151
|
Qu Z, Sun D, Young W. Lithium promotes neural precursor cell proliferation: evidence for the involvement of the non-canonical GSK-3β-NF-AT signaling. Cell Biosci 2011; 1:18. [PMID: 21711903 PMCID: PMC3125208 DOI: 10.1186/2045-3701-1-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/03/2011] [Indexed: 12/04/2022] Open
Abstract
Lithium, a drug that has long been used to treat bipolar disorder and some other human pathogenesis, has recently been shown to stimulate neural precursor growth. However, the involved mechanism is not clear. Here, we show that lithium induces proliferation but not survival of neural precursor cells. Mechanistic studies suggest that the effect of lithium mainly involved activation of the transcription factor NF-AT and specific induction of a subset of proliferation-related genes. While NF-AT inactivation by specific inhibition of its upstream activator calcineurin antagonized the effect of lithium on the proliferation of neural precursor cells, specific inhibition of the NF-AT inhibitor GSK-3β, similar to lithium treatment, promoted neural precursor cell proliferation. One important function of lithium appeared to increase inhibitory phosphorylation of GSK-3β, leading to GSK-3β suppression and subsequent NF-AT activation. Moreover, lithium-induced proliferation of neural precursor cells was independent of its role in inositol depletion. These findings not only provide mechanistic insights into the clinical effects of lithium, but also suggest an alternative therapeutic strategy for bipolar disorder and other neural diseases by targeting the non-canonical GSK-3β-NF-AT signaling.
Collapse
Affiliation(s)
- Zhaoxia Qu
- Department of Cell Biology and Neuroscience, W, M, Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
152
|
Szewczyk B, Kubera M, Nowak G. The role of zinc in neurodegenerative inflammatory pathways in depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:693-701. [PMID: 20156515 DOI: 10.1016/j.pnpbp.2010.02.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/23/2010] [Accepted: 02/09/2010] [Indexed: 11/28/2022]
Abstract
According to new hypothesis, depression is characterized by decreased neurogenesis and enhanced neurodegeneration which, in part, may be caused by inflammatory processes. There is much evidence indicating that depression, age-related changes often associated with impaired brain function and cognitive performances or neurodegenerative processes could be related to dysfunctions affecting the zinc ion availability. Clinical studies revealed that depression is accompanied by serum hypozincemia, which can be normalized by successful antidepressant treatment. In patients with major depression, a low zinc serum level was correlated with an increase in the activation of markers of the immune system, suggesting that this effect may result in part from a depression-related alteration in the immune-inflammatory system. Moreover, a preliminary clinical study demonstrated the benefit of zinc supplementation in antidepressant therapy in both treatment non-resistant and resistant patients. In the preclinical study, the antidepressant activity of zinc was observed in the majority of rodent tests and models of depression and revealed a causative role for zinc deficiency in the induction of depressive-like symptoms, the reduction of neurogenesis and neuronal survival or impaired learning and memory ability. This paper provides an overview of the clinical and experimental evidence that implicates the role of zinc in the pathophysiology and therapy of depression within the context of the inflammatory and neurodegenerative hypothesis of this disease.
