya K, Shah A, Duggirala SM. Tetralone Scaffolds and Their Potential Therapeutic Applications. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201013165656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Substituted tetralones have played a substantial role in organic synthesis due to their
strong reactivity and suitability as a starting material for a range of synthetic heterocyclic compounds,
pharmaceuticals along with biological activities as well as precursors of many natural
products and their derivatives. Many α-tetralone derivatives are building blocks that have been used
in the synthesis of therapeutically functional compounds like some antibiotics, antidepressants,
acetylcholinesterase inhibitors effective for treating Alzheimer’s disease and alkaloids possessing
antitumor activity. In this review, there has been an attempt to explore the small molecule library
having an α-tetralone scaffold along with their diverse biological activities. Structural features of α-
tetralone derivatives responsible for potential therapeutic applications are also described.
Collapse
Affiliation(s)
- Bhagwati Gauni
- Department of Microbiology, Gujarat Vidyapith, Sadra-382 320, Dist; Gandhinagar, Gujarat,India
| | - Krunal Mehariya
- National Facility for Drug Discovery Complex, Centre of Excellence, Department of Chemistry, Saurashtra University, Rajkot-360 005, Gujarat,India
| | - Anamik Shah
- National Facility for Drug Discovery Complex, Centre of Excellence, Department of Chemistry, Saurashtra University, Rajkot-360 005, Gujarat,India
| | | |
Collapse
|
192
|
Bapat P, Singh G, Nobile CJ. Visible Lights Combined with Photosensitizing Compounds Are Effective against Candida albicans Biofilms. Microorganisms 2021; 9:microorganisms9030500. [PMID: 33652865 PMCID: PMC7996876 DOI: 10.3390/microorganisms9030500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
Fungal infections are increasing in prevalence worldwide, especially in immunocompromised individuals. Given the emergence of drug-resistant fungi and the fact that there are only three major classes of antifungal drugs available to treat invasive fungal infections, there is a need to develop alternative therapeutic strategies effective against fungal infections. Candida albicans is a commensal of the human microbiota that is also one of the most common fungal pathogens isolated from clinical settings. C. albicans possesses several virulence traits that contribute to its pathogenicity, including the ability to form drug-resistant biofilms, which can make C. albicans infections particularly challenging to treat. Here, we explored red, green, and blue visible lights alone and in combination with common photosensitizing compounds for their efficacies at inhibiting and disrupting C. albicans biofilms. We found that blue light inhibited biofilm formation and disrupted mature biofilms on its own and that the addition of photosensitizing compounds improved its antibiofilm potential. Red and green lights, however, inhibited biofilm formation only in combination with photosensitizing compounds but had no effects on disrupting mature biofilms. Taken together, these results suggest that photodynamic therapy may be an effective non-drug treatment for fungal biofilm infections that is worthy of further exploration.
Collapse
Affiliation(s)
- Priyanka Bapat
- Department of Molecular and Cell Biology, School of Natural Science, University of California, Merced, CA 95343, USA; (P.B.); (G.S.)
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Gurbinder Singh
- Department of Molecular and Cell Biology, School of Natural Science, University of California, Merced, CA 95343, USA; (P.B.); (G.S.)
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Science, University of California, Merced, CA 95343, USA; (P.B.); (G.S.)
- Health Sciences Research Institute, University of California, Merced, CA 95343, USA
- Correspondence: ; Tel.: +1-209-228-2427
| |
Collapse
|
193
|
Chen BC, Ding ZS, Dai JS, Chen NP, Gong XW, Ma LF, Qian CD. New Insights Into the Antibacterial Mechanism of Cryptotanshinone, a Representative Diterpenoid Quinone From Salvia miltiorrhiza Bunge. Front Microbiol 2021; 12:647289. [PMID: 33717044 PMCID: PMC7950322 DOI: 10.3389/fmicb.2021.647289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
The rapid rise of antibiotic resistance causes an urgent need for new antimicrobial agents with unique and different mechanisms of action. The respiratory chain is one such target involved in the redox balance and energy metabolism. As a natural quinone compound isolated from the root of Salvia miltiorrhiza Bunge, cryptotanshinone (CT) has been previously demonstrated against a wide range of Gram-positive bacteria including multidrug-resistant pathogens. Although superoxide radicals induced by CT are proposed to play an important role in the antibacterial effect of this agent, its mechanism of action is still unclear. In this study, we have shown that CT is a bacteriostatic agent rather than a bactericidal agent. Metabolome analysis suggested that CT might act as an antibacterial agent targeting the cell membrane. CT did not cause severe damage to the bacterial membrane but rapidly dissipated membrane potential, implying that this compound could be a respiratory chain inhibitor. Oxygen consumption analysis in staphylococcal membrane vesicles implied that CT acted as respiratory chain inhibitor probably by targeting type II NADH:quinone dehydrogenase (NDH-2). Molecular docking study suggested that the compound would competitively inhibit the binding of quinone to NDH-2. Consistent with the hypothesis, the antimicrobial activity of CT was blocked by menaquinone, and the combination of CT with thioridazine but not 2-n-heptyl-4-hydroxyquinoline-N-oxide exerted synergistic activity against Staphylococcus aureus. Additionally, combinations of CT with other inhibitors targeting different components of the bacterial respiratory chain exhibit potent synergistic activities against S. aureus, suggesting a promising role in combination therapies.
