151
|
Wang Y, Kuai Q, Gao F, Wang Y, He M, Zhou H, Han G, Jiang X, Ren S, Yu Q. Overexpression of TIM-3 in Macrophages Aggravates Pathogenesis of Pulmonary Fibrosis in Mice. Am J Respir Cell Mol Biol 2020; 61:727-736. [PMID: 31162951 DOI: 10.1165/rcmb.2019-0070oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disorder and lacks effective treatments because of unclear mechanisms. Aberrant function of alveolar macrophages is directly linked to pulmonary fibrosis. Here, we show TIM-3 (T-cell immunoglobulin domain and mucin domain-3), a key regulator of macrophage function, aggravates pulmonary fibrosis. TIM-3 mRNA of patients with IPF was analyzed based on the Gene Expression Omnibus and Array Express databases. Lung pathology and profibrotic molecules were assessed in a bleomycin (BLM)-induced pulmonary fibrosis model using wild-type (WT) and TIM-3 transgenic (TIM-3-TG) mice. Macrophage cells, RAW264.7, were then applied to investigate the effect of macrophage TIM-3 under BLM exposure in vitro. Macrophage depletion and adoptive-transfer experiments were finally performed to examine lung morphology and profibrotic molecules. TIM-3 expression was increased both in patients with IPF and in our BLM-induced mouse model. TIM-3-TG mice developed more serious pathological changes in lung tissue and higher expressions of TGF-β1 (transforming growth factor-β1) and IL-10 than WT mice. After BLM treatment, TGF-β1 and IL-10 expression was significantly decreased in RAW264.7 cells after TIM-3 knock-out, whereas it was increased in TIM-3-TG peritoneal macrophages. The scores of pulmonary fibrosis in WT and TIM-3-TG mice were significantly reduced, and there was no difference between them after macrophage depletion. Furthermore, WT mice receiving adoptive macrophages from TIM-3-TG mice also had more serious lung fibrosis and increased expression of TGF-β1 and IL-10 than those receiving macrophages from WT mice. Our findings revealed that overexpressed TIM-3 in alveolar macrophages aggravated pulmonary fibrosis.
Collapse
Affiliation(s)
- Yu Wang
- Beijing Institute of Transfusion Medicine, Beijing, China
| | - Qiyuan Kuai
- Beijing Institute of Transfusion Medicine, Beijing, China
| | - Fenghua Gao
- Beijing Institute of Transfusion Medicine, Beijing, China
| | - Yanbing Wang
- Beijing Institute of Transfusion Medicine, Beijing, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Min He
- Beijing Institute of Transfusion Medicine, Beijing, China
| | - Hong Zhou
- Beijing Institute of Transfusion Medicine, Beijing, China
| | - Gencheng Han
- Institute of Beijing Brain Sciences, Beijing, China; and
| | - Xingwei Jiang
- Beijing Institute of Transfusion Medicine, Beijing, China
| | - Suping Ren
- Beijing Institute of Transfusion Medicine, Beijing, China.,Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Qun Yu
- Beijing Institute of Transfusion Medicine, Beijing, China.,Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| |
Collapse
|
152
|
Conditional deletion of Nedd4-2 in lung epithelial cells causes progressive pulmonary fibrosis in adult mice. Nat Commun 2020; 11:2012. [PMID: 32332792 PMCID: PMC7181726 DOI: 10.1038/s41467-020-15743-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by patchy scarring of the distal lung with limited therapeutic options and poor prognosis. Here, we show that conditional deletion of the ubiquitin ligase Nedd4-2 (Nedd4l) in lung epithelial cells in adult mice produces chronic lung disease sharing key features with IPF including progressive fibrosis and bronchiolization with increased expression of Muc5b in peripheral airways, honeycombing and characteristic alterations in the lung proteome. NEDD4-2 is implicated in the regulation of the epithelial Na+ channel critical for proper airway surface hydration and mucus clearance and the regulation of TGFβ signaling, which promotes fibrotic remodeling. Our data support a role of mucociliary dysfunction and aberrant epithelial pro-fibrotic response in the multifactorial disease pathogenesis. Further, treatment with the anti-fibrotic drug pirfenidone reduced pulmonary fibrosis in this model. This model may therefore aid studies of the pathogenesis and therapy of IPF. Idiopathic pulmonary fibrosis (IPF) is a devastating disease with poor prognosis. Here, the authors show that deficiency of the E3 ubiqutin-protein ligase Nedd4-2 in airway epithelial cells causes IPF-like disease in adult mice. This model may aid studies of the pathogenesis and therapy of IPF.
Collapse
|
153
|
Denneny E, Sahota J, Beatson R, Thornton D, Burchell J, Porter J. Mucins and their receptors in chronic lung disease. Clin Transl Immunology 2020; 9:e01120. [PMID: 32194962 PMCID: PMC7077995 DOI: 10.1002/cti2.1120] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
There is growing recognition that mucus and mucin biology have a considerable impact on respiratory health, and subsequent global morbidity and mortality. Mucins play a critical role in chronic lung disease, not only by providing a physical barrier and clearing pathogens, but also in immune homeostasis. The aim of this review is to familiarise the reader with the role of mucins in both lung health and disease, with particular focus on function in immunity, infection and inflammation. We will also discuss their receptors, termed glycan-binding proteins, and how they provide an attractive prospect for therapeutic intervention.