Collapse
Affiliation(s)
- Bernadeta Szewczyk
- Laboratory of Trace Elements Neurobiology, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | | | |
Collapse
|
153
|
Machado-Vieira R, Zarate CA. Proof of concept trials in bipolar disorder and major depressive disorder: a translational perspective in the search for improved treatments. Depress Anxiety 2011; 28:267-81. [PMID: 21456037 PMCID: PMC3071576 DOI: 10.1002/da.20800] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/14/2011] [Accepted: 01/24/2011] [Indexed: 11/10/2022] Open
Abstract
A better understanding of the neurobiology of mood disorders, informed by preclinical research and bi-directionally translated to clinical research, is critical for the future development of new and effective treatments. Recently, diverse new targets/compounds have been specifically tested in preclinical models and in proof-of-concept studies, with potential relevance as treatments for mood disorders. Most of the evidence comes from case reports, case series, or controlled proof-of-concept studies, some with small sample sizes. These include (1) the opioid neuropeptide system, (2) the purinergic system, (3) the glutamatergic system, (4) the tachykinin neuropeptide system, (5) the cholinergic system (muscarinic system), and (6) intracellular signaling pathways. These targets may be of substantial interest in defining future directions in drug development, as well as in developing the next generation of therapeutic agents for the treatment of mood disorders. Overall, further study of these and similar drugs may lead to a better understanding of relevant and clinically useful drug targets in the treatment of these devastating illnesses.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Institute and Department of Psychiatry, LIM-27, University of Sao Paulo Medical School, USP, Sao Paulo, SP, Brazil
| | - Carlos A. Zarate
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, CRC Unit 7 Southeast, Room 7-3445, Bethesda, Maryland, 20892, USA
| |
Collapse
|
154
|
Ahnaou A, Drinkenburg WHIM. Disruption of glycogen synthase kinase-3-beta activity leads to abnormalities in physiological measures in mice. Behav Brain Res 2011; 221:246-52. [PMID: 21392539 DOI: 10.1016/j.bbr.2011.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 01/01/2023]
Abstract
Dysregulation of glycogen synthase kinase-3-beta (GSK-3β) signaling pathways is thought to underlie the pathophysiology of mood disorders. In order to demonstrate that the loss of normal GSK-3β activity results in disturbances of physiological measures, we attempted to determine whether sleep-wake architecture, circadian rhythms of core body temperature and activity were altered in transgenic mice overexpressing GSK-3β activity specifically in the brain. Cortical electroencephalographic activity, body temperature (BT) and body locomotor activity (LMA) were continuously monitored using a biopotential telemetry probe. Normal circadian patterns were maintained for different measurements in both genotypes. No differences were found in total time spent asleep and waking over the 24-h recording session. However, transgenic animals overexpressing GSK-3β showed alteration in sleep continuity characterized by an increases in number of non rapid eye movement (NREM) sleep episodes (GSK-3β, 227.2 ± 1.7 vs. WT, 172.6 ± 1.4, p < 0.05) and decreases in mean episode duration (GSK-3β, 3.0 ± 0.1 vs. WT, 4.4 ± 0.2, p < 0.05). Additionally, transgenic animals exhibited marked enhancement of basal LMA and BT levels during the first part of the dark period, under both light-dark and free running dark-dark circadian cycles. Our findings indicate that transgenic mice overexpressing GSK-3β activity exhibit severe fragmentation of sleep-wake cycle during both the light and dark periods, without showing deviancy in total durations of vigilance states. The results strongly suggest that GSK-3β activity is elemental for the maintenance of circadian motor behavior levels required for proper regulation of BT and sleep-wake organization.
Collapse
Affiliation(s)
- A Ahnaou
- Janssen Pharmaceutical Companies of Johnson & Johnson, Dept of Neurosciences, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | | |
Collapse
|
155
|
Neuroprotective and neurotrophic effects of long term lithium treatment in mouse brain. Biometals 2011; 24:747-57. [PMID: 21373826 DOI: 10.1007/s10534-011-9433-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/22/2011] [Indexed: 01/08/2023]
Abstract
Since the worldwide approval of lithium therapy in 1970, lithium has been used for its anti-manic, antidepressant, and anti-suicidal effects. The last decade has witnessed the following discoveries about its neuroprotective and neurotrophic properties, yet the therapeutic mechanisms at the cellular level remain not-fully defined. We have undertaken the present study to determine if chronic lithium treatment, at therapeutically relevant concentrations, exerts neurotrophic/neuroprotective effects in the mouse brain in vivo. For this purpose, 10 months aged mice were fed for 3 months on food pellets contained 1 g (L1 group) or 2 g (L2 group) lithium carbonate/kg, resulting in serum concentrations of 0.4 and 0.8 mM, respectively. The evaluation of lipid peroxidation level and the activities of catalase, superoxide-dismutase and glutathione-peroxidase showed that chronic Li administration, at therapeutic doses doesn't induce oxidative stress in brain tissue. No changes in the expression levels of molecular chaperones, namely, the HSP70, and HSP90 heat shock proteins and the GRP94 glucose-regulated protein were detected. Moreover, this treatment has caused (1) an increase in the relative brain weight (2) a delay in the age induced cerebral glucose impairment (3) an enhancement of the neurogenesis in hippocampus and enthorinal cortex highlighted by silver impregnation. Under these experimental conditions, no modifications were observed in expression levels of GSK3 and of its downstream target β-catenin proteins. These results suggested that chronic Li administration, at therapeutic doses, has a neuroprotective/neurotrophic properties and its therapeutic mechanism doesn't implicate GSK3 inactivation.
