151
|
Lee S, Vasudevan S. Post-transcriptional stimulation of gene expression by microRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:97-126. [PMID: 23224967 DOI: 10.1007/978-1-4614-5107-5_7] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs are small noncoding RNA regulatory molecules that control gene expression by guiding associated effector complexes to other RNAs via sequence-specific recognition of target sites. Misregulation of microRNAs leads to a wide range of diseases including cancers, inflammatory and developmental disorders. MicroRNAs were found to mediate deadenylation-dependent decay and translational repression of messages through partially complementary microRNA target sites in the 3'-UTR (untranslated region). A growing series of studies has demonstrated that microRNAs and their associated complexes (microRNPs) elicit alternate functions that enable stimulation of gene expression in addition to their assigned repressive roles. These reports, discussed in this chapter, indicate that microRNA-mediated effects via natural 3' and 5'-UTRs can be selective and controlled, dictated by the RNA sequence context, associated complex, and cellular conditions. Similar to the effects of repression, upregulated gene expression by microRNAs varies from small refinements to significant amplifications in expression. An emerging theme from this literature is that microRNAs have a versatile range of abilities to manipulate post-transcriptional control mechanisms leading to controlled gene expression. These studies reveal new potentials for microRNPs in gene expression control that develop as responses to specific cellular conditions.
Collapse
|
152
|
O'Carroll D, Schaefer A. General principals of miRNA biogenesis and regulation in the brain. Neuropsychopharmacology 2013; 38:39-54. [PMID: 22669168 PMCID: PMC3521995 DOI: 10.1038/npp.2012.87] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that mediate posttranscriptional gene suppression in a sequence-specific manner. The ability of a single miRNA species to target multiple messenger RNAs (mRNAs) makes miRNAs exceptionally important regulators of various cellular functions. The regulatory capacity of miRNAs is increased further by the miRNA ability to suppress gene expression using multiple mechanisms that range from translational inhibition to mRNA degradation. The high miRNA diversity multiplied by the large number of individual miRNA targets generates a vast regulatory RNA network than enables flexible control of mRNA expression. The gene-regulatory capacity and diversity of miRNAs is particularly valuable in the brain, where functional specialization of neurons and persistent flow of information requires constant neuronal adaptation to environmental cues. In this review we will summarize the current knowledge about miRNA biogenesis and miRNA expression regulation with a focus on the role of miRNAs in the mammalian nervous system.
Collapse
Affiliation(s)
- Dónal O'Carroll
- European Molecular Biology Laboratory, Mouse Biology Unit, Monterotondo Scalo, Italy
| | - Anne Schaefer
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
153
|
Sun GR, Li M, Li GX, Tian YD, Han RL, Kang XT. Identification and abundance of miRNA in chicken hypothalamus tissue determined by Solexa sequencing. GENETICS AND MOLECULAR RESEARCH 2012; 11:4682-94. [PMID: 23079998 DOI: 10.4238/2012.october.2.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We used Solexa sequencing technology to identify and determine the abundance of miRNAs and compared the characteristics and expression patterns of miRNA of 1-day-old and 36-week-old chicken hypothalamuses. We obtained 17,825,753 and 10,928,745 high-quality reads from 36-week-old and 1-day-old chickens, respectively. Three hundred and seventy-one conserved miRNAs were expressed in both libraries. Among the conserved miRNAs, 22 miRNAs were up-regulated and 157 miRNAs were down-regulated in the 36-week-old chicken hypothalamus tissues. The abundance of sRNAs between 1-day-old and 36-week-old chickens differed considerably. KEGG pathway analysis suggested that the target genes of highly expressed miRNAs in the chicken hypothalamus are associated with metabolism and development. This information on differential expression of miRNAs in the hypothalamus of 1-day-old and 36-week-old chickens will help us understand the molecular mechanisms of metabolism and development.
Collapse
Affiliation(s)
- G R Sun
- College of Livestock Husbandry and Veterinary Engineering, Henan Research Center of Breeding Resources for Poultry, Henan Agricultural University, Zhengzhou, China
| | | | | | | | | | | |
Collapse
|
154
|
Gibbings D, Mostowy S, Jay F, Schwab Y, Cossart P, Voinnet O. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol 2012; 14:1314-21. [PMID: 23143396 PMCID: PMC3771578 DOI: 10.1038/ncb2611] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/02/2012] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) form a class of short RNAs (∼ 21 nucleotides) that post-transcriptionally regulate partially complementary messenger RNAs. Each miRNA may target tens to hundreds of transcripts to control key biological processes. Although the biochemical reactions underpinning miRNA biogenesis and activity are relatively well defined and the importance of their homeostasis is increasingly evident, the processes underlying regulation of the miRNA pathway in vivo are still largely elusive. Autophagy, a degradative process in which cytoplasmic material is targeted into double-membrane vacuoles, is recognized to critically contribute to cellular homeostasis. Here, we show that the miRNA-processing enzyme, DICER (also known as DICER1), and the main miRNA effector, AGO2 (also known as eukaryotic translation initiation factor 2C, 2 (EIF2C2)), are targeted for degradation as miRNA-free entities by the selective autophagy receptor NDP52 (also known as calcium binding and coiled-coil domain 2 (CALCOCO2)). Autophagy establishes a checkpoint required for continued loading of miRNA into AGO2; accordingly, NDP52 and autophagy are required for homeostasis and activity of the tested miRNAs. Autophagy also engages post-transcriptional regulation of the DICER mRNA, underscoring the importance of fine-tuned regulation of the miRNA pathway. These findings have implications for human diseases linked to misregulated autophagy, DICER- and miRNA-levels, including cancer.
Collapse
Affiliation(s)
- Derrick Gibbings
- Swiss Federal Institute of Technology (ETH-Z), Department of Biology, Zürich 8092, Switzerland
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Serge Mostowy
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, 75015 Paris, France
- Inserm, Unité 604, 75015 Paris, France
- INRA, USC2020, 75015 Paris, France
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Florence Jay
- Swiss Federal Institute of Technology (ETH-Z), Department of Biology, Zürich 8092, Switzerland
| | - Yannick Schwab
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Institut National de la Santé et de la Recherche Médicale Unité 964, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, 75015 Paris, France
- Inserm, Unité 604, 75015 Paris, France
- INRA, USC2020, 75015 Paris, France
| | - Olivier Voinnet
- Swiss Federal Institute of Technology (ETH-Z), Department of Biology, Zürich 8092, Switzerland
- Institut de Biologie Moléculaire des Plantes (IBMP), 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| |
Collapse
|
155
|
Braun JE, Huntzinger E, Izaurralde E. A molecular link between miRISCs and deadenylases provides new insight into the mechanism of gene silencing by microRNAs. Cold Spring Harb Perspect Biol 2012; 4:4/12/a012328. [PMID: 23209154 DOI: 10.1101/cshperspect.a012328] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) are a large family of endogenous noncoding RNAs that, together with the Argonaute family of proteins (AGOs), silence the expression of complementary mRNA targets posttranscriptionally. Perfectly complementary targets are cleaved within the base-paired region by catalytically active AGOs. In the case of partially complementary targets, however, AGOs are insufficient for silencing and need to recruit a protein of the GW182 family. GW182 proteins induce translational repression, mRNA deadenylation and exonucleolytic target degradation. Recent work has revealed a direct molecular link between GW182 proteins and cellular deadenylase complexes. These findings shed light on how miRNAs bring about target mRNA degradation and promise to further our understanding of the mechanism of miRNA-mediated repression.
Collapse
Affiliation(s)
- Joerg E Braun
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | |
Collapse
|
156
|
Capturing microRNA targets using an RNA-induced silencing complex (RISC)-trap approach. Proc Natl Acad Sci U S A 2012. [PMID: 23184980 DOI: 10.1073/pnas.1218887109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Identifying targets is critical for understanding the biological effects of microRNA (miRNA) expression. The challenge lies in characterizing the cohort of targets for a specific miRNA, especially when targets are being actively down-regulated in miRNA- RNA-induced silencing complex (RISC)-messengerRNA (mRNA) complexes. We have developed a robust and versatile strategy called RISCtrap to stabilize and purify targets from this transient interaction. Its utility was demonstrated by determining specific high-confidence target datasets for miR-124, miR-132, and miR-181 that contained known and previously unknown transcripts. Two previously unknown miR-132 targets identified with RISCtrap, adaptor protein CT10 regulator of kinase 1 (CRK1) and tight junction-associated protein 1 (TJAP1), were shown to be endogenously regulated by miR-132 in adult mouse forebrain. The datasets, moreover, differed in the number of targets and in the types and frequency of microRNA recognition element (MRE) motifs, thus revealing a previously underappreciated level of specificity in the target sets regulated by individual miRNAs.
