151
|
Eustermann S, Yang JC, Law MJ, Amos R, Chapman LM, Jelinska C, Garrick D, Clynes D, Gibbons RJ, Rhodes D, Higgs DR, Neuhaus D. Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nat Struct Mol Biol 2011; 18:777-82. [PMID: 21666677 DOI: 10.1038/nsmb.2070] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 04/15/2011] [Indexed: 12/12/2022]
Abstract
Accurate read-out of chromatin modifications is essential for eukaryotic life. Mutations in the gene encoding X-linked ATRX protein cause a mental-retardation syndrome, whereas wild-type ATRX protein targets pericentric and telomeric heterochromatin for deposition of the histone variant H3.3 by means of a largely unknown mechanism. Here we show that the ADD domain of ATRX, in which most syndrome-causing mutations occur, engages the N-terminal tail of histone H3 through two rigidly oriented binding pockets, one for unmodified Lys4 and the other for di- or trimethylated Lys9. In vivo experiments show this combinatorial readout is required for ATRX localization, with recruitment enhanced by a third interaction through heterochromatin protein-1 (HP1) that also recognizes trimethylated Lys9. The cooperation of ATRX ADD domain and HP1 in chromatin recruitment results in a tripartite interaction that may span neighboring nucleosomes and illustrates how the 'histone-code' is interpreted by a combination of multivalent effector-chromatin interactions.
Collapse
|
152
|
Baldeyron C, Soria G, Roche D, Cook AJL, Almouzni G. HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. ACTA ACUST UNITED AC 2011; 193:81-95. [PMID: 21464229 PMCID: PMC3082177 DOI: 10.1083/jcb.201101030] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
p150CAF-1-mediated recruitment of HP1α to DNA is essential for efficient assembly of DNA damage response complexes and subsequent homologous recombination repair. Heterochromatin protein 1 (HP1), a major component of constitutive heterochromatin, is recruited to DNA damage sites. However, the mechanism involved in this recruitment and its functional importance during DNA repair remain major unresolved issues. Here, by characterizing HP1α dynamics at laser-induced damage sites in mammalian cells, we show that the de novo accumulation of HP1α occurs within both euchromatin and heterochromatin as a rapid and transient event after DNA damage. This recruitment is strictly dependent on p150CAF-1, the largest subunit of chromatin assembly factor 1 (CAF-1), and its ability to interact with HP1α. We find that HP1α depletion severely compromises the recruitment of the DNA damage response (DDR) proteins 53BP1 and RAD51. Moreover, HP1α depletion leads to defects in homologous recombination–mediated repair and reduces cell survival after DNA damage. Collectively, our data reveal that HP1α recruitment at early stages of the DDR involves p150CAF-1 and is critical for proper DNA damage signaling and repair.
Collapse
|
153
|
Chang Y, Horton JR, Bedford MT, Zhang X, Cheng X. Structural insights for MPP8 chromodomain interaction with histone H3 lysine 9: potential effect of phosphorylation on methyl-lysine binding. J Mol Biol 2011; 408:807-14. [PMID: 21419134 PMCID: PMC3081990 DOI: 10.1016/j.jmb.2011.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/04/2011] [Accepted: 03/09/2011] [Indexed: 12/24/2022]
Abstract
M-phase phosphoprotein 8 (MPP8) harbors an N-terminal chromodomain and a C-terminal ankyrin repeat domain. MPP8, via its chromodomain, binds histone H3 peptide tri- or di-methylated at lysine 9 (H3K9me3/H3K9me2) in submicromolar affinity. We determined the crystal structure of MPP8 chromodomain in complex with H3K9me3 peptide. MPP8 interacts with at least six histone H3 residues from glutamine 5 to serine 10, enabling its ability to distinguish lysine-9-containing peptide (QTARKS) from that of lysine 27 (KAARKS), both sharing the ARKS sequence. A partial hydrophobic cage with three aromatic residues (Phe59, Trp80 and Tyr83) and one aspartate (Asp87) encloses the methylated lysine 9. MPP8 has been reported to be phosphorylated in vivo, including the cage residue Tyr83 and the succeeding Thr84 and Ser85. Modeling a phosphate group onto the side-chain hydroxyl oxygen of Tyr83 suggests that the negatively charged phosphate group could enhance the binding of positively charged methyl-lysine or create a regulatory signal by allowing or inhibiting binding of other protein(s).
Collapse
Affiliation(s)
- Yanqi Chang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John R. Horton
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark T. Bedford
- M.D. Anderson Cancer Center, Department of Carcinogenesis, University of Texas, 1808 Park Road 1C, Smithville, Texas 78957, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
154
|
Mendez DL, Kim D, Chruszcz M, Stephens GE, Minor W, Khorasanizadeh S, Elgin SC. The HP1a disordered C terminus and chromo shadow domain cooperate to select target peptide partners. Chembiochem 2011; 12:1084-96. [PMID: 21472955 PMCID: PMC3154745 DOI: 10.1002/cbic.201000598] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Indexed: 11/09/2022]
Abstract
Drosophila melanogaster heterochromatin protein 1a (HP1a) is essential for compacted heterochromatin structure and the associated gene silencing. Its chromo shadow domain (CSD) is well known for binding to peptides that contain a PXVXL motif. Heterochromatin protein 2 (HP2) is a non-histone chromosomal protein that associates with HP1a in the pericentric heterochromatin, telomeres, and the fourth chromosome. Using NMR spectroscopy, fluorescence polarization, and site-directed mutagenesis, we identified an LCVKI motif in HP2 that binds to the HP1a CSD. The binding affinity of the HP2 fragment is approximately two orders of magnitude higher than that of peptides from PIWI (with a PRVKV motif), AF10 (with a PLVVL motif), or CG15356 (with LYPLL and LSIVA motifs). To delineate differential interactions of the HP1a CSD, we characterized its structure, backbone dynamics, and dimerization constant. We found that the dimerization constant is bracketed by the affinities of HP2 and PIWI, which dock to the same HP1a homodimer surface. This suggests that HP2, but not PIWI, interaction can drive the homodimerization of HP1a. Interestingly, the integrity of the disordered C-terminal extension (CTE) of HP1a is essential for discriminatory binding, whereas swapping the PXVXL motifs does not confer specificity. Serine phosphorylation at the peptide binding surface of the CSD is thought to regulate heterochromatin assembly. Glutamic acid substitution at these sites destabilizes HP1a dimers, but improves the interaction with both binding partners. Our studies underscore the importance of CSD dimerization and cooperation with the CTE in forming distinct complexes of HP1a.
Collapse
Affiliation(s)
- Deanna L. Mendez
- Department of Biology Washington University CB-1137, St. Louis, MO 63130, USA. Phone: 314-935-5348 Fax: 314-935-4432
| | - Daesung Kim
- Department of Biochemistry and Molecular Genetics The University of Virginia Charlottesville, VA, 22908, USA
| | - Maksymilian Chruszcz
- Department of Molecular Physiology and Biological Physics The University of Virginia Charlottesville, VA, 22908, USA
| | - Gena E. Stephens
- Department of Biology Washington University CB-1137, St. Louis, MO 63130, USA. Phone: 314-935-5348 Fax: 314-935-4432
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics The University of Virginia Charlottesville, VA, 22908, USA
| | - Sepideh Khorasanizadeh
- Sanford-Burnham Medical Research Institute 6400 Sanger Road, Orlando, FL, 32827, USA Phone: 407-745-2138 Fax: (+1) 407 745 2013
- Department of Biochemistry and Molecular Genetics The University of Virginia Charlottesville, VA, 22908, USA
| | - Sarah C.R. Elgin
- Department of Biology Washington University CB-1137, St. Louis, MO 63130, USA. Phone: 314-935-5348 Fax: 314-935-4432
| |
Collapse
|
155
|
Kwon SH, Workman JL. The changing faces of HP1: From heterochromatin formation and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of transcription. Bioessays 2011; 33:280-9. [PMID: 21271610 DOI: 10.1002/bies.201000138] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heterochromatin protein 1 (HP1) is a positive regulator of active transcription in euchromatin. HP1 was first identified in Drosophila melanogaster as a major component of heterochromatin. Most eukaryotes have at least three isoforms of HP1, which are conserved in overall structure but localize differentially to heterochromatin and euchromatin. Although initial studies revealed a key role for HP1 in heterochromatin formation and gene silencing, recent progress has shed light on additional roles for HP1 in processes such as euchromatic gene expression. Recent studies have highlighted the importance of HP1-mediated gene regulation in euchromatin. Here, we focus on recent advances in understanding the role of HP1 in active transcription in euchromatin and how modification and localization of HP1 can regulate distinct functions for this protein in different contexts.
Collapse
Affiliation(s)
- So Hee Kwon
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | |
Collapse
|
156
|
Brideau NJ, Barbash DA. Functional conservation of the Drosophila hybrid incompatibility gene Lhr. BMC Evol Biol 2011; 11:57. [PMID: 21366928 PMCID: PMC3060119 DOI: 10.1186/1471-2148-11-57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/02/2011] [Indexed: 01/01/2023] Open
Abstract
Background Hybrid incompatibilities such as sterility and lethality are commonly modeled as being caused by interactions between two genes, each of which has diverged separately in one of the hybridizing lineages. The gene Lethal hybrid rescue (Lhr) encodes a rapidly evolving heterochromatin protein that causes lethality of hybrid males in crosses between Drosophila melanogaster females and D. simulans males. Previous genetic analyses showed that hybrid lethality is caused by D. simulans Lhr but not by D. melanogaster Lhr, confirming a critical prediction of asymmetry in the evolution of a hybrid incompatibility gene. Results Here we have examined the functional properties of Lhr orthologs from multiple Drosophila species, including interactions with other heterochromatin proteins, localization to heterochromatin, and ability to complement hybrid rescue in D. melanogaster/D. simulans hybrids. We find that these properties are conserved among most Lhr orthologs, including Lhr from D. melanogaster, D. simulans and the outgroup species D. yakuba. Conclusions We conclude that evolution of the hybrid lethality properties of Lhr between D. melanogaster and D. simulans did not involve extensive loss or gain of functions associated with protein interactions or localization to heterochromatin.