Collapse
|
156
|
Lipina TV, Wang M, Liu F, Roder JC. Synergistic interactions between PDE4B and GSK-3: DISC1 mutant mice. Neuropharmacology 2011; 62:1252-62. [PMID: 21376063 DOI: 10.1016/j.neuropharm.2011.02.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/14/2011] [Accepted: 02/21/2011] [Indexed: 11/17/2022]
Abstract
Disrupted-In-Schizophrenia-1 (DISC1) is a strong genetic risk factor associated with psychiatric disorders. Two distinct mutations in the second exon of the DISC1 gene (Q31L and L100P) lead to either depression- or schizophrenia-like behavior in mice. Both phosphodiesterase-4B (PDE4B) and glycogen synthase kinase-3 (GSK-3) have common binding sites on N-terminal region of DISC1 and are implicated into etiology of schizophrenia and depression. It is not known if PDE4B and GSK-3 could converge signals in the cell via DISC1 at the same time. The purpose of the present study was to assess whether rolipram (PDE4 inhibitor) might synergize with TDZD-8 (GSK-3 blocker) to produce antipsychotic effects at low doses on the DISC1-L100P genetic model. Indeed, combined treatment of DISC1-L100P mice with rolipram (0.1 mg/kg) and TDZD-8 (2.5 mg/kg) in sub-threshold doses corrected their Pre-Pulse Inhibition (PPI) deficit and hyperactivity, without any side effects at these doses. We have suggested that rolipram-induced increase of cAMP level might influence GSK-3 function and, hence the efficacy of TDZD-8. Our second goal was to estimate how DISC1-Q31L with reduced PDE4B activity, and therefore mimicking rolipram-induced conditions, could alter pharmacological response to TDZD-8, GSK-3 activity and its interaction with DISC1. DISC1-Q31L mutants showed increased sensitivity to GSK-3 inhibitor compare to DISC1-L100P mice. TDZD-8 (2.5 mg/kg) was able to correct PPI deficit, reduce immobility in the forced swim test (FST) and increased social motivation/novelty. In parallel, biochemical analysis revealed significantly reduced binding of GSK-3 to the mutated DISC1-Q31L and increased enzymatic activity of GSK-3. Taken together, genetic variations in DISC1 influence formation of biochemical complex with PDE4 and GSK-3 and strength the possibility of synergistic interactions between these proteins.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | | | | | | |
Collapse
|
157
|
Abstract
Mitochondria provide most of the energy production in cells. They are involved in the regulation of free radicals, calcium buffering, and redox signaling and take part in the intrinsic pathway of apoptosis. Mutations or polymorphisms of mitochondrial DNA, mitochondria-mediated oxidative stress, decrease of adenosine triphosphate production, changes of intracellular calcium and oxidative stress are concerned in various diseases. There is increasing evidence that impaired functions of mitochondria are associated with mood disorders. It is suggested that disturbed energetic metabolism and/or reactive oxygen species production take part in the pathophysiology of mood disorders and could participate in the therapeutic effects or side-effects of antidepressants and mood stabilizers.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
| | | |
Collapse
|
158
|
Kitamura S, Hida A, Watanabe M, Enomoto M, Aritake-Okada S, Moriguchi Y, Kamei Y, Mishima K. Evening preference is related to the incidence of depressive states independent of sleep-wake conditions. Chronobiol Int 2011; 27:1797-812. [PMID: 20969524 DOI: 10.3109/07420528.2010.516705] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although evening preference has recently been identified as a risk factor for depression, it has not been substantiated whether evening preference is a direct risk factor for depressive states, or if it is associated secondarily through other factors, such as delayed sleep timing and shortened sleep duration. The objective of this study is to investigate associations in