151
|
Tsai RYL. Balancing self-renewal against genome preservation in stem cells: How do they manage to have the cake and eat it too? Cell Mol Life Sci 2016; 73:1803-23. [PMID: 26886024 PMCID: PMC5040593 DOI: 10.1007/s00018-016-2152-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/18/2016] [Accepted: 01/28/2016] [Indexed: 01/22/2023]
Abstract
Stem cells are endowed with the awesome power of self-renewal and multi-lineage differentiation that allows them to be major contributors to tissue homeostasis. Owing to their longevity and self-renewal capacity, they are also faced with a higher risk of genomic damage compared to differentiated cells. Damage on the genome, if not prevented or repaired properly, will threaten the survival of stem cells and culminate in organ failure, premature aging, or cancer formation. It is therefore of paramount importance that stem cells remain genomically stable throughout life. Given their unique biological and functional requirement, stem cells are thought to manage genotoxic stress somewhat differently from non-stem cells. The focus of this article is to review the current knowledge on how stem cells escape the barrage of oxidative and replicative DNA damage to stay in self-renewal. A clear statement on this subject should help us better understand tissue regeneration, aging, and cancer.
Collapse
Affiliation(s)
- Robert Y L Tsai
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, 2121 W. Holcombe Blvd, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
152
|
Abstract
Proliferating cell nuclear antigen (PCNA) plays critical roles in many aspects of DNA replication and replication-associated processes, including translesion synthesis, error-free damage bypass, break-induced replication, mismatch repair, and chromatin assembly. Since its discovery, our view of PCNA has evolved from a replication accessory factor to the hub protein in a large protein-protein interaction network that organizes and orchestrates many of the key events at the replication fork. We begin this review article with an overview of the structure and function of PCNA. We discuss the ways its many interacting partners bind and how these interactions are regulated by posttranslational modifications such as ubiquitylation and sumoylation. We then explore the many roles of PCNA in normal DNA replication and in replication-coupled DNA damage tolerance and repair processes. We conclude by considering how PCNA can interact physically with so many binding partners to carry out its numerous roles. We propose that there is a large, dynamic network of linked PCNA molecules at and around the replication fork. This network would serve to increase the local concentration of all the proteins necessary for DNA replication and replication-associated processes and to regulate their various activities.
Collapse
|
153
|
Pustovalova Y, Magalhães MTQ, D'Souza S, Rizzo AA, Korza G, Walker GC, Korzhnev DM. Interaction between the Rev1 C-Terminal Domain and the PolD3 Subunit of Polζ Suggests a Mechanism of Polymerase Exchange upon Rev1/Polζ-Dependent Translesion Synthesis. Biochemistry 2016; 55:2043-53. [PMID: 26982350 DOI: 10.1021/acs.biochem.5b01282] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Translesion synthesis (TLS) is a mutagenic branch of cellular DNA damage tolerance that enables bypass replication over DNA lesions carried out by specialized low-fidelity DNA polymerases. The replicative bypass of most types of DNA damage is performed in a two-step process of Rev1/Polζ-dependent TLS. In the first step, a Y-family TLS enzyme, typically Polη, Polι, or Polκ, inserts a nucleotide across a DNA lesion. In the second step, a four-subunit B-family DNA polymerase Polζ (Rev3/Rev7/PolD2/PolD3 complex) extends the distorted DNA primer-template. The coordinated action of error-prone TLS enzymes is regulated through their interactions with the two scaffold proteins, the sliding clamp PCNA and the TLS polymerase Rev1. Rev1 interactions with all other TLS enzymes are mediated by its C-terminal domain (Rev1-CT), which can simultaneously bind the Rev7 subunit of Polζ and Rev1-interacting regions (RIRs) from Polη, Polι, or Polκ. In this work, we identified a previously unknown RIR motif in the C-terminal part of PolD3 subunit of Polζ whose interaction with the Rev1-CT is among the tightest mediated by RIR motifs. Three-dimensional structure of the Rev1-CT/PolD3-RIR complex determined by NMR spectroscopy revealed a structural basis for the relatively high affinity of this interaction. The unexpected discovery of PolD3-RIR motif suggests a mechanism of "inserter" to "extender" DNA polymerase switch upon Rev1/Polζ-dependent TLS, in which the PolD3-RIR binding to the Rev1-CT (i) helps displace the "inserter" Polη, Polι, or Polκ from its complex with Rev1, and (ii) facilitates assembly of the four-subunit "extender" Polζ through simultaneous interaction of Rev1-CT with Rev7 and PolD3 subunits.
Collapse
Affiliation(s)
- Yulia Pustovalova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - Mariana T Q Magalhães
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - Sanjay D'Souza
- Department of Biology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Alessandro A Rizzo
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - George Korza
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| |
Collapse
|
154
|
Kobayashi S, Keka IS, Guilbaud G, Sale J, Narita T, Abdel-Aziz HI, Wang X, Ogawa S, Sasanuma H, Chiu R, Oestergaard VH, Lisby M, Takeda S. The role of HERC2 and RNF8 ubiquitin E3 ligases in the promotion of translesion DNA synthesis in the chicken DT40 cell line. DNA Repair (Amst) 2016; 40:67-76. [PMID: 26994443 DOI: 10.1016/j.dnarep.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/12/2016] [Accepted: 02/03/2016] [Indexed: 12/20/2022]
Abstract
The replicative DNA polymerases are generally blocked by template DNA damage. The resulting replication arrest can be released by one of two post-replication repair (PRR) pathways, translesion DNA synthesis (TLS) and template switching by homologous recombination (HR). The HERC2 ubiquitin ligase plays a role in homologous recombination by facilitating the assembly of the Ubc13 ubiquitin-conjugating enzyme with the RNF8 ubiquitin ligase. To explore the role of HERC2 and RNF8 in PRR, we examined immunoglobulin diversification in chicken DT40 cells deficient in HERC2 and RNF8. Unexpectedly, the HERC2(-/-) and RNF8(-/-) cells and HERC2(-/-)/RNF8(-/-) double mutant cells exhibit a significant reduction in the rate of immunoglobulin (Ig) hypermutation, compared to wild-type cells. Further, the HERC2(-/-) and RNF8(-/-) mutants exhibit defective maintenance of replication fork progression immediately after exposure to UV while retaining proficient post-replicative gap filling. These mutants are both proficient in mono-ubiquitination of PCNA. Taken together, these results suggest that HERC2 and RNF8 promote TLS past abasic sites and UV-lesions at or very close to stalled replication forks.
Collapse
Affiliation(s)
- Shunsuke Kobayashi
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Islam Shamima Keka
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Guillaume Guilbaud
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Julian Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Takeo Narita
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - H Ismail Abdel-Aziz
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Faculty of Medicine, Seuz Canal University, circular road Ez-Eldeen, Ismailia 41522, Egypt
| | - Xin Wang
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Saki Ogawa
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Roland Chiu
- University College Groningen, University of Groningen, 9718 BG Groningen, Hoendiepskade 23-24, The Netherlands
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
155
|
Kothayer H, Spencer SM, Tripathi K, Westwell AD, Palle K. Synthesis and in vitro anticancer evaluation of some 4,6-diamino-1,3,5-triazine-2-carbohydrazides as Rad6 ubiquitin conjugating enzyme inhibitors. Bioorg Med Chem Lett 2016; 26:2030-4. [PMID: 26965855 DOI: 10.1016/j.bmcl.2016.02.085] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/24/2016] [Accepted: 02/27/2016] [Indexed: 01/30/2023]
Abstract
Series of 4-amino-6-(arylamino)-1,3,5-triazine-2-carbohydrazides (3a-e) and N'-phenyl-4,6-bis(arylamino)-1,3,5-triazine-2-carbohydrazides (6a-e), for ease of readership, we will abbreviate our compound names as 'new triazines', have been synthesized, based on the previously reported Rad6B-inhibitory diamino-triazinylmethyl benzoate anticancer agents TZ9 and 4-amino-N'-phenyl-6-(arylamino)-1,3,5-triazine-2-carbohydrazides. Synthesis of the target compounds was readily accomplished in two steps from either bis-aryl/aryl biguanides via reaction of phenylhydrazine or hydrazinehydrate with key 4-amino-6-bis(arylamino)/(arylamino)-1,3,5-triazine-2-carboxylate intermediates. These new triazine derivatives were evaluated for their abilities to inhibit Rad6B ubiquitin conjugation and in vitro anticancer activity against several human cancer cell lines: ovarian (OV90 and A2780), lung (H1299 and A549), breast (MCF-7 and MDA-MB231) and colon (HT29) cancer cells by MTS assays. All the 10 new triazines exhibited superior Rad6B inhibitory activities in comparison to selective Rad6 inhibitor TZ9 that was reported previously. Similarly, new triazines also showed better IC50 values in survival assays of various tumor cell lines. Particularly, new triazines 6a-c, exhibited lower IC50 (3.3-22 μM) values compared to TZ9.
Collapse
Affiliation(s)
- Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Egypt.
| | - Sebastian M Spencer
- Department of Oncologic Sciences, USA Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Kaushlendra Tripathi
- Department of Oncologic Sciences, USA Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Andrew D Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| | - Komaraiah Palle
- Department of Oncologic Sciences, USA Mitchell Cancer Institute, 1660 Springhill Avenue, Mobile, AL 36604, USA
| |
Collapse
|
156
|
Ivanova IG, Maringele L. Polymerases ε and ∂ repair dysfunctional telomeres facilitated by salt. Nucleic Acids Res 2016; 44:3728-38. [PMID: 26883631 PMCID: PMC4856982 DOI: 10.1093/nar/gkw071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/01/2016] [Indexed: 12/19/2022] Open
Abstract
Damaged DNA can be repaired by removal and re-synthesis of up to 30 nucleotides during base or nucleotide excision repair. An important question is what happens when many more nucleotides are removed, resulting in long single-stranded DNA (ssDNA) lesions. Such lesions appear on chromosomes during telomere damage, double strand break repair or after the UV damage of stationary phase cells. Here, we show that long single-stranded lesions, formed at dysfunctional telomeres in budding yeast, are re-synthesized when cells are removed from the telomere-damaging environment. This process requires Pol32, an accessory factor of Polymerase δ. However, re-synthesis takes place even when the telomere-damaging conditions persist, in which case the accessory factors of both polymerases δ and ε are required, and surprisingly, salt. Salt added to the medium facilitates the DNA synthesis, independently of the osmotic stress responses. These results provide unexpected insights into the DNA metabolism and challenge the current view on cellular responses to telomere dysfunction.