Collapse
|
157
|
Huntzinger E, Kuzuoglu-Öztürk D, Braun JE, Eulalio A, Wohlbold L, Izaurralde E. The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets. Nucleic Acids Res 2012; 41:978-94. [PMID: 23172285 PMCID: PMC3553986 DOI: 10.1093/nar/gks1078] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Animal miRNAs silence the expression of mRNA targets through translational repression, deadenylation and subsequent mRNA degradation. Silencing requires association of miRNAs with an Argonaute protein and a GW182 family protein. In turn, GW182 proteins interact with poly(A)-binding protein (PABP) and the PAN2–PAN3 and CCR4–NOT deadenylase complexes. These interactions are required for the deadenylation and decay of miRNA targets. Recent studies have indicated that miRNAs repress translation before inducing target deadenylation and decay; however, whether translational repression and deadenylation are coupled or represent independent repressive mechanisms is unclear. Another remaining question is whether translational repression also requires GW182 proteins to interact with both PABP and deadenylases. To address these questions, we characterized the interaction of Drosophila melanogaster GW182 with deadenylases and defined the minimal requirements for a functional GW182 protein. Functional assays in D. melanogaster and human cells indicate that miRNA-mediated translational repression and degradation are mechanistically linked and are triggered through the interactions of GW182 proteins with PABP and deadenylases.
Collapse
Affiliation(s)
- Eric Huntzinger
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
158
|
Ricci EP, Limousin T, Soto-Rifo R, Rubilar PS, Decimo D, Ohlmann T. miRNA repression of translation in vitro takes place during 43S ribosomal scanning. Nucleic Acids Res 2012; 41:586-98. [PMID: 23161679 PMCID: PMC3592420 DOI: 10.1093/nar/gks1076] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRNAs) regulate gene expression at multiple levels by repressing translation, stimulating deadenylation and inducing the premature decay of target messenger RNAs (mRNAs). Although the mechanism by which miRNAs repress translation has been widely studied, the precise step targeted and the molecular insights of such repression are still evasive. Here, we have used our newly designed in vitro system, which allows to study miRNA effect on translation independently of deadenylation. By using specific inhibitors of various stages of protein synthesis, we first show that miRNAs target exclusively the early steps of translation with no effect on 60S ribosomal subunit joining, elongation or termination. Then, by using viral proteases and IRES-driven mRNA constructs, we found that translational inhibition takes place during 43S ribosomal scanning and requires both the poly(A) binding protein and eIF4G independently from their physical interaction.
Collapse
Affiliation(s)
- Emiliano P Ricci
- Ecole Normale Supérieure de Lyon, Unité de Virologie Humaine, Inserm U758, Lyon F-69364, France
| | | | | | | | | | | |
Collapse
|
159
|
Fukaya T, Tomari Y. MicroRNAs mediate gene silencing via multiple different pathways in drosophila. Mol Cell 2012; 48:825-36. [PMID: 23123195 DOI: 10.1016/j.molcel.2012.09.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/15/2012] [Accepted: 09/27/2012] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) guide RNA-induced silencing complex (RISC) that contains an Argonaute family protein to complementary target messenger RNAs (mRNAs). Via RISC, miRNAs silence the expression of target mRNAs by shortening the poly(A) tail-which leads to mRNA decay-and by repressing translation. It has been suggested that GW182, an Argonaute-associating protein, plays the central role in such microRNA actions. Here we show that, although GW182 is obligatory for poly(A) shortening, translational repression by microRNAs occurs even in the absence of GW182. Yet, GW182 is also capable of inducing translational repression independently. Both of these translational repression mechanisms block formation of 48S and 80S ribosomal complexes. Thus microRNAs utilize at least three distinct silencing pathways: GW182-mediated deadenylation and GW182-dependent and -independent repression of early translation initiation. Differential contribution from these multiple pathways may explain previous, apparently contradictory observations of how microRNAs inhibit protein synthesis.
Collapse
Affiliation(s)
- Takashi Fukaya
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | |
Collapse
|
160
|
Kim BC, Lee HC, Lee JJ, Choi CM, Kim DK, Lee JC, Ko YG, Lee JS. Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment. EMBO J 2012; 31:4289-303. [PMID: 23085987 DOI: 10.1038/emboj.2012.286] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 09/27/2012] [Indexed: 12/21/2022] Open
Abstract
Premature senescence, a key strategy used to suppress carcinogenesis, can be driven by p53/p21 proteins in response to various stresses. Here, we demonstrate that Wig1 plays a critical role in this process through regulation of p21 mRNA stability. Wig1 controls the association of Argonaute2 (Ago2), a central component of the RNA-induced silencing complex (RISC), with target p21 mRNA via binding of the stem-loop structure near the microRNA (miRNA) target site. Depletion of Wig1 prohibited miRNA-mediated p21 mRNA decay and resulted in premature senescence. Wig1 plays an essential role in cell proliferation, as demonstrated in tumour xenografts in mice, and Wig1 and p21 mRNA levels are inversely correlated in human normal and cancer tissues. Together, our data indicate a novel role of Wig1 in RISC target accessibility, which is a key step in RNA-mediated gene silencing. In addition, these findings indicate that fine-tuning of p21 levels by Wig1 is essential for the prevention of cellular senescence.
Collapse
Affiliation(s)
- Bong Cho Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Decker CJ, Parker R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 2012; 4:a012286. [PMID: 22763747 DOI: 10.1101/cshperspect.a012286] [Citation(s) in RCA: 566] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The control of translation and mRNA degradation is important in the regulation of eukaryotic gene expression. In general, translation and steps in the major pathway of mRNA decay are in competition with each other. mRNAs that are not engaged in translation can aggregate into cytoplasmic mRNP granules referred to as processing bodies (P-bodies) and stress granules, which are related to mRNP particles that control translation in early development and neurons. Analyses of P-bodies and stress granules suggest a dynamic process, referred to as the mRNA Cycle, wherein mRNPs can move between polysomes, P-bodies and stress granules although the functional roles of mRNP assembly into higher order structures remain poorly understood. In this article, we review what is known about the coupling of translation and mRNA degradation, the properties of P-bodies and stress granules, and how assembly of mRNPs into larger structures might influence cellular function.
Collapse
Affiliation(s)
- Carolyn J Decker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona 85721-0206, USA
| | | |
Collapse
|
162
|
Morozova N, Zinovyev A, Nonne N, Pritchard LL, Gorban AN, Harel-Bellan A. Kinetic signatures of microRNA modes of action. RNA (NEW YORK, N.Y.) 2012; 18:1635-55. [PMID: 22850425 PMCID: PMC3425779 DOI: 10.1261/rna.032284.112] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of all important biological processes, including development, differentiation, and cancer. Although remarkable progress has been made in deciphering the mechanisms used by miRNAs to regulate translation, many contradictory findings have been published that stimulate active debate in this field. Here we contribute to this discussion in three ways. First, based on a comprehensive analysis of the existing literature, we hypothesize a model in which all proposed mechanisms of microRNA action coexist, and where the apparent mechanism that is detected in a given experiment is determined by the relative values of the intrinsic characteristics of the target mRNAs and associated biological processes. Among several coexisting miRNA mechanisms, the one that will effectively be measurable is that which acts on or changes the sensitive parameters of the translation process. Second, we have created a mathematical model that combines nine known mechanisms of miRNA action and estimated the model parameters from the literature. Third, based on the mathematical modeling, we have developed a computational tool for discriminating among different possible individual mechanisms of miRNA action based on translation kinetics data that can be experimentally measured (kinetic signatures). To confirm the discriminatory power of these kinetic signatures and to test our hypothesis, we have performed several computational experiments with the model in which we simulated the coexistence of several miRNA action mechanisms in the context of variable parameter values of the translation.