Japanese adult subjects between evening preference and incidence of depressive states, adjusting for various sleep parameters related to depressive states. The Morningness-Eveningness Questionnaire (MEQ), the Pittsburgh Sleep Quality Index (PSQI), and the Center for Epidemiologic Studies Depression Scale (CES-D) were administered to 1170 individuals (493 males/677 females; mean and range 38.5 and 20-59 yrs) to assess their diurnal preferences, sleeping states, and presence of depression symptoms. Subjects were classified into five chronotypes based on MEQ scores. Evening preference was associated with delayed sleep timing, shortened sleep duration, deteriorated subjective sleep quality, and worsened daytime sleepiness. Logistic regression analysis demonstrated that the extreme evening type (odds ratio [OR] = 1.926, p = .018) was associated with increased incidence of depressive states and that the extreme morning type (OR = 0.342, p = .038) was associated with the decreased incidence of depressive states, independent of sleep parameters, such as nocturnal awakening (OR = 1.844, p < .001), subjective sleep quality (OR = 2.471, p < .001), and daytime sleepiness (OR = 1.895, p = .001). However, no significant associations were observed between the incidence of depressive states and sleep duration, sleep timing, and sleep debt (levels of insufficient sleep). Although the findings of this study do not demonstrate a causative relationship between evening preference and depression, they do suggest the presence of functional associations between mood adjustment and biological clock systems that regulate diurnal preference. They also suggest that evening preference might increase susceptibility to the induction of mood disorders.
Collapse
Affiliation(s)
- Shingo Kitamura
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Forlenza OV, Torres CA, Talib LL, de Paula VJ, Joaquim HPG, Diniz BS, Gattaz WF. Increased platelet GSK3B activity in patients with mild cognitive impairment and Alzheimer's disease. J Psychiatr Res 2011; 45:220-4. [PMID: 20576277 DOI: 10.1016/j.jpsychires.2010.06.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 12/26/2022]
Abstract
The disruption of glycogen synthase kinase 3-beta (GSK3B) homeostasis has implications in the pathophysiology of neuropsychiatric disorders, namely Alzheimer's disease (AD). GSK3B activity is increased within the AD brain, favoring the hyperphosphorylation of microtubule-associated protein Tau and the formation of neurofibrillary tangles. Such abnormality has also been detected in leukocytes of patients with cognitive disorders. The aim of the present study was to determine the expression of total and phosphorylated GSK3B at protein level in platelets of older adults with varying degrees of cognitive impairment, and to compare GSK3B activity in patients with AD, mild cognitive impairment (MCI) and healthy controls. Sixty-nine older adults were included (24 patients with mild to moderate AD, 22 patients with amnestic MCI and 23 elderly controls). The expression of platelet GSK3B (total- and Ser-9 phosphorylated GSK3B) was determined by Western blot. GSK3B activity was indirectly assessed by means of the proportion between phospho-GSK3B to total GSK3B (GSK3B ratio), the former representing the inactive form of the enzyme. Ser-9 phosphorylated GSK3B was significantly reduced in patients with MCI and AD as compared to controls (p=0.04). Platelet GSK3B ratio was significantly decreased in patients with MCI and AD (p=0.04), and positively correlated with scores on memory tests (r=0.298, p=0.01). In conclusion, we corroborate previous evidence of increased GSK activity in peripheral tissues of patients with MCI and AD, and further propose that platelet GSK may be an alternative peripheral biomarker of this abnormality, provided samples are adequately handled in order to preclude platelet activation.