Collapse
Affiliation(s)
- Emma Denneny
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| | - Jagdeep Sahota
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| | - Richard Beatson
- Breast Cancer Biology Group Division of Cancer Studies King's College London Guy's Hospital London UK
| | - David Thornton
- Wellcome Trust Centre for Cell-Matrix Research School of Biological Sciences Faculty of Biology, Medicine and Health Manchester Academic Health Sciences Centre University of Manchester Manchester UK
| | - Joy Burchell
- Breast Cancer Biology Group Division of Cancer Studies King's College London Guy's Hospital London UK
| | - Joanna Porter
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| |
Collapse
|
154
|
Choi B, Kawut SM, Raghu G, Hoffman E, Tracy R, Madahar P, Bernstein EJ, Barr RG, Lederer DJ, Podolanczuk A. Regional distribution of high-attenuation areas on chest computed tomography in the Multi-Ethnic Study of Atherosclerosis. ERJ Open Res 2020; 6:00115-2019. [PMID: 32154292 PMCID: PMC7049731 DOI: 10.1183/23120541.00115-2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022] Open
Abstract
High-attenuation areas (HAA) are a computed tomography-based quantitative measure of subclinical interstitial lung disease (ILD). We aimed to validate HAA in lung regions that are less subject to artefacts, such as extravascular lung water or dependent atelectasis. We examined the associations of HAA within six lung regions (basilar, non-basilar, peel, core, basilar peel, basilar core) with serum biomarkers of lung remodelling, forced vital capacity (FVC), visually-assessed interstitial lung abnormalities (ILA), and all-cause and ILD-specific mortality. We performed cross-sectional and longitudinal analyses of participants in the Multi-Ethnic Study of Atherosclerosis, a prospective cohort of 6814 adults aged 45–84 years without known cardiovascular disease who underwent cardiac computed tomography. Median regional HAA ranged from 3.8% in the peel to 4.8% in the basilar core. Doubling of regional HAA was associated with greater serum matrix metalloproteinase-7 (range 3.8% to 10.3%; p≤0.01), higher odds of ILA (OR 1.42 to 2.20; p≤0.03), and a higher risk of all-cause mortality (hazard ratio 1.20 to 1.47; p≤0.001). Doubling of regional HAA was associated with greater serum interleukin-6 (4.9% to 10.3%; p≤0.005) and higher risk of ILD-specific mortality (hazard ratio 3.30 to 3.98; p<0.001), except in the basilar core. Doubling of regional HAA was associated with lower FVC in the non-basilar, core and basilar core (113 mL to 186 mL; p<0.001). Associations of HAA with lung remodelling biomarkers, ILA risk and all-cause mortality were consistent across all regions of the lung, including dependent areas where atelectasis may be present. These findings support the validity of HAA as a measure of pathologic subclinical ILD. Evenwhen found in small regions of the lungs, high-attenuation areas, a CT-based quantitative measure of subclinical ILD, are associated with biomarkers of lung remodelling, risk of interstitial lung abnormalities and all-cause mortalityhttp://bit.ly/36psfin
Collapse
Affiliation(s)
- Bina Choi
- Columbia University Medical Center, New York, NY, USA
| | - Steven M Kawut
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ganesh Raghu
- University of Washington Medical Center, Seattle, WA, USA
| | - Eric Hoffman
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | | | | - R Graham Barr
- Columbia University Medical Center, New York, NY, USA
| | | | | |
Collapse
|
155
|
Selman M, Pardo A. The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. Cell Signal 2020; 66:109482. [DOI: 10.1016/j.cellsig.2019.109482] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
|
156
|
Affiliation(s)
- Nichelle I Winters
- Department of MedicineVanderbilt University Medical CenterNashville, Tennessee
| | - Jonathan A Kropski
- Department of MedicineVanderbilt University Medical CenterNashville, Tennessee
- Department of Cell and Developmental BiologyVanderbilt UniversityNashville, Tennesseeand
- Department of MedicineVeterans Affairs Medical CenterNashville, Tennessee
| |
Collapse
|
157
|
Friedlander HM, Ford JA, Zaccardelli A, Terrio AV, Cho MH, Sparks JA. Obstructive lung diseases and risk of rheumatoid arthritis. Expert Rev Clin Immunol 2020; 16:37-50. [PMID: 31774329 DOI: 10.1080/1744666x.2019.1698293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Smoking is an established risk factor for both lung diseases and rheumatoid arthritis (RA). Chronic mucosal airway inflammation may result in immune tolerance loss, neoantigen formation, and production of RA-related autoantibodies that increase the subsequent risk of RA. In this review, we aimed to summarize the current evidence supporting the role of obstructive lung diseases and subsequent risk of RA.Areas covered: We identified scientific articles discussing the biologic mechanisms linking mucosal airway inflammation and RA risk. We also identified studies investigating asthma, chronic obstructive pulmonary disease, bronchiectasis, cystic fibrosis, chronic tuberculous and nontuberculous mycobacterial infections, and interstitial lung disease with subsequent risk for RA.Expert opinion: The current evidence supports the hypothesis that mucosal airway inflammation may increase the risk of developing RA. However, most studies investigating this relationship have been retrospective and may not have adequately addressed the role of smoking. Larger prospective studies may provide stronger evidence for obstructive lung disease and RA risk. Determining the role of obstructive lung disease in RA pathogenesis may provide opportunity for RA prevention and screening strategies, while identifying novel biologic mechanisms that could offer targets to improve treatment and outcomes.
