151
|
He B, Bai X, Tan Y, Xie W, Feng Y, Yang GY. Glycosyltransferases: Mining, engineering and applications in biosynthesis of glycosylated plant natural products. Synth Syst Biotechnol 2022; 7:602-620. [PMID: 35261926 PMCID: PMC8883072 DOI: 10.1016/j.synbio.2022.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/10/2021] [Accepted: 01/02/2022] [Indexed: 12/14/2022] Open
Abstract
UDP-Glycosyltransferases (UGTs) catalyze the transfer of nucleotide-activated sugars to specific acceptors, among which the GT1 family enzymes are well-known for their function in biosynthesis of natural product glycosides. Elucidating GT function represents necessary step in metabolic engineering of aglycone glycosylation to produce drug leads, cosmetics, nutrients and sweeteners. In this review, we systematically summarize the phylogenetic distribution and catalytic diversity of plant GTs. We also discuss recent progress in the identification of novel GT candidates for synthesis of plant natural products (PNPs) using multi-omics technology and deep learning predicted models. We also highlight recent advances in rational design and directed evolution engineering strategies for new or improved GT functions. Finally, we cover recent breakthroughs in the application of GTs for microbial biosynthesis of some representative glycosylated PNPs, including flavonoid glycosides (fisetin 3-O-glycosides, astragalin, scutellarein 7-O-glucoside), terpenoid glycosides (rebaudioside A, ginsenosides) and polyketide glycosides (salidroside, polydatin).
Collapse
Affiliation(s)
- Bo He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yumeng Tan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wentao Xie
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
152
|
Park SY, Yang D, Ha SH, Lee SY. Production of phenylpropanoids and flavonolignans from glycerol by metabolically engineered Escherichia coli. Biotechnol Bioeng 2022; 119:946-962. [PMID: 34928495 DOI: 10.1002/bit.28008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023]
Abstract
Phenylpropanoids are a group of plant natural products with medicinal importance derived from aromatic amino acids. Here, we report the production of two representative phenylpropanoids-coniferyl alcohol (CA) and dihydroquercetin (DHQ)-from glycerol by engineered Escherichia coli. First, an E. coli strain capable of producing 187.7 mg/L of CA from glycerol was constructed by the introduction of hpaBC from E. coli and OMT1, 4CL4, and CCR1 from Arabidopsis thaliana to the p-coumaric acid producer. Next, an E. coli strain capable of producing 239.4 mg/L of DHQ from glycerol was constructed by the introduction of F3H, TT7, and CPR from A. thaliana to the naringenin producer, followed by engineering the signal peptide of a cytochrome P450 TT7. Furthermore, to demonstrate the production of flavonolignans, a group of heterodimeric phenylpropanoids, from glycerol, ascorbate peroxidase 1 from Silybum marianum was employed and engineered to produce 0.04 μg/L of silybin and 1.29 μg/L of isosilybin from glycerol by stepwise culture. Finally, a single strain harboring all the 16 necessary genes was constructed, resulting in 0.12 μg/L of isosilybin production directly from glycerol. The strategies described here will be useful for the production of pharmaceutically important yet complex natural products.
Collapse
Affiliation(s)
- Seon Young Park
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Dongsoo Yang
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Shin Hee Ha
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Four Program), Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare (SMESH) Cross-Generation Collaborative Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
153
|
Hussain MH, Mohsin MZ, Zaman WQ, Yu J, Zhao X, Wei Y, Zhuang Y, Mohsin A, Guo M. Multiscale engineering of microbial cell factories: A step forward towards sustainable natural products industry. Synth Syst Biotechnol 2022; 7:586-601. [PMID: 35155840 PMCID: PMC8816652 DOI: 10.1016/j.synbio.2021.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
Microbial cell factories (bacteria and fungi) are the leading producers of beneficial natural products such as lycopene, carotene, herbal medicine, and biodiesel etc. These microorganisms are considered efficient due to their effective bioprocessing strategy (monoculture- and consortial-based approach) under distinct processing conditions. Meanwhile, the advancement in genetic and process optimization techniques leads to enhanced biosynthesis of natural products that are known functional ingredients with numerous applications in the food, cosmetic and medical industries. Natural consortia and monoculture thrive in nature in a small proportion, such as wastewater, food products, and soils. In similitude to natural consortia, it is possible to engineer artificial microbial consortia and program their behaviours via synthetic biology tools. Therefore, this review summarizes the optimization of genetic and physicochemical parameters of the microbial system for improved production of natural products. Also, this review presents a brief history of natural consortium and describes the functional properties of monocultures. This review focuses on synthetic biology tools that enable new approaches to design synthetic consortia; and highlights the syntropic interactions that determine the performance and stability of synthetic consortia. In particular, the effect of processing conditions and advanced genetic techniques to improve the productibility of both monoculture and consortial based systems have been greatly emphasized. In this context, possible strategies are also discussed to give an insight into microbial engineering for improved production of natural products in the future. In summary, it is concluded that the coupling of genomic modifications with optimum physicochemical factors would be promising for producing a robust microbial cell factory that shall contribute to the increased production of natural products.
Collapse
Affiliation(s)
- Muhammad Hammad Hussain
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Waqas Qamar Zaman
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Junxiong Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xueli Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yanlong Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Corresponding author. East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, PR China.
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Corresponding author. P.O. box 329#, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, PR China.
| |
Collapse
|
154
|
Li Y, Li J, Diao M, Peng L, Huang S, Xie N. Characterization of a Group of UDP-Glycosyltransferases Involved in the Biosynthesis of Triterpenoid Saponins of Panax notoginseng. ACS Synth Biol 2022; 11:770-779. [PMID: 35107265 DOI: 10.1021/acssynbio.1c00469] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UDP-glycosyltransferase (UGT)-mediated glycosylation is a common modification in triterpene saponins, which exhibit a wide range of bioactivities and important pharmacological effects. However, few UGTs involved in saponin biosynthesis have been identified, limiting the biosynthesis of saponins. In this study, an efficient heterologous expression system was established for evaluating the UGT-mediated glycosylation process of triterpene saponins. Six UGTs (UGTPn17, UGTPn42, UGTPn35, UGTPn87, UGTPn19, and UGTPn12) from Panax notoginseng were predicted and found to be responsible for efficient and direct enzymatic biotransformation of 21 triterpenoid saponins via 26 various glycosylation reactions. Among them, UGTPn87 exhibited promiscuous sugar-donor specificity of UDP-glucose (UDP-Glc) and UDP-xylose (UDP-Xyl) by catalyzing the elongation of the second sugar chain at the C3 or/and C20 sites of protopanaxadiol-type saponins with a UDP-Glc or UDP-Xyl donor, as well as at the C20 site of protopanaxadiol-type saponins with a UDP-Glc donor. Two new saponins, Fd-Xyl and Fe-Xyl, were generated by catalyzing the C3-O-Glc xylosylations of notoginsenoside Fd and notoginsenoside Fe when incubated with UGTPn87. Moreover, the complete biosynthetic pathways of 17 saponins were elucidated, among which notoginsenoside L, vinaginsenoside R16, gypenoside LXXV, and gypenoside XVII were revealed in Panax for the first time. A yeast cell factory was constructed with a yield of Rh2 at 354.69 mg/L and a glycosylation ratio of 60.40% in flasks. Our results reveal the biosynthetic pathway of a group of saponins in P. notoginseng and provide a theoretical basis for producing rare and valuable saponins, promoting their industrial application in medicine and functional foods.
Collapse
Affiliation(s)
- Yanting Li
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Jianxiu Li
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Mengxue Diao
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Longyun Peng
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Nengzhong Xie
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| |
Collapse
|
155
|
Lopez-Nieves S, El-Azaz J, Men Y, Holland CK, Feng T, Brockington SF, Jez JM, Maeda HA. Two independently evolved natural mutations additively deregulate TyrA enzymes and boost tyrosine production in planta. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:844-855. [PMID: 34807484 DOI: 10.1111/tpj.15597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
l-Tyrosine is an essential amino acid for protein synthesis and is also used in plants to synthesize diverse natural products. Plants primarily synthesize tyrosine via TyrA arogenate dehydrogenase (TyrAa or ADH), which are typically strongly feedback inhibited by tyrosine. However, two plant lineages, Fabaceae (legumes) and Caryophyllales, have TyrA enzymes that exhibit relaxed sensitivity to tyrosine inhibition and are associated with elevated production of tyrosine-derived compounds, such as betalain pigments uniquely produced in core Caryophyllales. Although we previously showed that a single D222N substitution is primarily responsible for the deregulation of legume TyrAs, it is unknown when and how the deregulated Caryophyllales TyrA emerged. Here, through phylogeny-guided TyrA structure-function analysis, we found that functionally deregulated TyrAs evolved early in the core Caryophyllales before the origin of betalains, where the E208D amino acid substitution in the active site, which is at a different and opposite location from D222N found in legume TyrAs, played a key role in the TyrA functionalization. Unlike legumes, however, additional substitutions on non-active site residues further contributed to the deregulation of TyrAs in Caryophyllales. The introduction of a mutation analogous to E208D partially deregulated tyrosine-sensitive TyrAs, such as Arabidopsis TyrA2 (AtTyrA2). Moreover, the combined introduction of D222N and E208D additively deregulated AtTyrA2, for which the expression in Nicotiana benthamiana led to highly elevated accumulation of tyrosine in planta. The present study demonstrates that phylogeny-guided characterization of key residues underlying primary metabolic innovations can provide powerful tools to boost the production of essential plant natural products.