Collapse
Affiliation(s)
- Orestes V Forlenza
- Laboratory of Neuroscience (LIM 27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Rua Dr. Ovídio Pires de Campos 785, 05403-010 São Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
160
|
The acute and chronic effects of combined antipsychotic-mood stabilizing treatment on the expression of cortical and striatal postsynaptic density genes. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:184-97. [PMID: 21055435 DOI: 10.1016/j.pnpbp.2010.10.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 10/10/2010] [Accepted: 10/27/2010] [Indexed: 02/08/2023]
Abstract
The detection of changes in postsynaptic gene expression after the administration of mood stabilizers, alone or in combination with antipsychotics, and antidepressants in animal models of drug treatment, may represent a valuable strategy to explore the molecular targets of the mainstay treatments for bipolar disorder. In this study we investigated, in both acute and chronic paradigms, the expression of specific postsynaptic density genes (Homer1a, Homer1b/c, and PSD95) and genes putatively implicated in mood stabilizers mechanism of action (GSK3b, ERK) after administration of first (haloperidol) or second generation antipsychotics (quetiapine 30 mg/kg), alone or in combination with valproate. Moreover, we compared the effects of an antidepressant agent widely used in bipolar depression (citalopram) with a low dose of quetiapine (15 mg/kg), which has been demonstrated to display antidepressant action in bipolar depression. In striatal regions, Homer1a expression was strongly induced by haloperidol compared to all the other treatments. Haloperidol plus valproate also markedly induced Homer1a, but to a significant lesser extent than haloperidol alone. Also in the chronic paradigm haloperidol, but not haloperidol plus valproate, induced Homer1a expression in all the subregions of the caudate-putamen and in the nucleus accumbens core. The high dose of quetiapine significantly induced Homer1a in anterior cingulated, premotor and motor subregions of the cortex, and the extent of induction was significantly higher as compared to the lower dose. Oppositely, Homer1a expression was decreased in the cortex by citalopram acute administration. ERK gene was upregulated in cortex and striatum by the acute treatment with valproate and with the combination of haloperidol or quetiapine plus valproate, whereas no significant differences were noticed in GSK3b expression among treatments. PSD95 showed a significant upregulation by acute citalopram and by haloperidol plus valproate in both cortical and subcortical regions. Haloperidol and quetiapine 30 mg/kg, oppositely, significantly reduced the expression of the gene in the cortex. In conclusion, these results suggest that the combined treatment with a typical or an atypical antipsychotic plus valproate may induce differential modulation of postsynaptic genes expression when compared to the effects of these drugs individually administered.
Collapse
|
161
|
Lithium ameliorates nucleus accumbens phase-signaling dysfunction in a genetic mouse model of mania. J Neurosci 2011; 30:16314-23. [PMID: 21123577 DOI: 10.1523/jneurosci.4289-10.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polymorphisms in circadian genes such as CLOCK convey risk for bipolar disorder. While studies have begun to elucidate the molecular mechanism whereby disruption of Clock alters cellular function within mesolimbic brain regions, little remains known about how these changes alter gross neural circuit function and generate mania-like behaviors in Clock-Δ19 mice. Here we show that the phasic entrainment of nucleus accumbens (NAC) low-gamma (30-55 Hz) oscillations to delta (1-4 Hz) oscillations is negatively correlated with the extent to which wild-type (WT) mice explore a novel environment. Clock-Δ19 mice, which display hyperactivity in the novel environment, exhibit profound deficits in low-gamma and NAC single-neuron phase coupling. We also demonstrate that NAC neurons in Clock-Δ19 mice display complex changes in dendritic morphology and reduced GluR1 expression compared to those observed in WT littermates. Chronic lithium treatment ameliorated several of these neurophysiological deficits and suppressed exploratory drive in the mutants. These results demonstrate that disruptions of Clock gene function are sufficient to promote alterations in NAC microcircuits, and raise the hypothesis that dysfunctional NAC phase signaling may contribute to the mania-like behavioral manifestations that result from diminished circadian gene function.
