151
|
Zhang X, Yuan H, Wang Y, Guan L, Zeng Z, Jiang Z, Zhang X. Cell Surface Energy Affects the Structure of Microalgal Biofilm. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3057-3063. [PMID: 32160744 DOI: 10.1021/acs.langmuir.0c00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microalgae biofilm-based culture systems have wide applications in environmental engineering and biotechnology. Biofilm structure is critical for the transport of nutrients, gas, and signaling molecules in a microalgal biofilm. This work aims to understand the influence of cell surface energy (SE) on the microalgal biofilm structure. Three microalgae species were used as model cells in the study: Chlorella sp., Nannochloris oculata, and Chlorella pyrenoidosa. First, by mediating biofilm culture conditions, we obtained Chlorella sp. cells with SEs of 40.4 ± 1.5, 44.7 ± 1.0, and 62. 7 ± 1.2 mJ/m2, N. oculata cells with SEs of 47.7 ± 0.5, 41.1 ± 1.0, and 62.6 ± 1.2 mJ/m2, and C. pyrenoidosa cells with SEs of 64.0 ± 0.6, 62.1 ± 0.7, and 62.8 ± 0.6 mJ/m2. Then, based on the characterizations of biofilm structures, we found that cell SE can significantly affect the microalgae biofilm structure. When the cell SEs ranged from 40 to 50 mJ/m2, the microalgae cells formed heterogeneous biofilms with a large number of open voids, and the biofilm porosity was higher than 20%. Alternatively, when the cell SEs ranged from 50 to 65 mJ/m2, the cells formed a flat, homogeneous biofilm with the porosity lower than 20%. Finally, the influencing mechanism of cell SE on biofilm structure was interpreted based on the thermodynamic theory via analyzing the co-adhesion energy between cells. The study has important implications in understanding factors that influence the biofilm structures.
Collapse
Affiliation(s)
- Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Research Center of Energy Saving and Environmental Protection, Beijing 100083, China
| | - Hao Yuan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Libo Guan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ziyi Zeng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China
| |
Collapse
|
152
|
Paula AJ, Hwang G, Koo H. Dynamics of bacterial population growth in biofilms resemble spatial and structural aspects of urbanization. Nat Commun 2020; 11:1354. [PMID: 32170131 PMCID: PMC7070081 DOI: 10.1038/s41467-020-15165-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Biofilms develop from bacteria bound on surfaces that grow into structured communities (microcolonies). Although surface topography is known to affect bacterial colonization, how multiple individual settlers develop into microcolonies simultaneously remains underexplored. Here, we use multiscale population-growth and 3D-morphometric analyses to assess the spatiotemporal development of hundreds of bacterial colonizers towards submillimeter-scale microcolony communities. Using an oral bacterium (Streptococcus mutans), we find that microbial cells settle on the surface randomly under sucrose-rich conditions, regardless of surface topography. However, only a subset of colonizers display clustering behavior and growth following a power law. These active colonizers expand three-dimensionally by amalgamating neighboring bacteria into densely populated microcolonies. Clustering and microcolony assembly are dependent on exopolysaccharides, while population growth dynamics and spatial structure are affected by cooperative or antagonistic microbes. Our work suggests that biofilm assembly resembles certain spatial-structural features of urbanization, where population growth and expansion can be influenced by type of settlers, neighboring cells, and further community merging and scaffolding occurring at various scales.
Collapse
Affiliation(s)
- Amauri J Paula
- Solid-Biological Interface Group (SolBIN), Department of Physics, Universidade Federal do Ceará, P.O. Box 6030, 60455-900, Fortaleza, CE, Brazil.