Collapse
Affiliation(s)
- H Maura Friedlander
- Brigham and Women's Hospital, Division of Rheumatology, Immunology and Allergy, Boston, MA, USA
| | - Julia A Ford
- Brigham and Women's Hospital, Division of Rheumatology, Immunology and Allergy, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Alessandra Zaccardelli
- Brigham and Women's Hospital, Division of Rheumatology, Immunology and Allergy, Boston, MA, USA
| | - Alexsandra V Terrio
- Brigham and Women's Hospital, Division of Rheumatology, Immunology and Allergy, Boston, MA, USA
| | - Michael H Cho
- Harvard Medical School, Boston, MA, USA.,Brigham and Women's Hospital, Division of Pulmonary and Critical Care Medicine, Boston, MA, USA.,Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA, USA
| | - Jeffrey A Sparks
- Brigham and Women's Hospital, Division of Rheumatology, Immunology and Allergy, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
158
|
Hobbs BD, Putman RK, Araki T, Nishino M, Gudmundsson G, Gudnason V, Eiriksdottir G, Zilhao Nogueira NR, Dupuis J, Xu H, O'Connor GT, Manichaikul A, Nguyen J, Podolanczuk AJ, Madahar P, Rotter JI, Lederer DJ, Barr RG, Rich SS, Ampleford EJ, Ortega VE, Peters SP, O'Neal WK, Newell JD, Bleecker ER, Meyers DA, Allen RJ, Oldham JM, Ma SF, Noth I, Jenkins RG, Maher TM, Hubbard RB, Wain LV, Fingerlin TE, Schwartz DA, Washko GR, Rosas IO, Silverman EK, Hatabu H, Cho MH, Hunninghake GM. Overlap of Genetic Risk between Interstitial Lung Abnormalities and Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2019; 200:1402-1413. [PMID: 31339356 PMCID: PMC6884045 DOI: 10.1164/rccm.201903-0511oc] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/17/2019] [Indexed: 12/26/2022] Open
Abstract
Rationale: Interstitial lung abnormalities (ILAs) are associated with the highest genetic risk locus for idiopathic pulmonary fibrosis (IPF); however, the extent to which there are unique associations among individuals with ILAs or additional overlap with IPF is not known.Objectives: To perform a genome-wide association study (GWAS) of ILAs.Methods: ILAs and a subpleural-predominant subtype were assessed on chest computed tomography (CT) scans in the AGES (Age Gene/Environment Susceptibility), COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]), Framingham Heart, ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points), MESA (Multi-Ethnic Study of Atherosclerosis), and SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study) studies. We performed a GWAS of ILAs in each cohort and combined the results using a meta-analysis. We assessed for overlapping associations in independent GWASs of IPF.Measurements and Main Results: Genome-wide genotyping data were available for 1,699 individuals with ILAs and 10,274 control subjects. The MUC5B (mucin 5B) promoter variant rs35705950 was significantly associated with both ILAs (P = 2.6 × 10-27) and subpleural ILAs (P = 1.6 × 10-29). We discovered novel genome-wide associations near IPO11 (rs6886640, P = 3.8 × 10-8) and FCF1P3 (rs73199442, P = 4.8 × 10-8) with ILAs, and near HTRE1 (rs7744971, P = 4.2 × 10-8) with subpleural-predominant ILAs. These novel associations were not associated with IPF. Among 12 previously reported IPF GWAS loci, five (DPP9, DSP, FAM13A, IVD, and MUC5B) were significantly associated (P < 0.05/12) with ILAs.Conclusions: In a GWAS of ILAs in six studies, we confirmed the association with a MUC5B promoter variant and found strong evidence for an effect of previously described IPF loci; however, novel ILA associations were not associated with IPF. These findings highlight common genetically driven biologic pathways between ILAs and IPF, and also suggest distinct ones.
Collapse
Affiliation(s)
- Brian D Hobbs
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine
| | | | - Tetsuro Araki
- Department of Radiology, and
- Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mizuki Nishino
- Department of Radiology, and
- Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Boston, Massachusetts
| | | | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | | | | | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- NHLBI Framingham Heart Study, Framingham, Massachusetts
| | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - George T O'Connor
- NHLBI Framingham Heart Study, Framingham, Massachusetts
- Pulmonary Center, Department of Medicine, Boston University, Boston, Massachusetts
| | - Ani Manichaikul
- Center for Public Health Genomics
- Department of Public Health Sciences, and
| | | | | | - Purnema Madahar
- Department of Medicine, College of Physicians and Surgeons, and
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, and
- Division of Genomic Outcomes, Department of Pediatrics and
- Department of Medicine, Harbor-UCLA Medical Center, Torrance, California
| | - David J Lederer
- Department of Medicine, College of Physicians and Surgeons, and
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - R Graham Barr
- Department of Medicine, College of Physicians and Surgeons, and
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Stephen S Rich
- Center for Public Health Genomics
- Department of Public Health Sciences, and
| | - Elizabeth J Ampleford
- Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Victor E Ortega
- Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Stephen P Peters
- Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Wanda K O'Neal
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John D Newell
- Division of Cardiovascular and Pulmonary Imaging, Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Department of Radiology, University of Washington, Seattle, Washington
| | - Eugene R Bleecker
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Deborah A Meyers
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Richard J Allen
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Justin M Oldham
- Department of Internal Medicine, University of California Davis, Davis, California
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - R Gisli Jenkins
- National Institute for Health Research, Biomedical Research Centre, Respiratory Research Unit, School of Medicine, and
| | - Toby M Maher
- National Institute for Health Research, Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
- Fibrosis Research Group, Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Richard B Hubbard
- National Institute for Health Research, Biomedical Research Centre, Respiratory Research Unit, School of Medicine, and
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - Louise V Wain
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Tasha E Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado; and
- Department of Biostatistics and Informatics
| | - David A Schwartz
- Department of Biostatistics and Informatics
- Department of Medicine, School of Medicine, and
- Department of Immunology, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine
- Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine
| | - Edwin K Silverman
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine
| | - Hiroto Hatabu
- Department of Radiology, and
- Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael H Cho
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine
| | - Gary M Hunninghake
- Division of Pulmonary and Critical Care Medicine
- Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
159
|
Yang D, Xing Y, Song X, Qian Y. The impact of lung microbiota dysbiosis on inflammation. Immunology 2019; 159:156-166. [PMID: 31631335 DOI: 10.1111/imm.13139] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/05/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Host-microbiota interaction plays fundamental roles in the homeostasis of mucosal immunity. Dysbiosis of intestinal microbiota has been demonstrated to participate in various immune responses and many multifactorial diseases. Study of intestinal microbiota has moved beyond the consequences of dysbiosis to the causal microbiota associated with diseases. However, studies of pulmonary microbiota and its dysbiosis are still in their infancy. Improvement of culture-dependent and -independent techniques has facilitated our understanding of lung microbiota that not only exists in healthy lung tissue but also exerts great impact on immune responses under both physiological and pathological conditions. In this review, we summarize recent progresses of lung microbiota dysbiosis and its impact on the local immune system that determines the balance of tolerance and inflammation. We discuss the causal roles of pulmonary dysbiosis under disease settings, and propose that the interaction between lung microbiota and host is critical for establishing the immune homeostasis in lung.