Collapse
Affiliation(s)
- Iglika G Ivanova
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle upon Tyne, NE2 44H, UK
| | - Laura Maringele
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle upon Tyne, NE2 44H, UK
| |
Collapse
|
157
|
Thompson GL, Roth CC, Kuipers MA, Tolstykh GP, Beier HT, Ibey BL. Permeabilization of the nuclear envelope following nanosecond pulsed electric field exposure. Biochem Biophys Res Commun 2015; 470:35-40. [PMID: 26721436 DOI: 10.1016/j.bbrc.2015.12.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/20/2015] [Indexed: 01/14/2023]
Abstract
Permeabilization of cell membranes occurs upon exposure to a threshold absorbed dose (AD) of nanosecond pulsed electric fields (nsPEF). The ultimate, physiological bioeffect of this exposure depends on the type of cultured cell and environment, indicating that cell-specific pathways and structures are stimulated. Here we investigate 10 and 600 ns duration PEF effects on Chinese hamster ovary (CHO) cell nuclei, where our hypothesis is that pulse disruption of the nuclear envelope membrane leads to observed cell death and decreased viability 24 h post-exposure. To observe short-term responses to nsPEF exposure, CHO cells have been stably transfected with two fluorescently-labeled proteins known to be sequestered for cellular chromosomal function within the nucleus - histone-2b (H2B) and proliferating cell nuclear antigen (PCNA). H2B remains associated with chromatin after nsPEF exposure, whereas PCNA leaks out of nuclei permeabilized by a threshold AD of 10 and 600 ns PEF. A downturn in 24 h viability, measured by MTT assay, is observed at the number of pulses required to induce permeabilization of the nucleus.
Collapse
Affiliation(s)
- Gary L Thompson
- Oak Ridge Institute for Science & Education, Joint Base San Antonio Fort Sam Houston, TX, 78234, USA.
| | - Caleb C Roth
- Department of Radiological Sciences, University of Texas Health Science Center at San Antonio, TX, 78234, USA
| | - Marjorie A Kuipers
- Radio Frequency Radiation Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio Fort Sam Houston, TX, 78234, USA
| | - Gleb P Tolstykh
- General Dynamics IT, Joint Base San Antonio Fort Sam Houston, TX, 78234, USA
| | - Hope T Beier
- Optical Radiation Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio Fort Sam Houston, TX, 78234, USA
| | - Bennett L Ibey
- Radio Frequency Radiation Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio Fort Sam Houston, TX, 78234, USA
| |
Collapse
|
158
|
Lau WCY, Li Y, Zhang Q, Huen MSY. Molecular architecture of the Ub-PCNA/Pol η complex bound to DNA. Sci Rep 2015; 5:15759. [PMID: 26503230 PMCID: PMC4621508 DOI: 10.1038/srep15759] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/29/2015] [Indexed: 01/13/2023] Open
Abstract
Translesion synthesis (TLS) is the mechanism by which DNA polymerases replicate through unrepaired DNA lesions. TLS is activated by monoubiquitination of the homotrimeric proliferating cell nuclear antigen (PCNA) at lysine-164, followed by the switch from replicative to specialized polymerases at DNA damage sites. Pol η belongs to the Y-Family of specialized polymerases that can efficiently bypass UV-induced lesions. Like other members of the Y-Family polymerases, its recruitment to the damaged sites is mediated by the interaction with monoubiquitinated PCNA (Ub-PCNA) via its ubiquitin-binding domain and non-canonical PCNA-interacting motif in the C-terminal region. The structural determinants underlying the direct recognition of Ub-PCNA by Pol η, or Y-Family polymerases in general, remain largely unknown. Here we report a structure of the Ub-PCNA/Pol η complex bound to DNA determined by single-particle electron microscopy (EM). The overall obtained structure resembles that of the editing PCNA/PolB complex. Analysis of the map revealed the conformation of ubiquitin that binds the C-terminal domain of Pol η. Our present study suggests that the Ub-PCNA/Pol η interaction requires the formation of a structured binding interface, which is dictated by the inherent flexibility of Ub-PCNA.
Collapse
Affiliation(s)
- Wilson C Y Lau
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Yinyin Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qinfen Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Michael S Y Huen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
159
|
Pennisi R, Ascenzi P, di Masi A. Hsp90: A New Player in DNA Repair? Biomolecules 2015; 5:2589-618. [PMID: 26501335 PMCID: PMC4693249 DOI: 10.3390/biom5042589] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/21/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is an evolutionary conserved molecular chaperone that, together with Hsp70 and co-chaperones makes up the Hsp90 chaperone machinery, stabilizing and activating more than 200 proteins, involved in protein homeostasis (i.e., proteostasis), transcriptional regulation, chromatin remodeling, and DNA repair. Cells respond to DNA damage by activating complex DNA damage response (DDR) pathways that include: (i) cell cycle arrest; (ii) transcriptional and post-translational activation of a subset of genes, including those associated with DNA repair; and (iii) triggering of programmed cell death. The efficacy of the DDR pathways is influenced by the nuclear levels of DNA repair proteins, which are regulated by balancing between protein synthesis and degradation as well as by nuclear import and export. The inability to respond properly to either DNA damage or to DNA repair leads to genetic instability, which in turn may enhance the rate of cancer development. Multiple components of the DNA double strand breaks repair machinery, including BRCA1, BRCA2, CHK1, DNA-PKcs, FANCA, and the MRE11/RAD50/NBN complex, have been described to be client proteins of Hsp90, which acts as a regulator of the diverse DDR pathways. Inhibition of Hsp90 actions leads to the altered localization and stabilization of DDR proteins after DNA damage and may represent a cell-specific and tumor-selective radiosensibilizer. Here, the role of Hsp90-dependent molecular mechanisms involved in cancer onset and in the maintenance of the genome integrity is discussed and highlighted.
Collapse
Affiliation(s)
- Rosa Pennisi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy.
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy.
- Istituto Nazionale di Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, Roma I-00136, Italy.
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy.
- Istituto Nazionale di Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, Roma I-00136, Italy.
| |
Collapse
|
160
|
Niimi A, Hopkins SR, Downs JA, Masutani C. The BAH domain of BAF180 is required for PCNA ubiquitination. Mutat Res 2015; 779:16-23. [PMID: 26117423 DOI: 10.1016/j.mrfmmm.2015.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/03/2015] [Accepted: 06/14/2015] [Indexed: 06/04/2023]
Abstract
Monoubiquitination of proliferating cell nuclear antigen (PCNA) is a critical regulator of post replication repair (PRR). The depletion of BAF180, a unique subunit of the PBAF chromatin remodeling complex in human cells results in reduced PCNA ubiquitination leading to less efficient fork progression following DNA damage, but little is known about the mechanism. Here, we report that the expression of exogenous BAF180 in cells promotes PCNA ubiquitination during S-phase after UV irradiation and it persists for many hours. No correlation was observed between the protein level of ubiquitin-specific protease 1 (USP1) and ubiquitinated PCNA in BAF180 expressing cells. Analysis of cells expressing BAF180 deletion mutants showed that the bromo-adjacent homology (BAH) domains are responsible for this effect. Surprisingly, a deletion construct encoding only the BAH domain region is able to increase the level of ubiquitinated PCNA, even though it is unable to be assembled into the PBAF complex. These results suggest that the ATPase-dependent chromatin remodeling activity of PBAF is not necessary, but instead the BAH domains are sufficient to promote PCNA ubiquitination.
Collapse
Affiliation(s)
- Atsuko Niimi
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Suzanna R Hopkins
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Jessica A Downs
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
161
|
Saito Y, Komatsu K. Functional Role of NBS1 in Radiation Damage Response and Translesion DNA Synthesis. Biomolecules 2015; 5:1990-2002. [PMID: 26308066 PMCID: PMC4598784 DOI: 10.3390/biom5031990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022] Open
Abstract
Nijmegen breakage syndrome (NBS) is a recessive genetic disorder characterized by increased sensitivity to ionizing radiation (IR) and a high frequency of malignancies. NBS1, a product of the mutated gene in NBS, contains several protein interaction domains in the N-terminus and C-terminus. The C-terminus of NBS1 is essential for interactions with MRE11, a homologous recombination repair nuclease, and ATM, a key player in signal transduction after the generation of DNA double-strand breaks (DSBs), which is induced by IR. Moreover, NBS1 regulates chromatin remodeling during DSB repair by histone H2B ubiquitination through binding to RNF20 at the C-terminus. Thus, NBS1 is considered as the first protein to be recruited to DSB sites, wherein it acts as a sensor or mediator of DSB damage responses. In addition to DSB response, we showed that NBS1 initiates Polη-dependent translesion DNA synthesis by recruiting RAD18 through its binding at the NBS1 C-terminus after UV exposure, and it also functions after the generation of interstrand crosslink DNA damage. Thus, NBS1 has multifunctional roles in response to DNA damage from a variety of genotoxic agents, including IR.
Collapse
Affiliation(s)
- Yuichiro Saito
- Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kenshi Komatsu
- Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
162
|
Bub1 in Complex with LANA Recruits PCNA To Regulate Kaposi's Sarcoma-Associated Herpesvirus Latent Replication and DNA Translesion Synthesis. J Virol 2015. [PMID: 26223641 DOI: 10.1128/jvi.01524-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Latent DNA replication of Kaposi's sarcoma-associated herpesvirus (KSHV) initiates at the terminal repeat (TR) element and requires trans-acting elements, both viral and cellular, such as ORCs, MCMs, and latency-associated nuclear antigen (LANA). However, how cellular proteins are recruited to the viral genome is not very clear. Here, we demonstrated that the host cellular protein, Bub1, is involved in KSHV latent DNA replication. We show that Bub1 constitutively interacts with proliferating cell nuclear antigen (PCNA) via a highly conserved PIP box motif within the kinase domain. Furthermore, we demonstrated that Bub1 can form a complex with LANA and PCNA in KSHV-positive cells. This strongly indicated that Bub1 serves as a scaffold or molecular bridge between LANA and PCNA. LANA recruited PCNA to the KSHV genome via Bub1 to initiate viral replication in S phase and interacted with PCNA to promote its monoubiquitination in response to UV-induced damage for translesion DNA synthesis. This resulted in increased survival of KSHV-infected cells. IMPORTANCE During latency in KSHV-infected cells, the viral episomal DNA replicates once each cell cycle. KSHV does not express DNA replication proteins during latency. Instead, KSHV LANA recruits the host cell DNA replication machinery to the replication origin. However, the mechanism by which LANA mediates replication is uncertain. Here, we show that LANA is able to form a complex with PCNA, a critical protein for viral DNA replication. Furthermore, our findings suggest that Bub1, a spindle checkpoint protein, serves as a scaffold or molecular bridge between LANA and PCNA. Our data further support a role for Bub1 and LANA in PCNA-mediated cellular DNA replication processes as well as monoubiquitination of PCNA in response to UV damage. These data reveal a therapeutic target for inhibition of KSHV persistence in malignant cells.