Collapse
Affiliation(s)
- Samuel Lopez-Nieves
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Jorge El-Azaz
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yusen Men
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Cynthia K Holland
- Department of Biology, Williams College, Williamstown, MA, 01267, USA
| | - Tao Feng
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
156
|
Feng C, Chen J, Ye W, Liao K, Wang Z, Song X, Qiao M. Synthetic Biology-Driven Microbial Production of Resveratrol: Advances and Perspectives. Front Bioeng Biotechnol 2022; 10:833920. [PMID: 35127664 PMCID: PMC8811299 DOI: 10.3389/fbioe.2022.833920] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/05/2022] [Indexed: 12/22/2022] Open
Abstract
Resveratrol, a bioactive natural product found in many plants, is a secondary metabolite and has attracted much attention in the medicine and health care products fields due to its remarkable biological activities including anti-cancer, anti-oxidation, anti-aging, anti-inflammation, neuroprotection and anti-glycation. However, traditional chemical synthesis and plant extraction methods are impractical for industrial resveratrol production because of low yield, toxic chemical solvents and environmental pollution during the production process. Recently, the biosynthesis of resveratrol by constructing microbial cell factories has attracted much attention, because it provides a safe and efficient route for the resveratrol production. This review discusses the physiological functions and market applications of resveratrol. In addition, recent significant biotechnology advances in resveratrol biosynthesis are systematically summarized. Furthermore, we discuss the current challenges and future prospects for strain development for large-scale resveratrol production at an industrial level.
Collapse
Affiliation(s)
- Chao Feng
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jing Chen
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wenxin Ye
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Kaisen Liao
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhanshi Wang
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xiaofei Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- The Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Xiaofei Song, ; Mingqiang Qiao,
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- College of Life Sciences, Shanxi University, Taiyuan, China
- *Correspondence: Xiaofei Song, ; Mingqiang Qiao,
| |
Collapse
|
157
|
Xu S, Wu S, Li Y. Investigating Plant Biosynthetic Pathways Using Heterologous Gene Expression: Yeast as a Heterologous Host. Methods Mol Biol 2022; 2489:369-393. [PMID: 35524060 DOI: 10.1007/978-1-0716-2273-5_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plant natural products (PNPs) are valuable resources for the development of pharmaceuticals and agrochemicals, yet the biosynthesis and metabolism of PNPs are largely unknown. Heterologous pathway reconstitution is a heavily adopted strategy in secondary metabolism characterization. Yeast systems have been broadly utilized in the heterologous production of PNPs and have been considered as a promising platform to investigate plant biosynthetic pathways. Here, we describe the reconstitution and verification of the upstream part of brassinolide biosynthesis in S. cerevisiae using this method.
Collapse
Affiliation(s)
- Shanhui Xu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Sheng Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Yanran Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
158
|
Otto M, Liu D, Siewers V. Saccharomyces cerevisiae as a Heterologous Host for Natural Products. Methods Mol Biol 2022; 2489:333-367. [PMID: 35524059 DOI: 10.1007/978-1-0716-2273-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell factories can provide a sustainable supply of natural products with applications as pharmaceuticals, food-additives or biofuels. Besides being an important model organism for eukaryotic systems, Saccharomyces cerevisiae is used as a chassis for the heterologous production of natural products. Its success as a cell factory can be attributed to the vast knowledge accumulated over decades of research, its overall ease of engineering and its robustness. Many methods and toolkits have been developed by the yeast metabolic engineering community with the aim of simplifying and accelerating the engineering process.In this chapter, a range of methodologies are highlighted, which can be used to develop novel natural product cell factories or to improve titer, rate and yields of an existing cell factory with the goal of developing an industrially relevant strain. The addressed topics are applicable for different stages of a cell factory engineering project and include the choice of a natural product platform strain, expression cassette design for heterologous or native genes, basic and advanced genetic engineering strategies, and library screening methods using biosensors. The many engineering methods available and the examples of yeast cell factories underline the importance and future potential of this host for industrial production of natural products.
Collapse
Affiliation(s)
- Maximilian Otto
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Dany Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
159
|
Fidan O, Zhan J, Ren J. Engineered production of bioactive natural products from medicinal plants. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_66_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
160
|
Fidan O, Zhan J, Ren J. Engineered production of bioactive natural products from medicinal plants. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.336839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
161
|
Measurements of drugs and metabolites in biological matrices using SFC and SFE-SFC-MS. SEP SCI TECHNOL 2022. [DOI: 10.1016/b978-0-323-88487-7.00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
162
|
Li C, Jiang T, Li M, Zou Y, Yan Y. Fine-tuning gene expression for improved biosynthesis of natural products: From transcriptional to post-translational regulation. Biotechnol Adv 2022; 54:107853. [PMID: 34637919 PMCID: PMC8724446 DOI: 10.1016/j.biotechadv.2021.107853] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/08/2023]
Abstract
Microbial production of natural compounds has attracted extensive attention due to their high value in pharmaceutical, cosmetic, and food industries. Constructing efficient microbial cell factories for biosynthesis of natural products requires the fine-tuning of gene expressions to minimize the accumulation of toxic metabolites, reduce the competition between cell growth and product generation, as well as achieve the balance of redox or co-factors. In this review, we focus on recent advances in fine-tuning gene expression at the DNA, RNA, and protein levels to improve the microbial biosynthesis of natural products. Commonly used regulatory toolsets in each level are discussed, and perspectives for future direction in this area are provided.
Collapse
Affiliation(s)
- Chenyi Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Michelle Li
- North Oconee High School, Bogart, GA 30622, USA
| | - Yusong Zou
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
163
|
Sousa JPM, Ramos MJ, Fernandes PA. Modern strategies for the diversification of the supply of natural compounds - the case of alkaloid painkillers. Chembiochem 2021; 23:e202100623. [PMID: 34971022 DOI: 10.1002/cbic.202100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Indexed: 11/07/2022]
Abstract
Plant-derived natural compounds are used for treating diseases since the beginning of humankind. The supply of many plant-derived natural compounds for medicinal purposes, such as thebaine, morphine, and codeine, is, nowadays, majorly dependent on opium poppy crop harvesting. This dependency puts an extra risk factor in ensuring the supply chain because crops are highly susceptible to environmental factors. Emerging technologies, such as biocatalysis, might help to solve this problem, by diversifying the sources of supply of these compounds. Here we review the first committed step in the production of alkaloid painkillers, the production of S-norcoclaurine, and the enzymes involved. The improvement of these enzymes can be carried out by experimental directed evolution and rational design strategies, supported by computational methods, to create variants that produce the S-norcoclaurine precursor for alkaloid painkillers in heterologous organisms, meeting the pharmaceutical industry standards and needs without depending on opium poppy crops.
Collapse
Affiliation(s)
- João Pedro Marques Sousa
- REQUIMTE LAQV Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, PORTUGAL
| | - Maria J Ramos
- FCUP: Universidade do Porto Faculdade de Ciencias, Chemistry and Biochemistry, PORTUGAL
| | - Pedro A Fernandes
- Universidade do Porto, Department of Chemistry Theoretical and Computational Chemistry Group, Rua do Campo Alegre, 687, 4169-007, Porto, PORTUGAL
| |
Collapse
|
164
|
Wei Y, Ji B, Ledesma-Amaro R, Chen T, Ji XJ. Editorial: Engineering Yeast to Produce Plant Natural Products. Front Bioeng Biotechnol 2021; 9:798097. [PMID: 34926435 PMCID: PMC8675177 DOI: 10.3389/fbioe.2021.798097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
165
|
Biosynthesis of a novel ganoderic acid by expressing CYP genes from Ganoderma lucidum in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 106:523-534. [PMID: 34921329 DOI: 10.1007/s00253-021-11717-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
Ganoderic acids (GAs), a group of highly oxygenated lanostane-type triterpenoids from the traditional Chinese medicinal mushroom Ganoderma lucidum, possessed significant pharmacological activities. Due to the difficulty in its genetic manipulation, low yield, and slow growth of G. lucidum, biosynthesis of GAs in a heterologous host is a promising alternative for their efficient production. Heterologous production of a GA, 3-hydroxy-lanosta-8,24-dien-26-oic acid (HLDOA), was recently achieved by expressing CYP5150L8 from Ganoderma lucidum in Saccharomyces cerevisiae, but post-modification of HLDOA to biosynthesize other GAs remains unclear. In this study, another P450 from G. lucidum, CYP5139G1, was identified to be responsible for C-28 oxidation of HLDOA, resulting in the formation of a new GA 3,28-dihydroxy-lanosta-8,24-dien-26-oic acid (DHLDOA) by the engineered yeast, whose chemical structure was confirmed by UPLC-APCI-HRMS and NMR. In vitro enzymatic experiments confirmed the oxidation of HLDOA to DHLDOA by CYP5139G1. As the DHLDOA production was low (0.27 mg/L), to improve it, the strategy of adjusting the dosage of hygromycin and geneticin G418 to respectively manipulate the copy number of plasmids pRS425-Hyg-CYP5150L8-iGLCPR (harboring CYP5150L8, iGLCPR, and hygromycin-resistant gene hygR) and pRS426-KanMx-CYP5139G1 (harboring CYP5139G1 and G418-resistant gene KanMx) was adopted. Finally, 2.2 mg/L of DHLDOA was obtained, which was 8.2 fold of the control (without antibiotics addition). The work enriches the GA biosynthetic enzyme library, and is helpful to construct heterologous cell factories for other GA production as well as to elucidate the authentic GA biosynthetic pathway in G. lucidum. KEY POINTS: • Another P450 gene responsible for GA's post-modification was discovered and identified. • One new GA, DHLDOA, was identified and produced via engineered yeast. • With the balance of the two CYP genes expression, DHLDOA production was significantly improved.