Collapse
Affiliation(s)
- Daping Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yingying Xing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinyang Song
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Youcun Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
160
|
Morrison CB, Markovetz MR, Ehre C. Mucus, mucins, and cystic fibrosis. Pediatr Pulmonol 2019; 54 Suppl 3:S84-S96. [PMID: 31715083 PMCID: PMC6853602 DOI: 10.1002/ppul.24530] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
Cystic fibrosis (CF) is both the most common and most lethal genetic disease in the Caucasian population. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and is characterized by the accumulation of thick, adherent mucus plaques in multiple organs, of which the lungs, gastrointestinal tract and pancreatic ducts are the most commonly affected. A similar pathogenesis cascade is observed in all of these organs: loss of CFTR function leads to altered ion transport, consisting of decreased chloride and bicarbonate secretion via the CFTR channel and increased sodium absorption via epithelial sodium channel upregulation. Mucosa exposed to changes in ionic concentrations sustain severe pathophysiological consequences. Altered mucus biophysical properties and weakened innate defense mechanisms ensue, furthering the progression of the disease. Mucins, the high-molecular-weight glycoproteins responsible for the viscoelastic properties of the mucus, play a key role in the disease but the actual mechanism of mucus accumulation is still undetermined. Multiple hypotheses regarding the impact of CFTR malfunction on mucus have been proposed and are reviewed here. (a) Dehydration increases mucin monomer entanglement, (b) defective Ca2+ chelation compromises mucin expansion, (c) ionic changes alter mucin interactions, and (d) reactive oxygen species increase mucin crosslinking. Although one biochemical change may dominate, it is likely that all of these mechanisms play some role in the progression of CF disease. This article discusses recent findings on the initial cause(s) of aberrant mucus properties in CF and examines therapeutic approaches aimed at correcting mucus properties.
Collapse
Affiliation(s)
- Cameron Bradley Morrison
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew Raymond Markovetz
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Camille Ehre
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
161
|
Kurche JS, Dobrinskikh E, Hennessy CE, Huber J, Estrella A, Hancock LA, Schwarz MI, Okamoto T, Cool CD, Yang IV, Evans CM, Schwartz DA. Muc5b Enhances Murine Honeycomb-like Cyst Formation. Am J Respir Cell Mol Biol 2019; 61:544-546. [PMID: 31573335 PMCID: PMC6775942 DOI: 10.1165/rcmb.2019-0138le] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
| | | | | | - Jonathan Huber
- University of Colorado Anschutz Medical CampusAurora, Coloradoand
| | - Alani Estrella
- University of Colorado Anschutz Medical CampusAurora, Coloradoand
| | - Laura A. Hancock
- University of Colorado Anschutz Medical CampusAurora, Coloradoand
| | | | | | - Carlyne D. Cool
- University of Colorado Anschutz Medical CampusAurora, Coloradoand
| | - Ivana V. Yang
- University of Colorado Anschutz Medical CampusAurora, Coloradoand
| | | | | |
Collapse
|
162
|
Yanagihara T, Sato S, Upagupta C, Kolb M. What have we learned from basic science studies on idiopathic pulmonary fibrosis? Eur Respir Rev 2019; 28:28/153/190029. [PMID: 31511255 PMCID: PMC9488501 DOI: 10.1183/16000617.0029-2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/11/2019] [Indexed: 12/29/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a fatal age-related lung disease characterised by progressive and irreversible scarring of the lung. Although the details are not fully understood, there has been tremendous progress in understanding the pathogenesis of idiopathic pulmonary fibrosis, which has led to the identification of many new potential therapeutic targets. In this review we discuss several of these advances with a focus on genetic susceptibility and cellular senescence primarily affecting epithelial cells, activation of profibrotic pathways, disease-enhancing fibrogenic cell types and the role of the remodelled extracellular matrix. This review provides a summary of the most important findings in basic science investigations in pulmonary fibrosis and how they affect drug development and future patient management.http://bit.ly/2RjGMFZ
Collapse
Affiliation(s)
- Toyoshi Yanagihara
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Dept of Medicine, McMaster University, Hamilton, ON, Canada.,Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Both authors contributed equally
| | - Seidai Sato
- Dept of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Both authors contributed equally
| | - Chandak Upagupta
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
163
|
Wang D, Zhang J, Lau J, Wang S, Taneja V, Matteson EL, Vassallo R. Mechanisms of lung disease development in rheumatoid arthritis. Nat Rev Rheumatol 2019; 15:581-596. [PMID: 31455869 DOI: 10.1038/s41584-019-0275-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that causes joint inflammation and damage. Extra-articular manifestations occur in many patients and can include lung involvement in the form of airway or parenchymal inflammation and fibrosis. Although the pathophysiology of articular RA has been extensively investigated, the mechanisms causing airway and parenchymal lung disease are not well defined. Infections, cigarette-smoking, mucosal dysbiosis, host genetics and premature senescence are all potentially important contributors to the development of lung disease in patients with RA. RA-associated lung disease (which can predate the onset of articular disease by many years) probably originates from chronic airway and alveolar epithelial injury that occurs in an individual with a genetic background that permits the development of autoimmunity, leading to chronic inflammation and subsequent airway and lung parenchymal remodelling and fibrosis. Further investigations into the specific mechanisms by which lung disease develops in RA will be crucial for the development of effective therapies. Identifying mechanisms by which environmental and host factors cooperate in the induction of autoimmunity in the lung might also help to establish the order of early events in RA.