Collapse
|
163
|
Masuda Y, Kanao R, Kaji K, Ohmori H, Hanaoka F, Masutani C. Different types of interaction between PCNA and PIP boxes contribute to distinct cellular functions of Y-family DNA polymerases. Nucleic Acids Res 2015; 43:7898-910. [PMID: 26170230 PMCID: PMC4652755 DOI: 10.1093/nar/gkv712] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/01/2015] [Indexed: 11/29/2022] Open
Abstract
Translesion DNA synthesis (TLS) by the Y-family DNA polymerases Polη, Polι and Polκ, mediated via interaction with proliferating cell nuclear antigen (PCNA), is a crucial pathway that protects human cells against DNA damage. We report that Polη has three PCNA-interacting protein (PIP) boxes (PIP1, 2, 3) that contribute differentially to two distinct functions, stimulation of DNA synthesis and promotion of PCNA ubiquitination. The latter function is strongly associated with formation of nuclear Polη foci, which co-localize with PCNA. We also show that Polκ has two functionally distinct PIP boxes, like Polη, whereas Polι has a single PIP box involved in stimulation of DNA synthesis. All three polymerases were additionally stimulated by mono-ubiquitinated PCNA in vitro. The three PIP boxes and a ubiquitin-binding zinc-finger of Polη exert redundant and additive effects in vivo via distinct molecular mechanisms. These findings provide an integrated picture of the orchestration of TLS polymerases.
Collapse
Affiliation(s)
- Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan Department of Toxicogenomics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Rie Kanao
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kentaro Kaji
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Haruo Ohmori
- Department of Gene Information, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8517, Japan Department of Life Science, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Fumio Hanaoka
- Department of Life Science, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
164
|
Budzowska M, Graham TGW, Sobeck A, Waga S, Walter JC. Regulation of the Rev1-pol ζ complex during bypass of a DNA interstrand cross-link. EMBO J 2015; 34:1971-85. [PMID: 26071591 DOI: 10.15252/embj.201490878] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/06/2015] [Indexed: 11/09/2022] Open
Abstract
DNA interstrand cross-links (ICLs) are repaired in S phase by a complex, multistep mechanism involving translesion DNA polymerases. After replication forks collide with an ICL, the leading strand approaches to within one nucleotide of the ICL ("approach"), a nucleotide is inserted across from the unhooked lesion ("insertion"), and the leading strand is extended beyond the lesion ("extension"). How DNA polymerases bypass the ICL is incompletely understood. Here, we use repair of a site-specific ICL in Xenopus egg extracts to study the mechanism of lesion bypass. Deep sequencing of ICL repair products showed that the approach and extension steps are largely error-free. However, a short mutagenic tract is introduced in the vicinity of the lesion, with a maximum mutation frequency of ~1%. Our data further suggest that approach is performed by a replicative polymerase, while extension involves a complex of Rev1 and DNA polymerase ζ. Rev1-pol ζ recruitment requires the Fanconi anemia core complex but not FancI-FancD2. Our results begin to illuminate how lesion bypass is integrated with chromosomal DNA replication to limit ICL repair-associated mutagenesis.
Collapse
Affiliation(s)
- Magda Budzowska
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Thomas G W Graham
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Alexandra Sobeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Shou Waga
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
165
|
USP7 is essential for maintaining Rad18 stability and DNA damage tolerance. Oncogene 2015; 35:965-76. [PMID: 25961918 DOI: 10.1038/onc.2015.149] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 01/08/2023]
Abstract
Rad18 functions at the cross-roads of three different DNA damage response (DDR) pathways involved in protecting stressed replication forks: homologous recombination repair, DNA inter-strand cross-link repair and DNA damage tolerance. Although Rad18 serves to facilitate replication of damaged genomes by promoting translesion synthesis (TLS), this comes at a cost of potentially error-prone lesion bypass. In contrast, loss of Rad18-dependent TLS potentiates the collapse of stalled forks and leads to incomplete genome replication. Given the pivotal nature with which Rad18 governs the fine balance between replication fidelity and genome stability, Rad18 levels and activity have a major impact on genomic integrity. Here, we identify the de-ubiquitylating enzyme USP7 as a critical regulator of Rad18 protein levels. Loss of USP7 destabilizes Rad18 and compromises UV-induced PCNA mono-ubiquitylation and Pol η recruitment to stalled replication forks. USP7-depleted cells also fail to elongate nascent daughter strand DNA following UV irradiation and show reduced DNA damage tolerance. We demonstrate that USP7 associates with Rad18 directly via a consensus USP7-binding motif and can disassemble Rad18-dependent poly-ubiquitin chains both in vitro and in vivo. Taken together, these observations identify USP7 as a novel component of the cellular DDR involved in preserving the genome stability.
Collapse
|
166
|
Li J, Zhang Y. Theoretical analysis of transcription process with polymerase stalling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052713. [PMID: 26066205 DOI: 10.1103/physreve.91.052713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 06/04/2023]
Abstract
Experimental evidence shows that in gene transcription RNA polymerase has the possibility to be stalled at a certain position of the transcription template. This may be due to the template damage or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the effective transcription rate (the rate to synthesize correct product mRNA) and the transcription effectiveness (the ratio of the effective transcription rate to the effective transcription initiation rate) are both influenced by polymerase stalling events. So far, no theoretical model has been given to discuss the gene transcription process including polymerase stalling. In this study, based on the totally asymmetric simple exclusion process, the transcription process including polymerase stalling is analyzed theoretically. The dependence of the effective transcription rate, effective transcription initiation rate, and transcription effectiveness on the transcription initiation rate, termination rate, as well as the backtracking rate, bypass rate, and detachment (degradation) rate when stalling, are discussed in detail. The results showed that backtracking restart after polymerase stalling is an ideal mechanism to increase both the effective transcription rate and the transcription effectiveness. Without backtracking, detachment of stalled polymerase can also help to increase the effective transcription rate and transcription effectiveness. Generally, the increase of the bypass rate of the stalled polymerase will lead to the decrease of the effective transcription rate and transcription effectiveness. However, when both detachment rate and backtracking rate of the stalled polymerase vanish, the effective transcription rate may also be increased by the bypass mechanism.
Collapse
Affiliation(s)
- Jingwei Li
- Laboratory of Mathematics for Nonlinear Science, Shanghai Key Laboratory for Contemporary Applied Mathematics, Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Yunxin Zhang
- Laboratory of Mathematics for Nonlinear Science, Shanghai Key Laboratory for Contemporary Applied Mathematics, Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
167
|
Chen X, Bosques L, Sung P, Kupfer GM. A novel role for non-ubiquitinated FANCD2 in response to hydroxyurea-induced DNA damage. Oncogene 2015; 35:22-34. [PMID: 25893307 DOI: 10.1038/onc.2015.68] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a genetic disease of bone marrow failure, cancer susceptibility, and sensitivity to DNA crosslinking agents. FANCD2, the central protein of the FA pathway, is monoubiquitinated upon DNA damage, such as crosslinkers and replication blockers such as hydroxyurea (HU). Even though FA cells demonstrate unequivocal sensitivity to crosslinkers, such as mitomycin C (MMC), we find that they are largely resistant to HU, except for cells absent for expression of FANCD2. FANCD2, RAD51 and RAD18 form a complex, which is enhanced upon HU exposure. Surprisingly, although FANCD2 is required for this enhanced interaction, its monoubiquitination is not. Similarly, non-ubiquitinated FANCD2 can still support proliferation cell nuclear antigen (PCNA) monoubiquitination. RAD51, but not BRCA2, is also required for PCNA monoubiquitination in response to HU, suggesting that this function is independent of homologous recombination (HR). We further show that translesion (TLS) polymerase PolH chromatin localization is decreased in FANCD2 deficient cells, FANCD2 siRNA knockdown cells and RAD51 siRNA knockdown cells, and PolH knockdown results in HU sensitivity only. Our data suggest that FANCD2 and RAD51 have an important role in PCNA monoubiquitination and TLS in a FANCD2 monoubiquitination and HR-independent manner in response to HU. This effect is not observed with MMC treatment, suggesting a non-canonical function for the FA pathway in response to different types of DNA damage.
Collapse
Affiliation(s)
- X Chen
- Department of Pediatrics, Section of Hematology/Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Section of Hematology/Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - L Bosques
- Department of Pediatrics, Section of Hematology/Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Section of Hematology/Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - P Sung
- Department of Molecular, Cellular, and Developmental Biology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - G M Kupfer
- Department of Pediatrics, Section of Hematology/Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Section of Hematology/Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
168
|
Brown JS, Jackson SP. Ubiquitylation, neddylation and the DNA damage response. Open Biol 2015; 5:150018. [PMID: 25833379 PMCID: PMC4422126 DOI: 10.1098/rsob.150018] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/09/2015] [Indexed: 12/19/2022] Open
Abstract
Failure of accurate DNA damage sensing and repair mechanisms manifests as a variety of human diseases, including neurodegenerative disorders, immunodeficiency, infertility and cancer. The accuracy and efficiency of DNA damage detection and repair, collectively termed the DNA damage response (DDR), requires the recruitment and subsequent post-translational modification (PTM) of a complex network of proteins. Ubiquitin and the ubiquitin-like protein (UBL) SUMO have established roles in regulating the cellular response to DNA double-strand breaks (DSBs). A role for other UBLs, such as NEDD8, is also now emerging. This article provides an overview of the DDR, discusses our current understanding of the process and function of PTM by ubiquitin and NEDD8, and reviews the literature surrounding the role of ubiquitylation and neddylation in DNA repair processes, focusing particularly on DNA DSB repair.