Collapse
|
162
|
Does gene deletion of AMPA GluA1 phenocopy features of schizoaffective disorder? Neurobiol Dis 2010; 40:608-21. [PMID: 20699120 PMCID: PMC2955784 DOI: 10.1016/j.nbd.2010.08.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/06/2010] [Accepted: 08/03/2010] [Indexed: 12/19/2022] Open
Abstract
Glutamatergic dysfunction is strongly implicated in schizophrenia and
mood disorders. GluA1 knockout (KO) mice display schizophrenia- and
depression-related abnormalities. Here, we asked whether GluA1 KO show
mania-related abnormalities. KO were tested for behavior in approach/avoid
conflict tests, responses to repeated forced swim exposure, and locomotor
responses under stress and after psychostimulant treatment. The effects of rapid
dopamine depletion and treatment with lithium or GSK-3β inhibitor on KO
locomotor hyperactivity were tested. Results showed that KO exhibited novelty-
and stress-induced locomotor hyperactivity, reduced forced swim immobility and
alterations in approach/avoid conflict tests. Psychostimulant treatment and
dopamine depletion exacerbated KO locomotor hyperactivity. Lithium, but not
GSK-3β inhibitor, treatment normalized KO anxiety-related behavior and
partially reversed hyperlocomotor behavior, and also reversed elevated
prefrontal cortex levels of phospho-MARCKS and phospho-neuromodulin.
Collectively, these findings demonstrate mania-related abnormalities in GluA1 KO
and, combined with previous findings, suggest this mutant may provide a novel
model of features of schizoaffective disorder.
Collapse
|
163
|
Abstract
OBJECTIVE Biological rhythm pathways are highlighted in a number of etiological models of bipolar disorder, and the management of circadian instability appears in consensus treatment guidelines. There are, however, significant conceptual and empirical limitations on our understanding of a hypothesised link between circadian, sleep, and emotion regulation processes in bipolar disorder. The aim of this article is to articulate the limits of scientific knowledge in relation to this hypothesis. METHODS A critical evaluation of various literatures was undertaken. The basic science of circadian and sleep processes, their involvement in normal emotion regulation, and the types of evidence suggesting circadian/sleep involvement in bipolar disorder are reviewed. RESULTS Multiple lines of evidence suggest that circadian and sleep-wake processes are causally involved in bipolar disorder. These processes demonstrably interact with other neurobiological pathways known to be important in bipolar disorder, but are unique in that they are open to behavioural manipulation. CONCLUSION Further research into biological rhythm pathways to bipolar disorder is warranted. Person-environment feedback loops are fundamental to circadian adaptation, and models of circadian pathogenesis (and treatment) should recognize this complexity.
Collapse
Affiliation(s)
- Greg Murray
- Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| | | |
Collapse
|
164
|
Pharmacological and genetic reversal of age-dependent cognitive deficits attributable to decreased presenilin function. J Neurosci 2010; 30:9510-22. [PMID: 20631179 DOI: 10.1523/jneurosci.1017-10.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of cognitive loss and neurodegeneration in the developed world. Although its genetic and environmental causes are not generally known, familial forms of the disease (FAD) are attributable to mutations in a single copy of the Presenilin (PS) and amyloid precursor protein genes. The dominant inheritance pattern of FAD indicates that it may be attributable to gain or change of function mutations. Studies of FAD-linked forms of presenilin (psn) in model organisms, however, indicate that they are loss of function, leading to the possibility that a reduction in PS activity might contribute to FAD and that proper psn levels are important for maintaining normal cognition throughout life. To explore this issue further, we have tested the effect of reducing psn activity during aging in Drosophila melanogaster males. We have found that flies in which the dosage of psn function is reduced by 50% display age-onset impairments in learning and memory. Treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium during the aging process prevented the onset of these deficits, and treatment of aged flies reversed the age-dependent deficits. Genetic reduction of Drosophila metabotropic glutamate receptor (DmGluRA), the inositol trisphosphate receptor (InsP(3)R), or inositol polyphosphate 1-phosphatase also prevented these age-onset cognitive deficits. These findings suggest that reduced psn activity may contribute to the age-onset cognitive loss observed with FAD. They also indicate that enhanced mGluR signaling and calcium release regulated by InsP(3)R as underlying causes of the age-dependent cognitive phenotypes observed when psn activity is reduced.