Collapse
Affiliation(s)
- Dan Wang
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Zhang
- Division of Pulmonary Medicine, Department of Medicine, Chongqing General Hospital, Chongqing, China
| | - Jessica Lau
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Veena Taneja
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Eric L Matteson
- Division of Rheumatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA. .,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
164
|
Parimon T, Yao C, Habiel DM, Ge L, Bora SA, Brauer R, Evans CM, Xie T, Alonso-Valenteen F, Medina-Kauwe LK, Jiang D, Noble PW, Hogaboam CM, Deng N, Burgy O, Antes TJ, Königshoff M, Stripp BR, Gharib SA, Chen P. Syndecan-1 promotes lung fibrosis by regulating epithelial reprogramming through extracellular vesicles. JCI Insight 2019; 5:129359. [PMID: 31393853 PMCID: PMC6777916 DOI: 10.1172/jci.insight.129359] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal lung disease. A maladaptive epithelium due to chronic injury is a prominent feature and contributor to pathogenic cellular communication in IPF. Recent data highlight the concept of a "reprogrammed" lung epithelium as critical in the development of lung fibrosis. Extracellular vesicles (EVs) are potent mediator of cellular crosstalk, and recent evidence supports their role in lung pathologies such as IPF. Here, we demonstrate that syndecan-1 is overexpressed by the epithelium in the lungs of IPF patients and in murine models after bleomycin injury. Moreover, we find that syndecan-1 is a pro-fibrotic signal that alters alveolar type II (ATII) cell phenotypes by augmenting TGFβ and Wnt signaling among other pro-fibrotic pathways. Importantly, we demonstrate that syndecan-1 controls the packaging of several anti-fibrotic microRNAs into EVs that have broad effects over several fibrogenic signaling networks as a mechanism of regulating epithelial plasticity and pulmonary fibrosis. Collectively, our work reveals new insight into how EVs orchestrate cellular signals that promote lung fibrosis and demonstrate the importance of syndecan-1 in coordinating these programs.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Changfu Yao
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David M. Habiel
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lingyin Ge
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephanie A. Bora
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rena Brauer
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Christopher M. Evans
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Ting Xie
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | - Dianhua Jiang
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Paul W. Noble
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences
| | - Cory M. Hogaboam
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences
| | - Nan Deng
- Samuel Oschin Comprehensive Cancer Institute, and
| | - Olivier Burgy
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Travis J. Antes
- Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Barry R. Stripp
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences
| | - Sina A. Gharib
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Peter Chen
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences
- Samuel Oschin Comprehensive Cancer Institute, and
| |
Collapse
|
165
|
Ma Y, Guo Y, Ye H, Huang K, Lv Z, Ke Y. Different effects of titanium dioxide nanoparticles instillation in young and adult mice on DNA methylation related with lung inflammation and fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:1-10. [PMID: 30903973 DOI: 10.1016/j.ecoenv.2019.03.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Wide use of titanium dioxide nanoparticles (TiO2 NPs) as white pigments induces unintentionally release in environment which increases concerns about their adverse health effects on respiratory system. So it is crucial to get a deep understanding of the disease process and molecular mechanism. Epigenetic mechanisms, such as DNA methylation, have been found to play a role in the development of lung diseases by affecting expression of key genes. In addition, there could be potential different toxic effects of TiO2 NPs between young and adult. Thus, the comparative toxicity of TiO2 NPs in 5-week (young) and 10-week (adult) old NIH mice is investigated in this study following nasal inhalation of TiO2 NPs at dose of 20 mg/kg (body weight)/day for 30 days. Global DNA methylation and hydroxymethylation in lung were measured. Promoter methylation of inflammatory genes (IFN-γ and TNF-α) and tissue fibrosis gene (Thy-1) were determined. Additional, RNA-sequencing runs were performed on the pulmonic libraries. We found the induced pulmonary inflammation and fibrosis were more severe in young mice. Decreased global methylation and hydroxymethylation were only found in the young group. The altered methylation in promoter of TNF-α and Thy-1 were found to play a role in the inflammatory response and fibration. RNA-sequencing showed that in pathways in cancer expression of 197 genes was up-regulated in the young mice more that in the adult mice. All these results suggested that the young ages are more sensitive to TiO2 NP exposure and the potential of abnormal DNA methylation might be used as biomarkers of both exposure and disease development.
Collapse
Affiliation(s)
- Yue Ma
- Shenzhen Key Laboratory of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinsheng Guo
- Shenzhen Key Laboratory of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hailing Ye
- Shenzhen Key Laboratory of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China; School of Public Health, Fujian Medical University, Fuzhou, China
| | - Kaiqin Huang
- Shenzhen Key Laboratory of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China; School of Public Health, Fujian Medical University, Fuzhou, China
| | - Ziquan Lv
- Shenzhen Key Laboratory of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yuebin Ke
- Shenzhen Key Laboratory of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| |
Collapse
|
166
|
Kim E, Yang IV. Selective Regulation of the Airway Mucin MUC5B in the Distal Airway. Am J Respir Crit Care Med 2019; 200:129-131. [PMID: 31046398 PMCID: PMC6635792 DOI: 10.1164/rccm.201904-0809ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Eunjoo Kim
- Department of MedicineUniversity of Colorado School of MedicineAurora, Coloradoand
| | - Ivana V. Yang
- Department of MedicineUniversity of Colorado School of MedicineAurora, Coloradoand
- Colorado School of Public HealthUniversity of Colorado School of MedicineAurora, Colorado
| |
Collapse
|
167
|
Chen G, Ribeiro CMP, Sun L, Okuda K, Kato T, Gilmore RC, Martino MB, Dang H, Abzhanova A, Lin JM, Hull-Ryde EA, Volmer AS, Randell SH, Livraghi-Butrico A, Deng Y, Scherer PE, Stripp BR, O’Neal WK, Boucher RC. XBP1S Regulates MUC5B in a Promoter Variant-Dependent Pathway in Idiopathic Pulmonary Fibrosis Airway Epithelia. Am J Respir Crit Care Med 2019; 200:220-234. [PMID: 30973754 PMCID: PMC6635783 DOI: 10.1164/rccm.201810-1972oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/11/2019] [Indexed: 02/05/2023] Open
Abstract
Rationale: The goal was to connect elements of idiopathic pulmonary fibrosis (IPF) pathogenesis, including chronic endoplasmic reticulum stress in respiratory epithelia associated with injury/inflammation and remodeling, distal airway mucus obstruction and honeycomb cyst formation with accumulation of MUC5B (mucin 5B), and associations between IPF risk and polymorphisms in the MUC5B promoter. Objectives: To test whether the endoplasmic reticulum (ER) stress sensor protein ERN2 (ER-to-nucleus signaling 2) and its downstream effector, the spliced form of XBP1S (X-box-binding protein 1), regulate MUC5B expression and differentially activate the MUC5B promoter variant in respiratory epithelia. Methods: Primary human airway epithelial (HAE) cells, transgenic mouse models, human IPF lung tissues, and cell lines expressing XBP1S and MUC5B promoters were used to explore relationships between the ERN2/XBP1S pathway and MUC5B. An inhibitor of the pathway, KIRA6, and XBP1 CRISPR-Cas9 were used in HAE cells to explore therapeutic potential. Measurements and Main Results: ERN2 regulated MUC5B and MUC5AC mRNAs. Downstream XBP1S selectively promoted MUC5B expression in vitro and in distal murine airway epithelia in vivo. XBP1S bound to the proximal region of the MUC5B promoter and differentially upregulated MUC5B expression in the context of the MUC5B promoter rs35705950 variant. High levels of ERN2 and XBP1S were associated with excessive MUC5B mRNAs in distal airways of human IPF lungs. Cytokine-induced MUC5B expression in HAE cells was inhibited by KIRA6 and XBP1 CRISPR-Cas9. Conclusions: A positive feedback bistable ERN2-XBP1S pathway regulates MUC5B-dominated mucus obstruction in IPF, providing an unfolded protein response-dependent mechanism linking the MUC5B promoter rs35705950 polymorphism with IPF pathogenesis. Inhibiting ERN2-dependent pathways/elements may provide a therapeutic option for IPF.