Collapse
Affiliation(s)
- Jessica S Brown
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
169
|
Thach TT, Lee N, Shin D, Han S, Kim G, Kim H, Lee S. Molecular determinants of polyubiquitin recognition by continuous ubiquitin-binding domains of Rad18. Biochemistry 2015; 54:2136-48. [PMID: 25756347 DOI: 10.1021/bi5012546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rad18 is a key factor in double-strand break DNA damage response (DDR) pathways via its association with K63-linked polyubiquitylated chromatin proteins through its bipartite ubiquitin-binding domains UBZ and LRM with extra residues between them. Rad18 binds K63-linked polyubiquitin chains as well as K48-linked ones and monoubiquitin. However, the detailed molecular basis of polyubiquitin recognition by UBZ and LRM remains unclear. Here, we examined the interaction of Rad18(201-240), including UBZ and LRM, with linear polyubiquitin chains that are structurally similar to the K63-linked ones. Rad18(201-240) binds linear polyubiquitin chains (Ub2-Ub4) with affinity similar to that of a K63-linked one for diubiquitin. Ab initio modeling suggests that LRM and the extra residues at the C-terminus of UBZ (residues 227-237) likely form a continuous helix, termed the "extended LR motif" (ELRM). We obtained a molecular envelope for Rad18 UBZ-ELRM:linear Ub2 by small-angle X-ray scattering and derived a structural model for the complex. The Rad18:linear Ub2 model indicates that ELRM enhances the binding of Rad18 with linear polyubiquitin by contacting the proximal ubiquitin moiety. Consistent with the structural analysis, mutational studies showed that residues in ELRM affect binding with linear Ub2, not monoubiquitin. In cell data support the idea that ELRM is crucial in the localization of Rad18 to DNA damage sites. Specifically, E227 seems to be the most critical in polyubiquitin binding and localization to nuclear foci. Finally, we reveal that the ubiquitin-binding domains of Rad18 bind linear Ub2 more tightly than those of RAP80, providing a quantitative basis for blockage of RAP80 at DSB sites. Taken together, our data demonstrate that Rad18(201-240) forms continuous ubiquitin-binding domains, comprising UBZ and ELRM, and provides a structural framework for polyubiquitin recognition by Rad18 in the DDR pathway at a molecular level.
Collapse
Affiliation(s)
- Trung Thanh Thach
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Namsoo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Donghyuk Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Seungsu Han
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Gyuhee Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Hongtae Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
170
|
Ahmed-Seghir S, Pouvelle C, Despras E, Cordonnier A, Sarasin A, Kannouche PL. Aberrant C-terminal domain of polymerase η targets the functional enzyme to the proteosomal degradation pathway. DNA Repair (Amst) 2015; 29:154-65. [PMID: 25766642 DOI: 10.1016/j.dnarep.2015.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 12/22/2022]
Abstract
Xeroderma pigmentosum variant (XP-V) is a rare genetic disease, characterized by sunlight sensitivity and predisposition to cutaneous malignancies. XP-V is caused by a deficiency in DNA polymerase eta (Polη) that plays a pivotal role in translesion synthesis by bypassing UV-induced pyrimidine dimers. Previously we identified a new Polη variant containing two missense mutations, one mutation within the bipartite NLS (T692A) and a second mutation on the stop codon (X714W) leading to a longer protein with an extra 8 amino acids (721 instead of 713 AA). First biochemical analysis revealed that this Polη missense variant was barely detectable by western blot. As this mutant is extremely unstable and is nearly undetectable, a definitive measure of its functional deficit in cells has not been explored. Here we report the molecular and cellular characterization of this missense variant. In cell free extracts, the extra 8 amino acids in the C-terminal of Polη(721) only slightly reduce the bypass efficiency through CPD lesions. In vivo, Polη(721) accumulates in replication factories and interacts with mUb-PCNA albeit at lower level than Polη(wt). XP-V cells overexpressing Polη(721) were only slightly UV-sensitive. Altogether, our data strongly suggest that Polη(721) is functional and that the patient displays a XP-V phenotype because the mutant protein is excessively unstable. We then investigated the molecular mechanisms involved in this excessive proteolysis. We showed that Polη(721) is degraded by the proteasome in an ubiquitin-dependent manner and that this proteolysis is independent of the E3 ligases, CRL4(cdt2) and Pirh2, reported to promote Polη degradation. We then demonstrated that the extra 8 amino acids of Polη(721) do not act as a degron but rather induce a conformational change of the Polη C-terminus exposing its bipartite NLS as well as a sequence close to its UBZ to the ubiquitin/proteasome system. Interestingly we showed that the clinically approved proteasome inhibitor, Bortezomib restores the levels of Polη(721) suggesting that this might be a therapeutic approach to preventing tumor development in certain XP-V patients harboring missense mutations.
Collapse
Affiliation(s)
- Sana Ahmed-Seghir
- Université Paris-Sud, CNRS-UMR8200, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Caroline Pouvelle
- Université Paris-Sud, CNRS-UMR8200, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Emmanuelle Despras
- Université Paris-Sud, CNRS-UMR8200, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | | | - Alain Sarasin
- Université Paris-Sud, CNRS-UMR8200, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Patricia L Kannouche
- Université Paris-Sud, CNRS-UMR8200, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France.
| |
Collapse
|
171
|
Sasatani M, Xu Y, Kawai H, Cao L, Tateishi S, Shimura T, Li J, Iizuka D, Noda A, Hamasaki K, Kusunoki Y, Kamiya K. RAD18 activates the G2/M checkpoint through DNA damage signaling to maintain genome integrity after ionizing radiation exposure. PLoS One 2015; 10:e0117845. [PMID: 25675240 PMCID: PMC4326275 DOI: 10.1371/journal.pone.0117845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/31/2014] [Indexed: 12/28/2022] Open
Abstract
The ubiquitin ligase RAD18 is involved in post replication repair pathways via its recruitment to stalled replication forks, and its role in the ubiquitylation of proliferating cell nuclear antigen (PCNA). Recently, it has been reported that RAD18 is also recruited to DNA double strand break (DSB) sites, where it plays novel functions in the DNA damage response induced by ionizing radiation (IR). This new role is independent of PCNA ubiquitylation, but little is known about how RAD18 functions after IR exposure. Here, we describe a role for RAD18 in the IR-induced DNA damage signaling pathway at G2/M phase in the cell cycle. Depleting cells of RAD18 reduced the recruitment of the DNA damage signaling factors ATM, γH2AX, and 53BP1 to foci in cells at the G2/M phase after IR exposure, and attenuated activation of the G2/M checkpoint. Furthermore, depletion of RAD18 increased micronuclei formation and cell death following IR exposure, both in vitro and in vivo. Our data suggest that RAD18 can function as a mediator for DNA damage response signals to activate the G2/M checkpoint in order to maintain genome integrity and cell survival after IR exposure.
Collapse
Affiliation(s)
- Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Yanbin Xu
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Hidehiko Kawai
- Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Lili Cao
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Satoshi Tateishi
- Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2–2–1, Honjo, Kumamoto, 860–0811, Japan
| | - Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, 2–3–6, Minami, Wako, Saitama, 351–0197, Japan
| | - Jianxiang Li
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Daisuke Iizuka
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
| | - Asao Noda
- Department of Genetics, Radiation Effects Research Foundation, 5–2, hijiyamako-en, Minami-ku, Hiroshima, 732–0815, Japan
| | - Kanya Hamasaki
- Department of Genetics, Radiation Effects Research Foundation, 5–2, hijiyamako-en, Minami-ku, Hiroshima, 732–0815, Japan
| | - Yoichiro Kusunoki
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, 5–2, hijiyamako-en, Minami-ku, Hiroshima, 732–0815, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima, 734–8553, Japan
- * E-mail:
| |
Collapse
|
172
|
Georgescu R, Langston L, O'Donnell M. A proposal: Evolution of PCNA's role as a marker of newly replicated DNA. DNA Repair (Amst) 2015; 29:4-15. [PMID: 25704660 DOI: 10.1016/j.dnarep.2015.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 11/26/2022]
Abstract
Processivity clamps that hold DNA polymerases to DNA for processivity were the first proteins known to encircle the DNA duplex. At the time, polymerase processivity was thought to be the only function of ring shaped processivity clamps. But studies from many laboratories have identified numerous proteins that bind and function with sliding clamps. Among these processes are mismatch repair and nucleosome assembly. Interestingly, there exist polymerases that are highly processive and do not require clamps. Hence, DNA polymerase processivity does not intrinsically require that sliding clamps evolved for this purpose. We propose that polymerases evolved to require clamps as a way of ensuring that clamps are deposited on newly replicated DNA. These clamps are then used on the newly replicated daughter strands, for processes important to genomic integrity, such as mismatch repair and the assembly of nucleosomes to maintain epigenetic states of replicating cells during development.
Collapse
Affiliation(s)
- Roxana Georgescu
- Rockefeller University and HHMI, 1230 York Avenue, Box 228, New York, NY 10065, United States
| | - Lance Langston
- Rockefeller University and HHMI, 1230 York Avenue, Box 228, New York, NY 10065, United States
| | - Mike O'Donnell
- Rockefeller University and HHMI, 1230 York Avenue, Box 228, New York, NY 10065, United States.
| |
Collapse
|
173
|
Baldeck N, Janel-Bintz R, Wagner J, Tissier A, Fuchs RP, Burkovics P, Haracska L, Despras E, Bichara M, Chatton B, Cordonnier AM. FF483-484 motif of human Polη mediates its interaction with the POLD2 subunit of Polδ and contributes to DNA damage tolerance. Nucleic Acids Res 2015; 43:2116-25. [PMID: 25662213 PMCID: PMC4344513 DOI: 10.1093/nar/gkv076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Switching between replicative and translesion synthesis (TLS) DNA polymerases are crucial events for the completion of genomic DNA synthesis when the replication machinery encounters lesions in the DNA template. In eukaryotes, the translesional DNA polymerase η (Polη) plays a central role for accurate bypass of cyclobutane pyrimidine dimers, the predominant DNA lesions induced by ultraviolet irradiation. Polη deficiency is responsible for a variant form of the Xeroderma pigmentosum (XPV) syndrome, characterized by a predisposition to skin cancer. Here, we show that the FF483-484 amino acids in the human Polη (designated F1 motif) are necessary for the interaction of this TLS polymerase with POLD2, the B subunit of the replicative DNA polymerase δ, both in vitro and in vivo. Mutating this motif impairs Polη function in the bypass of both an N-2-acetylaminofluorene adduct and a TT-CPD lesion in cellular extracts. By complementing XPV cells with different forms of Polη, we show that the F1 motif contributes to the progression of DNA synthesis and to the cell survival after UV irradiation. We propose that the integrity of the F1 motif of Polη, necessary for the Polη/POLD2 interaction, is required for the establishment of an efficient TLS complex.