Collapse
Affiliation(s)
- Nicholas J Brideau
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | | |
Collapse
|
157
|
Kang J, Chaudhary J, Dong H, Kim S, Brautigam CA, Yu H. Mitotic centromeric targeting of HP1 and its binding to Sgo1 are dispensable for sister-chromatid cohesion in human cells. Mol Biol Cell 2011; 22:1181-90. [PMID: 21346195 PMCID: PMC3078076 DOI: 10.1091/mbc.e11-01-0009] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human Shugoshin 1 (Sgo1) protects centromeric sister-chromatid cohesion during mitosis. Heterochromatin protein 1 (HP1) has been proposed to recruit Sgo1 to mitotic centromeres. We show that the molecular interaction targeting HP1 to mitotic centromeres is incompatible with HP1 further recruiting Sgo1. Our results clarify the role of centromeric HP1 in chromosome segregation. Human Shugoshin 1 (Sgo1) protects centromeric sister-chromatid cohesion during prophase and prevents premature sister-chromatid separation. Heterochromatin protein 1 (HP1) has been proposed to protect centromeric sister-chromatid cohesion by directly targeting Sgo1 to centromeres in mitosis. Here we show that HP1α is targeted to mitotic centromeres by INCENP, a subunit of the chromosome passenger complex (CPC). Biochemical and structural studies show that both HP1–INCENP and HP1–Sgo1 interactions require the binding of the HP1 chromo shadow domain to PXVXL/I motifs in INCENP or Sgo1, suggesting that the INCENP-bound, centromeric HP1α is incapable of recruiting Sgo1. Consistently, a Sgo1 mutant deficient in HP1 binding is functional in centromeric cohesion protection and localizes normally to centromeres in mitosis. By contrast, INCENP or Sgo1 mutants deficient in HP1 binding fail to localize to centromeres in interphase. Therefore, our results suggest that HP1 binding by INCENP or Sgo1 is dispensable for centromeric cohesion protection during mitosis of human cells, but might regulate yet uncharacterized interphase functions of CPC or Sgo1 at the centromeres.
Collapse
Affiliation(s)
- Jungseog Kang
- Department of Pharmacology, Howard Hughes Medical Institute, USA
| | | | | | | | | | | |
Collapse
|
158
|
Latrasse D, Germann S, Houba-Hérin N, Dubois E, Bui-Prodhomme D, Hourcade D, Juul-Jensen T, Le Roux C, Majira A, Simoncello N, Granier F, Taconnat L, Renou JP, Gaudin V. Control of flowering and cell fate by LIF2, an RNA binding partner of the polycomb complex component LHP1. PLoS One 2011; 6:e16592. [PMID: 21304947 PMCID: PMC3031606 DOI: 10.1371/journal.pone.0016592] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 12/29/2010] [Indexed: 01/31/2023] Open
Abstract
Polycomb Repressive Complexes (PRC) modulate the epigenetic status of key cell fate and developmental regulators in eukaryotes. The chromo domain protein LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is a subunit of a plant PRC1-like complex in Arabidopsis thaliana and recognizes histone H3 lysine 27 trimethylation, a silencing epigenetic mark deposited by the PRC2 complex. We have identified and studied an LHP1-Interacting Factor2 (LIF2). LIF2 protein has RNA recognition motifs and belongs to the large hnRNP protein family, which is involved in RNA processing. LIF2 interacts in vivo, in the cell nucleus, with the LHP1 chromo shadow domain. Expression of LIF2 was detected predominantly in vascular and meristematic tissues. Loss-of-function of LIF2 modifies flowering time, floral developmental homeostasis and gynoecium growth determination. lif2 ovaries have indeterminate growth and produce ectopic inflorescences with severely affected flowers showing proliferation of ectopic stigmatic papillae and ovules in short-day conditions. To look at how LIF2 acts relative to LHP1, we conducted transcriptome analyses in lif2 and lhp1 and identified a common set of deregulated genes, which showed significant enrichment in stress-response genes. By comparing expression of LHP1 targets in lif2, lhp1 and lif2 lhp1 mutants we showed that LIF2 can either antagonize or act with LHP1. Interestingly, repression of the FLC floral transcriptional regulator in lif2 mutant is accompanied by an increase in H3K27 trimethylation at the locus, without any change in LHP1 binding, suggesting that LHP1 is targeted independently from LIF2 and that LHP1 binding does not strictly correlate with gene expression. LIF2, involved in cell identity and cell fate decision, may modulate the activity of LHP1 at specific loci, during specific developmental windows or in response to environmental cues that control cell fate determination. These results highlight a novel link between plant RNA processing and Polycomb regulation.
Collapse
Affiliation(s)
- David Latrasse
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Sophie Germann
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
- Centre Léon Bérard, Inserm U590, Oncogenèse et progression tumorale, Lyon, France
| | - Nicole Houba-Hérin
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Emeline Dubois
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
- Centre de Génétique Moléculaire, CNRS FRE3144, Gif-sur-Yvette, France
| | - Duyen Bui-Prodhomme
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
- Biologie du Fruit, UMR 619 INRA Centre de Bordeaux, Villenave-d'Ornon, France
| | - Delphine Hourcade
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Trine Juul-Jensen
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Clémentine Le Roux
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Amel Majira
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Nathalie Simoncello
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Fabienne Granier
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | | | | | - Valérie Gaudin
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
- * E-mail:
| |
Collapse
|
159
|
Voigt P, Reinberg D. Histone tails: ideal motifs for probing epigenetics through chemical biology approaches. Chembiochem 2011; 12:236-52. [PMID: 21243712 PMCID: PMC3760146 DOI: 10.1002/cbic.201000493] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Indexed: 01/19/2023]
Abstract
Post-translational modifications (PTMs) on histone proteins have emerged as a central theme in the regulation of gene expression and other chromatin-associated processes. The discovery that certain protein domains can recognize acetylated and methylated lysine residues of histones has spurred efforts to uncover and characterize histone PTM-binding proteins. In this task, chromatin biology has strongly benefited from synthetic approaches stemming from chemical biology. Peptide-based techniques have been instrumental in identifying histone mark-binding proteins and analyzing their binding specificities. To explore how histone PTMs carry out their function in the context of chromatin, reconstituted systems based on recombinant histones carrying defined modifications are increasingly being used. They constitute promising tools to analyze mechanistic aspects of histone PTMs, including their role in transcription and their transmission in replication. In this review, we present strategies that have been used successfully to investigate the role of histone modifications, concepts that have emerged from their application, and their potential to contribute to current developments in the field.
Collapse
Affiliation(s)
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University School of Medicine, Department of Biochemistry, 522 First Avenue, New York, NY 10016, USA
| |
Collapse
|
160
|
Mosch K, Franz H, Soeroes S, Singh PB, Fischle W. HP1 recruits activity-dependent neuroprotective protein to H3K9me3 marked pericentromeric heterochromatin for silencing of major satellite repeats. PLoS One 2011; 6:e15894. [PMID: 21267468 PMCID: PMC3022755 DOI: 10.1371/journal.pone.0015894] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 11/29/2010] [Indexed: 11/19/2022] Open
Abstract
H3 lysine 9 trimethylation (H3K9me3) is a histone posttranslational modification (PTM) that has emerged as hallmark of pericentromeric heterochromatin. This constitutive chromatin domain is composed of repetitive DNA elements, whose transcription is differentially regulated. Mammalian cells contain three HP1 proteins, HP1α, HP1β and HP1γ These have been shown to bind to H3K9me3 and are thought to mediate the effects of this histone PTM. However, the mechanisms of HP1 chromatin regulation and the exact functional role at pericentromeric heterochromatin are still unclear. Here, we identify activity-dependent neuroprotective protein (ADNP) as an H3K9me3 associated factor. We show that ADNP does not bind H3K9me3 directly, but that interaction is mediated by all three HP1 isoforms in vitro. However, in cells ADNP localization to areas of pericentromeric heterochromatin is only dependent on HP1α and HP1β. Besides a PGVLL sequence patch we uncovered an ARKS motif within the ADNP homeodomain involved in HP1 dependent H3K9me3 association and localization to pericentromeric heterochromatin. While knockdown of ADNP had no effect on HP1 distribution and heterochromatic histone and DNA modifications, we found ADNP silencing major satellite repeats. Our results identify a novel factor in the translation of H3K9me3 at pericentromeric heterochromatin that regulates transcription.
Collapse
Affiliation(s)
- Kerstin Mosch
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henriette Franz
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Szabolcs Soeroes
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Prim B. Singh
- Division of Immunoepigenetics, Research Center Borstel, Borstel, Germany
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- * E-mail:
| |
Collapse
|
161
|
Abstract
The phosphorylation of heterochromatin protein 1 (HP1) has been previously described in studies of mammals, but the biological implications of this modification remain largely elusive. Here, we show that the N-terminal phosphorylation of HP1α plays a central role in its targeting to chromatin. Recombinant HP1α prepared from mammalian cultured cells exhibited a stronger binding affinity for K9-methylated histone H3 (H3K9me) than that produced in Escherichia coli. Biochemical analyses revealed that HP1α was multiply phosphorylated at N-terminal serine residues (S11-14) in human and mouse cells and that this phosphorylation enhanced HP1α's affinity for H3K9me. Importantly, the N-terminal phosphorylation appeared to facilitate the initial binding of HP1α to H3K9me by mediating the interaction between HP1α and a part of the H3 tail that was distinct from the methylated K9. Unphosphorylatable mutant HP1α exhibited severe heterochromatin localization defects in vivo, and its prolonged expression led to increased chromosomal instability. Our results suggest that HP1α's N-terminal phosphorylation is essential for its proper targeting to heterochromatin and that its binding to the methylated histone tail is achieved by the cooperative action of the chromodomain and neighboring posttranslational modifications.