Collapse
|
166
|
Papon N, Copp BR, Courdavault V. Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnol Adv 2021; 54:107871. [PMID: 34801661 DOI: 10.1016/j.biotechadv.2021.107871] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The marine environment is a huge reservoir of biodiversity and represents an excellent source of chemical compounds, some of which have large economical values. In the urgent quest for new pharmaceuticals, marine-based drug discovery has progressed significantly over the past several decades and we now benefit from a series of approved marine natural products (MNPs) to treat cancer and pain while an additional collection of promising leads are in clinical trials. However, the discovery and supply of MNPs has always been challenging given their low bioavailability and structural complexity. Their manufacture for pre-clinical and clinical development but also commercialization mainly relies upon marine source extraction and chemical synthesis, which are associated with high costs, unsustainability and severe environmental problems. In this review, we discuss how metabolic engineering now raises reasonable expectations for the implementation of microbial cell factories, which may provide a sustainable approach for MNP-based drug supply in the near future.
Collapse
Affiliation(s)
- Nicolas Papon
- Univ. Angers, Univ. Brest, GEIHP, SFR ICAT, F-49000 Angers, France.
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Vincent Courdavault
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France.
| |
Collapse
|
167
|
60Coγ induction improves the protective effect of Acetobacter pasteurianus against ionizing radiation in mice. Appl Microbiol Biotechnol 2021; 105:9285-9295. [PMID: 34778911 DOI: 10.1007/s00253-021-11664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
Exposure to ionizing radiation (IR) tends to cause serious health concerns. Thus, radioprotective agents are vital for the population exposed to radiation. As microorganisms have the advantages of fast reproduction and no geographical restrictions, direct microbe-based and environmental induction compounds are thriving radioprotectants resources. Oxidative system and oxidase in Acetobacter pasteurianus are unique and intriguing, the radioprotective effect of the cell-free extract from A. pasteurianus (APE) and 60Coγ-treated extract (IRE) were comparatively investigated in the present study. The survival rate of A. pasteurianus with IRE addition was 149.1% in H2O2 damage test, while that with APE was only 10.4%. The viability of 60Coγ-treated AML-12 cells was increased by 18.8% with IRE addition, yet APE showed no significant radioprotective effect. Moreover, in 60Coγ-treated mice, IRE could significantly protect the white blood cell, improve the liver index, and attenuate the injuries of immune organs in mice. Administration of IRE significantly raised the activities of superoxide dismutase (SOD) and reduced the products of lipid peroxidation. These results clarified that gavage with APE and IRE presented notable antioxidant and radioprotective efficacy. A. pasteurianus showed appealing potential to be novel radioprotective bioagents and 60Coγ treatment on microbe could be a new method for the development of better radioprotectant. KEY POINTS: • 60Coγ induction could improve the radioprotective effect of APE. • IRE protected white blood cell in mice under IR. • IRE products have broad application prospects in radioprotection based on microbes.
Collapse
|
168
|
Liu X, Bu J, Ma Y, Chen Y, Li Q, Jiao X, Hu Z, Cui G, Tang J, Guo J, Huang L. Functional characterization of (S)-N-methylcoclaurine 3'-hydroxylase (NMCH) involved in the biosynthesis of benzylisoquinoline alkaloids in Corydalis yanhusuo. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:507-515. [PMID: 34757301 DOI: 10.1016/j.plaphy.2021.09.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 05/24/2023]
Abstract
Benzylisoquinoline alkaloids (BIAs) are compounds naturally found in plants and can have significant value in clinical settings. Metabolic engineering and synthetic biology are both promising approaches for the heterologous acquisition of benzylisoquinoline alkaloids. (S)-N-methylcoclaurine 3'-hydroxylase (NMCH), a member of the CYP80 family of CYP450, is the penultimate catalytic enzyme that forms the central branch-point intermediate (S)-reticuline and plays a key role in the biosynthesis of BIAs. In this study, an NMCH gene was cloned from Corydalis yanhusuo, while in vitro reactions demonstrated that CyNMCH can catalyze (S)-N-methylcoclaurine to produce (S)-3'-hydroxy-N-methylcoclaurine. The Km and Kcat of CyNMCH were estimated and compared with those identified in Eschscholzia californica and Coptis japonica. This newly discovered CyNMCH will provide alternative genetic resources for the synthetic biological production of benzylisoquinoline alkaloids and provides a foundation to help analyze the biosynthetic pathway of BIAs biosynthesis in C. yanhusuo.
Collapse
Affiliation(s)
- Xiuyu Liu
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450008, China; State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Junling Bu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.
| | - Qishuang Li
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Xiang Jiao
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.
| | - Zhimin Hu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| |
Collapse
|
169
|
Bi H, Qu G, Wang S, Zhuang Y, Sun Z, Liu T, Ma Y. Biosynthesis of a rosavin natural product in Escherichia coli by glycosyltransferase rational design and artificial pathway construction. Metab Eng 2021; 69:15-25. [PMID: 34715353 DOI: 10.1016/j.ymben.2021.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Phytochemicals are rich resources for pharmaceutical and nutraceutical agents. A key challenge of accessing these precious compounds can present significant bottlenecks for development. The cinnamyl alcohol disaccharides also known as rosavins are the major bioactive ingredients of the notable medicinal plant Rhodiola rosea L. Cinnamyl-(6'-O-β-xylopyranosyl)-O-β-glucopyranoside (rosavin E) is a natural rosavin analogue with the arabinopyranose unit being replaced by its diastereomer xylose, which was only isolated in minute quantity from R. rosea. Herein, we described the de novo production of rosavin E in Escherichia coli. The 1,6-glucosyltransferase CaUGT3 was engineered into a xylosyltransferase converting cinnamyl alcohol monoglucoside (rosin) into rosavin E by replacing the residue T145 with valine. The enzyme activity was further elevated 2.9 times by adding the mutation N375Q. The synthesis of rosavin E from glucose was achieved with a titer of 92.9 mg/L by combining the variant CaUGT3T145V/N375Q, the UDP-xylose synthase from Sinorhizobium meliloti 1021 (SmUXS) and enzymes for rosin biosynthesis into a phenylalanine overproducing E. coli strain. The production of rosavin E was further elevated by co-overexpressing UDP-xylose synthase from Arabidopsis thaliana (AtUXS3) and SmUXS, and the titer in a 5 L bioreactor with fed-batch fermentation reached 782.0 mg/L. This work represents an excellent example of producing a natural product with a disaccharide chain by glycosyltransferase engineering and artificial pathway construction.
Collapse
Affiliation(s)
- Huiping Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shuai Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yibin Zhuang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
170
|
Urui M, Yamada Y, Ikeda Y, Nakagawa A, Sato F, Minami H, Shitan N. Establishment of a co-culture system using Escherichia coli and Pichia pastoris (Komagataella phaffii) for valuable alkaloid production. Microb Cell Fact 2021; 20:200. [PMID: 34663314 PMCID: PMC8522034 DOI: 10.1186/s12934-021-01687-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Plants produce a variety of specialized metabolites, many of which are used in pharmaceutical industries as raw materials. However, certain metabolites may be produced at markedly low concentrations in plants. This problem has been overcome through metabolic engineering in recent years, and the production of valuable plant compounds using microorganisms such as Escherichia coli or yeast cells has been realized. However, the development of complicated pathways in a single cell remains challenging. Additionally, microbial cells may experience toxicity from the bioactive compounds produced or negative feedback effects exerted on their biosynthetic enzymes. Thus, co-culture systems, such as those of E. coli–E. coli and E. coli-Saccharomyces cerevisiae, have been developed, and increased production of certain compounds has been achieved. Recently, a co-culture system of Pichia pastoris (Komagataella phaffii) has gained considerable attention due to its potential utility in increased production of valuable compounds. However, its co-culture with other organisms such as E. coli, which produce important intermediates at high concentrations, has not been reported. Results Here, we present a novel co-culture platform for E. coli and P. pastoris. Upstream E. coli cells produced reticuline from a simple carbon source, and the downstream P. pastoris cells produced stylopine from reticuline. We investigated the effect of four media commonly used for growth and production of P. pastoris, and found that buffered methanol-complex medium (BMMY) was suitable for P. pastoris cells. Reticuline-producing E. coli cells also showed better growth and reticuline production in BMMY medium than that in LB medium. De novo production of the final product, stylopine from a simple carbon source, glycerol, was successful upon co-culture of both strains in BMMY medium. Further analysis of the initial inoculation ratio showed that a higher ratio of E. coli cells compared to P. pastoris cells led to higher production of stylopine. Conclusions This is the first report of co-culture system established with engineered E. coli and P. pastoris for the de novo production of valuable compounds. The co-culture system established herein would be useful for increased production of heterologous biosynthesis of complex specialized plant metabolites. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01687-z.
