151
|
Poulton NC, Rock JM. Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:997283. [PMID: 36325467 PMCID: PMC9618640 DOI: 10.3389/fcimb.2022.997283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/30/2022] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis (TB) is among the most difficult infections to treat, requiring several months of multidrug therapy to produce a durable cure. The reasons necessitating long treatment times are complex and multifactorial. However, one major difficulty of treating TB is the resistance of the infecting bacterium, Mycobacterium tuberculosis (Mtb), to many distinct classes of antimicrobials. This review will focus on the major gaps in our understanding of intrinsic drug resistance in Mtb and how functional and chemical-genetics can help close those gaps. A better understanding of intrinsic drug resistance will help lay the foundation for strategies to disarm and circumvent these mechanisms to develop more potent antitubercular therapies.
Collapse
|
152
|
Temaj G, Hadziselimovic R, Nefic H, Nuhii N. Ribosome biogenesis and ribosome therapy in cancer cells. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.81706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Introduction: The process of protein synthesis is a vital process for all kingdoms of life. The ribosome is a ribonucleoprotein complex that reads the genetic code, from messenger RNA (mRNA) to produce proteins and to tightly regulate and ensure cells growth. The fact that numerous diseases are caused by defect during the ribosome biogenesis is important to understand this pathway.
Materials and methods: We have analyzed the literature for ribosome biogenesis and its links with different diseases which have been found.
Results and discussion: We have discussed the key aspect of human ribosome biogenesis and its links to diseases. We have also proposed the potential of applying this knowledge to the development of a ribosomal stress-based cancer therapy.
Conclusion: Major challenges in the future will be to determine factors which play a pivotal role during ribosome biogenesis. Therefore, more anti-cancer drugs and gene therapy for genetic diseases will be developed against ribosomal biogenesis in the coming years.
Graphical abstract:
Collapse
|
153
|
Li Q. Geometric basis of action potential of skeletal muscle cells and neurons. Open Life Sci 2022; 17:1191-1199. [PMID: 36185399 PMCID: PMC9482420 DOI: 10.1515/biol-2022-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/15/2022] Open
Abstract
Although we know something about single-cell neuromuscular junctions, it is still unclear how multiple skeletal muscle cells coordinate to complete intricate spatial curve movement. Here, we hypothesize that skeletal muscle cell populations with action potentials are aligned according to curved manifolds in space (a curved shape in space). When a specific motor nerve impulse is transmitted, the skeletal muscle also moves according to the corresponding shape (manifolds). The action potential of motor nerve fibers has the characteristics of a time curve manifold, and this time-manifold curve of motor nerve fibers comes from the visual cortex in which spatial geometric manifolds are formed within the synaptic connection of neurons. This spatial geometric manifold of the synaptic connection of neurons originates from spatial geometric manifolds outside nature that are transmitted to the brain through the cone cells and ganglion cells of the retina. The essence of life is that life is an object that can move autonomously, and the essence of life's autonomous movement is the movement of proteins. Theoretically, because of the infinite diversity of geometric manifold shapes in nature, the arrangement and combination of 20 amino acids should have infinite diversity, and the geometric manifold formed by the protein three-dimensional spatial structure should also have infinite diversity.
Collapse
Affiliation(s)
- Qing Li
- Department of Function, ShiJiaZhuang Traditional Chinese Medical Hospital, No. 233, ZhongShan West Road, ShiJiaZhuang, HeBei Province 050051, China
| |
Collapse
|
154
|
Papaleo S, Alvaro A, Nodari R, Panelli S, Bitar I, Comandatore F. The red thread between methylation and mutation in bacterial antibiotic resistance: How third-generation sequencing can help to unravel this relationship. Front Microbiol 2022; 13:957901. [PMID: 36188005 PMCID: PMC9520237 DOI: 10.3389/fmicb.2022.957901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
DNA methylation is an important mechanism involved in bacteria limiting foreign DNA acquisition, maintenance of mobile genetic elements, DNA mismatch repair, and gene expression. Changes in DNA methylation pattern are observed in bacteria under stress conditions, including exposure to antimicrobial compounds. These changes can result in transient and fast-appearing adaptive antibiotic resistance (AdR) phenotypes, e.g., strain overexpressing efflux pumps. DNA methylation can be related to DNA mutation rate, because it is involved in DNA mismatch repair systems and because methylated bases are well-known mutational hotspots. The AdR process can be the first important step in the selection of antibiotic-resistant strains, allowing the survival of the bacterial population until more efficient resistant mutants emerge. Epigenetic modifications can be investigated by third-generation sequencing platforms that allow us to simultaneously detect all the methylated bases along with the DNA sequencing. In this scenario, this sequencing technology enables the study of epigenetic modifications in link with antibiotic resistance and will help to investigate the relationship between methylation and mutation in the development of stable mechanisms of resistance.
Collapse
Affiliation(s)
- Stella Papaleo
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Alessandro Alvaro
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Bioscience, University of Milan, Milan, Italy
| | - Riccardo Nodari
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simona Panelli
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Francesco Comandatore
- Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- *Correspondence: Francesco Comandatore
| |
Collapse
|
155
|
Wu R, Cao Z, Jiang Y, Chen W, Sun Y, Li Q, Mi J, Deng L, Liao X, Feng Y, Lan T, Ma J. Early life dynamics of ARG and MGE associated with intestinal virome in neonatal piglets. Vet Microbiol 2022; 274:109575. [PMID: 36191572 DOI: 10.1016/j.vetmic.2022.109575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
Abstract
The pre- and post-weaning stages for piglets are critical periods for the maturation of intestinal functions and contamination with antibiotic resistant bacterial pathogens will threaten their intestinal health. The presence of bacteriophage can also alter bacterial populations in the intestine but whether transmission of antibiotic resistance genes (ARG) is affected by phage during maturation of the neonatal piglet intestine is not known. We therefore identified the intestinal virome along with ARGs and mobile genetic elements (MGE) from piglet fecal samples collected from 3 to 28 days representing the different growth stages. We found wide fluctuations for the intestinal virome of weaning piglets and most virus - related antibiotic resistance was derived from temperate phage suggesting a reservoir of multidrug resistance was present in the neonatal porcine gut. Our results provide a comprehensive understanding of ARGs associated with the intestinal virome that therefore represents a potential risk for horizontal ARG transfer to pathogenic bacteria.
Collapse
Affiliation(s)
- Ruiting Wu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Ze Cao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Yiming Jiang
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Virology, Technical University of Munich, Munich, Germany
| | - Wei Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Yuan Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Qianniu Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Jiandui Mi
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Li Deng
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Virology, Technical University of Munich, Munich, Germany
| | - Xindi Liao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, China
| | - Tian Lan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Jingyun Ma
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
156
|
Giarimoglou N, Kouvela A, Maniatis A, Papakyriakou A, Zhang J, Stamatopoulou V, Stathopoulos C. A Riboswitch-Driven Era of New Antibacterials. Antibiotics (Basel) 2022; 11:antibiotics11091243. [PMID: 36140022 PMCID: PMC9495366 DOI: 10.3390/antibiotics11091243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Riboswitches are structured non-coding RNAs found in the 5′ UTR of important genes for bacterial metabolism, virulence and survival. Upon the binding of specific ligands that can vary from simple ions to complex molecules such as nucleotides and tRNAs, riboswitches change their local and global mRNA conformations to affect downstream transcription or translation. Due to their dynamic nature and central regulatory role in bacterial metabolism, riboswitches have been exploited as novel RNA-based targets for the development of new generation antibacterials that can overcome drug-resistance problems. During recent years, several important riboswitch structures from many bacterial representatives, including several prominent human pathogens, have shown that riboswitches are ideal RNA targets for new compounds that can interfere with their structure and function, exhibiting much reduced resistance over time. Most interestingly, mainstream antibiotics that target the ribosome have been shown to effectively modulate the regulatory behavior and capacity of several riboswitches, both in vivo and in vitro, emphasizing the need for more in-depth studies and biological evaluation of new antibiotics. Herein, we summarize the currently known compounds that target several main riboswitches and discuss the role of mainstream antibiotics as modulators of T-box riboswitches, in the dawn of an era of novel inhibitors that target important bacterial regulatory RNAs.
Collapse
Affiliation(s)
- Nikoleta Giarimoglou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Adamantia Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, 15341 Athens, Greece
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | | - Constantinos Stathopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610-997932
| |
Collapse
|
157
|
Naganathan A, Culver GM. Interdependency and Redundancy Add Complexity and Resilience to Biogenesis of Bacterial Ribosomes. Annu Rev Microbiol 2022; 76:193-210. [PMID: 35609945 DOI: 10.1146/annurev-micro-041020-121806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pace and efficiency of ribosomal subunit production directly impact the fitness of bacteria. Biogenesis demands more than just the union of ribosomal components, including RNA and proteins, to form this functional ribonucleoprotein particle. Extra-ribosomal protein factors play a fundamental role in the efficiency and efficacy of ribosomal subunit biogenesis. A paucity of data on intermediate steps, multiple and overlapping pathways, and the puzzling number of functions that extra-ribosomal proteins appear to play in vivo make unraveling the formation of this macromolecular assemblage difficult. In this review, we outline with examples the multinodal landscape of factor-assisted mechanisms that influence ribosome synthesis in bacteria. We discuss in detail late-stage events that mediate correct ribosome formation and the transition to translation initiation and thereby ensure high-fidelity protein synthesis.