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Geelsu Hwang
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Pennsylvania, PA, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
153
|
Mechanomicrobiology: how bacteria sense and respond to forces. Nat Rev Microbiol 2020; 18:227-240. [DOI: 10.1038/s41579-019-0314-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 12/26/2022]
|
154
|
Pearce P, Song B, Skinner DJ, Mok R, Hartmann R, Singh PK, Jeckel H, Oishi JS, Drescher K, Dunkel J. Flow-Induced Symmetry Breaking in Growing Bacterial Biofilms. PHYSICAL REVIEW LETTERS 2019; 123:258101. [PMID: 31922766 DOI: 10.1103/physrevlett.123.258101] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 06/10/2023]
Abstract
Bacterial biofilms represent a major form of microbial life on Earth and serve as a model active nematic system, in which activity results from growth of the rod-shaped bacterial cells. In their natural environments, ranging from human organs to industrial pipelines, biofilms have evolved to grow robustly under significant fluid shear. Despite intense practical and theoretical interest, it is unclear how strong fluid flow alters the local and global architectures of biofilms. Here, we combine highly time-resolved single-cell live imaging with 3D multiscale modeling to investigate the mechanisms by which flow affects the dynamics of all individual cells in growing biofilms. Our experiments and cell-based simulations reveal three quantitatively different growth phases in strong external flow and the transitions between them. In the initial stages of biofilm development, flow induces a downstream gradient in cell orientation, causing asymmetrical dropletlike biofilm shapes. In the later developmental stages, when the majority of cells are sheltered from the flow by the surrounding extracellular matrix, buckling-induced cell verticalization in the biofilm core restores radially symmetric biofilm growth, in agreement with predictions of a 3D continuum model.
Collapse
Affiliation(s)
- Philip Pearce
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
| | - Boya Song
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
| | - Dominic J Skinner
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
| | - Rachel Mok
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Praveen K Singh
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Hannah Jeckel
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Jeffrey S Oishi
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
- Department of Physics, Bates College, Lewiston, Maine 04240, USA
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA
| |
Collapse
|
155
|
Ripolles-Avila C, García-Hernández N, Cervantes-Huamán BH, Mazaheri T, Rodríguez-Jerez JJ. Quantitative and Compositional Study of Monospecies Biofilms of Spoilage Microorganisms in the Meat Industry and Their Interaction in the Development of Multispecies Biofilms. Microorganisms 2019; 7:E655. [PMID: 31817368 PMCID: PMC6956169 DOI: 10.3390/microorganisms7120655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
Food spoilage is a serious problem in the food industry, since it leads to significant economic losses. One of its main causes is the cross-contamination of food products from industrial surfaces. Three spoilage bacterial species which are highly present in meat and the gastrointestinal tract of chickens were selected: Pseudomonas fragi, Leuconostoc gasicomitatum, and Lactobacillus reuteri. The dual aim was to determine their ability to form monospecies biofilms and to examine how they interact when they coexist together. To do so, mature monospecies biofilms were produced statically for seven days at a temperature of 30 °C. L. gasicomitatum was also used to investigate the behavior of P. fragi and L. reuteri in the formation of multispecies biofilms. The structure and composition of the monospecies biofilms were evaluated by direct epifluorescence microscopy, and the multispecies biofilms were evaluated by plate counting. Both L. gasicomitatum and L. reuteri were able to form biofilms, with counts of approximately 7 Log CFU/cm2 and a defined structure. However, P. fragi obtained counts to the order of 4 Log CFU/cm2, which is significantly different from the previous species (P < 0.05), and it had no network of cell conglomerates. The content of the L. gasicomitatum and L. reuteri biofilm matrices were 70-80% protein, unlike P. fragi, which presented a higher polysaccharide content (P < 0.05). In the multispecies biofilms, the presence of P. fragi did not affect the growth of L. gasicomitatum, which remained at between 5.76 to 6.1 Log CFU/cm2. However, L. reuteri was able to displace L. gasicomitatum growth after 24 h of coexisting in a mixed biofilm, presenting differences in counts of approximately 2 Log CFU/cm2. The study of the biofilms constructed by food industry resident microbiota can help to understand the ecological relations that exist between species, characterize them, and propose strategies to eliminate them. The name of genes and species should be written in italic.