Collapse
Affiliation(s)
- Gang Chen
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Carla M. P. Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ling Sun
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Research Center of Regeneration Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kenichi Okuda
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Takafumi Kato
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rodney C. Gilmore
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mary B. Martino
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hong Dang
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Aiman Abzhanova
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer M. Lin
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emily A. Hull-Ryde
- Center of Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Allison S. Volmer
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott H. Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yingfeng Deng
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Barry R. Stripp
- Pulmonary Research, Cedars Sinai Medical Center, Los Angeles, California
| | - Wanda K. O’Neal
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard C. Boucher
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
168
|
Moore C, Blumhagen RZ, Yang IV, Walts A, Powers J, Walker T, Bishop M, Russell P, Vestal B, Cardwell J, Markin CR, Mathai SK, Schwarz MI, Steele MP, Lee J, Brown KK, Loyd JE, Crapo JD, Silverman EK, Cho MH, James JA, Guthridge JM, Cogan JD, Kropski JA, Swigris JJ, Bair C, Kim DS, Ji W, Kim H, Song JW, Maier LA, Pacheco KA, Hirani N, Poon AS, Li F, Jenkins RG, Braybrooke R, Saini G, Maher TM, Molyneaux PL, Saunders P, Zhang Y, Gibson KF, Kass DJ, Rojas M, Sembrat J, Wolters PJ, Collard HR, Sundy JS, O’Riordan T, Strek ME, Noth I, Ma SF, Porteous MK, Kreider ME, Patel NB, Inoue Y, Hirose M, Arai T, Akagawa S, Eickelberg O, Fernandez IE, Behr J, Mogulkoc N, Corte TJ, Glaspole I, Tomassetti S, Ravaglia C, Poletti V, Crestani B, Borie R, Kannengiesser C, Parfrey H, Fiddler C, Rassl D, Molina-Molina M, Machahua C, Worboys AM, Gudmundsson G, Isaksson HJ, Lederer DJ, Podolanczuk AJ, Montesi SB, Bendstrup E, Danchel V, Selman M, Pardo A, Henry MT, Keane MP, Doran P, Vašáková M, Sterclova M, Ryerson CJ, Wilcox PG, Okamoto T, Furusawa H, Miyazaki Y, Laurent G, Baltic S, Prele C, et alMoore C, Blumhagen RZ, Yang IV, Walts A, Powers J, Walker T, Bishop M, Russell P, Vestal B, Cardwell J, Markin CR, Mathai SK, Schwarz MI, Steele MP, Lee J, Brown KK, Loyd JE, Crapo JD, Silverman EK, Cho MH, James JA, Guthridge JM, Cogan JD, Kropski JA, Swigris JJ, Bair C, Kim DS, Ji W, Kim H, Song JW, Maier LA, Pacheco KA, Hirani N, Poon AS, Li F, Jenkins RG, Braybrooke R, Saini G, Maher TM, Molyneaux PL, Saunders P, Zhang Y, Gibson KF, Kass DJ, Rojas M, Sembrat J, Wolters PJ, Collard HR, Sundy JS, O’Riordan T, Strek ME, Noth I, Ma SF, Porteous MK, Kreider ME, Patel NB, Inoue Y, Hirose M, Arai T, Akagawa S, Eickelberg O, Fernandez IE, Behr J, Mogulkoc N, Corte TJ, Glaspole I, Tomassetti S, Ravaglia C, Poletti V, Crestani B, Borie R, Kannengiesser C, Parfrey H, Fiddler C, Rassl D, Molina-Molina M, Machahua C, Worboys AM, Gudmundsson G, Isaksson HJ, Lederer DJ, Podolanczuk AJ, Montesi SB, Bendstrup E, Danchel V, Selman M, Pardo A, Henry MT, Keane MP, Doran P, Vašáková M, Sterclova M, Ryerson CJ, Wilcox PG, Okamoto T, Furusawa H, Miyazaki Y, Laurent G, Baltic S, Prele C, Moodley Y, Shea BS, Ohta K, Suzukawa M, Narumoto O, Nathan SD, Venuto DC, Woldehanna ML, Kokturk N, de Andrade JA, Luckhardt T, Kulkarni T, Bonella F, Donnelly SC, McElroy A, Armstong ME, Aranda A, Carbone RG, Puppo F, Beckman KB, Nickerson DA, Fingerlin TE, Schwartz DA. Resequencing Study Confirms That Host Defense and Cell Senescence Gene Variants Contribute to the Risk of Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2019; 200:199-208. [PMID: 31034279 PMCID: PMC6635791 DOI: 10.1164/rccm.201810-1891oc] [Show More Authors] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/22/2019] [Indexed: 12/20/2022] Open
Abstract
Rationale: Several common and rare genetic variants have been associated with idiopathic pulmonary fibrosis, a progressive fibrotic condition that is localized to the lung. Objectives: To develop an integrated understanding of the rare and common variants located in multiple loci that have been reported to contribute to the risk of disease. Methods: We performed deep targeted resequencing (3.69 Mb of DNA) in cases (n = 3,624) and control subjects (n = 4,442) across genes and regions previously associated with disease. We tested for associations between disease and 1) individual common variants via logistic regression and 2) groups of rare variants via sequence kernel association tests. Measurements and Main Results: Statistically significant common variant association signals occurred in all 10 of the regions chosen based on genome-wide association studies. The strongest risk variant is the MUC5B promoter variant rs35705950, with an odds ratio of 5.45 (95% confidence interval, 4.91-6.06) for one copy of the risk allele and 18.68 (95% confidence interval, 13.34-26.17) for two copies of the risk allele (P = 9.60 × 10-295). In addition to identifying for the first time that rare variation in FAM13A is associated with disease, we confirmed the role of rare variation in the TERT and RTEL1 gene regions in the risk of IPF, and found that the FAM13A and TERT regions have independent common and rare variant signals. Conclusions: A limited number of common and rare variants contribute to the risk of idiopathic pulmonary fibrosis in each of the resequencing regions, and these genetic variants focus on biological mechanisms of host defense and cell senescence.