Collapse
Affiliation(s)
- Anusha Naganathan
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| |
Collapse
|
158
|
Martin C, Bonnet M, Patino N, Azoulay S, Di Giorgio A, Duca M. Design, synthesis and evaluation of neomycin‐imidazole conjugates for RNA cleavage. Chempluschem 2022; 87:e202200250. [DOI: 10.1002/cplu.202200250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Céline Martin
- Université Côte d'Azur Faculté des Sciences: Universite Cote d'Azur Faculte des Sciences Institut de Chimie de Nice 28 Avenue Valrose 06100 Nice FRANCE
| | - Maurinne Bonnet
- Université Côte d'Azur Faculté des Sciences: Universite Cote d'Azur Faculte des Sciences Institut de Chimie de Nice 28 Avenue Valrose 06100 Nice FRANCE
| | - Nadia Patino
- Université Côte d'Azur Faculté des Sciences: Universite Cote d'Azur Faculte des Sciences Institut de Chimie de Nice 28 Avenue Valrose 06100 Nice FRANCE
| | - Stéphane Azoulay
- Université Côte d'Azur Faculté des Sciences: Universite Cote d'Azur Faculte des Sciences Institut de Chimie de Nice 28 Avenue Valrose 06100 Nice FRANCE
| | - Audrey Di Giorgio
- Université Côte d'Azur Faculté des Sciences: Universite Cote d'Azur Faculte des Sciences Institut de Chimie de Nice 28 Avenue Valrose 06100 Nice FRANCE
| | - Maria Duca
- Institut de Chimie de Nice Université Côte d'Azur Parc Valrose 06100 Nice FRANCE
| |
Collapse
|
159
|
Maliga P. Engineering the plastid and mitochondrial genomes of flowering plants. NATURE PLANTS 2022; 8:996-1006. [PMID: 36038655 DOI: 10.1038/s41477-022-01227-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Engineering the plastid genome based on homologous recombination is well developed in a few model species. Homologous recombination is also the rule in mitochondria, but transformation of the mitochondrial genome has not been realized in the absence of selective markers. The application of transcription activator-like (TAL) effector-based tools brought about a dramatic change because they can be deployed from nuclear genes and targeted to plastids or mitochondria by an N-terminal targeting sequence. Recognition of the target site in the organellar genomes is ensured by the modular assembly of TALE repeats. In this paper, I review the applications of TAL effector nucleases and TAL effector cytidine deaminases for gene deletion, base editing and mutagenesis in plastids and mitochondria. I also review emerging technologies such as post-transcriptional RNA modification to regulate gene expression, Agrobacterium- and nanoparticle-mediated organellar genome transformation, and self-replicating organellar vectors as production platforms.
Collapse
Affiliation(s)
- Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
160
|
Khairullina ZZ, Makarov GI, Tereshchenkov AG, Buev VS, Lukianov DA, Polshakov VI, Tashlitsky VN, Osterman IA, Sumbatyan NV. Conjugates of Desmycosin with Fragments of Antimicrobial Peptide Oncocin: Synthesis, Antibacterial Activity, Interaction with Ribosome. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:871-889. [PMID: 36180983 DOI: 10.1134/s0006297922090024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023]
Abstract
Design and synthesis of conjugates consisting of the macrolide antibiotic desmycosin and fragments of the antibacterial peptide oncocin were performed in attempt to develop new antimicrobial compounds. New compounds were shown to bind to the E. coli 70S ribosomes, to inhibit bacterial protein synthesis in vitro, as well as to suppress bacterial growth. The conjugates of N-terminal hexa- and tripeptide fragments of oncocin and 3,2',4''-triacetyldesmycosin were found to be active against some strains of macrolide-resistant bacteria. By simulating molecular dynamics of the complexes of these compounds with the wild-type bacterial ribosomes and with ribosomes, containing A2059G 23S RNA mutation, the specific structural features of their interactions were revealed.
Collapse
Affiliation(s)
| | | | - Andrey G Tereshchenkov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Vitaly S Buev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Dmitrii A Lukianov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
| | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vadim N Tashlitsky
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ilya A Osterman
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
| | - Natalia V Sumbatyan
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
161
|
Perlaza-Jiménez L, Tan KS, Piper SJ, Johnson RM, Bamert RS, Stubenrauch CJ, Wright A, Lupton D, Lithgow T, Belousoff MJ. A Structurally Characterized Staphylococcus aureus Evolutionary Escape Route from Treatment with the Antibiotic Linezolid. Microbiol Spectr 2022; 10:e0058322. [PMID: 35736238 PMCID: PMC9431193 DOI: 10.1128/spectrum.00583-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen that presents great health concerns. Treatment requires the use of last-line antibiotics, such as members of the oxazolidinone family, of which linezolid is the first member to see regular use in the clinic. Here, we report a short time scale selection experiment in which strains of MRSA were subjected to linezolid treatment. Clonal isolates which had evolved a linezolid-resistant phenotype were characterized by whole-genome sequencing. Linezolid-resistant mutants were identified which had accumulated mutations in the ribosomal protein uL3. Multiple clones which had two mutations in uL3 exhibited resistance to linezolid, 2-fold higher than the clinical breakpoint. Ribosomes from this strain were isolated and subjected to single-particle cryo-electron microscopic analysis and compared to the ribosomes from the parent strain. We found that the mutations in uL3 lead to a rearrangement of a loop that makes contact with Helix 90, propagating a structural change over 15 Å away. This distal change swings nucleotide U2504 into the binding site of the antibiotic, causing linezolid resistance. IMPORTANCE Antibiotic resistance poses a critical problem to human health and decreases the utility of these lifesaving drugs. Of particular concern is the "superbug" methicillin-resistant Staphylococcus aureus (MRSA), for which treatment of infection requires the use of last-line antibiotics, including linezolid. In this paper, we characterize the atomic rearrangements which the ribosome, the target of linezolid, undergoes during its evolutionary journey toward becoming drug resistant. Using cryo-electron microscopy, we describe a particular molecular mechanism which MRSA uses to become resistant to linezolid.
Collapse
Affiliation(s)
- Laura Perlaza-Jiménez
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Kher-Shing Tan
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Sarah J. Piper
- Drug Development Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Rachel M. Johnson
- Drug Development Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Rebecca S. Bamert
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Christopher J. Stubenrauch
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Alexander Wright
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - David Lupton
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Matthew J. Belousoff
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Drug Development Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
162
|
Lee C, Ye Q, Shin E, Ting T, Lee SJ. Acquisition of Streptomycin Resistance by Oxidative Stress Induced by Hydrogen Peroxide in Radiation-Resistant Bacterium Deinococcus geothermalis. Int J Mol Sci 2022; 23:ijms23179764. [PMID: 36077162 PMCID: PMC9456066 DOI: 10.3390/ijms23179764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 12/01/2022] Open
Abstract
Streptomycin is used primarily to treat bacterial infections, including brucellosis, plague, and tuberculosis. Streptomycin resistance easily develops in numerous bacteria through the inhibition of antibiotic transfer, the production of aminoglycoside-modifying enzymes, or mutations in ribosomal components with clinical doses of streptomycin treatment. (1) Background: A transposable insertion sequence is one of the mutation agents in bacterial genomes under oxidative stress. (2) Methods: In the radiation-resistant bacterium Deinococcus geothermalis subjected to chronic oxidative stress induced by 20 mM hydrogen peroxide, active transposition of an insertion sequence element and several point mutations in three streptomycin resistance (SmR)-related genes (rsmG, rpsL, and mthA) were identified. (3) Results: ISDge6 of the IS5 family integrated into the rsmG gene (dgeo_2335), called SrsmG, encodes a ribosomal guanosine methyltransferase resulting in streptomycin resistance. In the case of dgeo_2840-disrupted mutant strains (S1 and S2), growth inhibition under antibiotic-free conditions was recovered with increased growth yields in the presence of 50 µg/mL streptomycin due to a streptomycin-dependent (SmD) mutation. These mutants have a predicted proline-to-leucine substitution at the 91st residue of ribosomal protein S12 in the decoding center. (4) Conclusions: Our findings show that the active transposition of a unique IS element under oxidative stress conditions conferred antibiotic resistance through the disruption of rsmG. Furthermore, chronic oxidative stress induced by hydrogen peroxide also induced streptomycin resistance caused by point and frameshift mutations of streptomycin-interacting residues such as K43, K88, and P91 in RpsL and four genes for streptomycin resistance.
Collapse
|
163
|
Ribosome-Directed Therapies in Cancer. Biomedicines 2022; 10:biomedicines10092088. [PMID: 36140189 PMCID: PMC9495564 DOI: 10.3390/biomedicines10092088] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/29/2022] Open
Abstract
The human ribosomes are the cellular machines that participate in protein synthesis, which is deeply affected during cancer transformation by different oncoproteins and is shown to provide cancer cell proliferation and therefore biomass. Cancer diseases are associated with an increase in ribosome biogenesis and mutation of ribosomal proteins. The ribosome represents an attractive anti-cancer therapy target and several strategies are used to identify specific drugs. Here we review the role of different drugs that may decrease ribosome biogenesis and cancer cell proliferation.
Collapse
|
164
|
Zelmer AR, Nelson R, Richter K, Atkins GJ. Can intracellular Staphylococcus aureus in osteomyelitis be treated using current antibiotics? A systematic review and narrative synthesis. Bone Res 2022; 10:53. [PMID: 35961964 PMCID: PMC9374758 DOI: 10.1038/s41413-022-00227-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Approximately 40% of treatments of chronic and recurrent osteomyelitis fail in part due to bacterial persistence. Staphylococcus aureus, the predominant pathogen in human osteomyelitis, is known to persist by phenotypic adaptation as small-colony variants (SCVs) and by formation of intracellular reservoirs, including those in major bone cell types, reducing susceptibility to antibiotics. Intracellular infections with S. aureus are difficult to treat; however, there are no evidence-based clinical guidelines addressing these infections in osteomyelitis. We conducted a systematic review of the literature to determine the demonstrated efficacy of all antibiotics against intracellular S. aureus relevant to osteomyelitis, including protein biosynthesis inhibitors (lincosamides, streptogramins, macrolides, oxazolidines, tetracyclines, fusidic acid, and aminoglycosides), enzyme inhibitors (fluoroquinolones and ansamycines), and cell wall inhibitors (beta-lactam inhibitors, glycopeptides, fosfomycin, and lipopeptides). The PubMed and Embase databases were screened for articles related to intracellular S. aureus infections that compared the effectiveness of multiple antibiotics or a single antibiotic together with another treatment, which resulted in 34 full-text articles fitting the inclusion criteria. The combined findings of these studies were largely inconclusive, most likely due to the plethora of methodologies utilized. Therefore, the reported findings in the context of the models employed and possible solutions for improved understanding are explored here. While rifampicin, oritavancin, linezolid, moxifloxacin and oxacillin were identified as the most effective potential intracellular treatments, the scientific evidence for these is still relatively weak. We advocate for more standardized research on determining the intracellular effectiveness of antibiotics in S. aureus osteomyelitis to improve treatments and patient outcomes.