Collapse
Affiliation(s)
- Nadya Morozova
- CNRS FRE 3377, CEA Saclay, and
- Université Paris-Sud, F-91191, Gif-sur-Yvette, France
| | - Andrei Zinovyev
- Institut Curie, Service Bioinformatique, F-75248 Paris, France
- Ecole des Mines ParisTech, F-77300 Fontainebleau, France
- INSERM, U900, Paris, F-75248, France
| | - Nora Nonne
- CNRS FRE 3377, CEA Saclay, and
- Université Paris-Sud, F-91191, Gif-sur-Yvette, France
| | | | - Alexander N. Gorban
- University of Leicester, Centre for Mathematical Modelling, Leicester, LE1 7RH, United Kingdom
| | - Annick Harel-Bellan
- CNRS FRE 3377, CEA Saclay, and
- Université Paris-Sud, F-91191, Gif-sur-Yvette, France
- Corresponding authorE-mail
| |
Collapse
|
163
|
Castilla-Llorente V, Spraggon L, Okamura M, Naseeruddin S, Adamow M, Qamar S, Liu J. Mammalian GW220/TNGW1 is essential for the formation of GW/P bodies containing miRISC. ACTA ACUST UNITED AC 2012; 198:529-44. [PMID: 22891262 PMCID: PMC3514032 DOI: 10.1083/jcb.201201153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microRNA (miRNA)-induced silencing complex (miRISC) controls gene expression by a posttranscriptional mechanism involving translational repression and/or promoting messenger RNA (mRNA) deadenylation and degradation. The GW182/TNRC6 (GW) family proteins are core components of the miRISC and are essential for miRNA function. We show that mammalian GW proteins have distinctive functions in the miRNA pathway, with GW220/TNGW1 being essential for the formation of GW/P bodies containing the miRISC. miRISC aggregation and formation of GW/P bodies sequestered and stabilized translationally repressed target mRNA. Depletion of GW220 led to the loss of GW/P bodies and destabilization of miRNA-targeted mRNA. These findings support a model in which the cellular localization of the miRISC regulates the fate of the target mRNA.
Collapse
Affiliation(s)
- Virginia Castilla-Llorente
- Cell Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Abstract
![]()
Gene silencing by RNA triggers is an ancient, evolutionarily conserved, and widespread phenomenon. This process, known as RNA interference (RNAi), occurs when double-stranded RNA helices induce cleavage of their complementary mRNAs. Because these RNA molecules can be introduced exogenously as small interfering RNAs (siRNAs), RNAi has become an everyday experimental tool in laboratory research. In addition, the number of RNA-based therapeutics that are currently in clinical trials for a variety of human diseases demonstrate the therapeutic potential of RNAi. In this Account, we focus on our current understanding of the structure and function of various classes of RNAi triggers and how this knowledge has contributed to our understanding of the biogenesis and catalytic functions of siRNA and microRNA in mammalian cells. Mechanistic studies to understand the structure and function of small RNAs that induce RNAi have illuminated broad functions of the ancient RNAi machinery in animals and plants. In addition, such studies have provided insight to identify endogenous physiological gene silencing RNA triggers that engage functional machineries similar to siRNAs. Several endogenous small RNA species have been identified: small noncoding RNAs (microRNAs), piwi-interacting RNAs (piRNAs), and endogenous siRNAs (endo-siRNAs). microRNAs are the most widespread class of small RNAs in mammalian cells. Despite their importance in biology and medicine, the molecular and cellular mechanisms of microRNA biogenesis and function are not fully understood. We provide an overview of the current understanding of how these molecules are synthesized within cells and how they act on gene targets. Interesting questions remain both for understanding the effects of modifications and editing on microRNAs and the interactions between microRNAs and other cellular RNAs such as long noncoding RNAs.
Collapse
Affiliation(s)
- Zhonghan Li
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tariq M. Rana
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
165
|
|
166
|
He Y, Zhang X. Comprehensive characterization of viral miRNAs involved in white spot syndrome virus (WSSV) infection. RNA Biol 2012; 9:1019-29. [PMID: 22832246 DOI: 10.4161/rna.20741] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Guided by miRNAs, RNAi plays an important role in virus-host interactions by fine-tuning gene expression. Many viral and cellular miRNAs are involved in virus infection, though no comprehensive general model for miRNAs derived from invertebrate DNA viruses exists for their function in eukaryotic systems, despite extensive research on miRNAs. To address this issue, the miRNAs from shrimp white spot syndrome virus (WSSV), a DNA virus with a 305 kb double-stranded circular DNA genome, were characterized. Based on WSSV miRNA microarray and northern blot analyses, WSSV was shown to possess the capacity to encode 40 distinct viral miRNAs, a miRNA content roughly 360 times greater than that of humans. These findings suggested that the high content of viral miRNAs might greatly contribute to viral variability in response selective pressures in the host environment. Transcription analysis revealed that 80% of WSSV miRNAs were expressed during early stages of viral infection, indicating their importance in initial infective processes. Additionally, biogenesis of viral miRNAs was demonstrated to be dependent on host Drosha and Dicer 1, mediated by Ago 1, and viral miRNAs, including WSSV-miR211 and WSSV-miR212, were required for successful WSSV infection. During WSSV infection, numerous viral genes were likely targeted by WSSV miRNAs. The current study presented the first comprehensive view of viral miRNAs encoded by an invertebrate DNA virus, providing insight into the molecular events of virus-host interactions.
Collapse
Affiliation(s)
- Yaodong He
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
167
|
Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 2012; 19:586-93. [PMID: 22664986 DOI: 10.1038/nsmb.2296] [Citation(s) in RCA: 775] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since their discovery almost two decades ago, microRNAs (miRNAs) have been shown to function by post-transcriptionally regulating protein accumulation. Understanding how miRNAs silence targeted mRNAs has been the focus of intensive research. Multiple models have been proposed, with few mechanistic details having been worked out. However, the past few years have witnessed a quantum leap forward in our understanding of the molecular mechanics of miRNA-mediated gene silencing. In this review we describe recent discoveries, with an emphasis on how miRISC post-transcriptionally controls gene expression by inhibiting translation and/or initiating mRNA decay, and how trans-acting factors control miRNA action.
Collapse
Affiliation(s)
- Marc R Fabian
- Department of Biochemistry, Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
168
|
Letonqueze O, Lee J, Vasudevan S. MicroRNA-mediated posttranscriptional mechanisms of gene expression in proliferating and quiescent cancer cells. RNA Biol 2012; 9:871-80. [PMID: 22699554 DOI: 10.4161/rna.20806] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are small non-coding RNA regulators of gene expression that play important roles in critical biological processes, including cell division, self-renewal and cell state maintenance. Their deregulation leads to extensive clinical consequences in tumorigenesis. Cancers demonstrate heterogeneity in their cell states implicated in their resistance and resurgence. Apart from proliferating cells, cancers harbor a small proportion of assorted quiescent cells that resist conventional therapeutics and contribute to cancer recurrence. MicroRNA expression, targets, microRNPs (microRNA-protein complexes) and their functions have been demonstrated to be regulated in distinct tumor cell states and as an adaptive response to stress signals in tumor-unfavorable environments. In turn, altered microRNPs and their modified post-transcriptional mechanisms of gene expression may contribute to tumor resistance and influence tumor progression. An understanding of distinct microRNA mechanisms in cancer cells would provide extensive insights into the versatile roles of microRNAs in the perpetuation of tumors and indicate potential therapeutic avenues.
Collapse
Affiliation(s)
- Olivier Letonqueze
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
169
|
Abstract
Argonaute proteins form the functional core of the RNA-induced silencing complexes that mediate RNA silencing in eukaryotes. The 2.3 angstrom resolution crystal structure of human Argonaute2 (Ago2) reveals a bilobed molecule with a central cleft for binding guide and target RNAs. Nucleotides 2 to 6 of a heterogeneous mixture of guide RNAs are positioned in an A-form conformation for base pairing with target messenger RNAs. Between nucleotides 6 and 7, there is a kink that may function in microRNA target recognition or release of sliced RNA products. Tandem tryptophan-binding pockets in the PIWI domain define a likely interaction surface for recruitment of glycine-tryptophan-182 (GW182) or other tryptophan-rich cofactors. These results will enable structure-based approaches for harnessing the untapped therapeutic potential of RNA silencing in humans.
Collapse
Affiliation(s)
- Nicole T. Schirle
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian J. MacRae
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
170
|
A Systematic Genetic Screen to Dissect the MicroRNA Pathway in Drosophila. G3-GENES GENOMES GENETICS 2012; 2:437-48. [PMID: 22540035 PMCID: PMC3337472 DOI: 10.1534/g3.112.002030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/22/2012] [Indexed: 12/19/2022]
Abstract
A central goal of microRNA biology is to elucidate the genetic program of miRNA function and regulation. However, relatively few of the effectors that execute miRNA repression have been identified. Because such genes may function in many developmental processes, mutations in them are expected to be pleiotropic and thus are discarded in most standard genetic screens. Here, we describe a systematic screen designed to identify all Drosophila genes in ∼40% of the genome that function in the miRNA pathway. To identify potentially pleiotropic genes, the screen analyzed clones of homozygous mutant cells in heterozygous animals. We identified 45 mutations representing 24 genes, and we molecularly characterized 9 genes. These include 4 previously known genes that encode core components of the miRNA pathway, including Drosha, Pasha, Dicer-1, and Ago1. The rest are new genes that function through chromatin remodeling, signaling, and mRNA decapping. The results suggest genetic screens that use clonal analysis can elucidate the miRNA program and that ∼100 genes are required to execute the miRNA program.