Collapse
Affiliation(s)
- Bo-Chen Chen
- College of Life Science, Institute of Molecular Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Shan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian-Sheng Dai
- College of Life Science, Institute of Molecular Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ni-Pi Chen
- College of Life Science, Institute of Molecular Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xing-Wen Gong
- Department of Biological Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Lie-Feng Ma
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Chao-Dong Qian
- College of Life Science, Institute of Molecular Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
194
|
Mupparapu N, Lin YHC, Kim TH, Elshahawi SI. Regiospecific Synthesis of Calcium-Independent Daptomycin Antibiotics using a Chemoenzymatic Method. Chemistry 2021; 27:4176-4182. [PMID: 33244806 DOI: 10.1002/chem.202005100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Indexed: 12/16/2022]
Abstract
Daptomycin (DAP) is a calcium (Ca2+ )-dependent FDA-approved antibiotic drug for the treatment of Gram-positive infections. It possesses a complex pharmacophore hampering derivatization and/or synthesis of analogues. To mimic the Ca2+ -binding effect, we used a chemoenzymatic approach to modify the tryptophan (Trp) residue of DAP and synthesize kinetically characterized and structurally elucidated regiospecific Trp-modified DAP analogues. We demonstrated that the modified DAPs are several times more active than the parent molecule against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria. Strikingly, and in contrast to the parent molecule, the DAP derivatives do not rely on calcium or any additional elements for activity.
Collapse
Affiliation(s)
- Nagaraju Mupparapu
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Yu-Hsin Cindy Lin
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Tae Ho Kim
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA, 92618, USA
| |
Collapse
|
195
|
Proteomic Adaptation of Clostridioides difficile to Treatment with the Antimicrobial Peptide Nisin. Cells 2021; 10:cells10020372. [PMID: 33670309 PMCID: PMC7918085 DOI: 10.3390/cells10020372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is the leading cause of antibiotic-associated diarrhea but can also result in more serious, life-threatening conditions. The incidence of C. difficile infections in hospitals is increasing, both in frequency and severity, and antibiotic-resistant C. difficile strains are advancing. Against this background antimicrobial peptides (AMPs) are an interesting alternative to classic antibiotics. Information on the effects of AMPs on C. difficile will not only enhance the knowledge for possible biomedical application but may also provide insights into mechanisms of C. difficile to adapt or counteract AMPs. This study applies state-of-the-art mass spectrometry methods to quantitatively investigate the proteomic response of C. difficile 630∆erm to sublethal concentrations of the AMP nisin allowing to follow the cellular stress adaptation in a time-resolved manner. The results do not only point at a heavy reorganization of the cellular envelope but also resulted in pronounced changes in central cellular processes such as carbohydrate metabolism. Further, the number of flagella per cell was increased during the adaptation process. The potential involvement of flagella in nisin adaptation was supported by a more resistant phenotype exhibited by a non-motile but hyper-flagellated mutant.