Collapse
Affiliation(s)
- Anja R Zelmer
- Centre for Orthopaedic and Trauma Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Renjy Nelson
- Department of Infectious Diseases, Central Adelaide Local Health Network, Adelaide, SA, 5000, Australia.,Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Katharina Richter
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Adelaide, SA, 5011, Australia
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia.
| |
Collapse
|
165
|
Xin X, Qi C, Xu L, Gao Q, Liu X. Green synthesis of silver nanoparticles and their antibacterial effects. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.941240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antibacterial resistance is by far one of the greatest challenges to global health. Many pharmaceutical or material strategies have been explored to overcome this dilemma. Of these, silver nanoparticles (AgNPs) are known to have a non-specific antibacterial mechanism that renders it difficult to engender silver-resistant bacteria, enabling them to be more powerful antibacterial agents than conventional antibiotics. AgNPs have shown promising antibacterial effects in both Gram-positive and Gram-negative bacteria. The aim of this review is to summarize the green synthesis of AgNPs as antibacterial agents, while other AgNPs-related insights (e.g., antibacterial mechanisms, potential toxicity, and medical applications) are also reviewed.
Collapse
|
166
|
Akunuri R, Unnissa T, Vadakattu M, Bujji S, Mahammad Ghouse S, Madhavi Yaddanapudi V, Chopra S, Nanduri S. Bacterial Pyruvate Kinase: A New Potential Target to Combat Drug‐Resistant
Staphylococcus aureus
Infections. ChemistrySelect 2022. [DOI: 10.1002/slct.202201403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ravikumar Akunuri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Tanveer Unnissa
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Manasa Vadakattu
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Sushmitha Bujji
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Shaik Mahammad Ghouse
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031, Uttar Pradesh India
| | - Srinivas Nanduri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| |
Collapse
|
167
|
Kim K, Song M, Liu Y, Ji P. Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Front Immunol 2022; 13:885253. [PMID: 35990617 PMCID: PMC9389069 DOI: 10.3389/fimmu.2022.885253] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infection induced post-weaning diarrhea is one of the leading causes of morbidity and mortality in newly weaned pigs and one of the significant drivers for antimicrobial use in swine production. ETEC attachment to the small intestine initiates ETEC colonization and infection. The secretion of enterotoxins further disrupts intestinal barrier function and induces intestinal inflammation in weaned pigs. ETEC infection can also aggravate the intestinal microbiota dysbiosis due to weaning stress and increase the susceptibility of weaned pigs to other enteric infectious diseases, which may result in diarrhea or sudden death. Therefore, the amount of antimicrobial drugs for medical treatment purposes in major food-producing animal species is still significant. The alternative practices that may help reduce the reliance on such antimicrobial drugs and address animal health requirements are needed. Nutritional intervention in order to enhance intestinal health and the overall performance of weaned pigs is one of the most powerful practices in the antibiotic-free production system. This review summarizes the utilization of several categories of feed additives or supplements, such as direct-fed microbials, prebiotics, phytochemicals, lysozyme, and micro minerals in newly weaned pigs. The current understanding of these candidates on intestinal health and disease resistance of pigs under ETEC infection are particularly discussed, which may inspire more research on the development of alternative practices to support food-producing animals.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| |
Collapse
|
168
|
Arney JW, Weeks KM. RNA-Ligand Interactions Quantified by Surface Plasmon Resonance with Reference Subtraction. Biochemistry 2022; 61:1625-1632. [PMID: 35802500 PMCID: PMC9357220 DOI: 10.1021/acs.biochem.2c00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structured RNAs bind ligands and are attractive targets for small-molecule drugs. A wide variety of analytical methods have been used to characterize RNA-ligand interactions, but our experience is that most have significant limitations in terms of material requirements and applicability to complex RNAs. Surface plasmon resonance (SPR) potentially overcomes these limitations, but we find that the standard experimental framework measures notable nonspecific electrostatic-mediated interactions, frustrating analysis of weak RNA binders. SPR measurements are typically quantified relative to a non-target reference channel. Here, we show that referencing to a channel containing a non-binding control RNA enables subtraction of nonspecific binding contributions, allowing measurements of accurate and specific binding affinities. We validated this approach for small-molecule binders of two riboswitch RNAs with affinities ranging from nanomolar to millimolar, including low-molecular-mass fragment ligands. SPR implemented with reference subtraction reliably discriminates specific from nonspecific binding, uses RNA and ligand material efficiently, and enables rapid exploration of the ligand-binding landscape for RNA targets.
Collapse
Affiliation(s)
- J. Winston Arney
- Department of Chemistry, University of North Carolina, Chapel Hill, NC
27599-3290
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC
27599-3290
| |
Collapse
|
169
|
Nanopore Sequencing for De Novo Bacterial Genome Assembly and Search for Single-Nucleotide Polymorphism. Int J Mol Sci 2022; 23:ijms23158569. [PMID: 35955702 PMCID: PMC9369328 DOI: 10.3390/ijms23158569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Nanopore sequencing (ONT) is a new and rapidly developing method for determining nucleotide sequences in DNA and RNA. It serves the ability to obtain long reads of thousands of nucleotides without assembly and amplification during sequencing compared to next-generation sequencing. Nanopore sequencing can help for determination of genetic changes leading to antibiotics resistance. This study presents the application of ONT technology in the assembly of an E. coli genome characterized by a deletion of the tolC gene and known single-nucleotide variations leading to antibiotic resistance, in the absence of a reference genome. We performed benchmark studies to determine minimum coverage depth to obtain a complete genome, depending on the quality of the ONT data. A comparison of existing programs was carried out. It was shown that the Flye program demonstrates plausible assembly results relative to others (Shasta, Canu, and Necat). The required coverage depth for successful assembly strongly depends on the size of reads. When using high-quality samples with an average read length of 8 Kbp or more, the coverage depth of 30× is sufficient to assemble the complete genome de novo and reliably determine single-nucleotide variations in it. For samples with shorter reads with mean lengths of 2 Kbp, a higher coverage depth of 50× is required. Avoiding of mechanical mixing is obligatory for samples preparation. Nanopore sequencing can be used alone to determine antibiotics-resistant genetic features of bacterial strains.
Collapse
|
170
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Link Between Antibiotic Persistence and Antibiotic Resistance in Bacterial Pathogens. Front Cell Infect Microbiol 2022; 12:900848. [PMID: 35928205 PMCID: PMC9343593 DOI: 10.3389/fcimb.2022.900848] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022] Open
Abstract
Both, antibiotic persistence and antibiotic resistance characterize phenotypes of survival in which a bacterial cell becomes insensitive to one (or even) more antibiotic(s). However, the molecular basis for these two antibiotic-tolerant phenotypes is fundamentally different. Whereas antibiotic resistance is genetically determined and hence represents a rather stable phenotype, antibiotic persistence marks a transient physiological state triggered by various stress-inducing conditions that switches back to the original antibiotic sensitive state once the environmental situation improves. The molecular basics of antibiotic resistance are in principle well understood. This is not the case for antibiotic persistence. Under all culture conditions, there is a stochastically formed, subpopulation of persister cells in bacterial populations, the size of which depends on the culture conditions. The proportion of persisters in a bacterial population increases under different stress conditions, including treatment with bactericidal antibiotics (BCAs). Various models have been proposed to explain the formation of persistence in bacteria. We recently hypothesized that all physiological culture conditions leading to persistence converge in the inability of the bacteria to re-initiate a new round of DNA replication caused by an insufficient level of the initiator complex ATP-DnaA and hence by the lack of formation of a functional orisome. Here, we extend this hypothesis by proposing that in this persistence state the bacteria become more susceptible to mutation-based antibiotic resistance provided they are equipped with error-prone DNA repair functions. This is - in our opinion - in particular the case when such bacterial populations are exposed to BCAs.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Bavarian NMR Center – Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
- *Correspondence: Wolfgang Eisenreich,
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
171
|
Yan S, Zeng M, Wang H, Zhang H. Micromonospora: A Prolific Source of Bioactive Secondary Metabolites with Therapeutic Potential. J Med Chem 2022; 65:8735-8771. [PMID: 35766919 DOI: 10.1021/acs.jmedchem.2c00626] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Micromonospora, one of the most important actinomycetes genera, is well-known as the treasure trove of bioactive secondary metabolites (SMs). Herein, together with an in-depth genomic analysis of the reported Micromonospora strains, all SMs from this genus are comprehensively summarized, containing structural features, bioactive properties, and mode of actions as well as their biosynthetic and chemical synthesis pathways. The perspective enables a detailed view of Micromonospora-derived SMs, which will enrich the chemical diversity of natural products and inspire new drug discovery in the pharmaceutical industry.