Collapse
|
165
|
Hui W, Litherland GJ, Jefferson M, Barter MJ, Elias MS, Cawston TE, Rowan AD, Young DA. Lithium protects cartilage from cytokine-mediated degradation by reducing collagen-degrading MMP production via inhibition of the P38 mitogen-activated protein kinase pathway. Rheumatology (Oxford) 2010; 49:2043-53. [PMID: 20634235 DOI: 10.1093/rheumatology/keq217] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To determine the effects and mechanism of action of lithium chloride (LiCl) on cartilage destruction induced by the pro-inflammatory cytokines IL-1, IL-1 + oncostatin M and TNF-α. METHODS The release of collagen was assessed in bovine cartilage explant cultures, whereas collagenolytic activities (active and total) in conditioned culture supernatants were determined by bioassay. The expression and production of MMP from chondrocytes were analysed by real-time RT-PCR and ELISA. Signalling pathway analysis was performed using a phospho-antibody array and standard immunoblotting. RESULTS LiCl, but not selective glycogen synthase kinase 3 (GSK-3) inhibitor compounds SB-415286 and TDZD-8, significantly decreased pro-inflammatory cytokine-induced collagen release from bovine cartilage via the down-regulation of collagenolytic activity. Furthermore, MMP-1 and MMP-13 expression was reduced in both bovine and human chondrocytes. Pathway analysis revealed that LiCl selectively inhibited activation of the p38 mitogen-activated protein kinase pathway; effects that were recapitulated by specific p38 pathway inhibition. CONCLUSIONS This study demonstrates for the first time that LiCl can protect against cartilage damage induced by pro-inflammatory cytokines, and indicates that LiCl-mediated cartilage protection is not via a GSK-3-dependent mechanism, but potentially via inhibition of the p38 pathway. These data indicate that lithium administration may represent a potential therapy for arthritis.
Collapse
Affiliation(s)
- Wang Hui
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, The Medical School, Framlington Place, Newcastle-upon-Tyne, UK
| | | | | | | | | | | | | | | |
Collapse
|
166
|
E3 ligases Arf-bp1 and Pam mediate lithium-stimulated degradation of the circadian heme receptor Rev-erb alpha. Proc Natl Acad Sci U S A 2010; 107:11614-9. [PMID: 20534529 DOI: 10.1073/pnas.1000438107] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The metazoan circadian clock mechanism involves cyclic transcriptional activation and repression by proteins whose degradation is highly regulated via the ubiquitin-proteasome pathway. The heme receptor Rev-erb alpha, a core negative component of the circadian network, controls circadian oscillation of several clock genes, including Bmal1 Rev-erb alpha protein degradation can be triggered by inhibitors of glycogen synthase kinase 3beta, such as lithium, and also by serum shock, which synchronizes circadian rhythms in cultured cells. Here we report that two E3 ligases, Arf-bp1 and Pam (Myc-bp2), are copurified with Rev-erb alpha and required for its ubiquitination. RNA-interference-mediated depletion of Arf-bp1 and Pam stabilizes the Rev-erb alpha protein and protects Rev-erb alpha from degradation triggered by either lithium or serum shock treatment. This degradation pathway modulates the expression of Rev-erb alpha-regulated Clock gene and circadian function in mouse hepatoma cells. Thus, Arf-bp1 and Pam are novel regulators of circadian gene expression that target Rev-erb alpha for degradation.