Collapse
Affiliation(s)
- Camille Moore
- National Jewish Health, Denver, Colorado
- School of Public Health
| | | | | | | | | | | | | | | | | | | | - Cheryl R. Markin
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | | | | | | - James E. Loyd
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James D. Crapo
- National Jewish Health, Denver, Colorado
- Department of Medicine, and
| | - Edwin K. Silverman
- Brigham and Women’s Hospital, Harvard School of Medicine, Boston, Massachusetts
| | - Michael H. Cho
- Brigham and Women’s Hospital, Harvard School of Medicine, Boston, Massachusetts
| | - Judith A. James
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | | | - Joy D. Cogan
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jonathan A. Kropski
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Carol Bair
- National Jewish Health, Denver, Colorado
| | - Dong Soon Kim
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Wonjun Ji
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hocheol Kim
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Woo Song
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Lisa A. Maier
- National Jewish Health, Denver, Colorado
- School of Public Health
- Department of Medicine, and
| | | | - Nikhil Hirani
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
- Respiratory Medicine Unit, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Azin S. Poon
- Respiratory Medicine Unit, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Feng Li
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - R. Gisli Jenkins
- Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Rebecca Braybrooke
- Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Gauri Saini
- Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Toby M. Maher
- Royal Brompton Hospital and Imperial College, London, United Kingdom
| | | | - Peter Saunders
- Royal Brompton Hospital and Imperial College, London, United Kingdom
| | - Yingze Zhang
- Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kevin F. Gibson
- Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel J. Kass
- Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mauricio Rojas
- Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Sembrat
- Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul J. Wolters
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Harold R. Collard
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | | | - Mary E. Strek
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Imre Noth
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Shwu-Fan Ma
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Mary K. Porteous
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maryl E. Kreider
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Namrata B. Patel
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yoshikazu Inoue
- National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Masaki Hirose
- National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Toru Arai
- National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Shinobu Akagawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Oliver Eickelberg
- Department of Medicine, and
- Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | - Nesrin Mogulkoc
- Department of Pulmonology, Ege University Hospital, Bornova, Izmir, Turkey
| | - Tamera J. Corte
- Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | - Ian Glaspole
- Alfred Hospital and Monash University, Melbourne, Australia
| | | | - Claudia Ravaglia
- Department of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
| | - Venerino Poletti
- Department of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
| | - Bruno Crestani
- Université Paris Diderot and Hôpital Bichat, Paris, France
| | - Raphael Borie
- Université Paris Diderot and Hôpital Bichat, Paris, France
| | | | - Helen Parfrey
- Royal Papworth Hospital and Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Christine Fiddler
- Royal Papworth Hospital and Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Doris Rassl
- Royal Papworth Hospital and Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Maria Molina-Molina
- Respiratory Department, University Hospital of Bellvitge, University of Barcelona, Barcelona, Spain
| | - Carlos Machahua
- Respiratory Department, University Hospital of Bellvitge, University of Barcelona, Barcelona, Spain
| | - Ana Montes Worboys
- Respiratory Department, University Hospital of Bellvitge, University of Barcelona, Barcelona, Spain
| | - Gunnar Gudmundsson
- National University Hospital of Iceland, University of Iceland, Reykjavik, Iceland
| | - Helgi J. Isaksson
- National University Hospital of Iceland, University of Iceland, Reykjavik, Iceland
| | - David J. Lederer
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Anna J. Podolanczuk
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Sydney B. Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Elisabeth Bendstrup
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Vivi Danchel
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas,” México City, México
| | - Annie Pardo
- Universidad Nacional Autónoma de México, México City, México
| | - Michael T. Henry
- Cork University Hospital and University College Cork, Cork, Ireland
| | - Michael P. Keane
- St. Vincent’s University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Peter Doran
- St. Vincent’s University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Martina Vašáková
- Department of Respiratory Medicine, First Faculty of Medicine Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Martina Sterclova
- Department of Respiratory Medicine, First Faculty of Medicine Charles University and Thomayer Hospital, Prague, Czech Republic
| | | | | | - Tsukasa Okamoto
- Department of Medicine, and
- Tokyo Medical and Dental University, Tokyo, Japan
| | - Haruhiko Furusawa
- Department of Medicine, and
- Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Geoffrey Laurent
- Institute for Respiratory Health and
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | | | - Cecilia Prele
- Institute for Respiratory Health and
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | | | - Barry S. Shea
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Ken Ohta
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Maho Suzukawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Osamu Narumoto
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Steven D. Nathan
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Virginia
| | - Drew C. Venuto
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Virginia
| | - Merte L. Woldehanna
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Virginia
| | - Nurdan Kokturk
- Department of Pulmonary Medicine, Gazi University School of Medicine, Ankara, Turkey
| | - Joao A. de Andrade
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tracy Luckhardt
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tejaswini Kulkarni
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Francesco Bonella
- Ruhrlandklinik, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Seamus C. Donnelly
- Department of Medicine, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Aoife McElroy
- Department of Medicine, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Michelle E. Armstong
- Department of Medicine, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Alvaro Aranda
- CardioPulmonary Reserach Center, Alliance Pulmonary Group, Guaynabo, Puerto Rico
| | | | - Francesco Puppo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Kenneth B. Beckman
- Biomedical Genomics Center, University of Minnesota; Minneapolis, Minnesota; and
| | | | - Tasha E. Fingerlin
- National Jewish Health, Denver, Colorado
- School of Public Health
- Department of Medicine, and
| | - David A. Schwartz
- National Jewish Health, Denver, Colorado
- Department of Medicine, and
- Department of Immunology, University of Colorado Denver, Denver, Colorado
| |
Collapse
|
169
|
Mathai SK, Schwartz DA. Translational research in pulmonary fibrosis. Transl Res 2019; 209:1-13. [PMID: 30768925 PMCID: PMC9977489 DOI: 10.1016/j.trsl.2019.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/26/2022]
Abstract
Pulmonary fibrosis refers to the development of diffuse parenchymal abnormalities in the lung that cause dyspnea, cough, hypoxemia, and impair gas exchange, ultimately leading to respiratory failure. Though pulmonary fibrosis can be caused by a variety of underlying etiologies, ranging from genetic defects to autoimmune diseases to environmental exposures, once fibrosis develops it is irreversible and most often progressive, such that fibrosis of the lung is one of the leading indications for lung transplantation. This review aims to provide a concise summary of the recent advances in our understanding of the genetics and genomics of pulmonary fibrosis, idiopathic pulmonary fibrosis in particular, and how these recent discoveries may be changing the clinical approach to diagnosing and treating patients with fibrotic interstitial lung disease.