Collapse
|
171
|
MicroRNAs in inner ear biology and pathogenesis. Hear Res 2012; 287:6-14. [PMID: 22484222 DOI: 10.1016/j.heares.2012.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 11/23/2022]
Abstract
MicroRNAs (miRNA) are a group of small noncoding RNAs that regulate gene expression. The discovery of these small RNAs has added a new layer of complexity to molecular biology. Every day, new advances are being made in understanding the biochemistry and genetics of miRNAs and their roles in cellular function and homeostasis. Studies indicate diverse roles for miRNAs in inner ear biology and pathogenesis. This article reviews recent developments in miRNA research in the field of inner ear biology. A brief history of miRNA discovery is discussed, and their genomics and functional roles are described. Advances in the understanding of miRNA involvement in inner ear development in the zebrafish and the mouse are presented. Finally, this review highlights the potential roles of miRNAs in genetic hearing loss, hair cell regeneration, and inner ear pathogenesis resulting from various pathological insults.
Collapse
|
172
|
Li Y, Maines JZ, Tastan OY, McKearin DM, Buszczak M. Mei-P26 regulates the maintenance of ovarian germline stem cells by promoting BMP signaling. Development 2012; 139:1547-56. [PMID: 22438571 DOI: 10.1242/dev.077412] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the Drosophila ovary, bone morphogenetic protein (BMP) ligands maintain germline stem cells (GSCs) in an undifferentiated state. The activation of the BMP pathway within GSCs results in the transcriptional repression of the differentiation factor bag of marbles (bam). The Nanos-Pumilio translational repressor complex and the miRNA pathway also help to promote GSC self-renewal. How the activities of different transcriptional and translational regulators are coordinated to keep the GSC in an undifferentiated state remains uncertain. Data presented here show that Mei-P26 cell-autonomously regulates GSC maintenance in addition to its previously described role of promoting germline cyst development. Within undifferentiated germ cells, Mei-P26 associates with miRNA pathway components and represses the translation of a shared target mRNA, suggesting that Mei-P26 can enhance miRNA-mediated silencing in specific contexts. In addition, disruption of mei-P26 compromises BMP signaling, resulting in the inappropriate expression of bam in germ cells immediately adjacent to the cap cell niche. Loss of mei-P26 results in premature translation of the BMP antagonist Brat in germline stem cells. These data suggest that Mei-P26 has distinct functions in the ovary and participates in regulating the fates of both GSCs and their differentiating daughters.
Collapse
Affiliation(s)
- Yun Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9148, USA
| | | | | | | | | |
Collapse
|
173
|
Hanson PJ, Zhang HM, Hemida MG, Ye X, Qiu Y, Yang D. IRES-Dependent Translational Control during Virus-Induced Endoplasmic Reticulum Stress and Apoptosis. Front Microbiol 2012; 3:92. [PMID: 22461781 PMCID: PMC3307021 DOI: 10.3389/fmicb.2012.00092] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/23/2012] [Indexed: 12/11/2022] Open
Abstract
Many virus infections and stresses can induce endoplasmic reticulum (ER) stress response, a host self-defense mechanism against viral invasion and stress. During this event, viral and cellular gene expression is actively regulated and often encounters a switching of the translation initiation from cap-dependent to internal ribosome-entry sites (IRES)-dependent. This switching is largely dependent on the mRNA structure of the 5′ untranslated region (5′ UTR) and on the particular stress stimuli. Picornaviruses and some other viruses contain IRESs within their 5′ UTR of viral genome and employ an IRES-driven mechanism for translation initiation. Recently, a growing number of cellular genes involved in growth control, cell cycle progression and apoptosis were also found to contain one or more IRES within their long highly structured 5′ UTRs. These genes initiate translation usually by a cap-dependent mechanism under normal physiological conditions; however, in certain environments, such as infection, starvation, and heat shock they shift translation initiation to an IRES-dependent modality. Although the molecular mechanism is not entirely understood, a number of studies have revealed that several cellular biochemical processes are responsible for the switching of translation initiation to IRES-dependent. These include the cleavage of translation initiation factors by viral and/or host proteases, phosphorylation (inactivation) of host factors for translation initiation, overproduction of homologous proteins of cap-binding protein eukaryotic initiation factors (eIF)4E, suppression of cap-binding protein eIF4E expression by specific microRNA, activation of enzymes for mRNA decapping, as well as others. Here, we summarize the recent advances in our understanding of the molecular mechanisms for the switching of translation initiation, particularly for the proteins involved in cell survival and apoptosis in the ER stress pathways during viral infections.
Collapse
Affiliation(s)
- Paul J Hanson
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul's Hospital, University of British Columbia Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
174
|
Wu X, Brewer G. The regulation of mRNA stability in mammalian cells: 2.0. Gene 2012; 500:10-21. [PMID: 22452843 DOI: 10.1016/j.gene.2012.03.021] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/20/2012] [Accepted: 03/04/2012] [Indexed: 12/24/2022]
Abstract
Messenger RNA decay is an essential step in gene expression to set mRNA abundance in the cytoplasm. The binding of proteins and/or noncoding RNAs to specific recognition sequences or secondary structures within mRNAs dictates mRNA decay rates by recruiting specific enzyme complexes that perform the destruction processes. Often, the cell coordinates the degradation or stabilization of functional subsets of mRNAs encoding proteins collectively required for a biological process. As well, extrinsic or intrinsic stimuli activate signal transduction pathways that modify the mRNA decay machinery with consequent effects on decay rates and mRNA abundance. This review is an update to our 2001 Gene review on mRNA stability in mammalian cells, and we survey the enormous progress made over the past decade.
Collapse
Affiliation(s)
- Xiangyue Wu
- Department of Molecular Genetics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
175
|
Kuzuoglu-Öztürk D, Huntzinger E, Schmidt S, Izaurralde E. The Caenorhabditis elegans GW182 protein AIN-1 interacts with PAB-1 and subunits of the PAN2-PAN3 and CCR4-NOT deadenylase complexes. Nucleic Acids Res 2012; 40:5651-65. [PMID: 22402495 PMCID: PMC3384334 DOI: 10.1093/nar/gks218] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
GW182 family proteins are essential for miRNA-mediated gene silencing in animal cells. They are recruited to miRNA targets via interactions with Argonaute proteins and then promote translational repression and degradation of the miRNA targets. The human and Drosophila melanogaster GW182 proteins share a similar domain organization and interact with PABPC1 as well as with subunits of the PAN2-PAN3 and CCR4-NOT deadenylase complexes. The homologous proteins in Caenorhabditis elegans, AIN-1 and AIN-2, lack most of the domains present in the vertebrate and insect proteins, raising the question as to how AIN-1 and AIN-2 contribute to silencing. Here, we show that both AIN-1 and AIN-2 interact with Argonaute proteins through GW repeats in the middle region of the AIN proteins. However, only AIN-1 interacts with C. elegans and D. melanogaster PABPC1, PAN3, NOT1 and NOT2, suggesting that AIN-1 and AIN-2 are functionally distinct. Our findings reveal a surprising evolutionary plasticity of the GW182 protein interaction network and demonstrate that binding to PABPC1 and deadenylase complexes has been maintained throughout evolution, highlighting the significance of these interactions for silencing.