Collapse
Affiliation(s)
| | | | | | | | - José Juan Rodríguez-Jerez
- Area of Human Nutrition and Food Science, Department of Food and Animal Science, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (C.R.-A.); (N.G.-H.); (B.H.C.-H.); (T.M.)
| |
Collapse
|
156
|
Díaz-Pascual F, Hartmann R, Lempp M, Vidakovic L, Song B, Jeckel H, Thormann KM, Yildiz FH, Dunkel J, Link H, Nadell CD, Drescher K. Breakdown of Vibrio cholerae biofilm architecture induced by antibiotics disrupts community barrier function. Nat Microbiol 2019; 4:2136-2145. [PMID: 31659297 PMCID: PMC6881181 DOI: 10.1038/s41564-019-0579-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 09/06/2019] [Indexed: 01/01/2023]
Abstract
Bacterial cells in nature are frequently exposed to changes in their chemical environment1,2. The response mechanisms of isolated cells to such stimuli have been investigated in great detail. By contrast, little is known about the emergent multicellular responses to environmental changes, such as antibiotic exposure3-7, which may hold the key to understanding the structure and functions of the most common type of bacterial communities: biofilms. Here, by monitoring all individual cells in Vibrio cholerae biofilms during exposure to antibiotics that are commonly administered for cholera infections, we found that translational inhibitors cause strong effects on cell size and shape, as well as biofilm architectural properties. We identified that single-cell-level responses result from the metabolic consequences of inhibition of protein synthesis and that the community-level responses result from an interplay of matrix composition, matrix dissociation and mechanical interactions between cells. We further observed that the antibiotic-induced changes in biofilm architecture have substantial effects on biofilm population dynamics and community assembly by enabling invasion of biofilms by bacteriophages and intruder cells of different species. These mechanistic causes and ecological consequences of biofilm exposure to antibiotics are an important step towards understanding collective bacterial responses to environmental changes, with implications for the effects of antimicrobial therapy on the ecological succession of biofilm communities.
Collapse
Affiliation(s)
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Martin Lempp
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lucia Vidakovic
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Boya Song
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannah Jeckel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Kai M Thormann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Synmikro Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Carey D Nadell
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Biological Sciences, Dartmouth College, Hanover, USA
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany.
- Synmikro Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
157
|
Aryal M, Pranatharthiharan P, Muriana PM. Optimization of a Microplate Assay for Generating Listeria Monocytogenes, E. Coli O157:H7, and Salmonella Biofilms and Enzymatic Recovery for Enumeration. Foods 2019; 8:E541. [PMID: 31684098 PMCID: PMC6915590 DOI: 10.3390/foods8110541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 01/04/2023] Open
Abstract
Biofilms enable the persistence of pathogens in food processing environments. Sanitizing agents are needed that are effective against pathogens entrapped in biofilms that are more difficult to inactivate than planktonic cells that are displaced and found on equipment surfaces. We examined conditions to develop, analyze, and enumerate the enhanced biofilms of three different foodborne pathogens assisted by fluorescence adherence assay and enzymatic detachment. We compared three different isomeric forms of fluorescent substrates that are readily taken up by bacterial cells based on carboxy-fluorescein diacetate (5-CFDA, 5,6-CFDA, 5,6-CFDA, SE). Biofilm-forming strains of Escherichia coli O157:H7 F4546 and Salmonella Montevideo FSIS 051 were identified using a microplate fluorescence assay defined previously for L. monocytogenes. Adherence levels were determined by differences in relative fluorescence units (RFU) as well as recovered bacterial cells. Multiple hydrolytic enzymes were examined for each representative pathogen for the most suitable enzyme for detachment and enumeration to confirm adherence data obtained by fluorescence assay. Cultures were grown overnight in microplates, incubated, washed and replenished with fresh sterile growth medium; this cycle was repeated for seven consecutive days to enrich for robust biofilms. Treatments were performed in triplicate and compared by one-way analysis of variance (ANOVA) to determine significant differences (p < 0.05).
Collapse
Affiliation(s)
- Manish Aryal
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA.
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Preetty Pranatharthiharan
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA.
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Peter M Muriana
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA.
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
158
|
Ko H, Park HH, Byeon H, Kang M, Ryu J, Sung HJ, Lee SJ, Jeong HE. Undulatory topographical waves for flow-induced foulant sweeping. SCIENCE ADVANCES 2019; 5:eaax8935. [PMID: 31819902 PMCID: PMC6884415 DOI: 10.1126/sciadv.aax8935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Diverse bioinspired antifouling strategies have demonstrated effective fouling-resistant properties with good biocompatibility, sustainability, and long-term activity. However, previous studies on bioinspired antifouling materials have mainly focused on material aspects or static architectures of nature without serious consideration of kinetic topographies or dynamic motion. Here, we propose a magnetically responsive multilayered composite that can generate coordinated, undulatory topographical waves with controlled length and time scales as a new class of dynamic antifouling materials. The undulatory surface waves of the dynamic composite induce local and global vortices near the material surface and thereby sweep away foulants from the surface, fundamentally inhibiting their initial attachment. As a result, the dynamic composite material with undulating topographical waves provides an effective means for efficient suppression of biofilm formation without surface modification with chemical moieties or nanoscale architectures.