Collapse
Affiliation(s)
- Suqi Yan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mingyuan Zeng
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
172
|
Handel F, Kulik A, Wex KW, Berscheid A, Saur J, Winkler A, Wibberg D, Kalinowski J, Brötz-Oesterhelt H, Mast Y. Ψ-Footprinting approach for the identification of protein synthesis inhibitor producers. NAR Genom Bioinform 2022; 4:lqac055. [PMID: 35855324 PMCID: PMC9290621 DOI: 10.1093/nargab/lqac055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Today, one of the biggest challenges in antibiotic research is a targeted prioritization of natural compound producer strains and an efficient dereplication process to avoid undesired rediscovery of already known substances. Thereby, genome sequence-driven mining strategies are often superior to wet-lab experiments because they are generally faster and less resource-intensive. In the current study, we report on the development of a novel in silico screening approach to evaluate the genetic potential of bacterial strains to produce protein synthesis inhibitors (PSI), which was termed the protein synthesis inhibitor ('psi’) target gene footprinting approach = Ψ-footprinting. The strategy is based on the occurrence of protein synthesis associated self-resistance genes in genome sequences of natural compound producers. The screening approach was applied to 406 genome sequences of actinomycetes strains from the DSMZ strain collection, resulting in the prioritization of 15 potential PSI producer strains. For twelve of them, extract samples showed protein synthesis inhibitory properties in in vitro transcription/translation assays. For four strains, namely Saccharopolyspora flava DSM 44771, Micromonospora aurantiaca DSM 43813, Nocardioides albertanoniae DSM 25218, and Geodermatophilus nigrescens DSM 45408, the protein synthesis inhibitory substance amicoumacin was identified by HPLC-MS analysis, which proved the functionality of the in silico screening approach.
Collapse
Affiliation(s)
- Franziska Handel
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen , Auf der Morgenstelle 28, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF) , Partner Site Tübingen, Tübingen , Germany
| | - Andreas Kulik
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen , Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Department of Microbial Bioactive Compounds; Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen ; Tübingen , Baden-Württemberg 72076 , Germany
| | - Katharina W Wex
- Department of Microbial Bioactive Compounds; Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen ; Tübingen , Baden-Württemberg 72076 , Germany
- German Center for Infection Research (DZIF) , Partner Site Tübingen, Tübingen , Germany
| | - Anne Berscheid
- Department of Microbial Bioactive Compounds; Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen ; Tübingen , Baden-Württemberg 72076 , Germany
- German Center for Infection Research (DZIF) , Partner Site Tübingen, Tübingen , Germany
| | - Julian S Saur
- Biomolecular Chemistry, Institute of Organic Chemistry, University of Tübingen , Tübingen , Baden-Württemberg 72076 , Germany
| | - Anika Winkler
- Center for Biotechnology (CeBiTec), Bielefeld University , Universitätsstraße 27, 33615 Bielefeld , Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University , Universitätsstraße 27, 33615 Bielefeld , Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University , Universitätsstraße 27, 33615 Bielefeld , Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds; Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen ; Tübingen , Baden-Württemberg 72076 , Germany
- German Center for Infection Research (DZIF) , Partner Site Tübingen, Tübingen , Germany
- Cluster of Excellence Controlling Microbes to Fight Infection , Germany
| | - Yvonne Mast
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen , Auf der Morgenstelle 28, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF) , Partner Site Tübingen, Tübingen , Germany
- Department Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures , Inhoffenstraße 7B, 38124 Braunschweig , Germany
- Technical University Braunschweig, Department of Microbiology , Rebenring 56, 38106 Braunschweig , Germany
| |
Collapse
|
173
|
Nishima W, Girodat D, Holm M, Rundlet EJ, Alejo JL, Fischer K, Blanchard SC, Sanbonmatsu KY. Hyper-swivel head domain motions are required for complete mRNA-tRNA translocation and ribosome resetting. Nucleic Acids Res 2022; 50:8302-8320. [PMID: 35808938 DOI: 10.1093/nar/gkac597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
Translocation of messenger RNA (mRNA) and transfer RNA (tRNA) substrates through the ribosome during protein synthesis, an exemplar of directional molecular movement in biology, entails a complex interplay of conformational, compositional, and chemical changes. The molecular determinants of early translocation steps have been investigated rigorously. However, the elements enabling the ribosome to complete translocation and reset for subsequent protein synthesis reactions remain poorly understood. Here, we have combined molecular simulations with single-molecule fluorescence resonance energy transfer imaging to gain insights into the rate-limiting events of the translocation mechanism. We find that diffusive motions of the ribosomal small subunit head domain to hyper-swivelled positions, governed by universally conserved rRNA, can maneuver the mRNA and tRNAs to their fully translocated positions. Subsequent engagement of peptidyl-tRNA and disengagement of deacyl-tRNA from mRNA, within their respective small subunit binding sites, facilitate the ribosome resetting mechanism after translocation has occurred to enable protein synthesis to resume.
Collapse
Affiliation(s)
- Wataru Nishima
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Mikael Holm
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emily J Rundlet
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jose L Alejo
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kara Fischer
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| |
Collapse
|
174
|
Kumari M, Roy S, Jaiswal A, Kashyap HK. Anionic Lipid Clustering-Mediated Bactericidal Activity and Selective Toxicity of Quaternary Ammonium-Substituted Polycationic Pullulan against the Staphylococcus aureus Bacterial Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8065-8076. [PMID: 35731708 DOI: 10.1021/acs.langmuir.2c00871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Non-amphiphilic polycations have recently been recognized to hold excellent antimicrobial potential with great mammalian cell compatibility. In a recent study, the excellent broad-spectrum bactericidal efficacy of a quaternary ammonium-substituted cationic pullulan (CP4) was demonstrated. Their selective toxicity and nominal probability to induce the acquisition of resistance among pathogens fulfill the fundamental requirements of new-generation antibacterials. However, there have been exiguous attempts in the literature to understand the antimicrobial activity of polycations against Gram-positive bacterial membranes. Here, for the first time, we have scrutinized the molecular level interactions of CP4 tetramers with a model Staphylococcus aureus membrane to understand their probable antibacterial function using molecular dynamics simulations. Our analysis reveals that the hydrophilic CP4 molecules are spontaneously adsorbed onto the membrane outer leaflet surface by virtue of strong electrostatic interactions and do not penetrate into the lipid tail hydrophobic region. This surface binding of CP4 is strengthened by the formation of anionic lipid-rich domains in their vicinity, causing lateral compositional heterogeneity. The major outcomes of the asymmetric accumulation of bulky polycationic CP4 on one leaflet are (i) anionic lipid segregation at the interaction site and (ii) a decrease in the cationic lipid acyl tail ordering and ease of water translocation across the lipid hydrophobic barrier. The membrane-CP4 interactions are strongly monitored by the ionic strength; a higher salt concentration weakens the binding of CP4 on the membrane surface. In addition, our study also substantiates the non-interacting behavior of CP4 oligomers with biomimetic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane, indicating their cell selectivity and specificity against pathogenic membranes.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shounak Roy
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
175
|
Li W, Liu X, Tan LF. Binding properties of [Ru(phen)2(11-R-dppz)]2+ (R = F or CN) with poly(A)•poly(U) duplex RNA. J Inorg Biochem 2022; 232:111833. [DOI: 10.1016/j.jinorgbio.2022.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
176
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
177
|
Liang M, Ge X, Xua H, Ma K, Zhang W, Zan Y, Efferth T, Xue Z, Hua X. Phytochemicals with activity against methicillin-resistant Staphylococcus aureus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154073. [PMID: 35397285 DOI: 10.1016/j.phymed.2022.154073] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The evolution of resistance to antimicrobials is a ubiquitous phenomenon. The evolution of antibiotic resistance in Staphylococcus aureus suggests that there is no remedy with sustaining effectiveness against this pathogen. The limited number of antibacterial drug classes and the common occurrence of cross-resistant bacteria reinforce the urgent need to discover new compounds targeting novel cellular functions. Natural products are a potential source of novel antibacterial agents. Anti-MRSA (methicillin-resistant S. aureus) bioactive compounds from Streptomyces and the anti-MRSA activity of a series of plant extracts have been reviewed respectively. However, there has been no detailed review of the precise bioactive components from plants. PURPOSE The present review aimed to summarize the phytochemicals that have been reported with anti-MRSA activities, analyze their structure-activity relationship and novel anti-MRSA mechanisms. METHODS Data contained in this review article are compiled from the authoritative databases PubMed, Web of Science, Google Scholar, and so on. RESULTS This review summarizes 100 phytochemicals (27 flavonoids, 23 alkaloids, 17 terpenes and 33 others) that have been tested for their anti-MRSA activity. Among these phytochemicals, 39 compounds showed remarkable anti-MRSA activity with MIC values less than 10 μg/ml, 14 compounds with MIC ranges including values < 10 μg/ml, 5 compounds with MIC values less than 5 μM; 11 phytochemicals show synergism anti-MRSA effects in combination with antibiotics. Phytochemicals exerted anti-MRSA activities mainly by destroying the membrane structure and inhibiting the efflux pump. CONCLUSIONS The 58 compounds with excellent anti-MRSA activity the 11 compounds with synergistic anti-MRSA effect, especially cannabinoids, xanthones and fatty acids should be further studied in vitro. Novel targets, such as cell membrane and efflux pump could be promising alternatives to develop antibacterial drugs in the future in order to prevent drug resistance.
Collapse
Affiliation(s)
- Miaomiao Liang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala SE-75124, Sweden
| | - Hui Xua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Kaifeng Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Wei Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Yibo Zan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.
| | - Xin Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.
| |
Collapse
|
178
|
Wang Z, Yin C, Gao Y, Liao Z, Li Y, Wang W, Sun D. Novel functionalized selenium nanowires as antibiotic adjuvants in multiple ways to overcome drug resistance of multidrug-resistant bacteria. BIOMATERIALS ADVANCES 2022; 137:212815. [PMID: 35929231 DOI: 10.1016/j.bioadv.2022.212815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/05/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Methicillin-resistant Staphylococcus (MRS) is a multi-drug resistant bacteria that pose a serious threat to human health. Antibacterial nanomaterials are becoming a promising antibiotic substitute or antibiotic adjuvants. In this work, selenium nanowires were modified with nano‑silver (Ag NPs) with antibacterial activity and [Ru(bpy)2dppz]2+ with fluorescent labeling of DNA (SRA), and the antibacterial activity, antibacterial mechanism and biological toxicity of SRA synergistic antibiotics were studied. In vitro, antibacterial results show that SRA (12 μg/mL) improves the antibacterial activity of various antibiotics against resistant bacteria and significantly slows the development of bacterial resistance to antibiotics. Studies on antibacterial mechanisms have shown that SRA synergistic antibiotics destroy drug-resistant bacteria through a combination of physical (physical damage) and chemical pathways (destruction of biofilm, membrane depolarization, cell membrane destruction, adenosine triphosphate consumption and reactive oxygen species production). Transcriptomics analysis found that SRA affects bacterial activity by affecting bacterial biosynthesis, ATP synthesis and biofilm formation. Furthermore, SRA synergistic antibiotics can accelerate wound healing of bacterial infection by reducing the inflammatory response. The toxicity evaluation results show that SRA has extremely low cellular and in vivo toxicity. SRA has the potential of clinical application as multiple antibiotic adjuvants to deal with resistant bacterial infections.