Collapse
Affiliation(s)
- Duygu Kuzuoglu-Öztürk
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
176
|
Qi MY, Wang ZZ, Zhang Z, Shao Q, Zeng A, Li XQ, Li WQ, Wang C, Tian FJ, Li Q, Zou J, Qin YW, Brewer G, Huang S, Jing Q. AU-rich-element-dependent translation repression requires the cooperation of tristetraprolin and RCK/P54. Mol Cell Biol 2012; 32:913-928. [PMID: 22203041 PMCID: PMC3295194 DOI: 10.1128/mcb.05340-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 12/20/2011] [Indexed: 11/20/2022] Open
Abstract
AU-rich elements (AREs), residing in the 3' untranslated region (UTR) of many labile mRNAs, are important cis-acting elements that modulate the stability of these mRNAs by collaborating with trans-acting factors such as tristetraprolin (TTP). AREs also regulate translation, but the underlying mechanism is not fully understood. Here we examined the function and mechanism of TTP in ARE-mRNA translation. Through a luciferase-based reporter system, we used knockdown, overexpression, and tethering assays in 293T cells to demonstrate that TTP represses ARE reporter mRNA translation. Polyribosome fractionation experiments showed that TTP shifts target mRNAs to lighter fractions. In murine RAW264.7 macrophages, knocking down TTP produces significantly more tumor necrosis factor alpha (TNF-α) than the control, while the corresponding mRNA level has a marginal change. Furthermore, knockdown of TTP increases the rate of biosynthesis of TNF-α, suggesting that TTP can exert effects at translational levels. Finally, we demonstrate that the general translational repressor RCK may cooperate with TTP to regulate ARE-mRNA translation. Collectively, our studies reveal a novel function of TTP in repressing ARE-mRNA translation and that RCK is a functional partner of TTP in promoting TTP-mediated translational repression.
Collapse
Affiliation(s)
- Mei-Yan Qi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhi-Zhang Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhuo Zhang
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Qin Shao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - An Zeng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xiang-Qi Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Wen-Qing Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Chen Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Fu-Ju Tian
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qing Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jun Zou
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yong-Wen Qin
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Gary Brewer
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Department of Molecular Genetics, Microbiology & Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Shuang Huang
- Department of Cardiology, Changhai Hospital, Shanghai, China
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
| | - Qing Jing
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Department of Cardiology, Changhai Hospital, Shanghai, China
| |
Collapse
|
177
|
Dorval V, Hébert SS. LRRK2 in Transcription and Translation Regulation: Relevance for Parkinson's Disease. Front Neurol 2012; 3:12. [PMID: 22363314 PMCID: PMC3276974 DOI: 10.3389/fneur.2012.00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/17/2012] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the selective loss of dopaminergic neurons and the presence of Lewy bodies. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of both familial and sporadic PD. One critical question is how PD-associated LRRK2 mutations cause neurodegeneration. Here, we discuss recent findings related to LRRK2-mediated regulation of gene expression and translation and provide a critical assessment of the current models that are used to address the impact of LRRK2 on the transcriptome. A better understanding of these mechanisms could provide important new clues into the function of LRRK2 during both normal and pathological conditions.
Collapse
Affiliation(s)
- Véronique Dorval
- Centre de Recherche du CHUQ, Axe Neurosciences, Université Laval Québec, QC, Canada
| | | |
Collapse
|
178
|
Gu XL, Wang H, Huang H, Cui XF. SPT6L encoding a putative WG/GW-repeat protein regulates apical-basal polarity of embryo in Arabidopsis. MOLECULAR PLANT 2012; 5:249-259. [PMID: 21948524 DOI: 10.1093/mp/ssr073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In eukaryotes, a protein motif consisting of WG/GW repeats, also called the Argonaute (AGO) hook, is thought to be essential for binding AGO proteins to fulfill their functions in RNA-mediated gene silencing. Although a number of WG/GW-containing proteins have been computationally identified in Arabidopsis, their roles in plant growth and development are unknown. Here, we show that the Arabidopsis Suppressor of Ty insertion 6-like (SPT6L) gene, which encodes a protein with C-terminal WG/GW repeats, plays critical roles in embryonic development. SPT6L is evolutionarily conserved only in vascular plants, with varying numbers of C-terminal WG/GW repeats, which are plant-species specific. spt6l mutants formed embryos with an aberrant apical-basal axis, showing insufficient development of the basal domain and embryonic lethality. Expression domains of the class-III homeodomain-leucine zipper (HD-ZIP III) genes PHABULOSA (PHB) and PHAVOLUTA (PHV) were expanded in the spt6l embryo. In contrast, the PLETHORA1 (PLT1) gene, which acts antagonistically to the HD-ZIP III genes in specification of basal fate, was severely down-regulated in the spt6l mutant. Furthermore, the phb phv double mutations partially rescued aberrant basal development in the spt6l background and restored PLT1 expression. Collectively, our results indicate that SPT6L is essential for specification of the apical-basal axis, partly by controlling the HD-ZIP III genes in embryos.
Collapse
Affiliation(s)
- Xiao-Lu Gu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | |
Collapse
|
179
|
GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol Cell 2011; 44:120-33. [PMID: 21981923 DOI: 10.1016/j.molcel.2011.09.007] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/20/2011] [Accepted: 09/16/2011] [Indexed: 10/16/2022]
Abstract
miRNAs are posttranscriptional regulators of gene expression that associate with Argonaute and GW182 proteins to repress translation and/or promote mRNA degradation. miRNA-mediated mRNA degradation is initiated by deadenylation, although it is not known whether deadenylases are recruited to the mRNA target directly or by default, as a consequence of a translational block. To answer this question, we performed a screen for potential interactions between the Argonaute and GW182 proteins and subunits of the two cytoplasmic deadenylase complexes. We found that human GW182 proteins recruit the PAN2-PAN3 and CCR4-CAF1-NOT deadenylase complexes through direct interactions with PAN3 and NOT1, respectively. These interactions are critical for silencing and are conserved in D. melanogaster. Our findings reveal that GW182 proteins provide a docking platform through which deadenylase complexes gain access to the poly(A) tail of miRNA targets to promote their deadenylation, and they further indicate that deadenylation is a direct effect of miRNA regulation.
Collapse
|
180
|
Adeli K. Translational control mechanisms in metabolic regulation: critical role of RNA binding proteins, microRNAs, and cytoplasmic RNA granules. Am J Physiol Endocrinol Metab 2011; 301:E1051-64. [PMID: 21971522 DOI: 10.1152/ajpendo.00399.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulated cell metabolism involves acute and chronic regulation of gene expression by various nutritional and endocrine stimuli. To respond effectively to endogenous and exogenous signals, cells require rapid response mechanisms to modulate transcript expression and protein synthesis and cannot, in most cases, rely on control of transcriptional initiation that requires hours to take effect. Thus, co- and posttranslational mechanisms have been increasingly recognized as key modulators of metabolic function. This review highlights the critical role of mRNA translational control in modulation of global protein synthesis as well as specific protein factors that regulate metabolic function. First, the complex lifecycle of eukaryotic mRNAs will be reviewed, including our current understanding of translational control mechanisms, regulation by RNA binding proteins and microRNAs, and the role of RNA granules, including processing bodies and stress granules. Second, the current evidence linking regulation of mRNA translation with normal physiological and metabolic pathways and the associated disease states are reviewed. A growing body of evidence supports a key role of translational control in metabolic regulation and implicates translational mechanisms in the pathogenesis of metabolic disorders such as type 2 diabetes. The review also highlights translational control of apolipoprotein B (apoB) mRNA by insulin as a clear example of endocrine modulation of mRNA translation to bring about changes in specific metabolic pathways. Recent findings made on the role of 5'-untranslated regions (5'-UTR), 3'-UTR, RNA binding proteins, and RNA granules in mediating insulin regulation of apoB mRNA translation, apoB protein synthesis, and hepatic lipoprotein production are discussed.
Collapse
Affiliation(s)
- Khosrow Adeli
- Program in Molecular Structure & Function, Research Institute, The Hospital for Sick Children, Atrium 3653, 555 University Ave., Toronto, ON, M5G 1X8 Canada.
| |
Collapse
|
181
|
Fukaya T, Tomari Y. PABP is not essential for microRNA-mediated translational repression and deadenylation in vitro. EMBO J 2011; 30:4998-5009. [PMID: 22117217 DOI: 10.1038/emboj.2011.426] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/07/2011] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs silence their complementary target genes via formation of the RNA-induced silencing complex (RISC) that contains an Argonaute (Ago) protein at its core. It was previously proposed that GW182, an Ago-associating protein, directly binds to poly(A)-binding protein (PABP) and interferes with its function, leading to silencing of the target mRNAs. Here we show that Drosophila Ago1-RISC induces silencing via two independent pathways: shortening of the poly(A) tail and pure repression of translation. Our data suggest that although PABP generally modulates poly(A) length and translation efficiency, neither PABP function nor GW182-PABP interaction is a prerequisite for these two silencing pathways. Instead, we propose that each of the multiple functional domains within GW182 has a potential for silencing, and yet they need to act together in the context of full-length GW182 to exert maximal silencing.