Collapse
Affiliation(s)
- Hangil Ko
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun-Ha Park
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyeokjun Byeon
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Minsu Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeha Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyung Jin Sung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
159
|
Aravinda Narayanan R, Ahmed A. Arrested fungal biofilms as low-modulus structural bio-composites: Water holds the key. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:134. [PMID: 31643003 DOI: 10.1140/epje/i2019-11899-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Biofilms are self-assembling structures consisting of rigid microbial cells embedded in a soft biopolymeric extracellular matrix (ECM), and have been commonly viewed as being detrimental to health and equipment. In this work, we show that biofilms formed by a non-pathogenic fungus Neurospora discreta, are fungal bio-composites (FBCs) that can be directed to self-organize through active stresses to achieve specific properties. We induced active stresses by systematically varying the agitation rate during the growth of FBCs. By growing FBCs that are strong enough to be conventionally tensile loaded, we find that as agitation rate increases, the elongation strain at which the FBCs break, increases linearly, and their elastic modulus correspondingly decreases. Using results from microstructural imaging and thermogravimetry, we rationalize that agitation increases the production of ECM, which concomitantly increases the water content of agitated FBCs up to 250% more than un-agitated FBCs. Water held in the nanopores of the ECM acts a plasticizer and controls the ductility of FBCs in close analogy with polyelectrolyte complexes. This paradigm shift in viewing biofilms as bio-composites opens up the possibility for their use as sustainable, biodegradable, low-modulus structural materials.
Collapse
Affiliation(s)
- R Aravinda Narayanan
- Department of Physics, Birla Institute of Technology and Science (Pilani), Hyderabad Campus, 500078, Hyderabad, India.
| | - Asma Ahmed
- School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, CT1 1QU, Canterbury, UK
| |
Collapse
|
160
|
Kempf F, Mueller R, Frey E, Yeomans JM, Doostmohammadi A. Active matter invasion. SOFT MATTER 2019; 15:7538-7546. [PMID: 31451816 DOI: 10.1039/c9sm01210a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biologically active materials such as bacterial biofilms and eukaryotic cells thrive in confined micro-spaces. Here, we show through numerical simulations that confinement can serve as a mechanical guidance to achieve distinct modes of collective invasion when combined with growth dynamics and the intrinsic activity of biological materials. We assess the dynamics of the growing interface and classify these collective modes of invasion based on the activity of the constituent particles of the growing matter. While at small and moderate activities the active material grows as a coherent unit, we find that blobs of active material collectively detach from the cohort above a well-defined activity threshold. We further characterise the mechanical mechanisms underlying the crossovers between different modes of invasion and quantify their impact on the overall invasion speed.
Collapse
Affiliation(s)
- Felix Kempf
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München - Theresienstr. 37, D-80333 Munich, Germany
| | - Romain Mueller
- The Rudolf Peierls Centre for Theoretical Physics - Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK.
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München - Theresienstr. 37, D-80333 Munich, Germany
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics - Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK.
| | - Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics - Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK.