Collapse
Affiliation(s)
- Miya Urui
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Yoshito Ikeda
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Akira Nakagawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi-shi, Ishikawa, 921-8836, Japan
| | - Fumihiko Sato
- Department of Plant Gene and Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.,Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Hiromichi Minami
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi-shi, Ishikawa, 921-8836, Japan
| | - Nobukazu Shitan
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| |
Collapse
|
171
|
Unnatural biosynthesis by an engineered microorganism with heterologously expressed natural enzymes and an artificial metalloenzyme. Nat Chem 2021; 13:1186-1191. [PMID: 34650235 PMCID: PMC8879416 DOI: 10.1038/s41557-021-00801-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/26/2021] [Indexed: 11/21/2022]
Abstract
Synthetic biology enables microbial hosts to produce complex molecules that are otherwise produced by organisms that are rare or difficult to cultivate, but the structures of these molecules are limited to those formed by chemical reactions catalyzed by natural enzymes. The integration of artificial metalloenzymes (ArMs) that catalyze unnatural reactions into metabolic networks could broaden the cache of molecules produced biosynthetically by microorganisms. We report an engineered microbial cell expressing a heterologous biosynthetic pathway, which contains both natural enzymes and ArMs, that produces an unnatural product with high diastereoselectivity. To create this hybrid biosynthetic organism, we engineered Escherichia coli (E. coli) with a heterologous terpene biosynthetic pathway and an ArM containing an iridium-porphyrin complex that was transported into the cell with a heterologous transport system. We improved the diastereoselectivity and product titer of the unnatural product by evolving the ArM and selecting the appropriate gene induction and cultivation conditions. This work shows that synthetic biology and synthetic chemistry can produce, together with natural and artificial enzymes in whole cells, molecules that were previously inaccessible to nature.
Collapse
|
172
|
Xie Y, Chen S, Xiong X. Metabolic Engineering of Non-carotenoid-Producing Yeast Yarrowia lipolytica for the Biosynthesis of Zeaxanthin. Front Microbiol 2021; 12:699235. [PMID: 34690947 PMCID: PMC8529107 DOI: 10.3389/fmicb.2021.699235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/30/2021] [Indexed: 01/29/2023] Open
Abstract
Zeaxanthin is vital to human health; thus, its production has received much attention, and it is also an essential precursor for the biosynthesis of other critical carotenoids such as astaxanthin and crocetin. Yarrowia lipolytica is one of the most intensively studied non-conventional yeasts and has been genetically engineered as a cell factory to produce carotenoids such as lycopene and β-carotene. However, zeaxanthin production by Y. lipolytica has not been well investigated. To fill this gap, β-carotene biosynthesis pathway has been first constructed in this study by the expression of genes, including crtE, crtB, crtI, and carRP. Three crtZ genes encoding β-carotene hydroxylase from different organisms were individually introduced into β-carotene-producing Y. lipolytica to evaluate their performance for producing zeaxanthin. The expression of crtZ from the bacterium Pantoea ananatis (formerly Erwinia uredovora, Eu-crtZ) resulted in the highest zeaxanthin titer and content on the basis of dry cell weight (DCW). After verifying the function of Eu-crtZ for producing zeaxanthin, the high-copy-number integration into the ribosomal DNA of Y. lipolytica led to a 4.02-fold increase in the titer of zeaxanthin and a 721% increase in the content of zeaxanthin. The highest zeaxanthin titer achieved 21.98 ± 1.80 mg/L by the strain grown on a yeast extract peptone dextrose (YPD)-rich medium. In contrast, the highest content of DCW reached 3.20 ± 0.11 mg/g using a synthetic yeast nitrogen base (YNB) medium to culture the cells. Over 18.0 g/L of citric acid was detected in the supernatant of the YPD medium at the end of cultivation. Furthermore, the zeaxanthin-producing strains still accumulated a large amount of lycopene and β-carotene. The results demonstrated the potential of a cell factory for zeaxanthin biosynthesis and opened up an avenue to engineer this host for the overproduction of carotenoids.
Collapse
Affiliation(s)
| | | | - Xiaochao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| |
Collapse
|
173
|
Kang S, Lumactud R, Li N, Bell TH, Kim HS, Park SY, Lee YH. Harnessing Chemical Ecology for Environment-Friendly Crop Protection. PHYTOPATHOLOGY 2021; 111:1697-1710. [PMID: 33908803 DOI: 10.1094/phyto-01-21-0035-rvw] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heavy reliance on synthetic pesticides for crop protection has become increasingly unsustainable, calling for robust alternative strategies that do not degrade the environment and vital ecosystem services. There are numerous reports of successful disease control by various microbes used in small-scale trials. However, inconsistent efficacy has hampered their large-scale application. A better understanding of how beneficial microbes interact with plants, other microbes, and the environment and which factors affect disease control efficacy is crucial to deploy microbial agents as effective and reliable pesticide alternatives. Diverse metabolites produced by plants and microbes participate in pathogenesis and defense, regulate the growth and development of themselves and neighboring organisms, help maintain cellular homeostasis under various environmental conditions, and affect the assembly and activity of plant and soil microbiomes. However, research on the metabolites associated with plant health-related processes, except antibiotics, has not received adequate attention. This review highlights several classes of metabolites known or suspected to affect plant health, focusing on those associated with biocontrol and belowground plant-microbe and microbe-microbe interactions. The review also describes how new insights from systematic explorations of the diversity and mechanism of action of bioactive metabolites can be harnessed to develop novel crop protection strategies.
Collapse
Affiliation(s)
- Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Rhea Lumactud
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ningxiao Li
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Hye-Seon Kim
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, U.S.A
| | - Sook-Young Park
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
174
|
Decembrino D, Raffaele A, Knöfel R, Girhard M, Urlacher VB. Synthesis of (-)-deoxypodophyllotoxin and (-)-epipodophyllotoxin via a multi-enzyme cascade in E. coli. Microb Cell Fact 2021; 20:183. [PMID: 34544406 PMCID: PMC8454061 DOI: 10.1186/s12934-021-01673-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/07/2021] [Indexed: 01/30/2023] Open
Abstract
Background The aryltetralin lignan (−)−podophyllotoxin is a potent antiviral and anti-neoplastic compound that is mainly found in Podophyllum plant species. Over the years, the commercial demand for this compound rose notably because of the high clinical importance of its semi-synthetic chemotherapeutic derivatives etoposide and teniposide. To satisfy this demand, (−)−podophyllotoxin is conventionally isolated from the roots and rhizomes of Sinopodophyllum hexandrum, which can only grow in few regions and is now endangered by overexploitation and environmental damage. For these reasons, targeting the biosynthesis of (−)−podophyllotoxin precursors or analogues is fundamental for the development of novel, more sustainable supply routes. Results We recently established a four-step multi-enzyme cascade to convert (+)−pinoresinol into (−)−matairesinol in E. coli. Herein, a five-step multi-enzyme biotransformation of (−)−matairesinol to (−)−deoxypodophyllotoxin was proven effective with 98 % yield at a concentration of 78 mg/L. Furthermore, the extension of this cascade to a sixth step leading to (−)−epipodophyllotoxin was evaluated. To this end, seven enzymes were combined in the reconstituted pathway involving inter alia three plant cytochrome P450 monooxygenases, with two of them being functionally expressed in E. coli for the first time. Conclusions Both, (−)−deoxypodophyllotoxin and (−)−epipodophyllotoxin, are direct precursors to etoposide and teniposide. Thus, the reconstitution of biosynthetic reactions of Sinopodophyllum hexandrum as an effective multi-enzyme cascade in E. coli represents a solid step forward towards a more sustainable production of these essential pharmaceuticals. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01673-5.
Collapse
Affiliation(s)
- Davide Decembrino
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Alessandra Raffaele
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ronja Knöfel
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Marco Girhard
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
175
|
Galanie S, Entwistle D, Lalonde J. Engineering biosynthetic enzymes for industrial natural product synthesis. Nat Prod Rep 2021; 37:1122-1143. [PMID: 32364202 DOI: 10.1039/c9np00071b] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2000 to 2020 Natural products and their derivatives are commercially important medicines, agrochemicals, flavors, fragrances, and food ingredients. Industrial strategies to produce these structurally complex molecules encompass varied combinations of chemical synthesis, biocatalysis, and extraction from natural sources. Interest in engineering natural product biosynthesis began with the advent of genetic tools for pathway discovery. Genes and strains can now readily be synthesized, mutated, recombined, and sequenced. Enzyme engineering has succeeded commercially due to the development of genetic methods, analytical technologies, and machine learning algorithms. Today, engineered biosynthetic enzymes from organisms spanning the tree of life are used industrially to produce diverse molecules. These biocatalytic processes include single enzymatic steps, multienzyme cascades, and engineered native and heterologous microbial strains. This review will describe how biosynthetic enzymes have been engineered to enable commercial and near-commercial syntheses of natural products and their analogs.
Collapse
Affiliation(s)
- Stephanie Galanie
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
| | - David Entwistle
- Process Chemistry, Codexis, Inc., Redwood City, California, USA
| | - James Lalonde
- Microbial Digital Genome Engineering, Inscripta, Inc., Pleasanton, California, USA
| |
Collapse
|
176
|
Zhu X, Liu X, Liu T, Wang Y, Ahmed N, Li Z, Jiang H. Synthetic biology of plant natural products: From pathway elucidation to engineered biosynthesis in plant cells. PLANT COMMUNICATIONS 2021; 2:100229. [PMID: 34746761 PMCID: PMC8553972 DOI: 10.1016/j.xplc.2021.100229] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/11/2021] [Accepted: 08/06/2021] [Indexed: 05/10/2023]
Abstract
Plant natural products (PNPs) are the main sources of drugs, food additives, and new biofuels and have become a hotspot in synthetic biology. In the past two decades, the engineered biosynthesis of many PNPs has been achieved through the construction of microbial cell factories. Alongside the rapid development of plant physiology, genetics, and plant genetic modification techniques, hosts have now expanded from single-celled microbes to complex plant systems. Plant synthetic biology is an emerging field that combines engineering principles with plant biology. In this review, we introduce recent advances in the biosynthetic pathway elucidation of PNPs and summarize the progress of engineered PNP biosynthesis in plant cells. Furthermore, a future vision of plant synthetic biology is proposed. Although we are still a long way from overcoming all the bottlenecks in plant synthetic biology, the ascent of this field is expected to provide a huge opportunity for future agriculture and industry.