Collapse
|
162
|
Li PC, Chretien L, Côté J, Kelly TJ, Forsburg SL. S. pombe replication protein Cdc18 (Cdc6) interacts with Swi6 (HP1) heterochromatin protein: region specific effects and replication timing in the centromere. Cell Cycle 2011; 10:323-36. [PMID: 21239883 PMCID: PMC3025051 DOI: 10.4161/cc.10.2.14552] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin in S. pombe is associated with gene silencing at telomeres, the mating locus and centromeres. The compact heterochromatin structure raises the question how it unpacks and reforms during DNA replication. We show that the essential DNA replication factor Cdc18 (CDC6) associates with heterochromatin protein 1 (Swi6) in vivo and in vitro. Biochemical mapping and mutational analysis of the association domains show that the N-terminus of Cdc18 interacts with the chromoshadow domain of Swi6. Mutations in Swi6 that disrupt this interaction disrupt silencing and delay replication in the centromere. A mutation cdc18-I43A that reduces Cdc18 association with Swi6 has no silencing defect at the centromere, but changes Swi6 distribution and accelerates the timing of centromere replication. We suggest that fine tuning of Swi6 association at replication origins is important for negative as well as positive control of replication initiation.
Collapse
Affiliation(s)
- Pao-Chen Li
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
163
|
Xu X, Lee YJ, Holm JB, Terry MD, Oswald RE, Horne WA. The Ca2+ channel beta4c subunit interacts with heterochromatin protein 1 via a PXVXL binding motif. J Biol Chem 2011; 286:9677-87. [PMID: 21220418 DOI: 10.1074/jbc.m110.187864] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The β subunits of voltage-gated Ca(2+) channels are best known for their roles in regulating surface expression and gating of voltage-gated Ca(2+) channel α(1) subunits. Recent evidence, however, indicates that these proteins have a variety of Ca(2+) channel-independent functions. For example, on the molecular level, they regulate gene expression, and on the whole animal level, they regulate early cell movements in zebrafish development. In the present study, an alternatively spliced, truncated β4 subunit (β4c) is identified in the human brain and shown to be highly expressed in nuclei of vestibular neurons. Pull-down assays, nuclear magnetic resonance, and isothermal titration calorimetry demonstrate that the protein interacts with the chromo shadow domain (CSD) of heterochromatin protein 1γ. Site-directed mutagenesis reveals that the primary CSD interaction occurs through a β4c C-terminal PXVXL consensus motif, adding the β4c subunit to a growing PXVXL protein family with epigenetic responsibilities. These proteins have multiple nuclear functions, including transcription regulation (TIF1α) and nucleosome assembly (CAF1). An NMR-based two-site docking model of β4c in complex with dimerized CSD is presented. Possible roles for the interaction are discussed.
Collapse
Affiliation(s)
- Xingfu Xu
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
164
|
Herzog M, Wendling O, Guillou F, Chambon P, Mark M, Losson R, Cammas F. TIF1β association with HP1 is essential for post-gastrulation development, but not for Sertoli cell functions during spermatogenesis. Dev Biol 2010; 350:548-58. [PMID: 21163256 DOI: 10.1016/j.ydbio.2010.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 11/17/2010] [Accepted: 12/06/2010] [Indexed: 12/30/2022]
Abstract
TIF1β is an essential mammalian transcriptional corepressor. It interacts with the heterochromatin proteins HP1 through a highly conserved motif, the HP1box, and we have previously shown that this interaction is essential for the differentiation of F9 cells to occur. Here we address the in vivo functions of the TIF1β-HP1 interaction, by generating mice in which the TIF1β HP1box is mutated, leading to the loss of TIF1β interaction with HP1. The effects of the mutation were monitored in two instances, where TIF1β is known to play key roles: early embryonic development and spermatogenesis. We find that mutating the HP1box of TIF1β disrupts embryonic development soon after gastrulation. This effect is likely caused by the misexpression of TIF1β targets that regulate mitotic progression and pluripotency. In contrast, in Sertoli cells, we found that the absence of TIF1β but not its mutation in the HP1box leads to a clear defect of spermatogenesis characterized by a failure of spermatid release and a testicular degeneration. These data show that the interaction between TIF1β and HP1 is essential for some but not all TIF1β functions in vivo. Furthermore, we observed that TIF1β is dispersed through the nucleoplasm of E7.0 embryos, whereas it is mainly associated with pericentromeric heterochromatin of E8.5 embryos and of Sertoli cells, an association that is lost upon TIF1β HP1box mutation. Altogether, these data provide strong evidence that nuclear organization plays key roles during early embryonic development.
Collapse
Affiliation(s)
- Marielle Herzog
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Cedex, France
| | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
Epigenetic regulation of gene transcription relies on an array of recurring structural domains that have evolved to recognize post-translational modifications on histones. The roles of bromodomains, PHD fingers, and the Royal family domains in the recognition of histone modifications to direct transcription have been well characterized. However, only through recent structural studies has it been realized that these basic folds are capable of interacting with increasingly more complex histone modification landscapes, illuminating how nature has concocted a way to accomplish more with less. Here we review the recent biochemical and structural studies of several conserved folds that recognize modified as well as unmodified histone sequences, and discuss their implications on gene expression.
Collapse
Affiliation(s)
- Kyoko L Yap
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY, USA
| | | |
Collapse
|
166
|
Advancing our understanding of functional genome organisation through studies in the fission yeast. Curr Genet 2010; 57:1-12. [PMID: 21113595 PMCID: PMC3023017 DOI: 10.1007/s00294-010-0327-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/01/2010] [Accepted: 11/08/2010] [Indexed: 12/30/2022]
Abstract
Significant progress has been made in understanding the functional organisation of the cell nucleus. Still many questions remain to be answered about the relationship between the spatial organisation of the nucleus and the regulation of the genome function. There are many conflicting data in the field making it very difficult to merge published results on mammalian cells into one model on subnuclear chromatin organisation. The fission yeast, Schizosaccharomyces pombe, over the last decades has emerged as a valuable model organism in understanding basic biological mechanisms, especially the cell cycle and chromosome biology. In this review we describe and compare the nuclear organisation in mammalian and fission yeast cells. We believe that fission yeast is a good tool to resolve at least some of the contradictions and unanswered questions concerning functional nuclear architecture, since S. pombe has chromosomes structurally similar to that of human. S. pombe also has the advantage over higher eukaryotes in that the genome can easily be manipulated via homologous recombination making it possible to integrate the tools needed for visualisation of chromosomes using live-cell microscopy. Classical genetic experiments can be used to elucidate what factors are involved in a certain mechanism. The knowledge we have gained during the last few years indicates similarities between the genome organisation in fission yeast and mammalian cells. We therefore propose the use of fission yeast for further advancement of our understanding of functional nuclear organisation.
Collapse
|
167
|
Stein A, Céol A, Aloy P. 3did: identification and classification of domain-based interactions of known three-dimensional structure. Nucleic Acids Res 2010; 39:D718-23. [PMID: 20965963 PMCID: PMC3013799 DOI: 10.1093/nar/gkq962] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The database of three-dimensional interacting domains (3did) is a collection of protein interactions for which high-resolution three-dimensional structures are known. 3did exploits the availability of structural data to provide molecular details on interactions between two globular domains as well as novel domain–peptide interactions, derived using a recently published method from our lab. The interface residues are presented for each interaction type individually, plus global domain interfaces at which one or more partners (domains or peptides) bind. The 3did web server at http://3did.irbbarcelona.org visualizes these interfaces along with atomic details of individual interactions using Jmol. The complete contents are also available for download.
Collapse
Affiliation(s)
- Amelie Stein
- Institute for Research in Biomedicine, Join IRB-BSC Program in Computational Biology, 08028 Barcelona, Spain
| | | | | |
Collapse
|
168
|
Kwon SH, Florens L, Swanson SK, Washburn MP, Abmayr SM, Workman JL. Heterochromatin protein 1 (HP1) connects the FACT histone chaperone complex to the phosphorylated CTD of RNA polymerase II. Genes Dev 2010; 24:2133-45. [PMID: 20889714 DOI: 10.1101/gad.1959110] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterochromatin protein 1 (HP1) is well known as a silencing protein found at pericentric heterochromatin. Most eukaryotes have at least three isoforms of HP1 that play differential roles in heterochromatin and euchromatin. In addition to its role in heterochromatin, HP1 proteins have been shown to function in transcription elongation. To gain insights into the transcription functions of HP1, we sought to identify novel HP1-interacting proteins. Biochemical and proteomic approaches revealed that HP1 interacts with the histone chaperone complex FACT (facilitates chromatin transcription). HP1c interacts with the SSRP1 (structure-specific recognition protein 1) subunit and the intact FACT complex. Moreover, HP1c guides the recruitment of FACT to active genes and links FACT to active forms of RNA polymerase II. The absence of HP1c partially impairs the recruitment of FACT into heat-shock loci and causes a defect in heat-shock gene expression. Thus, HP1c functions to recruit the FACT complex to RNA polymerase II.
Collapse
Affiliation(s)
- So Hee Kwon
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | |
Collapse
|
169
|
Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization. Proc Natl Acad Sci U S A 2010; 107:15093-8. [PMID: 20689044 DOI: 10.1073/pnas.1009945107] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The origin recognition complex (ORC) is a DNA replication initiator protein also known to be involved in diverse cellular functions including gene silencing, sister chromatid cohesion, telomere biology, heterochromatin localization, centromere and centrosome activity, and cytokinesis. We show that, in human cells, multiple ORC subunits associate with hetereochromatin protein 1 (HP1) alpha- and HP1beta-containing heterochromatic foci. Fluorescent bleaching studies indicate that multiple subcomplexes of ORC exist at heterochromatin, with Orc1 stably associating with heterochromatin in G1 phase, whereas other ORC subunits have transient interactions throughout the cell-division cycle. Both Orc1 and Orc3 directly bind to HP1alpha, and two domains of Orc3, a coiled-coil domain and a mod-interacting region domain, can independently bind to HP1alpha; however, both are essential for in vivo localization of Orc3 to heterochromatic foci. Direct binding of both Orc1 and Orc3 to HP1 suggests that, after the degradation of Orc1 at the G1/S boundary, Orc3 facilitates assembly of ORC/HP1 proteins to chromatin. Although depletion of Orc2 and Orc3 subunits by siRNA caused loss of HP1alpha association to heterochromatin, loss of Orc1 and Orc5 caused aberrant HP1alpha distribution only to pericentric heterochromatin-surrounding nucleoli. Depletion of HP1alpha from human cells also shows loss of Orc2 binding to heterochromatin, suggesting that ORC and HP1 proteins are mutually required for each other to bind to heterochromatin. Similar to HP1alpha-depleted cells, Orc2 and Orc3 siRNA-treated cells also show loss of compaction at satellite repeats, suggesting that ORC together with HP1 proteins may be involved in organizing higher-order chromatin structure and centromere function.