| |
Collapse
|
161
|
Charlton SGV, White MA, Jana S, Eland LE, Jayathilake PG, Burgess JG, Chen J, Wipat A, Curtis TP. Regulating, Measuring, and Modeling the Viscoelasticity of Bacterial Biofilms. J Bacteriol 2019; 201:e00101-19. [PMID: 31182499 PMCID: PMC6707926 DOI: 10.1128/jb.00101-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Biofilms occur in a broad range of environments under heterogeneous physicochemical conditions, such as in bioremediation plants, on surfaces of biomedical implants, and in the lungs of cystic fibrosis patients. In these scenarios, biofilms are subjected to shear forces, but the mechanical integrity of these aggregates often prevents their disruption or dispersal. Biofilms' physical robustness is the result of the multiple biopolymers secreted by constituent microbial cells which are also responsible for numerous biological functions. A better understanding of the role of these biopolymers and their response to dynamic forces is therefore crucial for understanding the interplay between biofilm structure and function. In this paper, we review experimental techniques in rheology, which help quantify the viscoelasticity of biofilms, and modeling approaches from soft matter physics that can assist our understanding of the rheological properties. We describe how these methods could be combined with synthetic biology approaches to control and investigate the effects of secreted polymers on the physical properties of biofilms. We argue that without an integrated approach of the three disciplines, the links between genetics, composition, and interaction of matrix biopolymers and the viscoelastic properties of biofilms will be much harder to uncover.
Collapse
Affiliation(s)
- Samuel G V Charlton
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael A White
- Interdisciplinary Computing & Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Saikat Jana
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lucy E Eland
- Interdisciplinary Computing & Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - J Grant Burgess
- School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anil Wipat
- Interdisciplinary Computing & Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas P Curtis
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
162
|
Dunsing V, Irmscher T, Barbirz S, Chiantia S. Purely Polysaccharide-Based Biofilm Matrix Provides Size-Selective Diffusion Barriers for Nanoparticles and Bacteriophages. Biomacromolecules 2019; 20:3842-3854. [DOI: 10.1021/acs.biomac.9b00938] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
163
|
Bisht K, Wakeman CA. Discovery and Therapeutic Targeting of Differentiated Biofilm Subpopulations. Front Microbiol 2019; 10:1908. [PMID: 31507548 PMCID: PMC6718512 DOI: 10.3389/fmicb.2019.01908] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
The association of microorganisms into biofilms produces functionally organized microbial structures that promote community survival in a wide range of environments. Much like when individual cells within a multicellular organism express different genes from the same DNA blueprint, individual microbial cells located within different regions of a biofilm structure can exhibit distinct genetic programs. These spatially defined regions of physiologically differentiated cells are reminiscent of the role of tissues in multicellular organisms, with specific subpopulations in the microbial community serving defined roles to promote the overall health of the biofilm. The functions of these subpopulations are quite diverse and can range from dormant cells that can withstand antibiotic onslaughts to cells actively producing extracellular polymeric substances providing integrity to the entire community. The purpose of this review is to discuss the diverse roles of subpopulations in the stability and function of clonal biofilms, the methods for studying these subpopulations, and the ways these subpopulations can potentially be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Catherine Ann Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
164
|
Kindler O, Pulkkinen O, Cherstvy AG, Metzler R. Burst statistics in an early biofilm quorum sensing model: the role of spatial colony-growth heterogeneity. Sci Rep 2019; 9:12077. [PMID: 31427659 PMCID: PMC6700081 DOI: 10.1038/s41598-019-48525-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023] Open
Abstract
Quorum-sensing bacteria in a growing colony of cells send out signalling molecules (so-called “autoinducers”) and themselves sense the autoinducer concentration in their vicinity. Once—due to increased local cell density inside a “cluster” of the growing colony—the concentration of autoinducers exceeds a threshold value, cells in this clusters get “induced” into a communal, multi-cell biofilm-forming mode in a cluster-wide burst event. We analyse quantitatively the influence of spatial disorder, the local heterogeneity of the spatial distribution of cells in the colony, and additional physical parameters such as the autoinducer signal range on the induction dynamics of the cell colony. Spatial inhomogeneity with higher local cell concentrations in clusters leads to earlier but more localised induction events, while homogeneous distributions lead to comparatively delayed but more concerted induction of the cell colony, and, thus, a behaviour close to the mean-field dynamics. We quantify the induction dynamics with quantifiers such as the time series of induction events and burst sizes, the grouping into induction families, and the mean autoinducer concentration levels. Consequences for different scenarios of biofilm growth are discussed, providing possible cues for biofilm control in both health care and biotechnology.