Collapse
Affiliation(s)
- Nadège Baldeck
- Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, UMR7242, Illkirch 67412, France
| | - Régine Janel-Bintz
- Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, UMR7242, Illkirch 67412, France
| | - Jérome Wagner
- Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, UMR7242, Illkirch 67412, France
| | - Agnès Tissier
- UMR-S1052, Inserm, Centre de Recherche en Cancérologie de Lyon, Lyon 69000, France
| | - Robert P Fuchs
- Cancer Research Center of Marseille (CRCM), Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7258, Marseille 13009, France
| | - Peter Burkovics
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, HU-6726 Szeged, Hungary
| | - Lajos Haracska
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, HU-6726 Szeged, Hungary
| | - Emmanuelle Despras
- Université Paris-Sud, CNRS-UMR8200, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Marc Bichara
- Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, UMR7242, Illkirch 67412, France
| | - Bruno Chatton
- Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, UMR7242, Illkirch 67412, France
| | - Agnès M Cordonnier
- Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, UMR7242, Illkirch 67412, France
| |
Collapse
|
174
|
Smith SJ, Gu L, Phipps EA, Dobrolecki LE, Mabrey KS, Gulley P, Dillehay KL, Dong Z, Fields GB, Chen YR, Ann D, Hickey RJ, Malkas LH. A Peptide mimicking a region in proliferating cell nuclear antigen specific to key protein interactions is cytotoxic to breast cancer. Mol Pharmacol 2015; 87:263-76. [PMID: 25480843 PMCID: PMC4293449 DOI: 10.1124/mol.114.093211] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a highly conserved protein necessary for proper component loading during the DNA replication and repair process. Proteins make a connection within the interdomain connector loop of PCNA, and much of the regulation is a result of the inherent competition for this docking site. If this target region of PCNA is modified, the DNA replication and repair process in cancer cells is potentially altered. Exploitation of this cancer-associated region has implications for targeted breast cancer therapy. In the present communication, we characterize a novel peptide (caPeptide) that has been synthesized to mimic the sequence identified as critical to the cancer-associated isoform of PCNA. This peptide is delivered into cells using a nine-arginine linking mechanism, and the resulting peptide (R9-cc-caPeptide) exhibits cytotoxicity in a triple-negative breast cancer cell line, MDA-MB-436, while having less of an effect on the normal counterparts (MCF10A and primary breast epithelial cells). The novel peptide was then evaluated for cytotoxicity using various in vivo techniques, including ATP activity assays, flow cytometry, and clonogenetic assays. This cytotoxicity has been observed in other breast cancer cell lines (MCF7 and HCC1937) and other forms of cancer (pancreatic and lymphoma). R9-cc-caPeptide has also been shown to block the association of PCNA with chromatin. Alanine scanning of the peptide sequence, combined with preliminary in silico modeling, gives insight to the disruptive ability and the molecular mechanism of action of the therapeutic peptide in vivo.
Collapse
Affiliation(s)
- Shanna J Smith
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Long Gu
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Elizabeth A Phipps
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Lacey E Dobrolecki
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Karla S Mabrey
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Pattie Gulley
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Kelsey L Dillehay
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Zhongyun Dong
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Gregg B Fields
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Yun-Ru Chen
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - David Ann
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Robert J Hickey
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| | - Linda H Malkas
- Department of Molecular and Cellular Biology (S.J.S., L.G., L.H.M.), Department of Molecular Medicine (R.J.H.), and Department of Diabetes and Metabolic Diseases Research (Y.-R.C., D.A.), Beckman Research Institute at City of Hope, Duarte, California; Department of Medical and Molecular Genetics (E.A.P.) and Department of Medicine (K.S.M., P.G.), Indiana University School of Medicine, Indianapolis, Indiana; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas (L.E.D.); Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio (K.L.D., Z.D.); and Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (G.B.F.)
| |
Collapse
|
175
|
Saito Y, Zhou H, Kobayashi J. Chromatin modification and NBS1: their relationship in DNA double-strand break repair. Genes Genet Syst 2015; 90:195-208. [DOI: 10.1266/ggs.15-00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yuichiro Saito
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University
| | - Hui Zhou
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University
| | - Junya Kobayashi
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University
| |
Collapse
|
176
|
Abstract
Replicative polymerases (pols) cannot accommodate damaged template bases, and these pols stall when such offenses are encountered during S phase. Rather than repairing the damaged base, replication past it may proceed via one of two DNA damage tolerance (DDT) pathways, allowing replicative DNA synthesis to resume. In translesion DNA synthesis (TLS), a specialized TLS pol is recruited to catalyze stable, yet often erroneous, nucleotide incorporation opposite damaged template bases. In template switching, the newly synthesized sister strand is used as a damage-free template to synthesize past the lesion. In eukaryotes, both pathways are regulated by the conjugation of ubiquitin to the PCNA sliding clamp by distinct E2/E3 pairs. Whereas monoubiquitination by Rad6/Rad18 mediates TLS, extension of this ubiquitin to a polyubiquitin chain by Ubc13-Mms2/Rad5 routes DDT to the template switching pathway. In this review, we focus on the monoubiquitination of PCNA by Rad6/Rad18 and summarize the current knowledge of how this process is regulated.
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802; ,
| | | |
Collapse
|
177
|
Wit N, Buoninfante OA, van den Berk PCM, Jansen JG, Hogenbirk MA, de Wind N, Jacobs H. Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage. Nucleic Acids Res 2014; 43:282-94. [PMID: 25505145 PMCID: PMC4288191 DOI: 10.1093/nar/gku1301] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage.
Collapse
Affiliation(s)
- Niek Wit
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Paul C M van den Berk
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacob G Jansen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marc A Hogenbirk
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Heinz Jacobs
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
178
|
Both high-fidelity replicative and low-fidelity Y-family polymerases are involved in DNA rereplication. Mol Cell Biol 2014; 35:699-715. [PMID: 25487575 DOI: 10.1128/mcb.01153-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DNA rereplication is a major form of aberrant replication that causes genomic instabilities, such as gene amplification. However, little is known about which DNA polymerases are involved in the process. Here, we report that low-fidelity Y-family polymerases (Y-Pols), Pol η, Pol ι, Pol κ, and REV1, significantly contribute to DNA synthesis during rereplication, while the replicative polymerases, Pol δ and Pol ε, play an important role in rereplication, as expected. When rereplication was induced by depletion of geminin, these polymerases were recruited to rereplication sites in human cell lines. This finding was supported by RNA interference (RNAi)-mediated knockdown of the polymerases, which suppressed rereplication induced by geminin depletion. Interestingly, epistatic analysis indicated that Y-Pols collaborate in a common pathway, independently of replicative polymerases. We also provide evidence for a catalytic role for Pol η and the involvement of Pol η and Pol κ in cyclin E-induced rereplication. Collectively, our findings indicate that, unlike normal S-phase replication, rereplication induced by geminin depletion and oncogene activation requires significant contributions of both Y-Pols and replicative polymerases. These findings offer important mechanistic insights into cancer genomic instability.
Collapse
|
179
|
Qian J, Pentz K, Zhu Q, Wang Q, He J, Srivastava AK, Wani AA. USP7 modulates UV-induced PCNA monoubiquitination by regulating DNA polymerase eta stability. Oncogene 2014; 34:4791-6. [PMID: 25435364 PMCID: PMC4451444 DOI: 10.1038/onc.2014.394] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/02/2014] [Accepted: 10/27/2014] [Indexed: 12/27/2022]
Abstract
DNA polymerase eta (Polη) plays unique and pivotal functions in several DNA damage-tolerance pathways. Steady-state level of this short-lived protein is tightly controlled by multiple mechanisms including proteolysis. Here, we have identified the deubiquitinating enzyme, ubiquitin-specific protease 7 (USP7), as a novel regulator of Polη stability. USP7 regulates Polη stability through both indirect and direct mechanisms. Knockout of USP7 increased the steady-state level of Polη and slowed down the turnover of both Polη and p53 proteins through destabilizing their E3 ligase Mdm2. Also, USP7 physically binds Polη in vitro and in vivo. Overexpression of wild-type USP7 but not its catalytically-defective mutants deubiquitinates Polη and increases its cellular steady-state level. Thus, USP7 directly serves as a specific deubiquitinating enzyme for Polη. Furthermore, ectopic expression of USP7 promoted the UV-induced PCNA monoubiquitination in Polη-proficient but not Polη-deficient XPV cells, suggesting that USP7 facilitates UV-induced PCNA monoubiquitination by stabilizing Polη. Taken together, our findings reveal a modulatory role of USP7 in PCNA ubiquitination-mediated stress-tolerance pathways by fine-tuning Polη turnover.
Collapse
Affiliation(s)
- J Qian
- Department of Radiology, The Ohio State University, Columbus, OH, USA
| | - K Pentz
- Department of Radiology, The Ohio State University, Columbus, OH, USA
| | - Q Zhu
- Department of Radiology, The Ohio State University, Columbus, OH, USA
| | - Q Wang
- Department of Radiology, The Ohio State University, Columbus, OH, USA
| | - J He
- Department of Radiology, The Ohio State University, Columbus, OH, USA
| | - A K Srivastava
- Department of Radiology, The Ohio State University, Columbus, OH, USA
| | - A A Wani
- Department of Radiology, The Ohio State University, Columbus, OH, USA.,Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA.,James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
180
|
Identification of novel DNA-damage tolerance genes reveals regulation of translesion DNA synthesis by nucleophosmin. Nat Commun 2014; 5:5437. [PMID: 25421715 PMCID: PMC4263322 DOI: 10.1038/ncomms6437] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/01/2014] [Indexed: 01/13/2023] Open
Abstract
Cells cope with replication-blocking lesions via translesion DNA synthesis (TLS). TLS is carried out by low-fidelity DNA polymerases that replicate across lesions, thereby preventing genome instability at the cost of increased point mutations. Here we perform a two-stage siRNA-based functional screen for mammalian TLS genes and identify 17 validated TLS genes. One of the genes, NPM1, is frequently mutated in acute myeloid leukaemia (AML). We show that NPM1 (nucleophosmin) regulates TLS via interaction with the catalytic core of DNA polymerase-η (polη), and that NPM1 deficiency causes a TLS defect due to proteasomal degradation of polη. Moreover, the prevalent NPM1c+ mutation that causes NPM1 mislocalization in ~30% of AML patients results in excessive degradation of polη. These results establish the role of NPM1 as a key TLS regulator, and suggest a mechanism for the better prognosis of AML patients carrying mutations in NPM1. Cells cope with replication-blocking DNA lesions by translesion DNA synthesis (TLS) polymerases, including polη. Here, the authors show that NPM1, a gene frequently mutated in acute myeloid leukaemia, protects polη from proteasomal degradation, and that NPM1 deficiency causes a TLS defect.