Collapse
Affiliation(s)
- Takashi Fukaya
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
182
|
Vasudevan S. Posttranscriptional upregulation by microRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:311-30. [PMID: 22072587 DOI: 10.1002/wrna.121] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs are small non-coding RNA guide molecules that regulate gene expression via association with effector complexes and sequence-specific recognition of target sites on other RNAs; misregulated microRNA expression and functions are linked to a variety of tumors, developmental disorders, and immune disease. MicroRNAs have primarily been demonstrated to mediate posttranscriptional downregulation of expression; translational repression, and deadenylation-dependent decay of messages through partially complementary microRNA target sites in mRNA untranslated regions (UTRs). However, an emerging assortment of studies, discussed in this review, reveal that microRNAs and their associated protein complexes (microribonucleoproteins or microRNPs) can additionally function to posttranscriptionally stimulate gene expression by direct and indirect mechanisms. These reports indicate that microRNA-mediated effects can be selective, regulated by the RNA sequence context, and associated with RNP factors and cellular conditions. Like repression, translation upregulation by microRNAs has been observed to range from fine-tuning effects to significant alterations in expression. These studies uncover remarkable, new abilities of microRNAs and associated microRNPs in gene expression control and underscore the importance of regulation, in cis and trans, in directing appropriate microRNP responses.
Collapse
|
183
|
Smibert P, Bejarano F, Wang D, Garaulet DL, Yang JS, Martin R, Bortolamiol-Becet D, Robine N, Hiesinger PR, Lai EC. A Drosophila genetic screen yields allelic series of core microRNA biogenesis factors and reveals post-developmental roles for microRNAs. RNA (NEW YORK, N.Y.) 2011; 17:1997-2010. [PMID: 21947201 PMCID: PMC3198593 DOI: 10.1261/rna.2983511] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Canonical animal microRNAs (miRNAs) are ∼22-nt regulatory RNAs generated by stepwise cleavage of primary hairpin transcripts by the Drosha and Dicer RNase III enzymes. We performed a genetic screen using an miRNA-repressed reporter in the Drosophila eye and recovered the first reported alleles of fly drosha, an allelic series of its dsRBD partner pasha, and novel alleles of dicer-1. Analysis of drosha mutants provided direct confirmation that mirtrons are independent of this nuclease, as inferred earlier from pasha knockouts. We further used these mutants to demonstrate in vivo cross-regulation of Drosha and Pasha in the intact animal, confirming remarkable conservation of a homeostatic mechanism that aligns their respective levels. Although the loss of core miRNA pathway components is universally lethal in animals, we unexpectedly recovered hypomorphic alleles that gave adult escapers with overtly normal development. However, the mutant photoreceptor neurons exhibited reduced synaptic transmission, without accompanying defects in neuronal development or maintenance. These findings indicate that synaptic function is especially sensitive to optimal miRNA pathway function. These allelic series of miRNA pathway mutants should find broad usage in studies of miRNA biogenesis and biology in the Drosophila system.
Collapse
Affiliation(s)
- Peter Smibert
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Fernando Bejarano
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Dong Wang
- Department of Physiology and Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Daniel L. Garaulet
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Jr-Shiuan Yang
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Raquel Martin
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Diane Bortolamiol-Becet
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Nicolas Robine
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - P. Robin Hiesinger
- Department of Physiology and Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Eric C. Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
- Corresponding author.E-mail .
| |
Collapse
|
184
|
Small RNAs derived from longer non-coding RNAs. Biochimie 2011; 93:1905-15. [PMID: 21843590 DOI: 10.1016/j.biochi.2011.07.032] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/29/2011] [Indexed: 12/21/2022]
|
185
|
miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat Struct Mol Biol 2011; 18:1211-7. [PMID: 21984185 DOI: 10.1038/nsmb.2149] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/31/2011] [Indexed: 12/19/2022]
Abstract
miRNAs recruit the miRNA-induced silencing complex (miRISC), which includes Argonaute and GW182 as core proteins. GW182 proteins effect translational repression and deadenylation of target mRNAs. However, the molecular mechanisms of GW182-mediated repression remain obscure. We show here that human GW182 independently interacts with the PAN2-PAN3 and CCR4-NOT deadenylase complexes. Interaction of GW182 with CCR4-NOT is mediated by two newly discovered phylogenetically conserved motifs. Although either motif is sufficient to bind CCR4-NOT, only one of them can promote processive deadenylation of target mRNAs. Thus, GW182 serves as both a platform that recruits deadenylases and as a deadenylase coactivator that facilitates the removal of the poly(A) tail by CCR4-NOT.
Collapse
|
186
|
Otsuka M, Takata A, Yoshikawa T, Kojima K, Kishikawa T, Shibata C, Takekawa M, Yoshida H, Omata M, Koike K. Receptor for activated protein kinase C: requirement for efficient microRNA function and reduced expression in hepatocellular carcinoma. PLoS One 2011; 6:e24359. [PMID: 21935400 PMCID: PMC3174171 DOI: 10.1371/journal.pone.0024359] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/07/2011] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression that control physiological and pathological processes. A global reduction in miRNA abundance and function is a general trait of human cancers, playing a causal role in the transformed phenotype. Here, we sought to newly identify genes involved in the regulation of miRNA function by performing a genetic screen using reporter constructs that measure miRNA function and retrovirus-based random gene disruption. Of the six genes identified, RACK1, which encodes "receptor for activated protein kinase C" (RACK1), was confirmed to be necessary for full miRNA function. RACK1 binds to KH-type splicing regulatory protein (KSRP), a member of the Dicer complex, and is required for the recruitment of mature miRNAs to the RNA-induced silencing complex (RISC). In addition, RACK1 expression was frequently found to be reduced in hepatocellular carcinoma. These findings suggest the involvement of RACK1 in miRNA function and indicate that reduced miRNA function, due to decreased expression of RACK1, may have pathologically relevant roles in liver cancers.
Collapse
Affiliation(s)
- Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Serva A, Claas C, Starkuviene V. A Potential of microRNAs for High-Content Screening. J Nucleic Acids 2011; 2011:870903. [PMID: 21922044 PMCID: PMC3172976 DOI: 10.4061/2011/870903] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 05/15/2011] [Accepted: 06/03/2011] [Indexed: 12/19/2022] Open
Abstract
In the last years miRNAs have increasingly been recognised as potent posttranscriptional regulators of gene expression. Possibly, miRNAs exert their action on virtually any biological process by simultaneous regulation of numerous genes. The importance of miRNA-based regulation in health and disease has inspired research to investigate diverse aspects of miRNA origin, biogenesis, and function. Despite the recent rapid accumulation of experimental data, and the emergence of functional models, the complexity of miRNA-based regulation is still far from being well understood. In particular, we lack comprehensive knowledge as to which cellular processes are regulated by which miRNAs, and, furthermore, how temporal and spatial interactions of miRNAs to their targets occur. Results from large-scale functional analyses have immense potential to address these questions. In this review, we discuss the latest progress in application of high-content and high-throughput functional analysis for the systematic elucidation of the biological roles of miRNAs.
Collapse
Affiliation(s)
- Andrius Serva
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
188
|
Zheng D, Chen CYA, Shyu AB. Unraveling regulation and new components of human P-bodies through a protein interaction framework and experimental validation. RNA (NEW YORK, N.Y.) 2011; 17:1619-34. [PMID: 21750099 PMCID: PMC3162328 DOI: 10.1261/rna.2789611] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The cellular factors involved in mRNA degradation and translation repression can aggregate into cytoplasmic domains known as GW bodies or mRNA processing bodies (P-bodies). However, current understanding of P-bodies, especially the regulatory aspect, remains relatively fragmentary. To provide a framework for studying the mechanisms and regulation of P-body formation, maintenance, and disassembly, we compiled a list of P-body proteins found in various species and further grouped both reported and predicted human P-body proteins according to their functions. By analyzing protein-protein interactions of human P-body components, we found that many P-body proteins form complex interaction networks with each other and with other cellular proteins that are not recognized as P-body components. The observation suggests that these other cellular proteins may play important roles in regulating P-body dynamics and functions. We further used siRNA-mediated gene knockdown and immunofluorescence microscopy to demonstrate the validity of our in silico analyses. Our combined approach identifies new P-body components and suggests that protein ubiquitination and protein phosphorylation involving 14-3-3 proteins may play critical roles for post-translational modifications of P-body components in regulating P-body dynamics. Our analyses provide not only a global view of human P-body components and their physical interactions but also a wealth of hypotheses to help guide future research on the regulation and function of human P-bodies.