Collapse
Affiliation(s)
- Oliver Kindler
- Institute for Physics & Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| | - Otto Pulkkinen
- Institute for Molecular Medicine Finland and Helsinki Institute for Information Technology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany.
| |
Collapse
|
165
|
Brown JR, Jurcisek J, Lakhani V, Snedden A, Ray WC, Mokrzan EM, Bakaletz LO, Das J. In Silico Modeling of Biofilm Formation by Nontypeable Haemophilus influenzae In Vivo. mSphere 2019; 4:e00254-19. [PMID: 31366707 PMCID: PMC6669334 DOI: 10.1128/msphere.00254-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/08/2019] [Indexed: 01/08/2023] Open
Abstract
Biofilms formed by nontypeable Haemophilus influenzae (NTHI) bacteria play an important role in multiple respiratory tract diseases. Visual inspection of the morphology of biofilms formed during chronic infections shows distinct differences from biofilms formed in vitro To better understand these differences, we analyzed images of NTHI biofilms formed in the middle ears of Chinchilla lanigera and developed an in silico agent-based model of the formation of NTHI biofilms in vivo We found that, as in vitro, NTHI bacteria are organized in self-similar patterns; however, the sizes of NTHI clusters in vivo are more than 10-fold smaller than their in vitro counterparts. The agent-based model reproduced these patterns and suggested that smaller clusters occur due to elimination of planktonic NTHI cells by the host responses. Estimation of model parameters by fitting simulation results to imaging data showed that the effects of several processes in the model change during the course of the infection.IMPORTANCE Multiple respiratory illnesses are associated with formation of biofilms within the human airway by NTHI. However, a substantial amount of our understanding of the mechanisms that underlie NTHI biofilm formation is obtained from in vitro studies. Our in silico model that describes biofilm formation by NTHI within the middle ears of Chinchilla lanigera will help isolate processes potentially responsible for the differences between the morphologies of biofilms formed in vivo versus those formed in vitro Thus, the in silico model can be used to glean mechanisms that underlie biofilm formation in vivo and connect those mechanisms to those obtained from in vitro experiments. The in silico model developed here can be extended to investigate potential roles of specific host responses (e.g., mucociliary clearance) on NTHI biofilm formation in vivo The developed computational tools can also be used to analyze and describe biofilm formation by other bacterial species in vivo.
Collapse
Affiliation(s)
- Jonathan R Brown
- Battelle Center for Mathematical Medicine, The Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Joseph Jurcisek
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vinal Lakhani
- Battelle Center for Mathematical Medicine, The Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Ali Snedden
- High Performance Computing Center, The Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA
| | - William C Ray
- Battelle Center for Mathematical Medicine, The Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, the Ohio State University, Columbus, Ohio, USA
- Department of Biophysics Graduate Program, the Ohio State University, Columbus, Ohio, USA
| | - Elaine M Mokrzan
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lauren O Bakaletz
- Department of Pediatrics, College of Medicine, the Ohio State University, Columbus, Ohio, USA
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jayajit Das
- Battelle Center for Mathematical Medicine, The Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, the Ohio State University, Columbus, Ohio, USA
- Department of Biophysics Graduate Program, the Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
166
|
Vibrio cholerae filamentation promotes chitin surface attachment at the expense of competition in biofilms. Proc Natl Acad Sci U S A 2019; 116:14216-14221. [PMID: 31239347 PMCID: PMC6628660 DOI: 10.1073/pnas.1819016116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human pathogen Vibrio cholerae, when not inside of a host, grows in cell clusters (biofilms) on pieces of detritus in aquatic environments. Here we discovered that some isolates of V. cholerae can change their shape from small comma-shaped cells to long filaments in seawater. This altered cell shape allows cells to make new types of biofilms, and provides an advantage in quickly colonizing particles in seawater, at the expense of longer-term competitive ability. The filamentous cell-shape strategy is particularly effective at competing in environments with quick turnover of chitin particles. This result showcases how bacterial cell shape can be coupled to environmental success during surface occupation, competition within biofilms, and dispersal to new resource patches. Collective behavior in spatially structured groups, or biofilms, is the norm among microbes in their natural environments. Though biofilm formation has been studied for decades, tracing the mechanistic and ecological links between individual cell morphologies and the emergent features of cell groups is still in its infancy. Here we use single-cell–resolution confocal microscopy to explore biofilms of the human pathogen Vibrio cholerae in conditions mimicking its marine habitat. Prior reports have noted the occurrence of cellular filamentation in V. cholerae, with variable propensity to filament among both toxigenic and nontoxigenic strains. Using a filamenting strain of V. cholerae O139, we show that cells with this morphotype gain a profound competitive advantage in colonizing and spreading on particles of chitin, the material many marine Vibrio species depend on for growth in seawater. Furthermore, filamentous cells can produce biofilms that are independent of primary secreted components of the V. cholerae biofilm matrix; instead, filamentous biofilm architectural strength appears to derive at least in part from the entangled mesh of cells themselves. The advantage gained by filamentous cells in early chitin colonization and growth is countered in long-term competition experiments with matrix-secreting V. cholerae variants, whose densely packed biofilm structures displace competitors from surfaces. Overall, our results reveal an alternative mode of biofilm architecture that is dependent on filamentous cell morphology and advantageous in environments with rapid chitin particle turnover. This insight provides an environmentally relevant example of how cell morphology can impact bacterial fitness.