Collapse
|
170
|
Higo S, Asano Y, Kato H, Yamazaki S, Nakano A, Tsukamoto O, Seguchi O, Asai M, Asakura M, Asanuma H, Sanada S, Minamino T, Komuro I, Kitakaze M, Takashima S. Isoform-specific intermolecular disulfide bond formation of heterochromatin protein 1 (HP1). J Biol Chem 2010; 285:31337-47. [PMID: 20675861 DOI: 10.1074/jbc.m110.155788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Three mammalian isoforms of heterochromatin protein 1 (HP1), α, β, and γ, play diverse roles in gene regulation. Despite their structural similarity, the diverse functions of these isoforms imply that they are additionally regulated by post-translational modifications. Here, we have identified intermolecular disulfide bond formation of HP1 cysteines in an isoform-specific manner. Cysteine 133 in HP1α and cysteine 177 in HP1γ were involved in intermolecular homodimerization. Although both HP1α and HP1γ contain reactive cysteine residues, only HP1γ readily and reversibly formed disulfide homodimers under oxidative conditions. Oxidatively dimerized HP1γ strongly and transiently interacted with TIF1β, a universal transcriptional co-repressor. Under oxidative conditions, HP1γ dimerized and held TIF1β in a chromatin component and inhibited its repression ability. Our results highlight a novel, isoform-specific role for HP1 as a sensor of the cellular redox state.
Collapse
Affiliation(s)
- Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Huang H, Yu Z, Zhang S, Liang X, Chen J, Li C, Ma J, Jiao R. Drosophila CAF-1 regulates HP1-mediated epigenetic silencing and pericentric heterochromatin stability. J Cell Sci 2010; 123:2853-61. [PMID: 20663913 DOI: 10.1242/jcs.063610] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chromatin assembly factor 1 (CAF-1) was initially characterized as a histone deliver in the process of DNA-replication-coupled chromatin assembly in eukaryotic cells. Here, we report that CAF-1 p180, the largest subunit of Drosophila CAF-1, participates in the process of heterochromatin formation and functions to maintain pericentric heterochromatin stability. We provide evidence that Drosophila CAF-1 p180 plays a role in both classes of position effect variegation (PEV) and in the expression of heterochromatic genes. A decrease in the expression of Drosophila CAF-1 p180 leads to a decrease in both H3K9 methylation at pericentric heterochromatin regions and the recruitment of heterochromatin protein 1 (HP1) to the chromocenter of the polytene chromosomes. The artificial targeting of HP1 to a euchromatin location leads to the enrichment of Drosophila CAF-1 p180 at this ectopic heterochromatin, suggesting the mutual recruitment of HP1 and CAF-1 p180. We also show that the spreading of heterochromatin is compromised in flies that have reduced CAF-1 p180. Furthermore, reduced CAF-1 p180 causes a defect in the dynamics of heterochromatic markers in early Drosophila embryos. Together, these findings suggest that Drosophila CAF-1 p180 is an essential factor in the epigenetic control of heterochromatin formation and/or maintenance.
Collapse
Affiliation(s)
- Hai Huang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Billur M, Bartunik HD, Singh PB. The essential function of HP1 beta: a case of the tail wagging the dog? Trends Biochem Sci 2010; 35:115-23. [PMID: 19836960 DOI: 10.1016/j.tibs.2009.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/27/2009] [Accepted: 09/03/2009] [Indexed: 12/25/2022]
Abstract
A large body of work in various organisms has shown that the presence of HP1 structural proteins and methylated lysine 9 of histone H3 (H3K9me) represent the characteristic hallmarks of heterochromatin. We propose that a more critical assessment of the physiological importance of the H3K9me-HP1 interaction is warranted in light of recent studies on the mammalian HP1 beta protein. Based on this new research, we conclude that the essential function of HP1 beta (and perhaps that of its orthologues in other species) lies outside the canonical heterochromatic H3K9me-HP1 interaction. We suggest instead that binding of a small fraction of HP1 beta to the H3 histone fold performs a critical role in heterochromatin function and organismal survival.
Collapse
Affiliation(s)
- Mustafa Billur
- Division of Immunoepigenetics, Department of Immunology and Cell Biology, Forschungszentrum Borstel, D-23845 Borstel, Germany
| | | | | |
Collapse
|
173
|
Nozawa RS, Nagao K, Masuda HT, Iwasaki O, Hirota T, Nozaki N, Kimura H, Obuse C. Human POGZ modulates dissociation of HP1alpha from mitotic chromosome arms through Aurora B activation. Nat Cell Biol 2010; 12:719-27. [PMID: 20562864 DOI: 10.1038/ncb2075] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/11/2010] [Indexed: 01/01/2023]
Abstract
Heterochromatin protein 1 (HP1) has an essential role in heterochromatin formation and mitotic progression through its interaction with various proteins. We have identified a unique HP1alpha-binding protein, POGZ (pogo transposable element-derived protein with zinc finger domain), using an advanced proteomics approach. Proteins generally interact with HP1 through a PxVxL (where x is any amino-acid residue) motif; however, POGZ was found to bind to HP1alpha through a zinc-finger-like motif. Binding by POGZ, mediated through its zinc-finger-like motif, competed with PxVxL proteins and destabilized the HP1alpha-chromatin interaction. Depletion experiments confirmed that the POGZ HP1-binding domain is essential for normal mitotic progression and dissociation of HP1alpha from mitotic chromosome arms. Furthermore, POGZ is required for the correct activation and dissociation of Aurora B kinase from chromosome arms during M phase. These results reveal POGZ as an essential protein that links HP1alpha dissociation with Aurora B kinase activation during mitosis.
Collapse
Affiliation(s)
- Ryu-Suke Nozawa
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Kiyomitsu T, Iwasaki O, Obuse C, Yanagida M. Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes. ACTA ACUST UNITED AC 2010; 188:791-807. [PMID: 20231385 PMCID: PMC2845078 DOI: 10.1083/jcb.200908096] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
hMis14 and HP1 depend on each other to localize to the kinetochore and inner centromere, respectively. Centromeric DNA forms two structures on the mitotic chromosome: the kinetochore, which interacts with kinetochore microtubules, and the inner centromere, which connects sister kinetochores. The assembly of the inner centromere is poorly understood. In this study, we show that the human Mis14 (hMis14; also called hNsl1 and DC8) subunit of the heterotetrameric hMis12 complex is involved in inner centromere architecture through a direct interaction with HP1 (heterochromatin protein 1), mediated via a PXVXL motif and a chromoshadow domain. We present evidence that the mitotic function of hMis14 and HP1 requires their functional association at interphase. Alterations in the hMis14 interaction with HP1 disrupt the inner centromere, characterized by the absence of hSgo1 (Shugoshin-like 1) and aurora B. The assembly of HP1 in the inner centromere and the localization of hMis14 at the kinetochore are mutually dependent in human chromosomes. hMis14, which contains a tripartite-binding domain for HP1 and two other kinetochore proteins, hMis13 and blinkin, is a cornerstone for the assembly of the inner centromere and kinetochore.
Collapse
Affiliation(s)
- Tomomi Kiyomitsu
- Core Research for Evolutional Science and Technology Research Program, Japan Science and Technology Corporation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
175
|
Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, Dénervaud N, Bucher P, Trono D. KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet 2010; 6:e1000869. [PMID: 20221260 PMCID: PMC2832679 DOI: 10.1371/journal.pgen.1000869] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 02/02/2010] [Indexed: 01/05/2023] Open
Abstract
Krüppel-associated box domain-zinc finger proteins (KRAB–ZFPs) are tetrapod-specific transcriptional repressors encoded in the hundreds by the human genome. In order to explore their as yet ill-defined impact on gene expression, we developed an ectopic repressor assay, allowing the study of KRAB–mediated transcriptional regulation at hundreds of different transcriptional units. By targeting a drug-controllable KRAB–containing repressor to gene-trapping lentiviral vectors, we demonstrate that KRAB and its corepressor KAP1 can silence promoters located several tens of kilobases (kb) away from their DNA binding sites, with an efficiency which is generally higher for promoters located within 15 kb or less. Silenced promoters exhibit a loss of histone H3-acetylation, an increase in H3 lysine 9 trimethylation (H3K9me3), and a drop in RNA Pol II recruitment, consistent with a block of transcriptional initiation following the establishment of silencing marks. Furthermore, we reveal that KRAB–mediated repression is established by the long-range spreading of H3K9me3 and heterochromatin protein 1 β (HP1β) between the repressor binding site and the promoter. We confirm the biological relevance of this phenomenon by documenting KAP1–dependent transcriptional repression at an endogenous KRAB–ZFP gene cluster, where KAP1 binds to the 3′ end of genes and mediates propagation of H3K9me3 and HP1β towards their 5′ end. Together, our data support a model in which KRAB/KAP1 recruitment induces long-range repression through the spread of heterochromatin. This finding not only suggests auto-regulatory mechanisms in the control of KRAB–ZFP gene clusters, but also provides important cues for interpreting future genome-wide DNA binding data of KRAB–ZFPs and KAP1. The regulation of gene activity by transcription factors is crucial to the function of all cells. Here, we studied the mechanisms of action of the largest family of gene regulators encoded by the human genome, the so-called KRAB–containing zinc finger proteins (KRAB–ZFPs), which in concert with their universal cofactor KAP1 act as transcriptional repressors. For this, we used two parallel approaches. First, by targeting an ectopic KRAB domain to hundreds of different genes, we found that KRAB/KAP1 can repress promoters located several tens of kilobases from the repressor DNA docking site. We further could show that KRAB induces such long-range effects by mediating the spread of repressive chromatin marks along the body of the gene, resulting in a block of transcriptional initiation at the promoter. In a second set of experiments, we analyzed an endogenous KRAB–ZFP gene cluster, where we could also document KAP1–dependent heterochromatin spreading and transcriptional repression. Together, these results support a model whereby KRAB–ZFPs and KAP1 can mediate long-range transcriptional repression through the spread of silencing chromatin marks. This study thus provides insight into KRAB/KAP1–induced gene regulation at KRAB–ZFP gene clusters, and will further help interpret genome-wide studies of KRAB–ZFPs and KAP1 DNA binding patterns.