Collapse
Affiliation(s)
- Susan K Mathai
- Interstitial Lung Disease Program, Center for Advanced Heart & Lung Disease, Department of Medicine, Baylor University Medical Center at Dallas, Dallas, Texas; Department of Internal Medicine, Texas A&M University College of Medicine.
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
170
|
Warheit-Niemi HI, Hult EM, Moore BB. A pathologic two-way street: how innate immunity impacts lung fibrosis and fibrosis impacts lung immunity. Clin Transl Immunology 2019; 8:e1065. [PMID: 31293783 PMCID: PMC6593479 DOI: 10.1002/cti2.1065] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Lung fibrosis is characterised by the accumulation of extracellular matrix within the lung and is secondary to both known and unknown aetiologies. This accumulation of scar tissue limits gas exchange causing respiratory insufficiency. The pathogenesis of lung fibrosis is poorly understood, but immunologic‐based treatments have been largely ineffective. Despite this, accumulating evidence suggests that innate immune cells and receptors play important modulatory roles in the initiation and propagation of the disease. Paradoxically, while innate immune signalling may be important for the pathogenesis of fibrosis, there is also evidence to suggest that innate immune function against pathogens may be impaired, leading to dysregulated and/or impaired host defence. This review summarises the evidence for this pathologic two‐way street, highlights new concepts of pathogenesis and recommends future directions for research emphasis.
Collapse
Affiliation(s)
| | - Elissa M Hult
- Department of Molecular and Integrative Physiology University of Michigan Ann Arbor MI USA
| | - Bethany B Moore
- Department of Microbiology and Immunology University of Michigan Ann Arbor MI USA.,Department of Internal Medicine Division of Pulmonary and Critical Care Medicine University of Michigan Ann Arbor MI USA
| |
Collapse
|
171
|
Yuan T, Volckaert T, Redente EF, Hopkins S, Klinkhammer K, Wasnick R, Chao CM, Yuan J, Zhang JS, Yao C, Majka S, Stripp BR, Günther A, Riches DWH, Bellusci S, Thannickal VJ, De Langhe SP. FGF10-FGFR2B Signaling Generates Basal Cells and Drives Alveolar Epithelial Regeneration by Bronchial Epithelial Stem Cells after Lung Injury. Stem Cell Reports 2019; 12:1041-1055. [PMID: 31056475 PMCID: PMC6524168 DOI: 10.1016/j.stemcr.2019.04.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 01/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a common form of interstitial lung disease resulting in alveolar remodeling and progressive loss of pulmonary function because of chronic alveolar injury and failure to regenerate the respiratory epithelium. Histologically, fibrotic lesions and honeycomb structures expressing atypical proximal airway epithelial markers replace alveolar structures, the latter normally lined by alveolar type 1 (AT1) and AT2 cells. Bronchial epithelial stem cells (BESCs) can give rise to AT2 and AT1 cells or honeycomb cysts following bleomycin-mediated lung injury. However, little is known about what controls this binary decision or whether this decision can be reversed. Here we report that inactivation of Fgfr2b in BESCs impairs their contribution to both alveolar epithelial regeneration and honeycomb cysts after bleomycin injury. By contrast overexpression of Fgf10 in BESCs enhances fibrosis resolution by favoring the more desirable outcome of alveolar epithelial regeneration over the development of pathologic honeycomb cysts. Bronchial epithelial stem cells are required for alveolar epithelial regeneration Fgf10-Fgfr2b signaling is required for alveolar type 2 stem cell maintenance Fgfr2b signaling drives alveolar epithelial regeneration by BESCs Fgf10-Fgfr2b promotes basal cell to alveolar type 2 cell differentiation
Collapse
Affiliation(s)
- Tingting Yuan
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, 35294-2182 AL, USA
| | - Thomas Volckaert
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, 35294-2182 AL, USA
| | - Elizabeth F Redente
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206, USA; Denver Veteran Affairs Medical Center, Denver, CO 80206, USA
| | - Seantel Hopkins
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, 35294-2182 AL, USA
| | - Kylie Klinkhammer
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, 35294-2182 AL, USA
| | - Roxana Wasnick
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, 35392 Giessen, Germany
| | - Cho-Ming Chao
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, 35392 Giessen, Germany
| | - Jie Yuan
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, 35294-2182 AL, USA
| | - Jin-San Zhang
- School of Pharmaceutical Sciences, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Changfu Yao
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Susan Majka
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Barry R Stripp
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andreas Günther
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, 35392 Giessen, Germany
| | - David W H Riches
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206, USA; Denver Veteran Affairs Medical Center, Denver, CO 80206, USA
| | - Saverio Bellusci
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, 35392 Giessen, Germany
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, 35294-2182 AL, USA
| | - Stijn P De Langhe
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, 35294-2182 AL, USA.
| |
Collapse
|