Collapse
|
167
|
Rossy T, Nadell CD, Persat A. Cellular advective-diffusion drives the emergence of bacterial surface colonization patterns and heterogeneity. Nat Commun 2019; 10:2471. [PMID: 31171786 PMCID: PMC6554397 DOI: 10.1038/s41467-019-10469-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Microorganisms navigate and divide on surfaces to form multicellular structures called biofilms, the most widespread survival strategy found in the bacterial world. One common assumption is that cellular components guide the spatial architecture and arrangement of multiple species in a biofilm. However, bacteria must contend with mechanical forces generated through contact with surfaces and under fluid flow, whose contributions to colonization patterns are poorly understood. Here, we show how the balance between motility and flow promotes the emergence of morphological patterns in Caulobacter crescentus biofilms. By modeling transport of single cells by flow and Brownian-like swimming, we show that the emergence of these patterns is guided by an effective Péclet number. By analogy with transport phenomena we show that, counter-intuitively, fluid flow represses mixing of distinct clonal lineages, thereby affecting the interaction landscapes between biofilm-dwelling bacteria. This demonstrates that hydrodynamics influence species interaction and evolution within surface-associated communities. In the wild, bacteria grow into structures called biofilms. Here the authors demonstrate that their spatial organization and heterogeneity depends on the interplay between fluid flow and single cell motility; this highlights the role of hydrodynamics in biofilm formation.
Collapse
Affiliation(s)
- Tamara Rossy
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth, Hanover, NH, 03755, USA.
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.
| |
Collapse
|
168
|
Zhao J, Gulan U, Horie T, Ohmura N, Han J, Yang C, Kong J, Wang S, Xu BB. Advances in Biological Liquid Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900019. [PMID: 30892830 DOI: 10.1002/smll.201900019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Biological liquid crystals, a rich set of soft materials with rod-like structures widely existing in nature, possess typical lyotropic liquid crystalline phase properties both in vitro (e.g., cellulose, peptides, and protein assemblies) and in vivo (e.g., cellular lipid membrane, packed DNA in bacteria, and aligned fibroblasts). Given the ability to undergo phase transition in response to various stimuli, numerous practices are exercised to spatially arrange biological liquid crystals. Here, a fundamental understanding of interactions between rod-shaped biological building blocks and their orientational ordering across multiple length scales is addressed. Discussions are made with regard to the dependence of physical properties of nonmotile objects on the first-order phase transition and the coexistence of multi-phases in passive liquid crystalline systems. This work also focuses on how the applied physical stimuli drives the reorganization of constituent passive particles for a new steady-state alignment. A number of recent progresses in the dynamics behaviors of active liquid crystals are presented, and particular attention is given to those self-propelled animate elements, like the formation of motile topological defects, active turbulence, correlation of orientational ordering, and cellular functions. Finally, future implications and potential applications of the biological liquid crystalline materials are discussed.