Collapse
Affiliation(s)
- Zekun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chenyang Yin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yin Gao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ziyu Liao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Weiyu Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
179
|
Li S, Poulton NC, Chang JS, Azadian ZA, DeJesus MA, Ruecker N, Zimmerman MD, Eckartt KA, Bosch B, Engelhart CA, Sullivan DF, Gengenbacher M, Dartois VA, Schnappinger D, Rock JM. CRISPRi chemical genetics and comparative genomics identify genes mediating drug potency in Mycobacterium tuberculosis. Nat Microbiol 2022; 7:766-779. [PMID: 35637331 PMCID: PMC9159947 DOI: 10.1038/s41564-022-01130-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
Mycobacterium tuberculosis (Mtb) infection is notoriously difficult to treat. Treatment efficacy is limited by Mtb's intrinsic drug resistance, as well as its ability to evolve acquired resistance to all antituberculars in clinical use. A deeper understanding of the bacterial pathways that influence drug efficacy could facilitate the development of more effective therapies, identify new mechanisms of acquired resistance, and reveal overlooked therapeutic opportunities. Here we developed a CRISPR interference chemical-genetics platform to titrate the expression of Mtb genes and quantify bacterial fitness in the presence of different drugs. We discovered diverse mechanisms of intrinsic drug resistance, unveiling hundreds of potential targets for synergistic drug combinations. Combining chemical genetics with comparative genomics of Mtb clinical isolates, we further identified several previously unknown mechanisms of acquired drug resistance, one of which is associated with a multidrug-resistant tuberculosis outbreak in South America. Lastly, we found that the intrinsic resistance factor whiB7 was inactivated in an entire Mtb sublineage endemic to Southeast Asia, presenting an opportunity to potentially repurpose the macrolide antibiotic clarithromycin to treat tuberculosis. This chemical-genetic map provides a rich resource to understand drug efficacy in Mtb and guide future tuberculosis drug development and treatment.
Collapse
Affiliation(s)
- Shuqi Li
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Nicholas C Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Jesseon S Chang
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Zachary A Azadian
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Michael A DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Nadine Ruecker
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew D Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Kathryn A Eckartt
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Barbara Bosch
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Daniel F Sullivan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA
| | - Véronique A Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
180
|
Valenti GE, Alfei S, Caviglia D, Domenicotti C, Marengo B. Antimicrobial Peptides and Cationic Nanoparticles: A Broad-Spectrum Weapon to Fight Multi-Drug Resistance Not Only in Bacteria. Int J Mol Sci 2022; 23:ijms23116108. [PMID: 35682787 PMCID: PMC9181033 DOI: 10.3390/ijms23116108] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
In the last few years, antibiotic resistance and, analogously, anticancer drug resistance have increased considerably, becoming one of the main public health problems. For this reason, it is crucial to find therapeutic strategies able to counteract the onset of multi-drug resistance (MDR). In this review, a critical overview of the innovative tools available today to fight MDR is reported. In this direction, the use of membrane-disruptive peptides/peptidomimetics (MDPs), such as antimicrobial peptides (AMPs), has received particular attention, due to their high selectivity and to their limited side effects. Moreover, similarities between bacteria and cancer cells are herein reported and the hypothesis of the possible use of AMPs also in anticancer therapies is discussed. However, it is important to take into account the limitations that could negatively impact clinical application and, in particular, the need for an efficient delivery system. In this regard, the use of nanoparticles (NPs) is proposed as a potential strategy to improve therapy; moreover, among polymeric NPs, cationic ones are emerging as promising tools able to fight the onset of MDR both in bacteria and in cancer cells.
Collapse
Affiliation(s)
- Giulia E. Valenti
- Department of Experimental Medicine (DIMES), General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (B.M.)
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy;
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy;
| | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (B.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
- Correspondence: ; Tel.: +39-010-353-8830
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (B.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
181
|
Warrier T, Romano KP, Clatworthy AE, Hung DT. Integrated genomics and chemical biology herald an era of sophisticated antibacterial discovery, from defining essential genes to target elucidation. Cell Chem Biol 2022; 29:716-729. [PMID: 35523184 PMCID: PMC9893512 DOI: 10.1016/j.chembiol.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/08/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023]
Abstract
The golden age of antibiotic discovery in the 1940s-1960s saw the development and deployment of many different classes of antibiotics, revolutionizing the field of medicine. Since that time, our ability to discover antibiotics of novel structural classes or mechanisms has not kept pace with the ever-growing threat of antibiotic resistance. Recently, advances at the intersection of genomics and chemical biology have enabled efforts to better define the vulnerabilities of essential gene targets, to develop sophisticated whole-cell chemical screening methods that reveal target biology early, and to elucidate small molecule targets and modes of action more effectively. These new technologies have the potential to expand the chemical diversity of antibiotic candidates, as well as the breadth of targets. We illustrate how the latest tools of genomics and chemical biology are being integrated to better understand pathogen vulnerabilities and antibiotic mechanisms in order to inform a new era of antibiotic discovery.
Collapse
Affiliation(s)
- Thulasi Warrier
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Keith P Romano
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Anne E Clatworthy
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Deborah T Hung
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
182
|
Dolcemascolo R, Goiriz L, Montagud-Martínez R, Rodrigo G. Gene regulation by a protein translation factor at the single-cell level. PLoS Comput Biol 2022; 18:e1010087. [PMID: 35522697 PMCID: PMC9116677 DOI: 10.1371/journal.pcbi.1010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/18/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Gene expression is inherently stochastic and pervasively regulated. While substantial work combining theory and experiments has been carried out to study how noise propagates through transcriptional regulations, the stochastic behavior of genes regulated at the level of translation is poorly understood. Here, we engineered a synthetic genetic system in which a target gene is down-regulated by a protein translation factor, which in turn is regulated transcriptionally. By monitoring both the expression of the regulator and the regulated gene at the single-cell level, we quantified the stochasticity of the system. We found that with a protein translation factor a tight repression can be achieved in single cells, noise propagation from gene to gene is buffered, and the regulated gene is sensitive in a nonlinear way to global perturbations in translation. A suitable mathematical model was instrumental to predict the transfer functions of the system. We also showed that a Gamma distribution parameterized with mesoscopic parameters, such as the mean expression and coefficient of variation, provides a deep analytical explanation about the system, displaying enough versatility to capture the cell-to-cell variability in genes regulated both transcriptionally and translationally. Overall, these results contribute to enlarge our understanding on stochastic gene expression, at the same time they provide design principles for synthetic biology. In the cell, proteins can bind to DNA to regulate transcription as well as to RNA to regulate translation. However, cells have mainly evolved to exploit transcription factors as specific gene regulators, while translation factors have remained as global modulators of expression. Consequently, transcription regulation has attracted much attention over the last years to unveil design principles of genetic organization and to engineer synthetic circuits for cell reprogramming. In this work, the phage MS2 coat protein was exploited to regulate the expression of a green fluorescent protein at the level of translation. This synthetic system was instrumental to gain fundamental knowledge on stochasticity and regulation at an overlooked level within the genetic information flow.
Collapse
Affiliation(s)
- Roswitha Dolcemascolo
- Institute for Integrative Systems Biology (I2SysBio), CSIC–University of Valencia, Paterna, Spain
| | - Lucas Goiriz
- Institute for Integrative Systems Biology (I2SysBio), CSIC–University of Valencia, Paterna, Spain
| | - Roser Montagud-Martínez
- Institute for Integrative Systems Biology (I2SysBio), CSIC–University of Valencia, Paterna, Spain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC–University of Valencia, Paterna, Spain
- * E-mail:
| |
Collapse
|
183
|
Jahagirdar S, Morris L, Benis N, Oppegaard O, Svenson M, Hyldegaard O, Skrede S, Norrby-Teglund A, Martins Dos Santos VAP, Saccenti E. Analysis of host-pathogen gene association networks reveals patient-specific response to streptococcal and polymicrobial necrotising soft tissue infections. BMC Med 2022; 20:173. [PMID: 35505341 PMCID: PMC9066942 DOI: 10.1186/s12916-022-02355-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/28/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Necrotising soft tissue infections (NSTIs) are rapidly progressing bacterial infections usually caused by either several pathogens in unison (polymicrobial infections) or Streptococcus pyogenes (mono-microbial infection). These infections are rare and are associated with high mortality rates. However, the underlying pathogenic mechanisms in this heterogeneous group remain elusive. METHODS In this study, we built interactomes at both the population and individual levels consisting of host-pathogen interactions inferred from dual RNA-Seq gene transcriptomic profiles of the biopsies from NSTI patients. RESULTS NSTI type-specific responses in the host were uncovered. The S. pyogenes mono-microbial subnetwork was enriched with host genes annotated with involved in cytokine production and regulation of response to stress. The polymicrobial network consisted of several significant associations between different species (S. pyogenes, Porphyromonas asaccharolytica and Escherichia coli) and host genes. The host genes associated with S. pyogenes in this subnetwork were characterised by cellular response to cytokines. We further found several virulence factors including hyaluronan synthase, Sic1, Isp, SagF, SagG, ScfAB-operon, Fba and genes upstream and downstream of EndoS along with bacterial housekeeping genes interacting with the human stress and immune response in various subnetworks between host and pathogen. CONCLUSIONS At the population level, we found aetiology-dependent responses showing the potential modes of entry and immune evasion strategies employed by S. pyogenes, congruent with general cellular processes such as differentiation and proliferation. After stratifying the patients based on the subject-specific networks to study the patient-specific response, we observed different patient groups with different collagens, cytoskeleton and actin monomers in association with virulence factors, immunogenic proteins and housekeeping genes which we utilised to postulate differing modes of entry and immune evasion for different bacteria in relationship to the patients' phenotype.