Collapse
|
196
|
Kashyap S, Kaur S, Sharma P, Capalash N. Combination of colistin and tobramycin inhibits persistence of Acinetobacter baumannii by membrane hyperpolarization and down-regulation of efflux pumps. Microbes Infect 2021; 23:104795. [PMID: 33567337 DOI: 10.1016/j.micinf.2021.104795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/15/2021] [Accepted: 01/30/2021] [Indexed: 01/03/2023]
Abstract
Acinetobacter baumannii, a leading cause of nosocomial infections, is a serious health threat. Limited therapeutic options due to multi-drug resistance and tolerance due to persister cells have urged the scientific community to develop new strategies to combat infections caused by this pathogen effectively. Since combination antibiotic therapy is an attractive strategy, the effect of combinations of antibiotics, belonging to four classes, was investigated on eradication of persister cells in A. baumannii. Among the antibiotics included in the study, tobramycin-based combinations were found to be the most effective. Tobramycin, in combination with colistin or ciprofloxacin, eradicated persister cells in A. baumannii in late exponential and stationary phases of growth. Mechanistically, colistin facilitated the entry of tobramycin into cells by increasing membrane permeability and inducing hyperpolarization of the inner membrane accompanied by increase in ROS production. Expression of the genes encoding universal stress protein and efflux pumps was down-regulated in response to tobramycin and colistin, suggesting increased lethality of their combination that might be responsible for eradication of persister cells. Thus, a combination of tobramycin and colistin could be explored as a promising option for preventing the relapse of A. baumannii infections due to persister cells.
Collapse
Affiliation(s)
- Shruti Kashyap
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Sukhvir Kaur
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
197
|
Cardoso P, Glossop H, Meikle TG, Aburto-Medina A, Conn CE, Sarojini V, Valery C. Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities. Biophys Rev 2021; 13:35-69. [PMID: 33495702 PMCID: PMC7817352 DOI: 10.1007/s12551-021-00784-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
The global public health threat of antimicrobial resistance has led the scientific community to highly engage into research on alternative strategies to the traditional small molecule therapeutics. Here, we review one of the most popular alternatives amongst basic and applied research scientists, synthetic antimicrobial peptides. The ease of peptide chemical synthesis combined with emerging engineering principles and potent broad-spectrum activity, including against multidrug-resistant strains, has motivated intense scientific focus on these compounds for the past decade. This global effort has resulted in significant advances in our understanding of peptide antimicrobial activity at the molecular scale. Recent evidence of molecular targets other than the microbial lipid membrane, and efforts towards consensus antimicrobial peptide motifs, have supported the rise of molecular engineering approaches and design tools, including machine learning. Beyond molecular concepts, supramolecular chemistry has been lately added to the debate; and helped unravel the impact of peptide self-assembly on activity, including on biofilms and secondary targets, while providing new directions in pharmaceutical formulation through taking advantage of peptide self-assembled nanostructures. We argue that these basic research advances constitute a solid basis for promising industry translation of rationally designed synthetic peptide antimicrobials, not only as novel drugs against multidrug-resistant strains but also as components of emerging antimicrobial biomaterials. This perspective is supported by recent developments of innovative peptide-based and peptide-carrier nanobiomaterials that we also review.
Collapse
Affiliation(s)
- Priscila Cardoso
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- School of Science, RMIT University, Melbourne, Australia
| | - Hugh Glossop
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | - Celine Valery
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
198
|
Abstract
Recent experiments have shown that certain molecular agents can selectively penetrate and aggregate in bacterial lipid membranes, leading to their permeability and rupture. To help reveal and understand the underlying mechanisms, here we establish a theory to show that the deformation energy of the membrane tends to limit the growth of molecular domains on a lipid membrane, resulting in a characteristic domain size, and that the domain aggregation significantly reduces the energy barrier to pore growth. Coarse-grained molecular dynamics simulations are performed to validate such domain aggregation and associated pore formation. This study sheds light on how lipid membranes can be damaged through molecular domain aggregation and contributes to establish a theoretical foundation for the next-generation membrane-targeting nanomedicine.
Collapse
Affiliation(s)
- Yue Liu
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Guijin Zou
- Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore
| | - Huajian Gao
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
- Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 639798, Singapore
| |
Collapse
|
199
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
200
|
Hui L, Chen J, Kafley P, Liu H. Capture and Kill: Selective Eradication of Target Bacteria by a Flexible Bacteria-Imprinted Chip. ACS Biomater Sci Eng 2021; 7:90-95. [PMID: 33338373 DOI: 10.1021/acsbiomaterials.0c01568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper reports an antibacterial chip that can selectively capture bacteria and kill them using low-voltage DC electricity. We prepared a bacteria-imprinted, flexible PDMS chip that can separate target bacteria from suspensions with high selectivity. The chip contained integrated electrodes that can kill the captured bacteria within 10 min by applying a low DC voltage. The used chip could be easily regenerated by solution immersion. Meanwhile, the PDMS chip showed good biocompatibility and inhibited adhesion of human blood cells. Our work points to a new strategy to address pathogenic bacterial contamination and infection.
Collapse
Affiliation(s)
- Liwei Hui
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jun Chen
- Petersen Institute of NanoScience and Engineering, and Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Parmila Kafley
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Haitao Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|