Collapse
|
181
|
Shchebet A, Karpiuk O, Kremmer E, Eick D, Johnsen SA. Phosphorylation by cyclin-dependent kinase-9 controls ubiquitin-conjugating enzyme-2A function. Cell Cycle 2014; 11:2122-7. [DOI: 10.4161/cc.20548] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
182
|
Tomi NS, Davari K, Grotzky D, Loos F, Böttcher K, Frankenberger S, Jungnickel B. Analysis of SHPRH functions in DNA repair and immunoglobulin diversification. DNA Repair (Amst) 2014; 24:63-72. [PMID: 25311267 DOI: 10.1016/j.dnarep.2014.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/29/2014] [Accepted: 09/23/2014] [Indexed: 12/18/2022]
Abstract
During replication, bypass of DNA lesions is orchestrated by the Rad6 pathway. Monoubiquitination of proliferating cell nuclear antigen (PCNA) by Rad6/Rad18 leads to recruitment of translesion polymerases for direct and potentially mutagenic damage bypass. An error-free bypass pathway may be initiated via K63-linked PCNA polyubiquitination by Ubc13/Mms2 and the E3 ligase Rad5 in yeast, or HLTF/SHPRH in vertebrates. For the latter two enzymes, redundancy with a third E3 ligase and alternative functions have been reported. We have previously shown that the Rad6 pathway is involved in somatic hypermutation of immunoglobulin genes in B lymphocytes. Here, we have used knockout strategies targeting expression of the entire SHPRH protein or functionally significant domains in chicken DT40 cells that do not harbor a HLTF ortholog. We show that SHPRH is apparently redundant with another E3 ligase during DNA damage-induced PCNA modification. SHPRH plays no substantial role in cellular resistance to drugs initiating excision repair and the Rad6 pathway, but is important in survival of topoisomerase II inhibitor treatment. Removal of only the C-terminal RING domain does not interfere with this SHPRH function. SHPRH inactivation does not substantially impact on the overall efficacy of Ig diversification. Redundancy of E3 ligases in the Rad6 pathway may be linked to its different functions in genome maintenance and genetic plasticity.
Collapse
Affiliation(s)
- Nils-Sebastian Tomi
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University Jena, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Kathrin Davari
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University Jena, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - David Grotzky
- Institute of Clinical and Molecular Biology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Friedemann Loos
- Institute of Clinical and Molecular Biology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Katrin Böttcher
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University Jena, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Samantha Frankenberger
- Institute of Clinical and Molecular Biology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University Jena, Hans-Knoell-Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
183
|
Rizzo AA, Salerno PE, Bezsonova I, Korzhnev DM. NMR structure of the human Rad18 zinc finger in complex with ubiquitin defines a class of UBZ domains in proteins linked to the DNA damage response. Biochemistry 2014; 53:5895-906. [PMID: 25162118 DOI: 10.1021/bi500823h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ubiquitin-mediated interactions are critical for the cellular DNA damage response (DDR). Therefore, many DDR-related proteins contain ubiquitin-binding domains, including ubiquitin-binding zinc fingers (UBZs). The majority of these UBZ domains belong to the C2H2 (type 3 Polη-like) or C2HC (type 4 Rad18-like) family. We have used nuclear magnetic resonance (NMR) spectroscopy to characterize the binding to ubiquitin and determine the structure of the type 4 UBZ domain (UBZ4) from human Rad18, which is a key ubiquitin ligase in the DNA damage tolerance pathway responsible for monoubiquitination of the DNA sliding clamp PCNA. The Rad18-UBZ domain binds ubiquitin with micromolar affinity and adopts a β1-β2-α fold similar to the previously characterized type 3 UBZ domain (UBZ3) from the translesion synthesis DNA polymerase Polη. However, despite nearly identical structures, a disparity in the location of binding-induced NMR chemical shift perturbations shows that the Rad18-UBZ4 and Polη-UBZ3 domains bind ubiquitin in distinctly different modes. The Rad18-UBZ4 domain interacts with ubiquitin with the α-helix and strand β1 as shown by the structure of the Rad18-UBZ domain-ubiquitin complex determined in this work, while the Polη-UBZ3 domain exclusively utilizes the α-helix. Our findings suggest the existence of two classes of UBZ domains in DDR-related proteins with similar structures but unique ubiquitin binding properties and provide context for further study to establish the differential roles of these domains in the complex cellular response to DNA damage.
Collapse
Affiliation(s)
- Alessandro A Rizzo
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | | | | | | |
Collapse
|
184
|
Han J, Liu T, Huen MSY, Hu L, Chen Z, Huang J. SIVA1 directs the E3 ubiquitin ligase RAD18 for PCNA monoubiquitination. ACTA ACUST UNITED AC 2014; 205:811-27. [PMID: 24958773 PMCID: PMC4068132 DOI: 10.1083/jcb.201311007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Translesion DNA synthesis (TLS) is a universal DNA damage tolerance mechanism conserved from yeast to mammals. A key event in the regulation of TLS is the monoubiquitination of proliferating cell nuclear antigen (PCNA). Extensive evidence indicates that the RAD6-RAD18 ubiquitin-conjugating/ligase complex specifically monoubiquitinates PCNA and regulates TLS repair. However, the mechanism by which the RAD6-RAD18 complex is targeted to PCNA has remained elusive. In this study, we used an affinity purification approach to isolate the PCNA-containing complex and have identified SIVA1 as a critical regulator of PCNA monoubiquitination. We show that SIVA1 constitutively interacts with PCNA via a highly conserved PCNA-interacting peptide motif. Knockdown of SIVA1 compromised RAD18-dependent PCNA monoubiquitination and Polη focus formation, leading to elevated ultraviolet sensitivity and mutation. Furthermore, we demonstrate that SIVA1 interacts with RAD18 and serves as a molecular bridge between RAD18 and PCNA, thus targeting the E3 ligase activity of RAD18 onto PCNA. Collectively, our results provide evidence that the RAD18 E3 ligase requires an accessory protein for binding to its substrate PCNA.
Collapse
Affiliation(s)
- Jinhua Han
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ting Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Michael S Y Huen
- Department of Anatomy and Center for Cancer Research, The University of Hong Kong, Hong Kong, China Department of Anatomy and Center for Cancer Research, The University of Hong Kong, Hong Kong, China
| | - Lin Hu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiqiu Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
185
|
Zeman MK, Lin JR, Freire R, Cimprich KA. DNA damage-specific deubiquitination regulates Rad18 functions to suppress mutagenesis. ACTA ACUST UNITED AC 2014; 206:183-97. [PMID: 25023518 PMCID: PMC4107794 DOI: 10.1083/jcb.201311063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Deubiquitination of Rad18 drives its localization to sites of DNA damage and formation of the Rad18–SHPRH complexes necessary for error-free lesion bypass. Deoxyribonucleic acid (DNA) lesions encountered during replication are often bypassed using DNA damage tolerance (DDT) pathways to avoid prolonged fork stalling and allow for completion of DNA replication. Rad18 is a central E3 ubiquitin ligase in DDT, which exists in a monoubiquitinated (Rad18•Ub) and nonubiquitinated form in human cells. We find that Rad18 is deubiquitinated when cells are treated with methyl methanesulfonate or hydrogen peroxide. The ubiquitinated form of Rad18 does not interact with SNF2 histone linker plant homeodomain RING helicase (SHPRH) or helicase-like transcription factor, two downstream E3 ligases needed to carry out error-free bypass of DNA lesions. Instead, it interacts preferentially with the zinc finger domain of another, nonubiquitinated Rad18 and may inhibit Rad18 function in trans. Ubiquitination also prevents Rad18 from localizing to sites of DNA damage, inducing proliferating cell nuclear antigen monoubiquitination, and suppressing mutagenesis. These data reveal a new role for monoubiquitination in controlling Rad18 function and suggest that damage-specific deubiquitination promotes a switch from Rad18•Ub–Rad18 complexes to the Rad18–SHPRH complexes necessary for error-free lesion bypass in cells.
Collapse
Affiliation(s)
- Michelle K Zeman
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jia-Ren Lin
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologias Biomedicas, 38320 Tenerife, Spain
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
186
|
Kim S, Lee SH, Lee S, Park JD, Ryu DY. Arsenite-induced changes in hepatic protein abundance in cynomolgus monkeys (Macaca fascicularis). Proteomics 2014; 14:1833-43. [PMID: 24866292 DOI: 10.1002/pmic.201300509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/01/2014] [Accepted: 05/20/2014] [Indexed: 11/07/2022]
Abstract
Arsenic is an environmental pollutant, and its liver toxicity has long been recognized. The effect of arsenic on liver protein expression was analyzed using a proteomic approach in monkeys. Monkeys were orally administered sodium arsenite (SA) for 28 days. As shown by 2D-PAGE in combination with MS, the expression levels of 16 proteins were quantitatively changed in SA-treated monkey livers compared to control-treated monkey livers. Specifically, the levels of two proteins, mortalin and tubulin beta chain, were increased, and 14 were decreased, including plastin-3, cystathionine-beta-synthase, selenium-binding protein 1, annexin A6, alpha-enolase, phosphoenolpyruvate carboxykinase-M, erlin-2, and arginase-1. In view of their functional roles, differential expression of these proteins may contribute to arsenic-induced liver toxicity, including cell death and carcinogenesis. Among the 16 identified proteins, four were selected for validation by Western blot and immunohistochemistry. Additional Western blot analyses indicated arsenic-induced dysregulation of oxidative stress related, genotoxicity-related, and glucose metabolism related proteins in livers from SA-treated animals. Many changes in the abundance of toxicity-related proteins were also demonstrated in SA-treated human hepatoma cells. These data on the arsenic-induced regulation of proteins with critical roles may help elucidate the specific mechanisms underlying arsenic-induced liver toxicity.