Collapse
Affiliation(s)
- Sanjeevan Jahagirdar
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Lorna Morris
- Lifeglimmer GmbH, Markelstraße 38, 12163, Berlin, Germany
| | - Nirupama Benis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands.,Present affiliation: Department of Medical Informatics, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Oddvar Oppegaard
- Department of Medicine, Division for infectious diseases, Haukeland University Hospital, Bergen, Norway
| | - Mattias Svenson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Ole Hyldegaard
- Department of Anesthesia, Centre of Head and Orthopaedics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Steinar Skrede
- Department of Medicine, Division for infectious diseases, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands.,Lifeglimmer GmbH, Markelstraße 38, 12163, Berlin, Germany
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands.
| |
Collapse
|
184
|
Venditto VJ, Feola DJ. Delivering macrolide antibiotics to heal a broken heart - And other inflammatory conditions. Adv Drug Deliv Rev 2022; 184:114252. [PMID: 35367307 PMCID: PMC9063468 DOI: 10.1016/j.addr.2022.114252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
Drug carriers to deliver macrolide antibiotics, such as azithromycin, show promise as antibacterial agents. Macrolide drug carriers have largely focused on improving the drug stability and pharmacokinetics, while reducing adverse reactions and improving antibacterial activity. Recently, macrolides have shown promise in treating inflammatory conditions by promoting a reparative effect and limiting detrimental pro-inflammatory responses, which shifts the immunologic setpoint from suppression to balance. While macrolide drug carriers have only recently been investigated for their ability to modulate immune responses, the previous strategies that deliver macrolides for antibacterial therapy provide a roadmap for repurposing the macrolide drug carriers for therapeutic interventions targeting inflammatory conditions. This review describes the antibacterial and immunomodulatory activity of macrolides, while assessing the past in vivo evaluation of drug carriers used to deliver macrolides with the intention of presenting a case for increased effort to translate macrolide drug carriers into the clinic.
Collapse
|
185
|
Wei W, Qiao J, Jiang X, Cai L, Hu X, He J, Chen M, Yang M, Cui T. Dehydroquinate Synthase Directly Binds to Streptomycin and Regulates Susceptibility of Mycobacterium bovis to Streptomycin in a Non-canonical Mode. Front Microbiol 2022; 13:818881. [PMID: 35516432 PMCID: PMC9063660 DOI: 10.3389/fmicb.2022.818881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
Antimicrobial resistance (AMR) represents one of the main challenges in Tuberculosis (TB) treatment. Investigating the genes involved in AMR and the underlying mechanisms holds promise for developing alternative treatment strategies. The results indicate that dehydroquinate synthase (DHQS) regulates the susceptibility of Mycobacterium bovis BCG to first-line anti-TB drug streptomycin. Perturbation of the expression of aroB encoding DHQS affects the susceptibility of M. bovis BCG to streptomycin. Purified DHQS impairs in vitro antibacterial activity of streptomycin, but did not hydrolyze or modify streptomycin. DHQS directly binds to streptomycin while retaining its own catalytic activity. Computationally modeled structure analysis of DHQS–streptomycin complex reveals that DHQS binds to streptomycin without disturbing native substrate binding. In addition, streptomycin treatment significantly induces the expression of DHQS, thus resulting in DHQS-mediated susceptibility. Our findings uncover the additional function of DHQS in AMR and provide an insight into a non-canonical resistance mechanism by which protein hijacks antibiotic to reduce the interaction between antibiotic and its target with normal protein function retained.
Collapse
Affiliation(s)
- Wenping Wei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junjie Qiao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaofang Jiang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Luxia Cai
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaomin Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Min Yang,
| | - Tao Cui
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Tao Cui,
| |
Collapse
|
186
|
Singh J, Raina R, Vinothkumar KR, Anand R. Decoding the Mechanism of Specific RNA Targeting by Ribosomal Methyltransferases. ACS Chem Biol 2022; 17:829-839. [PMID: 35316014 PMCID: PMC7617139 DOI: 10.1021/acschembio.1c00732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methylation of specific nucleotides is integral for ribosomal biogenesis and also serves as a common mechanism to confer antibiotic resistance by pathogenic bacteria. Here, by determining the high-resolution structure of the 30S-KsgA complex by cryo-electron microscopy, a state was captured, where KsgA juxtaposes between helices h44 and h45 of the 30S ribosome, separating them, thereby enabling remodeling of the surrounded rRNA and allowing the cognate site to enter the methylation pocket. With the structure as a guide, several mutant versions of the ribosomes, where interacting bases in the catalytic helix h45 and surrounding helices h44, h24, and h27, were mutated and evaluated for their methylation efficiency revealing factors that direct the enzyme to its cognate site with high fidelity. The biochemical studies show that the three-dimensional environment of the ribosome enables the interaction of select loop regions in KsgA with the ribosome helices paramount to maintain selectivity.
Collapse
Affiliation(s)
- Juhi Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Rahul Raina
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Kutti R Vinothkumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
- DBT-Wellcome Trust India Alliance Senior Fellow, Mumbai400076, India
| |
Collapse
|
187
|
Herren CM, Baym M. Decreased thermal niche breadth as a trade-off of antibiotic resistance. THE ISME JOURNAL 2022; 16:1843-1852. [PMID: 35422477 PMCID: PMC9213455 DOI: 10.1038/s41396-022-01235-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/03/2022] [Accepted: 03/31/2022] [Indexed: 01/24/2023]
Abstract
Evolutionary theory predicts that adaptations, including antibiotic resistance, should come with associated fitness costs; yet, many resistance mutations seemingly contradict this prediction by inducing no growth rate deficit. However, most growth assays comparing sensitive and resistant strains have been performed under a narrow range of environmental conditions, which do not reflect the variety of contexts that a pathogenic bacterium might encounter when causing infection. We hypothesized that reduced niche breadth, defined as diminished growth across a diversity of environments, can be a cost of antibiotic resistance. Specifically, we test whether chloramphenicol-resistant Escherichia coli incur disproportionate growth deficits in novel thermal conditions. Here we show that chloramphenicol-resistant bacteria have greater fitness costs at novel temperatures than their antibiotic-sensitive ancestors. In several cases, we observed no resistance cost in growth rate at the historic temperature but saw diminished growth at warmer and colder temperatures. These results were consistent across various genetic mechanisms of resistance. Thus, we propose that decreased thermal niche breadth is an under-documented fitness cost of antibiotic resistance. Furthermore, these results demonstrate that the cost of antibiotic resistance shifts rapidly as the environment changes; these context-dependent resistance costs should select for the rapid gain and loss of resistance as an evolutionary strategy.
Collapse
Affiliation(s)
- Cristina M Herren
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.,Harvard Data Science Initiative, Harvard University, Boston, MA, USA.,Marine and Environmental Sciences, Northeastern University, Boston, MA, USA
| | - Michael Baym
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA. .,Harvard Data Science Initiative, Harvard University, Boston, MA, USA.
| |
Collapse
|
188
|
Rudenko AY, Mariasina SS, Sergiev PV, Polshakov VI. Analogs of S-Adenosyl- L-Methionine in Studies of Methyltransferases. Mol Biol 2022; 56:229-250. [PMID: 35440827 PMCID: PMC9009987 DOI: 10.1134/s002689332202011x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023]
Abstract
Methyltransferases (MTases) play an important role in the functioning of living systems, catalyzing the methylation reactions of DNA, RNA, proteins, and small molecules, including endogenous compounds and drugs. Many human diseases are associated with disturbances in the functioning of these enzymes; therefore, the study of MTases is an urgent and important task. Most MTases use the cofactor S‑adenosyl‑L‑methionine (SAM) as a methyl group donor. SAM analogs are widely applicable in the study of MTases: they are used in studies of the catalytic activity of these enzymes, in identification of substrates of new MTases, and for modification of the substrates or substrate linking to MTases. In this review, new synthetic analogs of SAM and the problems that can be solved with their usage are discussed.
Collapse
Affiliation(s)
- A. Yu. Rudenko
- Faculty of Fundamental Medicine, Moscow State University, 119991 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - S. S. Mariasina
- Faculty of Fundamental Medicine, Moscow State University, 119991 Moscow, Russia
- Institute of Functional Genomics, Moscow State University, 119991 Moscow, Russia
| | - P. V. Sergiev
- Institute of Functional Genomics, Moscow State University, 119991 Moscow, Russia
| | - V. I. Polshakov
- Faculty of Fundamental Medicine, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
189
|
Crowe-McAuliffe C, Murina V, Turnbull KJ, Huch S, Kasari M, Takada H, Nersisyan L, Sundsfjord A, Hegstad K, Atkinson GC, Pelechano V, Wilson DN, Hauryliuk V. Structural basis for PoxtA-mediated resistance to phenicol and oxazolidinone antibiotics. Nat Commun 2022; 13:1860. [PMID: 35387982 PMCID: PMC8987054 DOI: 10.1038/s41467-022-29274-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/02/2022] [Indexed: 12/27/2022] Open
Abstract
PoxtA and OptrA are ATP binding cassette (ABC) proteins of the F subtype (ABCF). They confer resistance to oxazolidinone and phenicol antibiotics, such as linezolid and chloramphenicol, which stall translating ribosomes when certain amino acids are present at a defined position in the nascent polypeptide chain. These proteins are often encoded on mobile genetic elements, facilitating their rapid spread amongst Gram-positive bacteria, and are thought to confer resistance by binding to the ribosome and dislodging the bound antibiotic. However, the mechanistic basis of this resistance remains unclear. Here we refine the PoxtA spectrum of action, demonstrate alleviation of linezolid-induced context-dependent translational stalling, and present cryo-electron microscopy structures of PoxtA in complex with the Enterococcus faecalis 70S ribosome. PoxtA perturbs the CCA-end of the P-site tRNA, causing it to shift by ∼4 Å out of the ribosome, corresponding to a register shift of approximately one amino acid for an attached nascent polypeptide chain. We postulate that the perturbation of the P-site tRNA by PoxtA thereby alters the conformation of the attached nascent chain to disrupt the drug binding site.