Collapse
Affiliation(s)
- Xiaoxi Zhu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Tian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Life Science and Technology College, Guangxi University, Nanning, Guangxi 530004, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yina Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Nida Ahmed
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Zhichao Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
177
|
Dudley QM, Cai YM, Kallam K, Debreyne H, Carrasco Lopez JA, Patron NJ. Biofoundry-assisted expression and characterization of plant proteins. Synth Biol (Oxf) 2021; 6:ysab029. [PMID: 34693026 PMCID: PMC8529701 DOI: 10.1093/synbio/ysab029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022] Open
Abstract
Many goals in synthetic biology, including the elucidation and refactoring of biosynthetic pathways and the engineering of regulatory circuits and networks, require knowledge of protein function. In plants, the prevalence of large gene families means it can be particularly challenging to link specific functions to individual proteins. However, protein characterization has remained a technical bottleneck, often requiring significant effort to optimize expression and purification protocols. To leverage the ability of biofoundries to accelerate design-built-test-learn cycles, we present a workflow for automated DNA assembly and cell-free expression of plant proteins that accelerates optimization and enables rapid screening of enzyme activity. First, we developed a phytobrick-compatible Golden Gate DNA assembly toolbox containing plasmid acceptors for cell-free expression using Escherichia coli or wheat germ lysates as well as a set of N- and C-terminal tag parts for detection, purification and improved expression/folding. We next optimized automated assembly of miniaturized cell-free reactions using an acoustic liquid handling platform and then compared tag configurations to identify those that increase expression. We additionally developed a luciferase-based system for rapid quantification that requires a minimal 11-amino acid tag and demonstrate facile removal of tags following synthesis. Finally, we show that several functional assays can be performed with cell-free protein synthesis reactions without the need for protein purification. Together, the combination of automated assembly of DNA parts and cell-free expression reactions should significantly increase the throughput of experiments to test and understand plant protein function and enable the direct reuse of DNA parts in downstream plant engineering workflows.
Collapse
Affiliation(s)
- Quentin M Dudley
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| | - Yao-Min Cai
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| | - Kalyani Kallam
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| | - Hubert Debreyne
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| | | | - Nicola J Patron
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| |
Collapse
|
178
|
Floris B, Galloni P, Conte V, Sabuzi F. Tailored Functionalization of Natural Phenols to Improve Biological Activity. Biomolecules 2021; 11:1325. [PMID: 34572538 PMCID: PMC8467377 DOI: 10.3390/biom11091325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Phenols are widespread in nature, being the major components of several plants and essential oils. Natural phenols' anti-microbial, anti-bacterial, anti-oxidant, pharmacological and nutritional properties are, nowadays, well established. Hence, given their peculiar biological role, numerous studies are currently ongoing to overcome their limitations, as well as to enhance their activity. In this review, the functionalization of selected natural phenols is critically examined, mainly highlighting their improved bioactivity after the proper chemical transformations. In particular, functionalization of the most abundant naturally occurring monophenols, diphenols, lipidic phenols, phenolic acids, polyphenols and curcumin derivatives is explored.
Collapse
Affiliation(s)
- Barbara Floris
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| |
Collapse
|
179
|
Yu S, Bekkering CS, Tian L. Metabolic engineering in woody plants: challenges, advances, and opportunities. ABIOTECH 2021; 2:299-313. [PMID: 36303882 PMCID: PMC9590576 DOI: 10.1007/s42994-021-00054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/06/2021] [Indexed: 06/16/2023]
Abstract
Woody plant species represent an invaluable reserve of biochemical diversity to which metabolic engineering can be applied to satisfy the need for commodity and specialty chemicals, pharmaceuticals, and renewable energy. Woody plants are particularly promising for this application due to their low input needs, high biomass, and immeasurable ecosystem services. However, existing challenges have hindered their widespread adoption in metabolic engineering efforts, such as long generation times, large and highly heterozygous genomes, and difficulties in transformation and regeneration. Recent advances in omics approaches, systems biology modeling, and plant transformation and regeneration methods provide effective approaches in overcoming these outstanding challenges. Promises brought by developments in this space are steadily opening the door to widespread metabolic engineering of woody plants to meet the global need for a wide range of sustainably sourced chemicals and materials.
Collapse
Affiliation(s)
- Shu Yu
- Department of Plant Sciences, Mail Stop 3, University of California, Davis, CA 95616 USA
| | - Cody S. Bekkering
- Department of Plant Sciences, Mail Stop 3, University of California, Davis, CA 95616 USA
| | - Li Tian
- Department of Plant Sciences, Mail Stop 3, University of California, Davis, CA 95616 USA
| |
Collapse
|
180
|
Evolution-aided engineering of plant specialized metabolism. ABIOTECH 2021; 2:240-263. [PMID: 36303885 PMCID: PMC9590541 DOI: 10.1007/s42994-021-00052-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
The evolution of new traits in living organisms occurs via the processes of mutation, recombination, genetic drift, and selection. These processes that have resulted in the immense biological diversity on our planet are also being employed in metabolic engineering to optimize enzymes and pathways, create new-to-nature reactions, and synthesize complex natural products in heterologous systems. In this review, we discuss two evolution-aided strategies for metabolic engineering-directed evolution, which improves upon existing genetic templates using the evolutionary process, and combinatorial pathway reconstruction, which brings together genes evolved in different organisms into a single heterologous host. We discuss the general principles of these strategies, describe the technologies involved and the molecular traits they influence, provide examples of their use, and discuss the roadblocks that need to be addressed for their wider adoption. A better understanding of these strategies can provide an impetus to research on gene function discovery and biochemical evolution, which is foundational for improved metabolic engineering. These evolution-aided approaches thus have a substantial potential for improving our understanding of plant metabolism in general, for enhancing the production of plant metabolites, and in sustainable agriculture.
Collapse
|
181
|
De novo biosynthesis and gram-level production of m-cresol in Aspergillus nidulans. Appl Microbiol Biotechnol 2021; 105:6333-6343. [PMID: 34423409 DOI: 10.1007/s00253-021-11490-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The industrially important meta-cresol (m-cresol, 3-methylphenol) is mainly produced from fossil resources by chemical methods. The microbial production of m-cresol was rarely investigated. Herein, we constructed a platform for the overproduction of m-cresol in a modified fungus Aspergillus nidulans FGSC no. A1145∆ST∆EM, which gave a gram-level titer using starch as carbon resource. For the biosynthesis of m-cresol, the 6-methyl salicylic acid synthase (MSAS)-encoding gene patK and 6-methyl salicylic acid decarboxylase-encoding gene patG from A. clavatus were co-expressed in the host A. nidulans. Multiple strategies, including promotor engineering, gene multiplication, and fed-batch fermentation, were applied to raise the production of m-cresol, which resulted in the titers of 1.29 g/L in shaking flasks and 2.03 g/L in fed-batch culture. The chassis cell A. nidulans A1145∆ST∆EM was proved to possess better tolerance to m-cresol than yeast, as it could grow in the liquid medium containing up to 2.5 g/L of m-cresol. These results showed that A. nidulans has great potential to be further engineered for industrial production of m-cresol.Key points• m-Cresol was de novo biosynthesized by a fungal chassis cell Aspergillus nidulans.• Promoter engineering and gene multiplication implemented the fine-tuned genes expression.• The titer of m-cresol reached 2.03 g/L via fed-batch culture.
Collapse
|
182
|
Cigan E, Eggbauer B, Schrittwieser JH, Kroutil W. The role of biocatalysis in the asymmetric synthesis of alkaloids - an update. RSC Adv 2021; 11:28223-28270. [PMID: 35480754 PMCID: PMC9038100 DOI: 10.1039/d1ra04181a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
Alkaloids are a group of natural products with interesting pharmacological properties and a long history of medicinal application. Their complex molecular structures have fascinated chemists for decades, and their total synthesis still poses a considerable challenge. In a previous review, we have illustrated how biocatalysis can make valuable contributions to the asymmetric synthesis of alkaloids. The chemo-enzymatic strategies discussed therein have been further explored and improved in recent years, and advances in amine biocatalysis have vastly expanded the opportunities for incorporating enzymes into synthetic routes towards these important natural products. The present review summarises modern developments in chemo-enzymatic alkaloid synthesis since 2013, in which the biocatalytic transformations continue to take an increasingly 'central' role.
Collapse
Affiliation(s)
- Emmanuel Cigan
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Bettina Eggbauer
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Joerg H Schrittwieser
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|
183
|
Zhang C, Sultan SA, T R, Chen X. Biotechnological applications of S-adenosyl-methionine-dependent methyltransferases for natural products biosynthesis and diversification. BIORESOUR BIOPROCESS 2021; 8:72. [PMID: 38650197 PMCID: PMC10992897 DOI: 10.1186/s40643-021-00425-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022] Open
Abstract
In the biosynthesis of natural products, methylation is a common and essential transformation to alter molecules' bioavailability and bioactivity. The main methylation reaction is performed by S-adenosylmethionine (SAM)-dependent methyltransferases (MTs). With advancements in genomic and chemical profiling technologies, novel MTs have been discovered to accept complex substrates and synthesize industrially valuable natural products. However, to achieve a high yield of small molecules in microbial hosts, many methyltransferase activities have been reported to be insufficient. Moreover, inadequate co-factor supplies and feedback inhibition of the by-product, S-adenosylhomocysteine (SAH), further limit MTs' activities. Here, we review recent advances in SAM-dependent MTs to produce and diversify natural products. First, we surveyed recently identified novel methyltransferases in natural product biosynthesis. Second, we summarized enzyme engineering strategies to improve methyltransferase activity, with a particular focus on high-throughput assay design and application. Finally, we reviewed innovations in co-factor regeneration and diversification, both in vitro and in vivo. Noteworthily, many MTs are able to accept multiple structurally similar substrates. Such promiscuous methyltransferases are versatile and can be tailored to design de novo pathways to produce molecules whose biosynthetic pathway is unknown or non-existent in nature, thus broadening the scope of biosynthesized functional molecules.