Collapse
Affiliation(s)
- Anna C. Groner
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Frontiers-in-Genetics National Center of Competence in Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Meylan
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Frontiers-in-Genetics National Center of Competence in Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Angela Ciuffi
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Nadine Zangger
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Frontiers-in-Genetics National Center of Competence in Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanna Ambrosini
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Dénervaud
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Philipp Bucher
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Frontiers-in-Genetics National Center of Competence in Research, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
176
|
del Olmo I, López-González L, Martín-Trillo MM, Martínez-Zapater JM, Piñeiro M, Jarillo JA. EARLY IN SHORT DAYS 7 (ESD7) encodes the catalytic subunit of DNA polymerase epsilon and is required for flowering repression through a mechanism involving epigenetic gene silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:623-36. [PMID: 19947980 DOI: 10.1111/j.1365-313x.2009.04093.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We have characterized a mutation affecting the Arabidopsis EARLY IN SHORT DAYS 7 (ESD7) gene encoding the catalytic subunit of DNA polymerase epsilon (epsilon), AtPOL2a. The esd7-1 mutation causes early flowering independently of photoperiod, shortened inflorescence internodes and altered leaf and root development. esd7-1 is a hypomorphic allele whereas knockout alleles displayed an embryo-lethal phenotype. The esd7 early flowering phenotype requires functional FT and SOC1 proteins and might also be related to the misregulation of AG and AG-like gene expression found in esd7. Genes involved in the modulation of chromatin structural dynamics, such as LHP1/TFL2 and EBS, which negatively regulate FT expression, were found to interact genetically with ESD7. In fact a molecular interaction between the carboxy terminus of ESD7 and TFL2 was demonstrated in vitro. Besides, fas2 mutations suppressed the esd7 early flowering phenotype and ICU2 was found to interact with ESD7. Discrete regions of the chromatin of FT and AG loci were enriched in activating epigenetic marks in the esd7-1 mutant. We concluded that ESD7 might be participating in processes involved in chromatin-mediated cellular memory.
Collapse
Affiliation(s)
- Iván del Olmo
- CBGP (INIA-UPM) Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Madrid 28223, Spain
| | | | | | | | | | | |
Collapse
|
177
|
Hayashihara K, Uchiyama S, Shimamoto S, Kobayashi S, Tomschik M, Wakamatsu H, No D, Sugahara H, Hori N, Noda M, Ohkubo T, Zlatanova J, Matsunaga S, Fukui K. The middle region of an HP1-binding protein, HP1-BP74, associates with linker DNA at the entry/exit site of nucleosomal DNA. J Biol Chem 2009; 285:6498-507. [PMID: 20042602 DOI: 10.1074/jbc.m109.092833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In higher eukaryotic cells, DNA molecules are present as chromatin fibers, complexes of DNA with various types of proteins; chromatin fibers are highly condensed in metaphase chromosomes during mitosis. Although the formation of the metaphase chromosome structure is essential for the equal segregation of replicated chromosomal DNA into the daughter cells, the mechanism involved in the organization of metaphase chromosomes is poorly understood. To identify proteins involved in the formation and/or maintenance of metaphase chromosomes, we examined proteins that dissociated from isolated human metaphase chromosomes by 0.4 m NaCl treatment; this treatment led to significant chromosome decondensation, but the structure retained the core histones. One of the proteins identified, HP1-BP74 (heterochromatin protein 1-binding protein 74), composed of 553 amino acid residues, was further characterized. HP1-BP74 middle region (BP74Md), composed of 178 amino acid residues (Lys(97)-Lys(274)), formed a chromatosome-like structure with reconstituted mononucleosomes and protected the linker DNA from micrococcal nuclease digestion by approximately 25 bp. The solution structure determined by NMR revealed that the globular domain (Met(153)-Thr(237)) located within BP74Md possesses a structure similar to that of the globular domain of linker histones, which underlies its nucleosome binding properties. Moreover, we confirmed that BP74Md and full-length HP1-BP74 directly binds to HP1 (heterochromatin protein 1) and identified the exact sites responsible for this interaction. Thus, we discovered that HP1-BP74 directly binds to HP1, and its middle region associates with linker DNA at the entry/exit site of nucleosomal DNA in vitro.
Collapse
Affiliation(s)
- Kayoko Hayashihara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Abstract
Chromatin is a highly regulated nucleoprotein complex through which genetic material is structured and maneuvered to elicit cellular processes, including transcription, cell division, differentiation, and DNA repair. In eukaryotes, the core of this structure is composed of nucleosomes, or repetitive histone octamer units typically enfolded by 147 base pairs of DNA. DNA is arranged and indexed through these nucleosomal structures to adjust local chromatin compaction and accessibility. Histones are subject to multiple covalent posttranslational modifications, some of which alter intrinsic chromatin properties, others of which present or hinder binding modules for non-histone, chromatin-modifying complexes. Although certain histone marks correlate with different biological outputs, we have yet to fully appreciate their effects on transcription and other cellular processes. Tremendous advancements over the past years have uncovered intriguing histone-related matters and raised important related questions. This review revisits past breakthroughs and discusses novel developments that pertain to histone posttranslational modifications and the affects they have on transcription and DNA packaging.
Collapse
Affiliation(s)
- Eric I Campos
- Department of Biochemistry, Howard Hughes Medical Institute, NYU School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
179
|
Lavigne M, Eskeland R, Azebi S, Saint-André V, Jang SM, Batsché E, Fan HY, Kingston RE, Imhof A, Muchardt C. Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression. PLoS Genet 2009; 5:e1000769. [PMID: 20011120 PMCID: PMC2782133 DOI: 10.1371/journal.pgen.1000769] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/12/2009] [Indexed: 01/06/2023] Open
Abstract
The heterochromatin-enriched HP1 proteins play a critical role in regulation of transcription. These proteins contain two related domains known as the chromo- and the chromoshadow-domain. The chromo-domain binds histone H3 tails methylated on lysine 9. However, in vivo and in vitro experiments have shown that the affinity of HP1 proteins to native methylated chromatin is relatively poor and that the opening of chromatin occurring during DNA replication facilitates their binding to nucleosomes. These observations prompted us to investigate whether HP1 proteins have additional histone binding activities, envisioning also affinity for regions potentially occluded by the nucleosome structure. We find that the chromoshadow-domain interacts with histone H3 in a region located partially inside the nucleosomal barrel at the entry/exit point of the nucleosome. Interestingly, this region is also contacted by the catalytic subunits of the human SWI/SNF complex. In vitro, efficient SWI/SNF remodeling requires this contact and is inhibited in the presence of HP1 proteins. The antagonism between SWI/SNF and HP1 proteins is also observed in vivo on a series of interferon-regulated genes. Finally, we show that SWI/SNF activity favors loading of HP1 proteins to chromatin both in vivo and in vitro. Altogether, our data suggest that HP1 chromoshadow-domains can benefit from the opening of nucleosomal structures to bind chromatin and that HP1 proteins use this property to detect and arrest unwanted chromatin remodeling. HP1 proteins are transcriptional regulators frequently associated with gene silencing, a phenomenon involving masking of promoter DNA by dense chromatin. Owing to their chromo-domain, these proteins can read and bind an epigenetic mark that on many non-expressed genes is present on histone H3 at the surface of the nucleosome (the fundamental packing unit of chromatin). However, the binding to this mark does not explain the repressing activity of HP1 proteins. Here, we show that these proteins can establish a second contact with histone H3, independently of the epigenetic mark. This second contact site is located inside the nucleosome, in a position likely to be inaccessible. Interestingly, this site is also contacted by a subunit of the SWI/SNF complex and this contact is required for the ATP-dependent chromatin remodeling catalyzed by SWI/SNF. We provide evidence suggesting that HP1 proteins use the SWI/SNF chromatin remodeling to gain access to the contact site inside the nucleosome and to prevent further remodeling by competing with SWI/SNF for binding at this position. These observations lead us to suggest that HP1 proteins function as gatekeepers on promoters, detecting and stopping unwanted exposure of internal nucleosomal sites.
Collapse
Affiliation(s)
- Marc Lavigne
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Ragnhild Eskeland
- Munich Center for Integrated Protein Science CIPSM, Histone Modifications Group, Adolf-Butenandt Institute, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Saliha Azebi
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Violaine Saint-André
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Suk Min Jang
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Eric Batsché
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Hua-Ying Fan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Robert E. Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Axel Imhof
- Munich Center for Integrated Protein Science CIPSM, Histone Modifications Group, Adolf-Butenandt Institute, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Christian Muchardt
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
- * E-mail:
| |
Collapse
|
180
|
Two fundamentally distinct PCNA interaction peptides contribute to chromatin assembly factor 1 function. Mol Cell Biol 2009; 29:6353-65. [PMID: 19822659 DOI: 10.1128/mcb.01051-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chromatin assembly factor 1 (CAF-1) deposits histones H3 and H4 rapidly behind replication forks through an interaction with the proliferating cell nuclear antigen (PCNA), a DNA polymerase processivity factor that also binds to a number of replication enzymes and other proteins that act on nascent DNA. The mechanisms that enable CAF-1 and other PCNA-binding proteins to function harmoniously at the replication fork are poorly understood. Here we report that the large subunit of human CAF-1 (p150) contains two distinct PCNA interaction peptides (PIPs). The N-terminal PIP binds strongly to PCNA in vitro but, surprisingly, is dispensable for nucleosome assembly and only makes a modest contribution to targeting p150 to DNA replication foci in vivo. In contrast, the internal PIP (PIP2) lacks one of the highly conserved residues of canonical PIPs and binds weakly to PCNA. Surprisingly, PIP2 is essential for nucleosome assembly during DNA replication in vitro and plays a major role in targeting p150 to sites of DNA replication. Unlike canonical PIPs, such as that of p21, the two p150 PIPs are capable of preferentially inhibiting nucleosome assembly, rather than DNA synthesis, suggesting that intrinsic features of these peptides are part of the mechanism that enables CAF-1 to function behind replication forks without interfering with other PCNA-mediated processes.