Collapse
Affiliation(s)
- Caillan Crowe-McAuliffe
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Victoriia Murina
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Kathryn Jane Turnbull
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Department of Clinical Microbiology, Rigshospitalet, 2200, Copenhagen, Denmark
| | - Susanne Huch
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, 171 65, Solna, Sweden
| | - Marje Kasari
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
- University of Tartu, Institute of Technology, 50411, Tartu, Estonia
| | - Hiraku Takada
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Lilit Nersisyan
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, 171 65, Solna, Sweden
| | - Arnfinn Sundsfjord
- Department of Microbiology and Infection Control, Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North Norway, Tromsø, Norway
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Kristin Hegstad
- Department of Microbiology and Infection Control, Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North Norway, Tromsø, Norway
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Gemma C Atkinson
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
- Department of Experimental Medical Science, Lund University, 221 00, Lund, Sweden
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, 171 65, Solna, Sweden
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| | - Vasili Hauryliuk
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden.
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden.
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden.
- University of Tartu, Institute of Technology, 50411, Tartu, Estonia.
- Department of Experimental Medical Science, Lund University, 221 00, Lund, Sweden.
| |
Collapse
|
190
|
Laughlin ZT, Nandi S, Dey D, Zelinskaya N, Witek MA, Srinivas P, Nguyen HA, Kuiper EG, Comstock LR, Dunham CM, Conn GL. 50S subunit recognition and modification by the Mycobacterium tuberculosis ribosomal RNA methyltransferase TlyA. Proc Natl Acad Sci U S A 2022; 119:e2120352119. [PMID: 35357969 PMCID: PMC9168844 DOI: 10.1073/pnas.2120352119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
Changes in bacterial ribosomal RNA (rRNA) methylation status can alter the activity of diverse groups of ribosome-targeting antibiotics. These modifications are typically incorporated by a single methyltransferase that acts on one nucleotide target and rRNA methylation directly prevents drug binding, thereby conferring drug resistance. Loss of intrinsic methylation can also result in antibiotic resistance. For example, Mycobacterium tuberculosis becomes sensitized to tuberactinomycin antibiotics, such as capreomycin and viomycin, due to the action of the intrinsic methyltransferase TlyA. TlyA is unique among antibiotic resistance-associated methyltransferases as it has dual 16S and 23S rRNA substrate specificity and can incorporate cytidine-2′-O-methylations within two structurally distinct contexts. Here, we report the structure of a mycobacterial 50S subunit-TlyA complex trapped in a postcatalytic state with a S-adenosyl-L-methionine analog using single-particle cryogenic electron microscopy. Together with complementary functional analyses, this structure reveals critical roles in 23S rRNA substrate recognition for conserved residues across an interaction surface that spans both TlyA domains. These interactions position the TlyA active site over the target nucleotide C2144, which is flipped from 23S Helix 69 in a process stabilized by stacking of TlyA residue Phe157 on the adjacent A2143. Base flipping may thus be a common strategy among rRNA methyltransferase enzymes, even in cases where the target site is accessible without such structural reorganization. Finally, functional studies with 30S subunit suggest that the same TlyA interaction surface is employed to recognize this second substrate, but with distinct dependencies on essential conserved residues.
Collapse
Affiliation(s)
- Zane T. Laughlin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Suparno Nandi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Natalia Zelinskaya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Marta A. Witek
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Pooja Srinivas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Ha An Nguyen
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Department of Chemistry Graduate Program, Emory University, Atlanta, GA 30322
| | - Emily G. Kuiper
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Christine M. Dunham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322
| |
Collapse
|
191
|
The Genome of Bacillus velezensis SC60 Provides Evidence for Its Plant Probiotic Effects. Microorganisms 2022; 10:microorganisms10040767. [PMID: 35456817 PMCID: PMC9025316 DOI: 10.3390/microorganisms10040767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Root colonization and plant probiotic function are important traits of plant growth-promoting rhizobacteria (PGPR). Bacillus velezensis SC60, a plant endophytic strain screened from Sesbania cannabina, has a strong colonization ability on various plant roots, which indicates that SC60 has a preferable adaptability to plants. However, the probiotic function of the strain SC60 is not well-understood. Promoting plant growth and suppressing soil-borne pathogens are key to the plant probiotic functions. In this study, the genetic mechanism of plant growth-promoting and antibacterial activity of the strain SC60 was analyzed by biological and bioinformatics methods. The complete genome size of strain SC60 was 3,962,671 bp, with 4079 predicted genes and an average GC content of 46.46%. SC60 was designated as Bacillus velezensis according to the comparative analysis, including average nucleotide polymorphism (ANI), digital DNA–DNA hybridization (dDDH), and phylogenetic analysis. Genomic secondary metabolite analyses indicated two clusters encoding potential new antimicrobials. The antagonism experiments revealed that strain SC60 had the ability to inhibit the growth of a variety of plant pathogens and its closely related strains of Bacillus spp., which was crucial to the rhizospheric competitiveness and growth-promoting effect of the strain. The present results further suggest that B. velezensis SC60 could be used as a PGPR strain to develop new biocontrol agents or microbial fertilizers.
Collapse
|
192
|
Yuan Q, Sui M, Qin C, Zhang H, Sun Y, Luo S, Zhao J. Migration, Transformation and Removal of Macrolide Antibiotics in The Environment: A Review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26045-26062. [PMID: 35067882 DOI: 10.1007/s11356-021-18251-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Macrolide antibiotics (MAs), as a typical emerging pollutant, are widely detected in environmental media. When entering the environment, MAs can interfere with the growth, development and reproduction of organisms, which has attracted extensive attention. However, there are few reviews on the occurrence characteristics, migration and transformation law, ecotoxicity and related removal technologies of MAs in the environment. In this work, combined with the existing relevant research, the migration and transformation law and ecotoxicity characteristics of MAs in the environment are summarized, and the removal mechanism of MAs is clarified. Currently, most studies on MAs are based on laboratory simulation experiments, and there are few studies on the migration and transformation mechanism between multiphase states. In addition, the cost of MAs removal technology is not satisfactory. Therefore, the following suggestions are put forward for the future research direction. The migration and transformation process of MAs between multiphase states (such as soil-water-sediment) should be focused on. Apart from exploring the new treatment technology of MAs, the upgrading and coupling of existing MAs removal technologies to meet emission standards and reduce costs should also be concerned. This review provides some theoretical basis and data support for understanding the occurrence characteristics, ecotoxicity and removal mechanism of MAs.
Collapse
Affiliation(s)
- Qingjiang Yuan
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Meiping Sui
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Chengzhi Qin
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Hongying Zhang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Siyi Luo
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Jianwei Zhao
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| |
Collapse
|
193
|
Abstract
The bacterial response to antibiotics eliciting resistance is one of the key challenges in global health. Despite many attempts to understand intrinsic antibiotic resistance, many of the underlying mechanisms still remain elusive. In this study, we found that iron supplementation promoted antibiotic resistance in Streptomyces coelicolor. Iron-promoted resistance occurred specifically against bactericidal antibiotics, irrespective of the primary target of antibiotics. Transcriptome profiling revealed that some genes in the central metabolism and respiration were upregulated under iron-replete conditions. Iron supported the growth of S. coelicolor even under anaerobic conditions. In the presence of potassium cyanide, which reduces aerobic respiration of cells, iron still promoted respiration and antibiotic resistance. This suggests the involvement of a KCN-insensitive type of respiration in the iron effect. This phenomenon was also observed in another actinobacterium, Mycobacterium smegmatis. Taken together, these findings provide insight into a bacterial resistance strategy that mitigates the activity of bactericidal antibiotics whose efficacy accompanies oxidative damage by switching the respiration mode.
Collapse
|
194
|
Tran TPA, Poulet S, Pernak M, Rayar A, Azoulay S, Di Giorgio A, Duca M. Development of 2-deoxystreptamine-nucleobase conjugates for the inhibition of oncogenic miRNA production. RSC Med Chem 2022; 13:311-319. [PMID: 35434630 PMCID: PMC8942232 DOI: 10.1039/d1md00345c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 01/21/2024] Open
Abstract
The discovery of new original scaffolds for selective RNA targeting is one of the main challenges of current medicinal chemistry since therapeutically relevant RNAs represent potential targets for a number of pathologies. Recent efforts have been devoted to the search for RNA ligands targeting the biogenesis of oncogenic miRNAs whose overexpression has been directly linked to the development of various cancers. In this work, we developed a new series of RNA ligands for the targeting of oncogenic miRNA biogenesis based on the 2-deoxystreptamine scaffold. The latter is part of the aminoglycoside neomycin and is known to play an essential role in the RNA interaction of this class of RNA binders. 2-deoxystreptamine was thus conjugated to natural and artificial nucleobases to obtain new binders of the oncogenic miR-372 precursor (pre-miR-372). We identified some conjugates exhibiting a similar biological activity to previously synthesized neomycin analogs and studied their mode of binding with the target pre-miR-372.