Collapse
Affiliation(s)
- Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Stella Amelia Sultan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Rehka T
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
184
|
Gao B, Yang B, Feng X, Li C. Recent advances in the biosynthesis strategies of nitrogen heterocyclic natural products. Nat Prod Rep 2021; 39:139-162. [PMID: 34374396 DOI: 10.1039/d1np00017a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: 2015 to 2020Nitrogen heterocyclic natural products (NHNPs) are primary or secondary metabolites containing nitrogen heterocyclic (N-heterocyclic) skeletons. Due to the existence of the N-heterocyclic structure, NHNPs exhibit various bioactivities such as anticancer and antibacterial, which makes them widely used in medicines, pesticides, and food additives. However, the low content of these NHNPs in native organisms severely restricts their commercial application. Although a variety of NHNPs have been produced through extraction or chemical synthesis strategies, these methods suffer from several problems. The development of biotechnology provides new options for the production of NHNPs. This review introduces the recent progress of two strategies for the biosynthesis of NHNPs: enzymatic biosynthesis and microbial cell factory. In the enzymatic biosynthesis part, the recent progress in the mining of enzymes that synthesize N-heterocyclic skeletons (e.g., pyrrole, piperidine, diketopiperazine, and isoquinoline), the engineering of tailoring enzymes, and enzyme cascades constructed to synthesize NHNPs are discussed. In the microbial cell factory part, with tropane alkaloids (TAs) and tetrahydroisoquinoline (THIQ) alkaloids as the representative compounds, the strategies of unraveling unknown natural biosynthesis pathways of NHNPs in plants are summarized, and various metabolic engineering strategies to enhance their production in microbes are introduced. Ultimately, future perspectives for accelerating the biosynthesis of NHNPs are discussed.
Collapse
Affiliation(s)
- Bo Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Bo Yang
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China. and SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China and Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
185
|
Shaikh KM, Odaneth AA. Metabolic engineering of Yarrowia lipolytica for the production of isoprene. Biotechnol Prog 2021; 37:e3201. [PMID: 34369095 DOI: 10.1002/btpr.3201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
Yarrowia lipolytica has recently emerged as a prominent microbial host for production of terpenoids. Its robust metabolism and growth in wide range of substrates offer several advantages at industrial scale. In the present study, we investigate the metabolic potential of Y. lipolytica to produce isoprene. Sustainable production of isoprene has been attempted through engineering several microbial hosts; however, the engineering studies performed so far are challenged with low titers. Engineering of Y. lipolytica, which have inherent high acetyl-CoA flux could fuel precursors into the biosynthesis of isoprene and thus is an approach that would offer sustainable production opportunities. The present work, therefore, explores this opportunity wherein a codon-optimized IspS gene (single copy) of Pueraria montana was integrated into the Y. lipolytica genome. With no detectable isoprene level during the growth or stationary phase of modified strain, attempts were made to overexpress enzymes from MVA pathway. GC-FID analyses of gas collected during stationary phase revealed that engineered strains were able to produce detectable isoprene only after overexpressing HMGR (or tHMGR). The significant role of HMGR (tHMGR) in diverting the pathway flux toward DMAPP is thus highlighted in our study. Nevertheless, the final recombinant strains overexpressing HMGR (tHMGR) along with Erg13 and IDI showed isoprene titers of ~500 μg/L and yields of ~80 μg/g. Further characterization of the recombinant strains revealed high lipid and squalene content compared to the unmodified strain. Overall, the preliminary results of our laboratory-scale studies represent Y. lipolytica as a promising host for fermentative production of isoprene.
Collapse
Affiliation(s)
- Kurshedaktar M Shaikh
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology (formerly UDCT), Mumbai, India
| | - Annamma A Odaneth
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology (formerly UDCT), Mumbai, India
| |
Collapse
|
186
|
Li CQ, Lei HM, Hu QY, Li GH, Zhao PJ. Recent Advances in the Synthetic Biology of Natural Drugs. Front Bioeng Biotechnol 2021; 9:691152. [PMID: 34395399 PMCID: PMC8358299 DOI: 10.3389/fbioe.2021.691152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Natural drugs have been transformed and optimized during the long process of evolution. These compounds play a very important role in the protection of human health and treatment of human diseases. Sustainable approaches to the generation of raw materials for pharmaceutical products have been extensively investigated in drug research and development because chemical synthesis is costly and generates pollution. The present review provides an overview of the recent advances in the synthetic biology of natural drugs. Particular attention is paid to the investigations of drugs that may be mass-produced by the pharmaceutical industry after optimization of the corresponding synthetic systems. The present review describes the reconstruction and optimization of biosynthetic pathways for nine drugs, including seven drugs from plant sources and two drugs from microbial sources, suggesting a new strategy for the large-scale preparation of some rare natural plant metabolites and highly bioactive microbial compounds. Some of the suggested synthetic methods remain in a preliminary exploration stage; however, a number of these methods demonstrated considerable application potential. The authors also discuss the advantages and disadvantages of the application of synthetic biology and various expression systems for heterologous expression of natural drugs. Thus, the present review provides a useful perspective for researchers attempting to use synthetic biology to produce natural drugs.
Collapse
Affiliation(s)
| | | | | | | | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
187
|
Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, Bornscheuer UT. Recent trends in biocatalysis. Chem Soc Rev 2021; 50:8003-8049. [PMID: 34142684 PMCID: PMC8288269 DOI: 10.1039/d0cs01575j] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Biocatalysis has undergone revolutionary progress in the past century. Benefited by the integration of multidisciplinary technologies, natural enzymatic reactions are constantly being explored. Protein engineering gives birth to robust biocatalysts that are widely used in industrial production. These research achievements have gradually constructed a network containing natural enzymatic synthesis pathways and artificially designed enzymatic cascades. Nowadays, the development of artificial intelligence, automation, and ultra-high-throughput technology provides infinite possibilities for the discovery of novel enzymes, enzymatic mechanisms and enzymatic cascades, and gradually complements the lack of remaining key steps in the pathway design of enzymatic total synthesis. Therefore, the research of biocatalysis is gradually moving towards the era of novel technology integration, intelligent manufacturing and enzymatic total synthesis.
Collapse
Affiliation(s)
- Dong Yi
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Matthias Höhne
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| |
Collapse
|
188
|
Hage-Hülsmann J, Klaus O, Linke K, Troost K, Gora L, Hilgers F, Wirtz A, Santiago-Schübel B, Loeschcke A, Jaeger KE, Drepper T. Production of C20, C30 and C40 terpenes in the engineered phototrophic bacterium Rhodobacter capsulatus. J Biotechnol 2021; 338:20-30. [PMID: 34237394 DOI: 10.1016/j.jbiotec.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Terpenes constitute one of the largest groups of secondary metabolites that are used, for example, as food-additives, fragrances or pharmaceuticals. Due to the formation of an intracytoplasmic membrane system and an efficient intrinsic tetraterpene pathway, the phototrophic α-proteobacterium Rhodobacter capsulatus offers favorable properties for the production of hydrophobic terpenes. However, research efforts have largely focused on sesquiterpene production. Recently, we have developed modular tools allowing to engineer the biosynthesis of terpene precursors. These tools were now applied to boost the biosynthesis of the diterpene casbene, the triterpene squalene and the tetraterpene β-carotene in R. capsulatus SB1003. Selected enzymes of the intrinsic isoprenoid pathway and the heterologous mevalonate (MVA) pathway were co-expressed together with the respective terpene synthases in various combinations. Remarkably, co-expression of genes ispA, idi and dxs enhanced the synthesis of casbene and β-carotene. In contrast, co-expression of precursor biosynthetic genes with the squalene synthase from Arabidopsis thaliana reduced squalene titers. Therefore, we further employed four alternative pro- and eukaryotic squalene synthases. Here, the synthase from Methylococcus capsulatus enabled highest product levels of 90 mg/L squalene upon co-expression with ispA. In summary, we demonstrate the applicability of R. capsulatus for the heterologous production of diverse terpene classes and provide relevant insights for further development of such platforms.
Collapse
Affiliation(s)
- Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Germany.
| | - Oliver Klaus
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
| | - Karl Linke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
| | - Katrin Troost
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
| | - Lukas Gora
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.
| | - Astrid Wirtz
- Institute of Bio- and Geosciences IBG-1, Forschungszentrum Jülich, Jülich, Germany.
| | - Beatrix Santiago-Schübel
- Central Division of Analytical Chemistry ZEA-3: Analytik/Biospec, Forschungszentrum Jülich, Jülich, Germany.