Collapse
|
181
|
Abstract
Heterochromatin protein 1 (HP1) family members are versatile proteins involved in transcription, chromatin organization, and replication. Recent findings now have implicated HP1 proteins in the DNA damage response as well. Cell-biological approaches showed that reducing the levels of all three HP1 isoforms enhances DNA repair, possibly due to heterochromatin relaxation. Additionally, HP1 is phosphorylated in response to DNA damage, which was suggested to initiate the DNA damage response. These findings have led to the conclusion that heterochromatic proteins are inhibitory to repair and that their dissociation from heterochromatin may facilitate repair. In contrast with an inhibitory role, a more active role for HP1 in DNA repair also was proposed based on the finding that all HP1 isoforms are recruited to UV-induced lesions, oxidative lesions, and DNA breaks. The loss of HP1 renders nematodes highly sensitive to DNA damage, and mice lacking HP1beta suffer from genomic instability, suggesting that the loss of HP1 is not necessarily beneficial for repair. These findings raise the possibility that HP1 facilitates DNA repair by reorganizing chromatin, which may involve interactions between phosphorylated HP1 and other DNA damage response proteins. Taken together, these studies illustrate an emerging role of HP1 proteins in the response to genotoxic stress.
Collapse
|
182
|
Franz H, Mosch K, Soeroes S, Urlaub H, Fischle W. Multimerization and H3K9me3 binding are required for CDYL1b heterochromatin association. J Biol Chem 2009; 284:35049-59. [PMID: 19808672 PMCID: PMC2787366 DOI: 10.1074/jbc.m109.052332] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteins containing defined recognition modules mediate readout and translation of histone modifications. These factors are thought to initiate downstream signaling events regulating chromatin structure and function. We identified CDYL1 as an interaction partner of histone H3 trimethylated on lysine 9 (H3K9me3). CDYL1 belongs to a family of chromodomain factors found in vertebrates. We show that three different splicing variants of CDYL1, a, b, and c, are differentially expressed in various tissues with CDYL1b being the most abundant variant. Although all three splicing variants share a common C-terminal enoyl-CoA hydratase-like domain, only CDYL1b contains a functional chromodomain implicated in H3K9me3 binding. A splicing event introducing an N-terminal extension right at the beginning of the chromodomain of CDYL1a inactivates its chromodomain. CDYL1c does not contain a chromodomain at all. Although CDYL1b displays binding affinity to methyl-lysine residues in different sequence context similar to chromodomains in other chromatin factors, we demonstrate that the CDYL1b chromodomain/H3K9me3 interaction is necessary but not sufficient for association of the factor with heterochromatin. Indeed, multimerization of the protein via the enoyl-CoA hydratase-like domain is essential for H3K9me3 chromatin binding in vitro and heterochromatin localization in vivo. In agreement, overexpression of CDYL1c that can multimerize, but does not interact with H3K9me3 can displace CDYL1b from heterochromatin. Our results imply that multimeric binding to H3K9me3 by CDYL1b homomeric complexes is essential for efficient chromatin targeting. We suggest that similar multivalent binding stably anchors other histone modification binding factors on their target chromatin regions.
Collapse
Affiliation(s)
- Henriette Franz
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
183
|
Zarebski M, Wiernasz E, Dobrucki JW. Recruitment of heterochromatin protein 1 to DNA repair sites. Cytometry A 2009; 75:619-25. [PMID: 19479850 DOI: 10.1002/cyto.a.20734] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heterochromatin protein 1 (HP1) was originally identified as a constitutive component of heterochromatin. However it is recognized now that it plays an important role in a number of dynamic processes in the cell nucleus, including transcriptional repression and regulation of euchromatic genes. Recent reports demonstrate that HP1 may be involved in the DNA damage response. Two seemingly contradictory phenomena have been observed-HP1 detachment from chromatin and HP1 recruitment to damaged DNA foci. Based on quantitative FRAP and FLIP studies carefully designed to minimize phototoxicity, we demonstrate that HP1 is recruited to the damaged regions in hetero- as well as euchromatin within a few minutes after damage.
Collapse
|
184
|
Flueck C, Bartfai R, Volz J, Niederwieser I, Salcedo-Amaya AM, Alako BTF, Ehlgen F, Ralph SA, Cowman AF, Bozdech Z, Stunnenberg HG, Voss TS. Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLoS Pathog 2009; 5:e1000569. [PMID: 19730695 PMCID: PMC2731224 DOI: 10.1371/journal.ppat.1000569] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 08/07/2009] [Indexed: 02/01/2023] Open
Abstract
Epigenetic processes are the main conductors of phenotypic variation in eukaryotes. The malaria parasite Plasmodium falciparum employs antigenic variation of the major surface antigen PfEMP1, encoded by 60 var genes, to evade acquired immune responses. Antigenic variation of PfEMP1 occurs through in situ switches in mono-allelic var gene transcription, which is PfSIR2-dependent and associated with the presence of repressive H3K9me3 marks at silenced loci. Here, we show that P. falciparum heterochromatin protein 1 (PfHP1) binds specifically to H3K9me3 but not to other repressive histone methyl marks. Based on nuclear fractionation and detailed immuno-localization assays, PfHP1 constitutes a major component of heterochromatin in perinuclear chromosome end clusters. High-resolution genome-wide chromatin immuno-precipitation demonstrates the striking association of PfHP1 with virulence gene arrays in subtelomeric and chromosome-internal islands and a high correlation with previously mapped H3K9me3 marks. These include not only var genes, but also the majority of P. falciparum lineage-specific gene families coding for exported proteins involved in host-parasite interactions. In addition, we identified a number of PfHP1-bound genes that were not enriched in H3K9me3, many of which code for proteins expressed during invasion or at different life cycle stages. Interestingly, PfHP1 is absent from centromeric regions, implying important differences in centromere biology between P. falciparum and its human host. Over-expression of PfHP1 results in an enhancement of variegated expression and highlights the presence of well-defined heterochromatic boundaries. In summary, we identify PfHP1 as a major effector of virulence gene silencing and phenotypic variation. Our results are instrumental for our understanding of this widely used survival strategy in unicellular pathogens.
Collapse
Affiliation(s)
- Christian Flueck
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Basle, Switzerland
| | - Richard Bartfai
- Department of Molecular Biology, Nijmegen Center of Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Jennifer Volz
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Igor Niederwieser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Basle, Switzerland
| | - Adriana M. Salcedo-Amaya
- Department of Molecular Biology, Nijmegen Center of Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Blaise T. F. Alako
- Department of Molecular Biology, Nijmegen Center of Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Florian Ehlgen
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Alan F. Cowman
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Nijmegen Center of Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Basle, Switzerland
- * E-mail:
| |
Collapse
|
185
|
Domains of heterochromatin protein 1 required for Drosophila melanogaster heterochromatin spreading. Genetics 2009; 182:967-77. [PMID: 19487560 DOI: 10.1534/genetics.109.105338] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centric regions of eukaryotic genomes are packaged into heterochromatin, which possesses the ability to spread along the chromosome and silence gene expression. The process of spreading has been challenging to study at the molecular level due to repetitious sequences within centric regions. A heterochromatin protein 1 (HP1) tethering system was developed that generates "ectopic heterochromatin" at sites within euchromatic regions of the Drosophila melanogaster genome. Using this system, we show that HP1 dimerization and the PxVxL interaction platform formed by dimerization of the HP1 chromo shadow domain are necessary for spreading to a downstream reporter gene located 3.7 kb away. Surprisingly, either the HP1 chromo domain or the chromo shadow domain alone is sufficient for spreading and silencing at a downstream reporter gene located 1.9 kb away. Spreading is dependent on at least two H3K9 methyltransferases, with SU(VAR)3-9 playing a greater role at the 3.7-kb reporter and dSETDB1 predominately acting at the 1.9 kb reporter. These data support a model whereby HP1 takes part in multiple mechanisms of silencing and spreading.
Collapse
|
186
|
Lin H, Yin H. A novel epigenetic mechanism in Drosophila somatic cells mediated by Piwi and piRNAs. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2009; 73:273-81. [PMID: 19270080 PMCID: PMC2810500 DOI: 10.1101/sqb.2008.73.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Small noncoding RNAs have emerged as key players in epigenetic regulation. Recently, a novel class of small RNAs that interact with Piwi proteins has been discovered in the mammalian and Drosophila germ line. These Piwi-interacting RNAs (piRNAs) represent a distinct small RNA pathway that is widely thought to function only in the germ line. In this chapter, we review our recent work with our collaborators on the epigenetic function of the Drosophila Piwi protein and its associated piRNAs in somatic cells. This work has revealed a novel epigenetic mechanism mediated by Piwi and its associated piRNAs in somatic cells that might also be applicable to the germ line. On the basis of these results, we propose a "Piwi-piRNA guidance hypothesis" for Piwi/piRNA-mediated epigenetic programming, in which the Piwi-piRNA complex serves as sequence-recognition machinery that recruits epigenetic effectors such as heterochromatin protein 1a (HP1a) to specific sites in the genome to execute epigenetic regulation.
Collapse
Affiliation(s)
- H Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | | |
Collapse
|
187
|
The HP1-p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nat Struct Mol Biol 2009; 15:972-9. [PMID: 19172751 DOI: 10.1038/nsmb.1470] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The heterochromatin protein 1 (HP1)-rich heterochromatin domains next to centromeres are crucial for chromosome segregation during mitosis. This mitotic function requires their faithful reproduction during the preceding S phase, a process whose mechanism and regulation are current puzzles. Here we show that p150, a subunit of chromatin assembly factor 1, has a key role in the replication of pericentric heterochromatin and S-phase progression in mouse cells, independently of its known function in histone deposition. By a combination of depletion and complementation assays in vivo, we link this unique function of p150 to its ability to interact with HP1. Absence of this functional interaction triggers S-phase arrest at the time of replication of pericentromeric heterochromatin, without eliciting known DNA-based checkpoint pathways. Notably, in cells lacking the histone methylases Suv39h, in which pericentric domains do not show HP1 accumulation, p150 is dispensable for S-phase progression.