Collapse
Affiliation(s)
- Soohee Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
187
|
|
188
|
Guérillon C, Bigot N, Pedeux R. The ING tumor suppressor genes: Status in human tumors. Cancer Lett 2014; 345:1-16. [DOI: 10.1016/j.canlet.2013.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 12/18/2022]
|
189
|
Zech J, Dalgaard JZ. Replisome components--post-translational modifications and their effects. Semin Cell Dev Biol 2014; 30:144-53. [PMID: 24685613 DOI: 10.1016/j.semcdb.2014.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/10/2014] [Accepted: 03/23/2014] [Indexed: 12/22/2022]
Abstract
The process of DNA replication is highly regulated, but at the same time very dynamic. Once S-phase is initiated and replication elongation is occurring, the cells are committed to complete replication in order to ensure genome stability and survival. Many pathways exist to resolve situations where normal replisome progression is not possible. It is becoming more and more evident that post-translational modifications of replisome components play a key role in regulating these pathways which ensure fork progression. Here we review the known modifications of the progressing replisome and how these modifications are thought to affect DNA replication in unperturbed and perturbed S-phases.
Collapse
Affiliation(s)
- Juergen Zech
- Warwick Medical School, University of Warwick, Gibbert Hill Campus, CV47AL Coventry, UK
| | - Jacob Zeuthen Dalgaard
- Warwick Medical School, University of Warwick, Gibbert Hill Campus, CV47AL Coventry, UK.
| |
Collapse
|
190
|
Villamil MA, Liang Q, Zhuang Z. The WD40-repeat protein-containing deubiquitinase complex: catalysis, regulation, and potential for therapeutic intervention. Cell Biochem Biophys 2014; 67:111-26. [PMID: 23797609 DOI: 10.1007/s12013-013-9637-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ubiquitination has emerged as an essential signaling mechanism in eukaryotes. Deubiquitinases (DUBs) counteract the activities of the ubiquitination machinery and provide another level of control in cellular ubiquitination. Not surprisingly, DUBs are subjected to stringent regulations. Besides regulation by the noncatalytic domains present in the DUB sequences, DUB-interacting proteins are increasingly realized as essential regulators for DUB activity and function. This review focuses on DUBs that are associated with WD40-repeat proteins. Many human ubiquitin-specific proteases (USPs) were found to interact with WD40-repeat proteins, but little is known as to how this interaction regulates the activity and function of USPs. In recent years, significant progress has been made in understanding a prototypical WD40-repeat protein-containing DUB complex that comprises USP1 and USP1-associated factor 1 (UAF1). It has been shown that UAF1 activates USP1 through a potential active-site modulation, and the complex formation between USP1 and UAF1 is regulated by serine phosphorylation. Recently, human USPs have been recognized as a promising target class for inhibitor discovery. Small molecule inhibitors targeting several human USPs have been reported. USP1 is involved in two major DNA damage response pathways, DNA translesion synthesis and the Fanconi anemia pathway. Inhibiting the USP1/UAF1 deubiquitinase complex represents a new strategy to potentiate cancer cells to DNA-crosslinking agents and to overcome resistance that has plagued clinical cancer chemotherapy. The progress in inhibitor discovery against USPs and the WD40-repeat protein-containing USP complex will be discussed.
Collapse
Affiliation(s)
- Mark A Villamil
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, DE 19716, USA
| | | | | |
Collapse
|
191
|
Zhu Q, Chang Y, Yang J, Wei Q. Post-translational modifications of proliferating cell nuclear antigen: A key signal integrator for DNA damage response (Review). Oncol Lett 2014; 7:1363-1369. [PMID: 24765138 PMCID: PMC3997659 DOI: 10.3892/ol.2014.1943] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/13/2014] [Indexed: 12/02/2022] Open
Abstract
Previous studies have shown that the post-translational modifications of proliferating cell nuclear antigen (PCNA) may be crucial in influencing the cellular choice between different pathways, such as the cell cycle checkpoint, DNA repair or apoptosis pathways, in order to maintain genomic stability. DNA damage leads to replication stress and the subsequent induction of PCNA modification by small ubiquitin (Ub)-related modifiers and Ub, which has been identified to affect multiple biological processes of genomic DNA. Thus far, much has been learned concerning the behavior of modified PCNA as a key signal integrator in response to DNA damage. In humans and yeast, modified PCNA activates DNA damage bypass via an error-prone or error-free pathway to prevent the breakage of DNA replication forks, which may potentially induce double-strand breaks and subsequent chromosomal rearrangements. However, the exact mechanisms by which these pathways work and by what means the modified PCNA is involved in these processes remain elusive. Thus, the improved understanding of PCNA modification and its implications for DNA damage response may provide us with more insight into the mechanisms by which human cells regulate aberrant recombination events, and cancer initiation and development. The present review focuses on the post-translational modifications of PCNA and its important functions in mediating mammalian cellular response to different types of DNA damage.
Collapse
Affiliation(s)
- Qiong Zhu
- Battalion Two of Cadet Brigade, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yuxiao Chang
- Battalion Two of Cadet Brigade, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Quanfang Wei
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
192
|
Wallace HA, Merkle JA, Yu MC, Berg TG, Lee E, Bosco G, Lee LA. TRIP/NOPO E3 ubiquitin ligase promotes ubiquitylation of DNA polymerase η. Development 2014; 141:1332-41. [PMID: 24553286 DOI: 10.1242/dev.101196] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously identified a Drosophila maternal effect-lethal mutant named 'no poles' (nopo). Embryos from nopo females undergo mitotic arrest with barrel-shaped, acentrosomal spindles during the rapid cycles of syncytial embryogenesis because of activation of a Chk2-mediated DNA checkpoint. NOPO is the Drosophila homolog of human TNF receptor associated factor (TRAF)-interacting protein (TRIP), which has been implicated in TNF signaling. NOPO and TRIP contain RING domains closely resembling those of known E3 ubiquitin ligases. We herein sought to elucidate the mechanism by which TRIP/NOPO promotes genomic stability by performing a yeast two-hybrid screen to identify potential substrates/interactors. We identified members of the Y-family of DNA polymerases that facilitate replicative bypass of damaged DNA (translesion synthesis) as TRIP interactors. We show that TRIP and NOPO co-immunoprecipitate with human and Drosophila Polη, respectively, from cultured cells. We generated a null mutation in Drosophila Polη (dPolη) and found that dPolη-derived embryos have increased sensitivity to ultraviolet irradiation and exhibit nopo-like mitotic spindle defects. dPolη and nopo interact genetically in that overexpression of dPolη in hypomorphic nopo-derived embryos suppresses nopo phenotypes. We observed enhanced ubiquitylation of Polη by TRIP and NOPO E3 ligases in human cells and Drosophila embryos, respectively, and show that TRIP promotes hPolη localization to nuclear foci in human cells. We present a model in which TRIP/NOPO ubiquitylates Polη to positively regulate its activity in translesion synthesis.
Collapse
Affiliation(s)
- Heather A Wallace
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, U-4225 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | |
Collapse
|
193
|
Inoue A, Kikuchi S, Hishiki A, Shao Y, Heath R, Evison BJ, Actis M, Canman CE, Hashimoto H, Fujii N. A small molecule inhibitor of monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA) inhibits repair of interstrand DNA cross-link, enhances DNA double strand break, and sensitizes cancer cells to cisplatin. J Biol Chem 2014; 289:7109-7120. [PMID: 24474685 DOI: 10.1074/jbc.m113.520429] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Small molecule inhibitors of proliferating cell nuclear antigen (PCNA)/PCNA interacting protein box (PIP-Box) interactions, including T2 amino alcohol (T2AA), inhibit translesion DNA synthesis. The crystal structure of PCNA in complex with T2AA revealed that T2AA bound to the surface adjacent to the subunit interface of the homotrimer of PCNA in addition to the PIP-box binding cavity. Because this site is close to Lys-164, which is monoubiquitinated by RAD18, we postulated that T2AA would affect monoubiquitinated PCNA interactions. Binding of monoubiquitinated PCNA and a purified pol η fragment containing the UBZ and PIP-box was inhibited by T2AA in vitro. T2AA decreased PCNA/pol η and PCNA/REV1 chromatin colocalization but did not inhibit PCNA monoubiquitination, suggesting that T2AA hinders interactions of pol η and REV1 with monoubiquitinated PCNA. Interstrand DNA cross-links (ICLs) are repaired by mechanisms using translesion DNA synthesis that is regulated by monoubiquitinated PCNA. T2AA significantly delayed reactivation of a reporter plasmid containing an ICL. Neutral comet analysis of cells receiving T2AA in addition to cisplatin revealed that T2AA significantly enhanced formation of DNA double strand breaks (DSBs) by cisplatin. T2AA promoted colocalized foci formation of phospho-ATM and 53BP1 and up-regulated phospho-BRCA1 in cisplatin-treated cells, suggesting that T2AA increases DSBs. When cells were treated by cisplatin and T2AA, their clonogenic survival was significantly less than that of those treated by cisplatin only. These findings show that the inhibitors of monoubiquitinated PCNA chemosensitize cells by inhibiting repair of ICLs and DSBs.
Collapse
Affiliation(s)
- Akira Inoue
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38138
| | - Sotaro Kikuchi
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Asami Hishiki
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Youming Shao
- Protein Production Facility, St. Jude Children's Research Hospital, Memphis, Tennessee 38138
| | - Richard Heath
- Protein Production Facility, St. Jude Children's Research Hospital, Memphis, Tennessee 38138
| | - Benjamin J Evison
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38138
| | - Marcelo Actis
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38138
| | - Christine E Canman
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Hiroshi Hashimoto
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38138.
| |
Collapse
|
194
|
Nakajima S, Lan L, Wei L, Hsieh CL, Rapić-Otrin V, Yasui A, Levine AS. Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks. PLoS One 2014; 9:e84899. [PMID: 24454762 PMCID: PMC3891734 DOI: 10.1371/journal.pone.0084899] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/27/2013] [Indexed: 02/06/2023] Open
Abstract
During the DNA damage response (DDR), ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5), a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB) repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair.