Collapse
Affiliation(s)
- Dinghai Zheng
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77021, USA
| | - Chyi-Ying A. Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77021, USA
| | - Ann-Bin Shyu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77021, USA
- Corresponding author.E-mail .
| |
Collapse
|
189
|
González M, Martín-Ruíz I, Jiménez S, Pirone L, Barrio R, Sutherland JD. Generation of stable Drosophila cell lines using multicistronic vectors. Sci Rep 2011; 1:75. [PMID: 22355594 PMCID: PMC3216562 DOI: 10.1038/srep00075] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/09/2011] [Indexed: 12/18/2022] Open
Abstract
Insect cell culture is becoming increasingly important for applications including recombinant protein production and cell-based screening with chemical or RNAi libraries. While stable mammalian cell lines expressing a protein of interest can be efficiently prepared using IRES-based vectors or viral-based approaches, options for stable insect cell lines are more limited. Here, we describe pAc5-STABLEs, new vectors for use in Drosophila cell culture to facilitate stable transformation. We show that viral-derived 2A-like (or "CHYSEL") peptides function in Drosophila cells and can mediate the multicistronic expression of two or three proteins of interest under control of the Actin5C constitutive promoter. The current vectors allow mCherry and/or GFP fusions to be generated for positive selection by G418 resistance in cells and should serve as a flexible platform for future applications.
Collapse
Affiliation(s)
- Monika González
- Gene Silencing Platform, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | | | | | | | | | | |
Collapse
|
190
|
Moser JJ, Fritzler MJ, Rattner JB. Repression of GW/P body components and the RNAi microprocessor impacts primary ciliogenesis in human astrocytes. BMC Cell Biol 2011; 12:37. [PMID: 21880135 PMCID: PMC3179929 DOI: 10.1186/1471-2121-12-37] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 08/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In most cells, the centriolar component of the centrosome can function as a basal body supporting the formation of a primary cilium, a non-motile sensory organelle that monitors information from the extracellular matrix and relays stimuli into the cell via associated signaling pathways. Defects in the formation and function of primary cilia underlie multiple human diseases and are hallmarks of malignancy. The RNA silencing pathway is involved in the post-transcriptional silencing of > 50% of mRNA that occurs within GW/P bodies. GW/P bodies are found throughout the cytoplasm and previously published live cell imaging data suggested that in a malignant cell type (U2OS), two GW/P bodies reside at the centrosome during interphase. This led us to investigate if a similar relationship exists in primary cells and if the inhibition of the miRNA pathway impairs primary cilium formation. RESULTS Two GW/P bodies as marked by GW182 and hAgo2 colocalized to the basal body of primary human astrocytes as well as human synoviocytes during interphase and specifically with the distal end of the basal body in the pericentriolar region. Since it is technically challenging to examine the two centrosomal GW/P bodies in isolation, we investigated the potential relationship between the global population of GW/P bodies and primary ciliogenesis. Astrocytes were transfected with siRNA directed to GW182 and hAgo2 and unlike control astrocytes, a primary cilium was no longer associated with the centrosome as detected in indirect immunofluorescence assays. Ultrastructural analysis of siRNA transfected astrocytes revealed that knock down of GW182, hAgo2, Drosha and DGCR8 mRNA did not affect the appearance of the earliest stage of ciliogenesis but did prevent the formation and elongation of the ciliary axoneme. CONCLUSIONS This study confirms and extends a previously published report that GW/P bodies reside at the centrosome in U2OS cells and documents that GW/P bodies are resident at the centrosome in diverse non-malignant cells. Further, our study demonstrates that repression of key effector proteins in the post-transcriptional miRNA pathway impairs primary cilium formation.
Collapse
Affiliation(s)
- Joanna J Moser
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
191
|
Choe J, Cho H, Chi SG, Kim YK. Ago2/miRISC-mediated inhibition of CBP80/20-dependent translation and thereby abrogation of nonsense-mediated mRNA decay require the cap-associating activity of Ago2. FEBS Lett 2011; 585:2682-7. [DOI: 10.1016/j.febslet.2011.07.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 07/19/2011] [Accepted: 07/28/2011] [Indexed: 02/04/2023]
|
192
|
Pegtel DM, van de Garde MDB, Middeldorp JM. Viral miRNAs exploiting the endosomal-exosomal pathway for intercellular cross-talk and immune evasion. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:715-21. [PMID: 21855666 DOI: 10.1016/j.bbagrm.2011.08.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 12/21/2022]
Abstract
The class of persistent gamma-herpesviruses has developed a variety of strategies that exploit host-cell regulatory pathways to ensure a long-lasting, well-balanced infection of their host. However when these pathways are deregulated, an otherwise harmless infection can lead to disease including cancer. We recently demonstrated that the human herpes virus 4 (HHV4) also known as Epstein-Barr virus (EBV), encodes for small regulatory non-coding microRNAs (miRNAs) that can be transferred from an infected cell to uninfected neighboring cells. Upon arrival these miRNAs are functional in the recipient cell, in that they are able to down regulate specific target genes. These secreted miRNAs are transported to recipient cells via small nano-sized vesicles (known as exosomes) that are of endosomal origin, formed as intraluminal vesicles (ILV) inside multivesicular bodies (MVB). One question that needs to be addressed is how viral miRNAs are sorted into these exosomes. Mature miRNAs, including those of viral origin, are loaded into RNA-induced silencing complexes (RISC) for gene silencing via blocking mRNA translation and/or initiating mRNA decay. Recent insights indicate that cytoplasmic RNA granules rich in RISC complexes are closely associated with endosomes. In fact, selective components of RISC, including GW182 and Argonaut proteins, miRNAs and mRNAs are present in exosomes. Thus miRNA function, mRNA stability and exosome-mediated intercellular communication converge at the level of endosomes. Since endosomes can be considered as key intracellular cross-roads that regulate communication of cells with their exterior, including neighboring cells, it is perhaps not surprising that viruses have found means to exploit this pathway to their benefit. Little is known however, how and if (micro) RNA species are specifically sorted into ILVs and what (micro)RNA-binding proteins are involved. Here we discuss recent developments relating to intracellular trafficking and function of miRNA-containing protein complexes that EBV may exploit for promoting or restricting miRNAs sorting into exosomes for intercellular regulatory functions. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
Affiliation(s)
- D Michiel Pegtel
- VU University Medical Center, Department of Pathology, Amsterdam, the Netherlands.
| | | | | |
Collapse
|
193
|
Abstract
The tenth annual Keystone Symposium on the Mechanism and Biology of Silencing convened in Monterey, California, in March 2011. Those seeking some West Coast sunshine were, unfortunately, met with incessant precipitation throughout the meeting. Nevertheless, attendees were brightened by enlightening and vigorous scientific discussions. Here, we summarize the results presented at the meeting, which inspire and push this expanding field into new territories.
Collapse
Affiliation(s)
- Olivia S. Rissland
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Eric C. Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| |
Collapse
|
194
|
The Ataxin-2 protein is required for microRNA function and synapse-specific long-term olfactory habituation. Proc Natl Acad Sci U S A 2011; 108:E655-62. [PMID: 21795609 DOI: 10.1073/pnas.1107198108] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Local control of mRNA translation has been proposed as a mechanism for regulating synapse-specific plasticity associated with long-term memory. We show here that glomerulus-selective plasticity of Drosophila multiglomerular local interneurons observed during long-term olfactory habituation (LTH) requires the Ataxin-2 protein (Atx2) to function in uniglomerular projection neurons (PNs) postsynaptic to local interneurons (LNs). PN-selective knockdown of Atx2 selectively blocks LTH to odorants to which the PN responds and in addition selectively blocks LTH-associated structural and functional plasticity in odorant-responsive glomeruli. Atx2 has been shown previously to bind DEAD box helicases of the Me31B family, proteins associated with Argonaute (Ago) and microRNA (miRNA) function. Robust transdominant interactions of atx2 with me31B and ago1 indicate that Atx2 functions with miRNA-pathway components for LTH and associated synaptic plasticity. Further direct experiments show that Atx2 is required for miRNA-mediated repression of several translational reporters in vivo. Together, these observations (i) show that Atx2 and miRNA components regulate synapse-specific long-term plasticity in vivo; (ii) identify Atx2 as a component of the miRNA pathway; and (iii) provide insight into the biological function of Atx2 that is of potential relevance to spinocerebellar ataxia and neurodegenerative disease.