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Institute of Bio- and Geosciences IBG-1, Forschungszentrum Jülich, Jülich, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
189
|
Yang D, Park SY, Lee SY. Production of Rainbow Colorants by Metabolically Engineered Escherichia coli. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100743. [PMID: 34032018 PMCID: PMC8261500 DOI: 10.1002/advs.202100743] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/08/2021] [Indexed: 05/07/2023]
Abstract
There has been much interest in producing natural colorants to replace synthetic colorants of health concerns. Escherichia coli has been employed to produce natural colorants including carotenoids, indigo, anthocyanins, and violacein. However, production of natural green and navy colorants has not been reported. Many natural products are hydrophobic, which are accumulated inside or on the cell membrane. This causes cell growth limitation and consequently reduces production of target chemicals. Here, integrated membrane engineering strategies are reported for the enhanced production of rainbow colorants-three carotenoids and four violacein derivatives-as representative hydrophobic natural products in E. coli. By integration of systems metabolic engineering, cell morphology engineering, inner- and outer-membrane vesicle formation, and fermentation optimization, production of rainbow colorants are significantly enhanced to 322 mg L-1 of astaxanthin (red), 343 mg L-1 of β-carotene (orange), 218 mg L-1 of zeaxanthin (yellow), 1.42 g L-1 of proviolacein (green), 0.844 g L-1 of prodeoxyviolacein (blue), 6.19 g L-1 of violacein (navy), and 11.26 g L-1 of deoxyviolacein (purple). The membrane engineering strategies reported here are generally applicable to microbial production of a broader range of hydrophobic natural products, contributing to food, cosmetic, chemical, and pharmaceutical industries.
Collapse
Affiliation(s)
- Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- BioProcess Engineering Research CenterKAISTDaejeon34141Republic of Korea
| | - Seon Young Park
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- BioProcess Engineering Research CenterKAISTDaejeon34141Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- BioProcess Engineering Research CenterKAISTDaejeon34141Republic of Korea
- BioInformatics Research CenterKAISTDaejeon34141Republic of Korea
| |
Collapse
|
190
|
Sajid M, Stone SR, Kaur P. Recent Advances in Heterologous Synthesis Paving Way for Future Green-Modular Bioindustries: A Review With Special Reference to Isoflavonoids. Front Bioeng Biotechnol 2021; 9:673270. [PMID: 34277582 PMCID: PMC8282456 DOI: 10.3389/fbioe.2021.673270] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Isoflavonoids are well-known plant secondary metabolites that have gained importance in recent time due to their multiple nutraceutical and pharmaceutical applications. In plants, isoflavonoids play a role in plant defense and can confer the host plant a competitive advantage to survive and flourish under environmental challenges. In animals, isoflavonoids have been found to interact with multiple signaling pathways and have demonstrated estrogenic, antioxidant and anti-oncologic activities in vivo. The activity of isoflavonoids in the estrogen pathways is such that the class has also been collectively called phytoestrogens. Over 2,400 isoflavonoids, predominantly from legumes, have been identified so far. The biosynthetic pathways of several key isoflavonoids have been established, and the genes and regulatory components involved in the biosynthesis have been characterized. The biosynthesis and accumulation of isoflavonoids in plants are regulated by multiple complex environmental and genetic factors and interactions. Due to this complexity of secondary metabolism regulation, the export and engineering of isoflavonoid biosynthetic pathways into non-endogenous plants are difficult, and instead, the microorganisms Saccharomyces cerevisiae and Escherichia coli have been adapted and engineered for heterologous isoflavonoid synthesis. However, the current ex-planta production approaches have been limited due to slow enzyme kinetics and traditionally laborious genetic engineering methods and require further optimization and development to address the required titers, reaction rates and yield for commercial application. With recent progress in metabolic engineering and the availability of advanced synthetic biology tools, it is envisaged that highly efficient heterologous hosts will soon be engineered to fulfill the growing market demand.
Collapse
Affiliation(s)
| | | | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
191
|
Jamieson CS, Misa J, Tang Y, Billingsley JM. Biosynthesis and synthetic biology of psychoactive natural products. Chem Soc Rev 2021; 50:6950-7008. [PMID: 33908526 PMCID: PMC8217322 DOI: 10.1039/d1cs00065a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Psychoactive natural products play an integral role in the modern world. The tremendous structural complexity displayed by such molecules confers diverse biological activities of significant medicinal value and sociocultural impact. Accordingly, in the last two centuries, immense effort has been devoted towards establishing how plants, animals, and fungi synthesize complex natural products from simple metabolic precursors. The recent explosion of genomics data and molecular biology tools has enabled the identification of genes encoding proteins that catalyze individual biosynthetic steps. Once fully elucidated, the "biosynthetic pathways" are often comparable to organic syntheses in elegance and yield. Additionally, the discovery of biosynthetic enzymes provides powerful catalysts which may be repurposed for synthetic biology applications, or implemented with chemoenzymatic synthetic approaches. In this review, we discuss the progress that has been made toward biosynthetic pathway elucidation amongst four classes of psychoactive natural products: hallucinogens, stimulants, cannabinoids, and opioids. Compounds of diverse biosynthetic origin - terpene, amino acid, polyketide - are identified, and notable mechanisms of key scaffold transforming steps are highlighted. We also provide a description of subsequent applications of the biosynthetic machinery, with an emphasis placed on the synthetic biology and metabolic engineering strategies enabling heterologous production.
Collapse
Affiliation(s)
- Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA. and Invizyne Technologies, Inc., Monrovia, CA, USA
| |
Collapse
|
192
|
Specialized Metabolites and Valuable Molecules in Crop and Medicinal Plants: The Evolution of Their Use and Strategies for Their Production. Genes (Basel) 2021; 12:genes12060936. [PMID: 34207427 PMCID: PMC8235196 DOI: 10.3390/genes12060936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023] Open
Abstract
Plants naturally produce a terrific diversity of molecules, which we exploit for promoting our overall well-being. Plants are also green factories. Indeed, they may be exploited to biosynthesize bioactive molecules, proteins, carbohydrates and biopolymers for sustainable and large-scale production. These molecules are easily converted into commodities such as pharmaceuticals, antioxidants, food, feed and biofuels for multiple industrial processes. Novel plant biotechnological, genetics and metabolic insights ensure and increase the applicability of plant-derived compounds in several industrial sectors. In particular, synergy between disciplines, including apparently distant ones such as plant physiology, pharmacology, ‘omics sciences, bioinformatics and nanotechnology paves the path to novel applications of the so-called molecular farming. We present an overview of the novel studies recently published regarding these issues in the hope to have brought out all the interesting aspects of these published studies.
Collapse
|
193
|
Wilson EH, Groom JD, Sarfatis MC, Ford SM, Lidstrom ME, Beck DAC. A Computational Framework for Identifying Promoter Sequences in Nonmodel Organisms Using RNA-seq Data Sets. ACS Synth Biol 2021; 10:1394-1405. [PMID: 33988977 DOI: 10.1021/acssynbio.1c00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Engineering microorganisms into biological factories that convert renewable feedstocks into valuable materials is a major goal of synthetic biology; however, for many nonmodel organisms, we do not yet have the genetic tools, such as suites of strong promoters, necessary to effectively engineer them. In this work, we developed a computational framework that can leverage standard RNA-seq data sets to identify sets of constitutive, strongly expressed genes and predict strong promoter signals within their upstream regions. The framework was applied to a diverse collection of RNA-seq data measured for the methanotroph Methylotuvimicrobium buryatense 5GB1 and identified 25 genes that were constitutively, strongly expressed across 12 experimental conditions. For each gene, the framework predicted short (27-30 nucleotide) sequences as candidate promoters and derived -35 and -10 consensus promoter motifs (TTGACA and TATAAT, respectively) for strong expression in M. buryatense. This consensus closely matches the canonical E. coli sigma-70 motif and was found to be enriched in promoter regions of the genome. A subset of promoter predictions was experimentally validated in a XylE reporter assay, including the consensus promoter, which showed high expression. The pmoC, pqqA, and ssrA promoter predictions were additionally screened in an experiment that scrambled the -35 and -10 signal sequences, confirming that transcription initiation was disrupted when these specific regions of the predicted sequence were altered. These results indicate that the computational framework can make biologically meaningful promoter predictions and identify key pieces of regulatory systems that can serve as foundational tools for engineering diverse microorganisms for biomolecule production.
Collapse
Affiliation(s)
- Erin H. Wilson
- The Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Joseph D. Groom
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - M. Claire Sarfatis
- Department of Microbiology, University of Washington, Seattle, Washington 98195, United States
| | - Stephanie M. Ford
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Mary E. Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Microbiology, University of Washington, Seattle, Washington 98195, United States
| | - David A. C. Beck
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- eScience Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
194
|
Dissanayake L, Jayakody LN. Engineering Microbes to Bio-Upcycle Polyethylene Terephthalate. Front Bioeng Biotechnol 2021; 9:656465. [PMID: 34124018 PMCID: PMC8193722 DOI: 10.3389/fbioe.2021.656465] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022] Open
Abstract
Polyethylene terephthalate (PET) is globally the largest produced aromatic polyester with an annual production exceeding 50 million metric tons. PET can be mechanically and chemically recycled; however, the extra costs in chemical recycling are not justified when converting PET back to the original polymer, which leads to less than 30% of PET produced annually to be recycled. Hence, waste PET massively contributes to plastic pollution and damaging the terrestrial and aquatic ecosystems. The global energy and environmental concerns with PET highlight a clear need for technologies in PET "upcycling," the creation of higher-value products from reclaimed PET. Several microbes that degrade PET and corresponding PET hydrolase enzymes have been successfully identified. The characterization and engineering of these enzymes to selectively depolymerize PET into original monomers such as terephthalic acid and ethylene glycol have been successful. Synthetic microbiology and metabolic engineering approaches enable the development of efficient microbial cell factories to convert PET-derived monomers into value-added products. In this mini-review, we present the recent progress of engineering microbes to produce higher-value chemical building blocks from waste PET using a wholly biological and a hybrid chemocatalytic-biological strategy. We also highlight the potent metabolic pathways to bio-upcycle PET into high-value biotransformed molecules. The new synthetic microbes will help establish the circular materials economy, alleviate the adverse energy and environmental impacts of PET, and provide market incentives for PET reclamation.