Collapse
Affiliation(s)
| | - Sylvain Poulet
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice (ICN) Nice France
| | - Mélanie Pernak
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice (ICN) Nice France
| | - Anita Rayar
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice (ICN) Nice France
| | - Stéphane Azoulay
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice (ICN) Nice France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice (ICN) Nice France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice (ICN) Nice France
| |
Collapse
|
195
|
Abstract
We report the development of peptidomimetic antibiotics derived from a natural antimicrobial peptide, human α-defensin 5. By engaging multiple bacterial targets, the lead compound is efficacious in vitro and in vivo against bacteria with highly inducible antibiotic resistance, promising a useful therapeutic agent for the treatment of infections caused by antibiotic-resistant bacteria. Antibiotics with multiple mechanisms of action and broad-spectrum are urgently required to combat the growing health threat posed by resistant pathogenic microorganisms. Combining computational and medicinal chemistry tools, we used the structure of human α-defensin 5 (HD5) to design a class of peptidomimetic antibiotics with improved activity against both gram-negative and gram-positive bacteria. The most promising lead, compound 10, showed potent killing of multiple drug-resistant gram-negative bacteria isolated from patients. Compound 10 exhibited a multiplex mechanism of action through targeting membrane components—outer membrane protein A and lipopolysaccharide, as well as a potential intracellular target—70S ribosome, thus causing membrane perturbation and inhibition of protein synthesis. In vivo efficacy, stability, and safety of compound 10 were also validated. This human defensin-inspired synthetic peptidomimetic could help solve the serious problem of drug resistance to conventional antibiotics.
Collapse
|
196
|
Gao J, Guo J, Chen J, Ding C, Wang J, Huang Q, Jian Y, Zhao X, Li M, Gao Y, Yang C, Wang W. d-Amino Acid-Based Metabolic Labeling Enables a Fast Antibiotic Susceptibility Test of Both Isolated Bacteria and Bronchoalveolar Lavage Fluid. Adv Healthc Mater 2022; 11:e2101736. [PMID: 34898025 DOI: 10.1002/adhm.202101736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/18/2021] [Indexed: 11/07/2022]
Abstract
The threat of multidrug-resistant bacteria has escalated rapidly, increasing the demand for accurate antibiotic susceptibility tests (ASTs). Traditional bacterial growth yield-based ASTs often take overnight to report, delaying the timely guidance of antibiotic use. Here, a fluorescent d-amino acid (FDAA) labeling-based AST (FaAST) is reported, which can quickly provide accurate minimum inhibitory concentrations (MICs). The FDAA-labeling signals that reflect the bacterial metabolic status underlie the flow cytometry-based strategy for MIC determination. Resistant bacteria show a reluctant decline in FDAA-labeling (inhibited metabolism) after treatment with the corresponding antibiotics, whereas susceptible bacteria demonstrate quick responses to low doses of drugs. The MICs are determined based on the changing trends in labeling. After testing 23 clinical isolates and laboratory strains of the most critical drug-resistant bacteria against a panel of representative antibiotics, FaAST shows a high susceptibility category with an accuracy of 98.13%. Moreover, FaAST can also make quick and accurate diagnosis against bronchoalveolar lavage fluids collected from hospital-acquired pneumonia patients, saving 2-4 days in guiding antibiotic use for this life-threatening infection. Thus, the speed, accuracy, and broad applicability of FaAST will be valuable in informing antibiotic decisions when treating critical infections caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Juan Gao
- Institute of Molecular Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Junnan Guo
- Institute of Molecular Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Jianxiao Chen
- Department of Critical Care Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Chenling Ding
- Department of Critical Care Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Jiemin Wang
- Department of Critical Care Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Qian Huang
- Department of Laboratory Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Ying Jian
- Department of Laboratory Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Xianyuan Zhao
- Department of Critical Care Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Min Li
- Department of Laboratory Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Yuan Gao
- Department of Critical Care Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Chaoyong Yang
- Institute of Molecular Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wei Wang
- Institute of Molecular Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| |
Collapse
|
197
|
Santos B, Zeng R, Jorge SF, Ferreira-Junior JR, Barrientos A, Barros MH. Functional analyses of mitoribosome 54S subunit devoid of mitochondria-specific protein sequences. Yeast 2022; 39:208-229. [PMID: 34713496 PMCID: PMC8969203 DOI: 10.1002/yea.3678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
In Saccharomyces cerevisiae, mitoribosomes are composed of a 54S large subunit (mtLSU) and a 37S small subunit (mtSSU). The two subunits altogether contain 73 mitoribosome proteins (MRPs) and two ribosomal RNAs (rRNAs). Although mitoribosomes preserve some similarities with their bacterial counterparts, they have significantly diverged by acquiring new proteins, protein extensions, and new RNA segments, adapting the mitoribosome to the synthesis of highly hydrophobic membrane proteins. In this study, we investigated the functional relevance of mitochondria-specific protein extensions at the C-terminus (C) or N-terminus (N) present in 19 proteins of the mtLSU. The studied mitochondria-specific extensions consist of long tails and loops extending from globular domains that mainly interact with mitochondria-specific proteins and 21S rRNA moieties extensions. The expression of variants devoid of extensions in uL4 (C), uL5 (N), uL13 (N), uL13 (C), uL16 (C), bL17 (N), bL17 (C), bL21 (24), uL22 (N), uL23 (N), uL23 (C), uL24 (C), bL27 (C), bL28 (N), bL28 (C), uL29 (N), uL29 (C), uL30 (C), bL31 (C), and bL32 (C) did not rescue the mitochondrial protein synthesis capacities and respiratory growth of the respective null mutants. On the contrary, the truncated form of the mitoribosome exit tunnel protein uL24 (N) yields a partially functional mitoribosome. Also, the removal of mitochondria-specific sequences from uL1 (N), uL3 (N), uL16 (N), bL9 (N), bL19 (C), uL29 (C), and bL31 (N) did not affect the mitoribosome function and respiratory growth. The collection of mutants described here provides new means to study and evaluate defective assembly modules in the mitoribosome biogenesis process.
Collapse
Affiliation(s)
- Barbara Santos
- Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| | - Rui Zeng
- Department of Neurology University of Miami Miller School of Medicine, Miami, USA
| | - Sasa F. Jorge
- Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| | | | - Antoni Barrientos
- Department of Neurology University of Miami Miller School of Medicine, Miami, USA
| | - Mario H. Barros
- Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
198
|
Wang N, Luo J, Deng F, Huang Y, Zhou H. Antibiotic Combination Therapy: A Strategy to Overcome Bacterial Resistance to Aminoglycoside Antibiotics. Front Pharmacol 2022; 13:839808. [PMID: 35281905 PMCID: PMC8905495 DOI: 10.3389/fphar.2022.839808] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
After the first aminoglycoside antibiotic streptomycin being applied in clinical practice in the mid-1940s, aminoglycoside antibiotics (AGAs) are widely used to treat clinical bacterial infections and bacterial resistance to AGAs is increasing. The bacterial resistance to AGAs is owed to aminoglycoside modifying enzyme modification, active efflux pump gene overexpression and 16S rRNA ribosomal subunit methylation, leading to modification of AGAs' structures and decreased concentration of drugs within bacteria. As AGAs's side effects and bacterial resistance, the development of AGAs is time-consuming and difficult. Because bacterial resistance may occur in a short time after application in clinical practice, it was found that the antibacterial effect of the combination was not only better than that of AGAs alone but also reduce the dosage of antibiotics, thereby reducing the occurrence of side effects. This article reviews the clinical use of AGAs, the antibacterial mechanisms, the molecular mechanisms of bacterial resistance, and especially focuses a recent development of the combination of AGAs with other drugs to exert a synergistic antibacterial effect to provide a new strategy to overcome bacterial resistance to AGAs.
Collapse
Affiliation(s)
| | | | | | | | - Hong Zhou
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
199
|
Xia L, Miao Y, Cao A, Liu Y, Liu Z, Sun X, Xue Y, Xu Z, Xun W, Shen Q, Zhang N, Zhang R. Biosynthetic gene cluster profiling predicts the positive association between antagonism and phylogeny in Bacillus. Nat Commun 2022; 13:1023. [PMID: 35197480 PMCID: PMC8866423 DOI: 10.1038/s41467-022-28668-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/01/2022] [Indexed: 01/23/2023] Open
Abstract
Understanding the driving forces and intrinsic mechanisms of microbial competition is a fundamental question in microbial ecology. Despite the well-established negative correlation between exploitation competition and phylogenetic distance, the process of interference competition that is exemplified by antagonism remains controversial. Here, we studied the genus Bacillus, a commonly recognized producer of multifarious antibiotics, to explore the role of phylogenetic patterns of biosynthetic gene clusters (BGCs) in mediating the relationship between antagonism and phylogeny. Comparative genomic analysis revealed a positive association between BGC distance and phylogenetic distance. Antagonistic tests demonstrated that the inhibition phenotype positively correlated with both phylogenetic and predicted BGC distance, especially for antagonistic strains possessing abundant BGCs. Mutant-based verification showed that the antagonism was dependent on the BGCs that specifically harbored by the antagonistic strain. These findings highlight that BGC-phylogeny coherence regulates the positive correlation between congeneric antagonism and phylogenetic distance, which deepens our understanding of the driving force and intrinsic mechanism of microbial interactions.
Collapse
Affiliation(s)
- Liming Xia
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, P. R. China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, P. R. China
| | - A'li Cao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, P. R. China
| | - Yan Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, P. R. China
| | - Zihao Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, P. R. China
| | - Xinli Sun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, P. R. China
| | - Yansheng Xue
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, P. R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, P. R. China
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, P. R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, P. R. China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, P. R. China.
| | - Ruifu Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, P. R. China.
| |
Collapse
|
200
|
Crowe-McAuliffe C, Wilson DN. Putting the antibiotics chloramphenicol and linezolid into context. Nat Struct Mol Biol 2022; 29:79-81. [DOI: 10.1038/s41594-022-00725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|