Collapse
Affiliation(s)
- Jianguo Zhao
- Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou, 362200, China
- Third Institute of Physics-Biophysics, University of Göttingen, 37077, Göttingen, Germany
| | - Utku Gulan
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | - Takafumi Horie
- Department of Chemical Science and Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Naoto Ohmura
- Department of Chemical Science and Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Jun Han
- Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou, 362200, China
| | - Chao Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Steven Wang
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
169
|
Mok R, Dunkel J, Kantsler V. Geometric control of bacterial surface accumulation. Phys Rev E 2019; 99:052607. [PMID: 31212480 DOI: 10.1103/physreve.99.052607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Controlling and suppressing bacterial accumulation at solid surfaces is essential for preventing biofilm formation and biofouling. Whereas various chemical surface treatments are known to reduce cell accumulation and attachment, the role of complex surface geometries remains less well understood. Here, we report experiments and simulations that explore the effects of locally varying boundary curvature on the scattering and accumulation dynamics of swimming Escherichia coli bacteria in quasi-two-dimensional microfluidic channels. Our experimental and numerical results show that a concave periodic boundary geometry can decrease the average cell concentration at the boundary by more than 50% relative to a flat surface.
Collapse
Affiliation(s)
- Rachel Mok
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | - Vasily Kantsler
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
170
|
Jeckel H, Matthey N, Drescher K. Common concepts for bacterial collectives. eLife 2019; 8:e47019. [PMID: 31038120 PMCID: PMC6491033 DOI: 10.7554/elife.47019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 11/30/2022] Open
Abstract
The expansion of bacterial swarms and the spreading of biofilms can be described by a unified biophysical theory that involves both active and passive processes.
Collapse
Affiliation(s)
- Hannah Jeckel
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Department of PhysicsPhilipps-Universität MarburgMarburgGermany
| | - Noémie Matthey
- School of Life SciencesSwiss Federal Institute of Technology LausanneLausanneSwitzerland
| | - Knut Drescher
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Department of PhysicsPhilipps-Universität MarburgMarburgGermany
| |
Collapse
|
171
|
Wenzel D, Praetorius S, Voigt A. Topological and geometrical quantities in active cellular structures. J Chem Phys 2019; 150:164108. [PMID: 31042877 DOI: 10.1063/1.5085766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- D. Wenzel
- Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
| | - S. Praetorius
- Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
| | - A. Voigt
- Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany
- Center for Systems Biology Dresden (CSBD), Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
172
|
Fuqua C, Filloux A, Ghigo JM, Visick KL. Biofilms 2018: A diversity of microbes and mechanisms. J Bacteriol 2019; 201:JB.00118-19. [PMID: 30782638 PMCID: PMC6707918 DOI: 10.1128/jb.00118-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The 8th ASM Conference on Biofilms was held in Washington D.C. on October 7-11, 2018. This very highly subscribed meeting represented a wide breadth of current research in biofilms, and included over 500 attendees, 12 sessions with 64 oral presentations, and four poster sessions with about 400 posters.
Collapse
Affiliation(s)
- Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College, London, United Kingdom
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
173
|
Abstract
Most living systems, from individual cells to tissues and swarms, display collective self-organization on length scales that are much larger than those of the individual units that drive this organization. A fundamental challenge is to understand how properties of microscopic components determine macroscopic, multicellular biological function. Our study connects intracellular physiology to macroscale collective behaviors during multicellular development, spanning five orders of magnitude in length and six orders of magnitude in time, using bacterial swarming as a model system. This work is enabled by a high-throughput adaptive microscopy technique, which we combined with genetics, machine learning, and mathematical modeling to reveal the phase diagram of bacterial swarming and that cell–cell interactions within each swarming phase are dominated by mechanical interactions. Coordinated dynamics of individual components in active matter are an essential aspect of life on all scales. Establishing a comprehensive, causal connection between intracellular, intercellular, and macroscopic behaviors has remained a major challenge due to limitations in data acquisition and analysis techniques suitable for multiscale dynamics. Here, we combine a high-throughput adaptive microscopy approach with machine learning, to identify key biological and physical mechanisms that determine distinct microscopic and macroscopic collective behavior phases which develop as Bacillus subtilis swarms expand over five orders of magnitude in space. Our experiments, continuum modeling, and particle-based simulations reveal that macroscopic swarm expansion is primarily driven by cellular growth kinetics, whereas the microscopic swarming motility phases are dominated by physical cell–cell interactions. These results provide a unified understanding of bacterial multiscale behavioral complexity in swarms.
Collapse
|