Collapse
Affiliation(s)
- Lakshika Dissanayake
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| | - Lahiru N. Jayakody
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
- Fermentation Science Institute, Southern Illinois University, Carbondale, IL, United States
| |
Collapse
|
195
|
Hafner J, Hatzimanikatis V. Finding metabolic pathways in large networks through atom-conserving substrate-product pairs. Bioinformatics 2021; 37:3560-3568. [PMID: 34003971 PMCID: PMC8545321 DOI: 10.1093/bioinformatics/btab368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/22/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022] Open
Abstract
Motivation Finding biosynthetic pathways is essential for metabolic engineering of organisms to produce chemicals, biodegradation prediction of pollutants and drugs, and for the elucidation of bioproduction pathways of secondary metabolites. A key step in biosynthetic pathway design is the extraction of novel metabolic pathways from big networks that integrate known biological, as well as novel, predicted biotransformations. However, the efficient analysis and the navigation of big biochemical networks remain a challenge. Results Here, we propose the construction of searchable graph representations of metabolic networks. Each reaction is decomposed into pairs of reactants and products, and each pair is assigned a weight, which is calculated from the number of conserved atoms between the reactant and the product molecule. We test our method on a biochemical network that spans 6546 known enzymatic reactions to show how our approach elegantly extracts biologically relevant metabolic pathways from biochemical networks, and how the proposed network structure enables the application of efficient graph search algorithms that improve navigation and pathway identification in big metabolic networks. The weighted reactant–product pairs of an example network and the corresponding graph search algorithm are available online. The proposed method extracts metabolic pathways fast and reliably from big biochemical networks, which is inherently important for all applications involving the engineering of metabolic networks. Availability and implementation https://github.com/EPFL-LCSB/nicepath. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jasmin Hafner
- Laboratory of Computational Systems Biotechnology (LCSB), Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology (LCSB), Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- To whom correspondence should be addressed.
| |
Collapse
|
196
|
Sajid M, Channakesavula CN, Stone SR, Kaur P. Synthetic Biology towards Improved Flavonoid Pharmacokinetics. Biomolecules 2021; 11:biom11050754. [PMID: 34069975 PMCID: PMC8157843 DOI: 10.3390/biom11050754] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are a structurally diverse class of natural products that have been found to have a range of beneficial activities in humans. However, the clinical utilisation of these molecules has been limited due to their low solubility, chemical stability, bioavailability and extensive intestinal metabolism in vivo. Recently, the view has been formed that site-specific modification of flavonoids by methylation and/or glycosylation, processes that occur in plants endogenously, can be used to improve and adapt their biophysical and pharmacokinetic properties. The traditional source of flavonoids and their modified forms is from plants and is limited due to the low amounts present in biomass, intrinsic to the nature of secondary metabolite biosynthesis. Access to greater amounts of flavonoids, and understanding of the impact of modifications, requires a rethink in terms of production, more specifically towards the adoption of plant biosynthetic pathways into ex planta synthesis approaches. Advances in synthetic biology and metabolic engineering, aided by protein engineering and machine learning methods, offer attractive and exciting avenues for ex planta flavonoid synthesis. This review seeks to explore the applications of synthetic biology towards the ex planta biosynthesis of flavonoids, and how the natural plant methylation and glycosylation pathways can be harnessed to produce modified flavonoids with more favourable biophysical and pharmacokinetic properties for clinical use. It is envisaged that the development of viable alternative production systems for the synthesis of flavonoids and their methylated and glycosylated forms will help facilitate their greater clinical application.
Collapse
|
197
|
Courdavault V, O'Connor SE, Jensen MK, Papon N. Metabolic engineering for plant natural products biosynthesis: new procedures, concrete achievements and remaining limits. Nat Prod Rep 2021; 38:2145-2153. [PMID: 33969366 DOI: 10.1039/d0np00092b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microorganisms and plants represent major sources of natural compounds with a plethora of bioactive properties. Among these, plant natural products (PNPs) remain indispensable to human health. With few exceptions, PNP-based pharmaceuticals come from plant specialized metabolisms and display a structure far too complex for a profitable production by total chemical synthesis. Accordingly, their industrial processes of supply are still mostly based on the extraction of final products or precursors directly from plant materials. This implies that particular contexts (e.g. pandemics, climate changes) and natural resource overexploitation are main drivers for the high production cost and recurrent supply shortages. Recently, biotechnological manufacturing alternatives gave rise to a multitude of benchmark studies implementing the production of important PNPs in various heterologous hosts. Here, we spotlight unprecedented advancements in the field of metabolic engineering dedicated to the heterologous production of a prominent series of PNPs that were achieved during the year 2020. We also discuss how the knowledge accumulated in recent years could pave the way for a broader manufacturing palette of natural products from a wide range of natural resources.
Collapse
Affiliation(s)
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, UNIV Angers, SFR 4208 ICAT, Angers, France
| |
Collapse
|
198
|
Escherichia coli as a platform microbial host for systems metabolic engineering. Essays Biochem 2021; 65:225-246. [PMID: 33956149 DOI: 10.1042/ebc20200172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Bio-based production of industrially important chemicals and materials from non-edible and renewable biomass has become increasingly important to resolve the urgent worldwide issues including climate change. Also, bio-based production, instead of chemical synthesis, of food ingredients and natural products has gained ever increasing interest for health benefits. Systems metabolic engineering allows more efficient development of microbial cell factories capable of sustainable, green, and human-friendly production of diverse chemicals and materials. Escherichia coli is unarguably the most widely employed host strain for the bio-based production of chemicals and materials. In the present paper, we review the tools and strategies employed for systems metabolic engineering of E. coli. Next, representative examples and strategies for the production of chemicals including biofuels, bulk and specialty chemicals, and natural products are discussed, followed by discussion on materials including polyhydroxyalkanoates (PHAs), proteins, and nanomaterials. Lastly, future perspectives and challenges remaining for systems metabolic engineering of E. coli are discussed.
Collapse
|
199
|
Han J, Jiang L, Zhang L, Quinn RJ, Liu X, Feng Y. Peculiarities of meroterpenoids and their bioproduction. Appl Microbiol Biotechnol 2021; 105:3987-4003. [PMID: 33937926 DOI: 10.1007/s00253-021-11312-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Meroterpenoids are a class of terpenoid-containing hybrid natural products with impressive structural architectures and remarkable pharmacological activities. Remarkable advances in enzymology and synthetic biology have greatly contributed to the elucidation of the molecular basis for their biosynthesis. Here, we review structurally unique meroterpenoids catalyzed by novel enzymes and unusual enzymatic reactions over the period of last 5 years. We also discuss recent progress on the biomimetic synthesis of chrome meroterpenoids and synthetic biology-driven biomanufacturing of tropolone sesquiterpenoids, merochlorins, and plant-derived meroterpenoid cannabinoids. In particular, we focus on the novel enzymes involved in the biosynthesis of polyketide-terpenoids, nonribosomal peptide-terpenoids, terpenoid alkaloids, and meroterpenoid with unique structures. The biological activities of these meroterpenoids are also discussed. The information reviewed here might provide useful clues and lay the foundation for developing new meroterpenoid-derived drugs. KEY POINTS: • Meroterpenoids possess intriguing structural features and relevant biological activities. • Novel enzymes are involved in the biosynthesis of meroterpenoids with unique structures. • Biomimetic synthesis and synthetic biology enable the construction and manufacturing of complex meroterpenoids.
Collapse
Affiliation(s)
- Jianying Han
- Griffith Institute for Drug Discovery, Griffith University, QLD, Brisbane, 4111, Australia
| | - Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, QLD, Brisbane, 4111, Australia
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, QLD, Brisbane, 4111, Australia.
| |
Collapse
|
200
|
Hu Z, Liu X, Tian M, Ma Y, Jin B, Gao W, Cui G, Guo J, Huang L. Recent progress and new perspectives for diterpenoid biosynthesis in medicinal plants. Med Res Rev 2021; 41:2971-2997. [PMID: 33938025 DOI: 10.1002/med.21816] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022]
Abstract
Diterpenoids, including more than 18,000 compounds, represent an important class of metabolites that encompass both phytohormones and some industrially relevant compounds. These molecules with complex, diverse structures and physiological activities, have high value in the pharmaceutical industry. Most medicinal diterpenoids are extracted from plants. Major advances in understanding the biosynthetic pathways of these active compounds are providing unprecedented opportunities for the industrial production of diterpenoids by metabolic engineering and synthetic biology. Here, we summarize recent developments in the field of diterpenoid biosynthesis from medicinal herbs. An overview of the pathways and known biosynthetic enzymes is presented. In particular, we look at the main findings from the past decade and review recent progress in the biosynthesis of different groups of ringed compounds. We also discuss diterpenoid production using synthetic biology and metabolic engineering strategies, and draw on new technologies and discoveries to bring together many components into a useful framework for diterpenoid production.
Collapse
Affiliation(s)
- Zhimin Hu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuyu Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,School of Pharmaceutical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Mei Tian
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Gao
- School of Pharmaceutical, Sciences, Capital Medical University, Beijing, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|