Collapse
Affiliation(s)
- Satoshi Nakajima
- Department of Microbiology and Molecular Genetics and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SN); (LL)
| | - Li Lan
- Department of Microbiology and Molecular Genetics and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SN); (LL)
| | - Leizhen Wei
- Department of Microbiology and Molecular Genetics and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Ching-Lung Hsieh
- Department of Microbiology and Molecular Genetics and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Vesna Rapić-Otrin
- Department of Microbiology and Molecular Genetics and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Akira Yasui
- Division of the Dynamic Proteome, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Arthur S. Levine
- Department of Microbiology and Molecular Genetics and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
195
|
Tsanov N, Kermi C, Coulombe P, Van der Laan S, Hodroj D, Maiorano D. PIP degron proteins, substrates of CRL4Cdt2, and not PIP boxes, interfere with DNA polymerase η and κ focus formation on UV damage. Nucleic Acids Res 2014; 42:3692-706. [PMID: 24423875 PMCID: PMC3973308 DOI: 10.1093/nar/gkt1400] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron », that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4Cdt2. Here we provide evidence that CRL4Cdt2-dependent degradation of PIP degron proteins plays a role in the switch of PCNA partners during the DNA damage response by facilitating accumulation of translesion synthesis DNA polymerases into nuclear foci. We show that expression of a nondegradable PIP degron (Cdt1) impairs both Pol η and Pol κ focus formation on ultraviolet irradiation and reduces cell viability, while canonical PIP box-containing proteins have no effect. Furthermore, we identify PIP degron-containing peptides from several substrates of CRL4Cdt2 as efficient inhibitors of Pol η foci formation. By site-directed mutagenesis we show that inhibition depends on a conserved threonine residue that confers high affinity for PCNA-binding. Altogether these findings reveal an important regulative role for the CRL4Cdt2 pathway in the switch of PCNA partners on DNA damage.
Collapse
Affiliation(s)
- Nikolay Tsanov
- Genome Surveillance and Stability Laboratory, Department of Molecular Bases of Human Diseases, CNRS-UPR1142, Institute of Human Genetics, 141, rue de la cardonille, 34396 Cedex 5, Montpellier, France and Replication and Genome Dynamics Laboratory, Department of Genome Dynamics, CNRS-UPR1142, Institute of Human Genetics, 141, rue de la cardonille, 34396 Cedex 5, Montpellier, France
| | | | | | | | | | | |
Collapse
|
196
|
Yamada M, Watanabe K, Mistrik M, Vesela E, Protivankova I, Mailand N, Lee M, Masai H, Lukas J, Bartek J. ATR-Chk1-APC/CCdh1-dependent stabilization of Cdc7-ASK (Dbf4) kinase is required for DNA lesion bypass under replication stress. Genes Dev 2014; 27:2459-72. [PMID: 24240236 PMCID: PMC3841735 DOI: 10.1101/gad.224568.113] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cdc7 kinase regulates DNA replication. However, its role in DNA repair and recombination is poorly understood. Here we describe a pathway that stabilizes the human Cdc7-ASK (activator of S-phase kinase; also called Dbf4), its regulation, and its function in cellular responses to compromised DNA replication. Stalled DNA replication evoked stabilization of the Cdc7-ASK (Dbf4) complex in a manner dependent on ATR-Chk1-mediated checkpoint signaling and its interplay with the anaphase-promoting complex/cyclosome(Cdh1) (APC/C(Cdh1)) ubiquitin ligase. Mechanistically, Chk1 kinase inactivates APC/C(Cdh1) through degradation of Cdh1 upon replication block, thereby stabilizing APC/C(Cdh1) substrates, including Cdc7-ASK (Dbf4). Furthermore, motif C of ASK (Dbf4) interacts with the N-terminal region of RAD18 ubiquitin ligase, and this interaction is required for chromatin binding of RAD18. Impaired interaction of ASK (Dbf4) with RAD18 disables foci formation by RAD18 and hinders chromatin loading of translesion DNA polymerase η. These findings define a novel mechanism that orchestrates replication checkpoint signaling and ubiquitin-proteasome machinery with the DNA damage bypass pathway to guard against replication collapse under conditions of replication stress.
Collapse
Affiliation(s)
- Masayuki Yamada
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, CZ-775 15 Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Pryor JM, Dieckman LM, Boehm EM, Washington MT. Eukaryotic Y-Family Polymerases: A Biochemical and Structural Perspective. NUCLEIC ACID POLYMERASES 2014. [DOI: 10.1007/978-3-642-39796-7_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
198
|
Guillemette S, Branagan A, Peng M, Dhruva A, Schärer OD, Cantor SB. FANCJ localization by mismatch repair is vital to maintain genomic integrity after UV irradiation. Cancer Res 2013; 74:932-44. [PMID: 24351291 DOI: 10.1158/0008-5472.can-13-2474] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nucleotide excision repair (NER) is critical for the repair of DNA lesions induced by UV radiation, but its contribution in replicating cells is less clear. Here, we show that dual incision by NER endonucleases, including XPF and XPG, promotes the S-phase accumulation of the BRCA1 and Fanconi anemia-associated DNA helicase FANCJ to sites of UV-induced damage. FANCJ promotes replication protein A phosphorylation and the arrest of DNA synthesis following UV irradiation. Interaction defective mutants of FANCJ reveal that BRCA1 binding is not required for FANCJ localization, whereas interaction with the mismatch repair (MMR) protein MLH1 is essential. Correspondingly, we find that FANCJ, its direct interaction with MLH1, and the MMR protein MSH2 function in a common pathway in response to UV irradiation. FANCJ-deficient cells are not sensitive to killing by UV irradiation, yet we find that DNA mutations are significantly enhanced. Thus, we considered that FANCJ deficiency could be associated with skin cancer. Along these lines, in melanoma we found several somatic mutations in FANCJ, some of which were previously identified in hereditary breast cancer and Fanconi anemia. Given that, mutations in XPF can also lead to Fanconi anemia, we propose collaborations between Fanconi anemia, NER, and MMR are necessary to initiate checkpoint activation in replicating human cells to limit genomic instability.
Collapse
Affiliation(s)
- Shawna Guillemette
- Authors' Affiliations: Department of Cancer Biology, University of Massachusetts Medical School, Women's Cancers Program, UMASS Memorial Cancer Center, Worcester, Massachusetts; and Department of Pharmacological Sciences & Department of Chemistry, Stony Brook University, Stony Brook, New York
| | | | | | | | | | | |
Collapse
|
199
|
Køhler JB, Jørgensen MLM, Beinoraité G, Thorsen M, Thon G. Concerted action of the ubiquitin-fusion degradation protein 1 (Ufd1) and Sumo-targeted ubiquitin ligases (STUbLs) in the DNA-damage response. PLoS One 2013; 8:e80442. [PMID: 24265825 PMCID: PMC3827193 DOI: 10.1371/journal.pone.0080442] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 10/02/2013] [Indexed: 01/04/2023] Open
Abstract
In eukaryotes many players in the DNA-damage response (DDR) catalyze protein sumoylation or ubiquitylation. Emphasis has been placed on how these modifications orchestrate the sequential recruitment of repair factors to sites of DNA damage or stalled replication forks. Here, we shed light on a pathway in which sumoylated factors are eliminated through the coupled action of Sumo-targeted ubiquitin ligases (STUbLs) and the ubiquitin-fusion degradation protein 1 (Ufd1). Ufd1 is a subunit of the Cdc48-Ufd1-Npl4 complex implicated in the sorting of ubiquitylated substrates for degradation by the proteasome. We find that in fission yeast, Ufd1 interacts physically and functionally with the Sumo-targeted ubiquitin ligase (STUbL) Rfp1, homologous to human RNF4, and with the Sumo E3 ligase Pli1, homologous to human PIAS1. Deleting a C-terminal domain of Ufd1 that mediates the interaction of Ufd1 with Rfp1, Pli1, and Sumo (ufd1ΔCt213-342) lead to an accumulation of high-molecular-weight Sumo conjugates and caused severe genomic instabilities. The spectrum of sensitivity of ufd1ΔCt213-342 cells to genotoxins, the epistatic relationships of ufd1ΔCt213-342 with mutations in DNA repair factors, and the localization of the repair factor Rad22 in ufd1ΔCt213-342 cells point to ufd1ΔCt213-342 cells accumulating aberrant structures during replication that require homologous recombination (HR) for their repair. We present evidence that HR is however often not successful in ufd1ΔCt213-342 cells and we identify Rad22 as one of the high-molecular-weight conjugates accumulating in the ufd1ΔCt213-342 mutant consistent with Rad22 being a STUbL/Ufd1 substrate. Suggesting a direct role of Ufd1 in the processing of Sumo-conjugates, Ufd1 formed nuclear foci colocalizing with Sumo during the DDR, and Sumo-conjugates accumulated in foci in the ufd1ΔCt213-342 mutant. Broader functional relationships between Ufd1 and STUbLs conceivably affect numerous cellular processes beyond the DDR.
Collapse
|
200
|
Guérillon C, Larrieu D, Pedeux R. ING1 and ING2: multifaceted tumor suppressor genes. Cell Mol Life Sci 2013; 70:3753-72. [PMID: 23412501 PMCID: PMC11113716 DOI: 10.1007/s00018-013-1270-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 01/27/2023]
Abstract
Inhibitor of Growth 1 (ING1) was identified and characterized as a "candidate" tumor suppressor gene in 1996. Subsequently, four more genes, also characterized as "candidate" tumor suppressor genes, were identified by homology search: ING2, ING3, ING4, and ING5. The ING proteins are characterized by a high homology in their C-terminal domain, which contains a Nuclear Localization Sequence and a Plant HomeoDomain (PHD), which has a high affinity to Histone 3 tri-methylated on lysine 4 (H3K4Me3). The ING proteins have been involved in the control of cell growth, senescence, apoptosis, chromatin remodeling, and DNA repair. Within the ING family, ING1 and ING2 form a subgroup since they are evolutionarily and functionally close. In yeast, only one gene, Pho23, is related to ING1 and ING2 and possesses also a PHD. Recently, the ING1 and ING2 tumor suppressor status has been fully established since several studies have described the loss of ING1 and ING2 protein expression in human tumors and both ING1 and ING2 knockout mice were reported to have spontaneously developed tumors, B cell lymphomas, and soft tissue sarcomas, respectively. In this review, we will describe for the first time what is known about the ING1 and ING2 genes, proteins, their regulations in both human and mice, and their status in human tumors. Furthermore, we explore the current knowledge about identified functions involving ING1 and ING2 in tumor suppression pathways especially in the control of cell cycle and in genome stability.
Collapse
Affiliation(s)
- Claire Guérillon
- INSERM U917, Faculté de Médecine de Rennes, Microenvironnement et Cancer, Building 2, Room 117, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
- Université de Rennes 1, Rennes, France
| | - Delphine Larrieu
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Rémy Pedeux
- INSERM U917, Faculté de Médecine de Rennes, Microenvironnement et Cancer, Building 2, Room 117, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
- Université de Rennes 1, Rennes, France
- Etablissement Français du Sang, Rennes, France
| |
Collapse
|