Collapse
|
195
|
Su H, Meng S, Lu Y, Trombly MI, Chen J, Lin C, Turk A, Wang X. Mammalian hyperplastic discs homolog EDD regulates miRNA-mediated gene silencing. Mol Cell 2011; 43:97-109. [PMID: 21726813 PMCID: PMC3147021 DOI: 10.1016/j.molcel.2011.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/16/2011] [Accepted: 06/10/2011] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) regulate gene expression through translation repression and mRNA destabilization. However, the molecular mechanisms of miRNA silencing are still not well defined. Using a genetic screen in mouse embryonic stem (ES) cells, we identify mammalian hyperplastic discs protein EDD, a known E3 ubiquitin ligase, as a key component of the miRNA silencing pathway. ES cells deficient for EDD are defective in miRNA function and exhibit growth defects. We demonstrate that E3 ubiquitin ligase activity is dispensable for EDD function in miRNA silencing. Instead, EDD interacts with GW182 family proteins in the Argonaute-miRNA complexes. The PABC domain of EDD is essential for its silencing function. Through the PABC domain, EDD participates in miRNA silencing by recruiting downstream effectors. Among the PABC-interactors, DDX6 and Tob1/2 are both required and sufficient for silencing mRNA targets. Taken together, these data demonstrate a critical function for EDD in miRNA silencing.
Collapse
Affiliation(s)
- Hong Su
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Shuxia Meng
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Yanyan Lu
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Melanie I. Trombly
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Jian Chen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Chengyi Lin
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Anita Turk
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
196
|
Verhagen APM, Pruijn GJM. Are the Ro RNP-associated Y RNAs concealing microRNAs? Y RNA-derived miRNAs may be involved in autoimmunity. Bioessays 2011; 33:674-82. [PMID: 21735459 DOI: 10.1002/bies.201100048] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/06/2011] [Accepted: 06/09/2011] [Indexed: 12/21/2022]
Abstract
Here we discuss the hypothesis that the RNA components of the Ro ribonucleoproteins (RNPs), the Y RNAs, can be processed into microRNAs (miRNAs). Although Ro RNPs, whose main protein components Ro60 and La are targeted by the immune system in several autoimmune diseases, were discovered many years ago, their function is still poorly understood. Indeed, recent data show that miRNA-sized small RNAs can be generated from Y RNAs. This hypothesis leads also to a model in which Ro60 acts as a modulator in the Y RNA-derived miRNA biogenesis pathway. The implications of these Y RNA-derived miRNAs, which may be specifically produced under pathological circumstances such as in autoimmunity or during viral infections, for the enigmatic function of Ro RNPs are discussed.
Collapse
Affiliation(s)
- Anja P M Verhagen
- Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | |
Collapse
|
197
|
Hohn T, Vazquez F. RNA silencing pathways of plants: silencing and its suppression by plant DNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:588-600. [PMID: 21683815 DOI: 10.1016/j.bbagrm.2011.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 02/02/2023]
Abstract
RNA silencing refers to processes that depend on small (s)RNAs to regulate the expression of eukaryotic genomes. In plants, these processes play critical roles in development, in responses to a wide array of stresses, in maintaining genome integrity and in defense against viral and bacterial pathogens. We provide here an updated view on the array of endogenous sRNA pathways, including microRNAs (miRNAs), discovered in the model plant Arabidopsis, which are also the basis for antiviral silencing. We emphasize the current knowledge as well as the recent advances made on understanding the defense and counter-defense strategies evolved in the arms race between plants and DNA viruses on both the nuclear and the cytoplasmic front. This article is part of a Special Issue entitled: MicroRNA's in viral gene regulation.
Collapse
Affiliation(s)
- Thomas Hohn
- Institute of Botany, University of Basel, Basel, Switzerland.
| | | |
Collapse
|
198
|
Independent chromatin binding of ARGONAUTE4 and SPT5L/KTF1 mediates transcriptional gene silencing. PLoS Genet 2011; 7:e1002120. [PMID: 21738482 PMCID: PMC3111484 DOI: 10.1371/journal.pgen.1002120] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/21/2011] [Indexed: 01/06/2023] Open
Abstract
Eukaryotic genomes contain significant amounts of transposons and repetitive DNA elements, which, if transcribed, can be detrimental to the organism. Expression of these elements is suppressed by establishment of repressive chromatin modifications. In Arabidopsis thaliana, they are silenced by the siRNA-mediated transcriptional gene silencing pathway where long non-coding RNAs (lncRNAs) produced by RNA Polymerase V (Pol V) guide ARGONAUTE4 (AGO4) to chromatin and attract enzymes that establish repressive chromatin modifications. It is unknown how chromatin modifying enzymes are recruited to chromatin. We show through chromatin immunoprecipitation (ChIP) that SPT5L/KTF1, a silencing factor and a homolog of SPT5 elongation factors, binds chromatin at loci subject to transcriptional silencing. Chromatin binding of SPT5L/KTF1 occurs downstream of RNA Polymerase V, but independently from the presence of 24-nt siRNA. We also show that SPT5L/KTF1 and AGO4 are recruited to chromatin in parallel and independently of each other. As shown using methylation-sensitive restriction enzymes, binding of both AGO4 and SPT5L/KTF1 is required for DNA methylation and repressive histone modifications of several loci. We propose that the coordinate binding of SPT5L and AGO4 creates a platform for direct or indirect recruitment of chromatin modifying enzymes.
Collapse
|
199
|
Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. Proc Natl Acad Sci U S A 2011; 108:10466-71. [PMID: 21646546 DOI: 10.1073/pnas.1103946108] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Argonaute proteins (AGOs) are essential effectors in RNA-mediated gene silencing pathways. They are characterized by a bilobal architecture, in which one lobe contains the N-terminal and PAZ domains and the other contains the MID and PIWI domains. Here, we present the first crystal structure of the MID-PIWI lobe from a eukaryotic AGO, the Neurospora crassa QDE-2 protein. Compared to prokaryotic AGOs, the domain orientation is conserved, indicating a conserved mode of nucleic acid binding. The PIWI domain shows an adaptable surface loop next to a eukaryote-specific α-helical insertion, which are both likely to contact the PAZ domain in a conformation-dependent manner to sense the functional state of the protein. The MID-PIWI interface is hydrophilic and buries residues that were previously thought to participate directly in the allosteric regulation of guide RNA binding. The interface includes the binding pocket for the guide RNA 5' end, and residues from both domains contribute to binding. Accordingly, micro-RNA (miRNA) binding is particularly sensitive to alteration in the MID-PIWI interface in Drosophila melanogaster AGO1 in vivo. The structure of the QDE-2 MID-PIWI lobe provides molecular and mechanistic insight into eukaryotic AGOs and has significant implications for understanding the role of these proteins in silencing.
Collapse
|
200
|
De Marco N, Tussellino M, Vitale A, Campanella C. Eukaryotic initiation factor 6 (eif6) overexpression affects eye development in Xenopus laevis. Differentiation 2011; 82:108-15. [PMID: 21601348 DOI: 10.1016/j.diff.2011.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 04/27/2011] [Accepted: 05/02/2011] [Indexed: 01/13/2023]
Abstract
The translation initiation factor eif6 has been implicated as a regulator of ribosome assembly, selective mRNA translation and apoptosis. Many of these activities depend upon the phosphorylation of eif6 serine 235 by PKC. Previous data showed that eif6 binds to the 60S ribosomal subunit when unphosphorylated, inhibiting assembly with the 40S subunit. Phosphorylation of Ser235 releases eif6 from the 60S subunit and allows assembly. eif6 acts as an anti-apoptotic factor via regulation of the bcl2/bax balance and acts selectively upstream of bcl2. This activity also depends upon phosphorylation of eif6 Ser235. One of the consequences of eif6 overexpression in Xenopus embryos is aberrant eye development. Here we evaluate the eye phenotype and show that it is transient. We show that the whole eye, particularly the retina layers, of the embryos injected with eif6-encoding mRNA recover by stage 42. Embryos over-expressing eif6 have normal expression of anterior- and brain-specific markers, indicating that outside the eye field, other neural regions appear unaffected by the eif6 injection. No eye defect was detected when morpholinos were used to reduce eif6 protein synthesis. We tested how two known pathways of eif6 function with respect to alteration of eye development. We found that injection of bcl2 did not produce the eye phenotype and eif6-bax co-injection did not rescue the eye defect, suggesting that the eye phenotype is not bearing on the anti-apoptotic role played by eif6 is not linked to its role as an anti-apoptotic factor. We also determined that PKC-dependant phosphorylation of Ser235 in eif6 is not required to produce defective eye development. These results indicate that the aberrant eye phenotype, produced by eif6 overexpression, is not directly linked to the PKC-regulated effects of eif6 on translation and ribosomal subunit interaction or on eif6 anti-apoptotic properties.
Collapse
Affiliation(s)
- N De Marco
- Department of Structural and Functional Biology, University of Naples Federico II, Naples, Italy.
| | | | | | | |
Collapse
|