Collapse
|
188
|
Lin CH, Li B, Swanson S, Zhang Y, Florens L, Washburn MP, Abmayr SM, Workman JL. Heterochromatin protein 1a stimulates histone H3 lysine 36 demethylation by the Drosophila KDM4A demethylase. Mol Cell 2008; 32:696-706. [PMID: 19061644 PMCID: PMC2642969 DOI: 10.1016/j.molcel.2008.11.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 07/23/2008] [Accepted: 11/01/2008] [Indexed: 01/01/2023]
Abstract
Recent discoveries of histone demethylases demonstrate that histone methylation is reversible. However, mechanisms governing the targeting and regulation of histone demethylation remain elusive. Here we report that a Drosophila melanogaster JmjC domain-containing protein, dKDM4A, is a histone H3K36 demethylase. dKDM4A specifically demethylates H3K36me2 and H3K36me3 both in vitro and in vivo. Affinity purification and mass spectrometry analysis revealed that heterochromatin protein 1a (HP1a) associates with dKDMA4A. We found that the chromo shadow domain of HP1a and a HP1-interacting motif of dKDM4A are responsible for this interaction. HP1a stimulates the histone H3K36 demethylation activity of dKDM4A, and this stimulation depends on the H3K9me-binding motif of HP1a. Finally, we provide in vivo evidence suggesting that HP1a and dKDM4A interact with each other and that loss of HP1a leads to an increased level of histone H3K36me3. Collectively, these results suggest a function of HP1a in transcription facilitating H3K36 demethylation at transcribed and/or heterochromatin regions.
Collapse
Affiliation(s)
- Chia-Hui Lin
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110
| | | | - Selene Swanson
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110
| | - Ying Zhang
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110
| | - Michael P. Washburn
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110
| | - Susan M. Abmayr
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110
| | - Jerry L. Workman
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110
| |
Collapse
|
189
|
Abstract
All cells of a given organism contain nearly identical genetic information, yet tissues display unique gene expression profiles. This specificity is in part due to transcriptional control by epigenetic mechanisms that involve post-translational modifications of histones. These modifications affect the folding of the chromatin fiber and serve as binding sites for non-histone chromosomal proteins. Here we discuss functions of the Heterochromatin Protein 1 (HP1) family of proteins that recognize H3K9me, an epigenetic mark generated by the histone methyltransferases SU(VAR)3-9 and orthologues. Loss of HP1 proteins causes chromosome segregation defects and lethality in some organisms; a reduction in levels of HP1 family members is associated with cancer progression in humans. These consequences are likely due to the role of HP1 in centromere stability, telomere capping and the regulation of euchromatic and heterochromatic gene expression.
Collapse
Affiliation(s)
| | | | - Lori L. Wallrath
- Department of Biochemistry, 3136 MERF, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
190
|
Aucott R, Bullwinkel J, Yu Y, Shi W, Billur M, Brown JP, Menzel U, Kioussis D, Wang G, Reisert I, Weimer J, Pandita RK, Sharma GG, Pandita TK, Fundele R, Singh PB. HP1-beta is required for development of the cerebral neocortex and neuromuscular junctions. J Cell Biol 2008; 183:597-606. [PMID: 19015315 PMCID: PMC2582898 DOI: 10.1083/jcb.200804041] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 10/09/2008] [Indexed: 11/22/2022] Open
Abstract
HP1 proteins are thought to be modulators of chromatin organization in all mammals, yet their exact physiological function remains unknown. In a first attempt to elucidate the function of these proteins in vivo, we disrupted the murine Cbx1 gene, which encodes the HP1-beta isotype, and show that the Cbx1(-/-) -null mutation leads to perinatal lethality. The newborn mice succumbed to acute respiratory failure, whose likely cause is the defective development of neuromuscular junctions within the endplate of the diaphragm. We also observe aberrant cerebral cortex development in Cbx1(-/-) mutant brains, which have reduced proliferation of neuronal precursors, widespread cell death, and edema. In vitro cultures of neurospheres from Cbx1(-/-) mutant brains reveal a dramatic genomic instability. Our results demonstrate that HP1 proteins are not functionally redundant and that they are likely to regulate lineage-specific changes in heterochromatin organization.
Collapse
Affiliation(s)
- Rebecca Aucott
- Division of Immunoepigenetics, Department of Immunology and Cell Biology, Research Center Borstel, Borstel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Li WX. Canonical and non-canonical JAK-STAT signaling. Trends Cell Biol 2008; 18:545-51. [PMID: 18848449 PMCID: PMC3082280 DOI: 10.1016/j.tcb.2008.08.008] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 08/07/2008] [Accepted: 08/12/2008] [Indexed: 12/11/2022]
Abstract
Aberrant activation of the JAK-STAT pathway has been implicated in many human cancers. It has widely been assumed that the effects of STAT activation are mediated by direct transcriptional induction of STAT target genes. However, recent findings in Drosophila have identified a non-canonical mode of JAK-STAT signaling, which directly controls heterochromatin stability. This indicates that the JAK-STAT pathway also controls cellular epigenetic status, which affects expression of genes beyond those under direct STAT transcriptional control. Given the evolutionary conservation of the canonical pathway among different species, the non-canonical mode of JAK-STAT signaling might also operate in vertebrates. In this review, canonical versus non-canonical JAK-STAT signaling and the implications for gene regulation and cancer formation are discussed.
Collapse
Affiliation(s)
- Willis X Li
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, KMRB 2-9641, Rochester, NY 14642, USA.
| |
Collapse
|
192
|
Riclet R, Chendeb M, Vonesch JL, Koczan D, Thiesen HJ, Losson R, Cammas F. Disruption of the interaction between transcriptional intermediary factor 1{beta} and heterochromatin protein 1 leads to a switch from DNA hyper- to hypomethylation and H3K9 to H3K27 trimethylation on the MEST promoter correlating with gene reactivation. Mol Biol Cell 2008; 20:296-305. [PMID: 18923144 DOI: 10.1091/mbc.e08-05-0510] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Here, we identified the imprinted mesoderm-specific transcript (MEST) gene as an endogenous TIF1beta primary target gene and demonstrated that transcriptional intermediary factor (TIF) 1beta, through its interaction with heterochromatin protein (HP) 1, is essential in establishing and maintaining a local heterochromatin-like structure on MEST promoter region characterized by H3K9 trimethylation and hypoacetylation, H4K20 trimethylation, DNA hypermethylation, and enrichment in HP1 that correlates with preferential association to foci of pericentromeric heterochromatin and transcriptional repression. On disruption of the interaction between TIF1beta and HP1, TIF1beta is released from the promoter region, and there is a switch from DNA hypermethylation and histone H3K9 trimethylation to DNA hypomethylation and histone H3K27 trimethylation correlating with rapid reactivation of MEST expression. Interestingly, we provide evidence that the imprinted MEST allele DNA methylation is insensitive to TIF1beta loss of function, whereas the nonimprinted allele is regulated through a distinct TIF1beta-DNA methylation mechanism.
Collapse
Affiliation(s)
- Raphaël Riclet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur/Collège de France, Illkirch-Cedex, France
| | | | | | | | | | | | | |
Collapse
|
193
|
Balance between distinct HP1 family proteins controls heterochromatin assembly in fission yeast. Mol Cell Biol 2008; 28:6973-88. [PMID: 18809570 DOI: 10.1128/mcb.00791-08] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heterochromatin protein 1 (HP1) is a conserved chromosomal protein with important roles in chromatin packaging and gene silencing. In fission yeast, two HP1 family proteins, Swi6 and Chp2, are involved in transcriptional silencing at heterochromatic regions, but how they function and whether they act cooperatively or differentially in heterochromatin assembly remain elusive. Here, we show that both Swi6 and Chp2 are required for the assembly of fully repressive heterochromatin, in which they play distinct, nonoverlapping roles. Swi6 is expressed abundantly and plays a dose-dependent role in forming a repressive structure through its self-association property. In contrast, Chp2, expressed at a lower level, does not show a simple dose-dependent repressive activity. However, it contributes to the recruitment of chromatin-modulating factors Clr3 and Epe1 and possesses a novel ability to bind the chromatin-enriched nuclear subfraction that is closely linked with its silencing function. Finally, we demonstrate that a proper balance between Swi6 and Chp2 is critical for heterochromatin assembly. Our findings provide novel insight into the distinct and cooperative functions of multiple HP1 family proteins in the formation of higher-order chromatin structure.
Collapse
|
194
|
Direct interaction between DNA methyltransferase DIM-2 and HP1 is required for DNA methylation in Neurospora crassa. Mol Cell Biol 2008; 28:6044-55. [PMID: 18678653 DOI: 10.1128/mcb.00823-08] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA methylation is involved in gene silencing and genomic stability in mammals, plants, and fungi. Genetics studies of Neurospora crassa have revealed that a DNA methyltransferase (DIM-2), a histone H3K9 methyltransferase (DIM-5), and heterochromatin protein 1 (HP1) are required for DNA methylation. We explored the interrelationships of these components of the methylation machinery. A yeast two-hybrid screen revealed that HP1 interacts with DIM-2. We confirmed the interaction in vivo and demonstrated that it involves a pair of PXVXL-related motifs in the N-terminal region of DIM-2 and the chromo shadow domain of HP1. Both regions are essential for proper DNA methylation. We also determined that DIM-2 and HP1 form a stable complex independently of the trimethylation of histone H3K9, although the association of DIM-2 with its substrate sequences depends on trimethyl-H3K9. The DIM-2/HP1 complex does not include DIM-5. We conclude that DNA methylation in Neurospora is largely or exclusively the result of a unidirectional pathway in which DIM-5 methylates histone H3K9 and then the DIM-2/HP1 complex recognizes the resulting trimethyl-H3K9 mark via the chromo domain of HP1.
Collapse
|
195
|
Chang CW, Chou HY, Lin YS, Huang KH, Chang CJ, Hsu TC, Lee SC. Phosphorylation at Ser473 regulates heterochromatin protein 1 binding and corepressor function of TIF1beta/KAP1. BMC Mol Biol 2008; 9:61. [PMID: 18590578 PMCID: PMC2474647 DOI: 10.1186/1471-2199-9-61] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 07/01/2008] [Indexed: 01/06/2023] Open
Abstract
Background As an epigenetic regulator, the transcriptional intermediary factor 1β (TIF1β)/KAP1/TRIM28) has been linked to gene expression and chromatin remodeling at specific loci by association with members of the heterochromatin protein 1 (HP1) family and various other chromatin factors. The interaction between TIF1β and HP1 is crucial for heterochromatin formation and maintenance. The HP1-box, PXVXL, of TIF1β is responsible for its interaction with HP1. However, the underlying mechanism of how the interaction is regulated remains poorly understood. Results This work demonstrates that TIF1β is phosphorylated on Ser473, the alteration of which is dynamically associated with cell cycle progression and functionally linked to transcriptional regulation. Phosphorylation of TIF1β/Ser473 coincides with the induction of cell cycle gene cyclin A2 at the S-phase. Interestingly, chromatin immunoprecipitation demonstrated that the promoter of cyclin A2 gene is occupied by TIF1β and that such occupancy is inversely correlated with Ser473 phosphorylation. Additionally, when HP1β was co-expressed with TIF1β/S473A, but not TIF1β/S473E, the colocalization of TIF1β/S473A and HP1β to the promoters of Cdc2 and Cdc25A was enhanced. Non-phosphorylated TIF1β/Ser473 allowed greater TIF1β association with the regulatory regions and the consequent repression of these genes. Consistent with possible inhibition of TIF1β's corepressor function, the phosphorylation of the Ser473 residue, which is located near the HP1-interacting PXVXL motif, compromised the formation of TIF1β-HP1 complex. Finally, we found that the phosphorylation of TIF1β/Ser473 is mediated by the PKCδ pathway and is closely linked to cell proliferation. Conclusion The modulation of HP1β-TIF1β interaction through the phosphorylation/de-phosphorylation of TIF1β/Ser473 may constitute a molecular switch that regulates the expression of particular genes. Higher levels of phosphorylated TIF1β/Ser473 may be associated with the expression of key regulatory genes for cell cycle progression and the proliferation of cells.
Collapse
Affiliation(s)
- Chiung-Wen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
196
|
Zlatanova J, Seebart C, Tomschik M. The linker-protein network: control of nucleosomal DNA accessibility. Trends Biochem Sci 2008; 33:247-53. [PMID: 18468442 DOI: 10.1016/j.tibs.2008.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 12/26/2022]
Abstract
Numerous studies have recently addressed the accessibility of nucleosomal DNA to protein factors. Two popular concepts - the histone code and chromatin remodeling - consider the nucleosome as a passive entity that 'waits' to be marked by histone modifications and is 'mobilized' by ATP-dependent remodelers. Here, we propose a holistic view of the nucleosome as an active, dynamic entity, the accessibility of which is controlled by binding of different linker proteins to the DNA entry/exit site. The linker proteins might directly compete for this binding site; alternatively, protein chaperones and/or chromatin remodelers might exchange one linker protein for another. Finally, according to our proposed model, the exchange factors are themselves controlled by post-translational modifications or binding of protein partners, to respond to the ever-changing intra- and extra-cellular environment.
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | |
Collapse
|
197
|
Shi S, Larson K, Guo D, Lim SJ, Dutta P, Yan SJ, Li WX. Drosophila STAT is required for directly maintaining HP1 localization and heterochromatin stability. Nat Cell Biol 2008; 10:489-96. [PMID: 18344984 PMCID: PMC3083919 DOI: 10.1038/ncb1713] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 01/22/2008] [Indexed: 11/08/2022]
Abstract
STAT (Signal transducer and activator of transcription) is a potent transcription factor and its aberrant activation by phosphorylation is associated with human cancers. We have shown previously that overactivation of JAK, which phosphorylates STAT, disrupts heterochromatin formation globally in Drosophila melanogaster. However, it remains unclear how this effect is mediated and whether STAT is involved. Here, we demonstrate that Drosophila STAT (STAT92E) is involved in controlling heterochromatin protein 1 (HP1) distribution and heterochromatin stability. We found, unexpectedly, that loss of STAT92E, had the same effects as overactivation of JAK in disrupting heterochromatin formation and heterochromatic gene silencing, whereas overexpression of STAT92E had the opposite effects. We have further shown that the unphosphorylated or 'transcriptionally inactive' form of STAT92E is localized on heterochromatin in association with HP1, and is required for stabilizing HP1 localization and histone H3 Lys 9 methylation (H3mK9) . However, activation by phosphorylation reduces heterochromatin-associated STAT92E, causing HP1 displacement and heterochromatin destabilization. Thus, reducing levels of unphosphorylated STAT92E, either by loss of STAT92E or increased phosphorylation, causes heterochromatin instability. These results suggest that activation of STAT by phosphorylation controls both access to chromatin and activity of the transcription machinery.
Collapse
Affiliation(s)
- Song Shi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kimberly Larson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dongdong Guo
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Su Jun Lim
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Pranabananda Dutta
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shian-Jang Yan
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Willis X. Li
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
198
|
Papanayotou C, Mey A, Birot AM, Saka Y, Boast S, Smith JC, Samarut J, Stern CD. A mechanism regulating the onset of Sox2 expression in the embryonic neural plate. PLoS Biol 2008; 6:e2. [PMID: 18184035 PMCID: PMC2174969 DOI: 10.1371/journal.pbio.0060002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 11/26/2007] [Indexed: 12/12/2022] Open
Abstract
In vertebrate embryos, the earliest definitive marker for the neural plate, which will give rise to the entire central nervous system, is the transcription factor Sox2. Although some of the extracellular signals that regulate neural plate fate have been identified, we know very little about the mechanisms controlling Sox2 expression and thus neural plate identity. Here, we use electroporation for gain- and loss-of-function in the chick embryo, in combination with bimolecular fluorescence complementation, two-hybrid screens, chromatin immunoprecipitation, and reporter assays to study protein interactions that regulate expression of N2, the earliest enhancer of Sox2 to be activated and which directs expression to the largest part of the neural plate. We show that interactions between three coiled-coil domain proteins (ERNI, Geminin, and BERT), the heterochromatin proteins HP1alpha and HP1gamma acting as repressors, and the chromatin-remodeling enzyme Brm acting as activator control the N2 enhancer. We propose that this mechanism regulates the timing of Sox2 expression as part of the process of establishing neural plate identity.
Collapse
Affiliation(s)
- Costis Papanayotou
- Department of Anatomy & Developmental Biology, University College London, London, United Kingdom
| | - Anne Mey
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, CNRS/INRA, Lyon, France
| | - Anne-Marie Birot
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, CNRS/INRA, Lyon, France
| | - Yasushi Saka
- Wellcome/Cancer Research UK Gurdon Institute for Cancer and Developmental Biology, Cambridge, United Kingdom
| | - Sharon Boast
- Department of Anatomy & Developmental Biology, University College London, London, United Kingdom
| | - Jim C Smith
- Wellcome/Cancer Research UK Gurdon Institute for Cancer and Developmental Biology, Cambridge, United Kingdom
| | - Jacques Samarut
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, CNRS/INRA, Lyon, France
| | - Claudio D Stern
- Department of Anatomy & Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
199
|
Hip, an HP1-interacting protein, is a haplo- and triplo-suppressor of position effect variegation. Proc Natl Acad Sci U S A 2007; 105:204-9. [PMID: 18162556 DOI: 10.1073/pnas.0705595105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Drosophila heterochromatin protein 1 (HP1) regulates epigenetic gene silencing and heterochromatin formation by promoting and maintaining chromatin condensation. Here we report the identification and characterization of an HP1-interacting protein (Hip). Hip interacts with HP1 in vitro and is associated with HP1 in vivo. This interaction is mediated by at least three independent but similar HP1-binding modules of the Hip protein. Hip and HP1 completely colocalize in the pericentric heterochromatin, and both haplo- and triplo-dosage mutations act as dominant suppressors of position effect variegation. These findings identify a player in heterochromatinization and suggest that Hip cooperates with HP1 in chromatin remodeling and gene silencing.
Collapse
|
200
|
Brower-Toland B, Findley SD, Jiang L, Liu L, Yin H, Dus M, Zhou P, Elgin SC, Lin H. Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev 2007; 21:2300-11. [PMID: 17875665 PMCID: PMC1973144 DOI: 10.1101/gad.1564307] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The interface between cellular systems involving small noncoding RNAs and epigenetic change remains largely unexplored in metazoans. RNA-induced silencing systems have the potential to target particular regions of the genome for epigenetic change by locating specific sequences and recruiting chromatin modifiers. Noting that several genes encoding RNA silencing components have been implicated in epigenetic regulation in Drosophila, we sought a direct link between the RNA silencing system and heterochromatin components. Here we show that PIWI, an ARGONAUTE/PIWI protein family member that binds to Piwi-interacting RNAs (piRNAs), strongly and specifically interacts with heterochromatin protein 1a (HP1a), a central player in heterochromatic gene silencing. The HP1a dimer binds a PxVxL-type motif in the N-terminal domain of PIWI. This motif is required in fruit flies for normal silencing of transgenes embedded in heterochromatin. We also demonstrate that PIWI, like HP1a, is itself a chromatin-associated protein whose distribution in polytene chromosomes overlaps with HP1a and appears to be RNA dependent. These findings implicate a direct interaction between the PIWI-mediated small RNA mechanism and heterochromatin-forming pathways in determining the epigenetic state of the fly genome.
Collapse
Affiliation(s)
- Brent Brower-Toland
- Department of Biology, Washington University, Saint Louis, Missouri 63130, USA
| | - Seth D. Findley
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina 27710, USA
| | - Ling Jiang
- Department of Biochemistry, Duke University Medical School, Durham, North Carolina 27710, USA
| | - Li Liu
- Yale Stem Cell Center, Yale University School of Medicine, Connecticut 06509, USA
| | - Hang Yin
- Yale Stem Cell Center, Yale University School of Medicine, Connecticut 06509, USA
| | - Monica Dus
- Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University Medical School, Durham, North Carolina 27710, USA
| | - Sarah C.R. Elgin
- Department of Biology, Washington University, Saint Louis, Missouri 63130, USA
- E-MAIL ; FAX (314) 935-5348
| | - Haifan Lin
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina 27710, USA
- Yale Stem Cell Center, Yale University School of Medicine, Connecticut 06509, USA
- Corresponding authors.E-MAIL ; FAX (203) 785-4305
| |
Collapse
|