Collapse
|
167
|
|
168
|
Machado-Vieira R, Salvadore G, DiazGranados N, Ibrahim L, Latov D, Wheeler-Castillo C, Baumann J, Henter ID, Zarate CA. New therapeutic targets for mood disorders. ScientificWorldJournal 2010; 10:713-26. [PMID: 20419280 PMCID: PMC3035047 DOI: 10.1100/tsw.2010.65] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Existing pharmacological treatments for bipolar disorder (BPD) and major depressive disorder (MDD) are often insufficient for many patients. Here we describe a number of targets/compounds that clinical and preclinical studies suggest could result in putative novel treatments for mood disorders. These include: (1) glycogen synthase kinase-3 (GSK-3) and protein kinase C (PKC), (2) the purinergic system, (3) histone deacetylases (HDACs), (4) the melatonergic system, (5) the tachykinin neuropeptides system, (6) the glutamatergic system, and (7) oxidative stress and bioenergetics. The paper reviews data on new compounds that have shown antimanic or antidepressant effects in subjects with mood disorders, or similar effects in preclinical animal models. Overall, an improved understanding of the neurobiological underpinnings of mood disorders is critical in order to develop targeted treatments that are more effective, act more rapidly, and are better tolerated than currently available therapies.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Shang L, Ananthakrishnan R, Li Q, Quadri N, Abdillahi M, Zhu Z, Qu W, Rosario R, Touré F, Yan SF, Schmidt AM, Ramasamy R. RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3beta signaling pathways. PLoS One 2010; 5:e10092. [PMID: 20404919 PMCID: PMC2852407 DOI: 10.1371/journal.pone.0010092] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 03/16/2010] [Indexed: 11/21/2022] Open
Abstract
Background Advanced glycation end-products (AGEs) have been implicated in diverse pathological settings including diabetes, inflammation and acute ischemia/reperfusion injury in the heart. AGEs interact with the receptor for AGEs (RAGE) and transduce signals through activation of MAPKs and proapoptotic pathways. In the current study, adult cardiomyocytes were studied in an in vitro ischemia/reperfusion (I/R) injury model to delineate the molecular mechanisms underlying RAGE-mediated injury due to hypoxia/reoxygenation (H/R). Methodology/Principal Findings Cardiomyocytes isolated from adult wild-type (WT), homozygous RAGE-null (RKO), and WT mice treated with soluble RAGE (sRAGE) were subjected to hypoxia for 30 minutes alone or followed by reoxygenation for 1 hour. In specific experiments, RAGE ligand carboxymethyllysine (CML)-AGE (termed “CML” in this manuscript) was evaluated in vitro. LDH, a marker of cellular injury, was assayed in the supernatant in the presence or absence of signaling inhibitor-treated cardiomyocytes. Cardiomyocyte levels of heterogeneous AGEs were measured using ELISA. A pronounced increase in RAGE expression along with AGEs was observed in H/R vs. normoxia in WT cardiomyocytes. WT cardiomyocytes after H/R displayed increased LDH release compared to RKO or sRAGE-treated cardiomyocytes. Our results revealed significant increases in phospho-JNK in WT cardiomyocytes after H/R. In contrast, neither RKO nor sRAGE-treated cardiomyocytes exhibited increased phosphorylation of JNK after H/R stress. The impact of RAGE deletion on GSK-3β phosphorylation in the cardiomyocytes subjected to H/R revealed significantly higher levels of phospho-GSK-3β/total GSK-3β in RKO, as well as in sRAGE-treated cardiomyocytes versus WT cardiomyocytes after H/R. Further investigation established a key role for Akt, which functions upstream of GSK-3β, in modulating H/R injury in adult cardiomyocytes. Conclusions/Significance These data illustrate key roles for RAGE-ligand interaction in the pathogenesis of cardiomyocyte injury induced by hypoxia/reoxygenation and indicate that the effects of RAGE are mediated by JNK activation and dephosphorylation of GSK-3β. The outcome in this study lends further support to the potential use of RAGE blockade as an adjunctive therapy for protection of the ischemic heart.
Collapse
Affiliation(s)
- Linshan Shang
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Radha Ananthakrishnan
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Qing Li
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Nosirudeen Quadri
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Mariane Abdillahi
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Zhengbin Zhu
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Wu Qu
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Rosa Rosario
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Fatouma Touré
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Shi Fang Yan
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Ann Marie Schmidt
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Ravichandran Ramasamy
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
170
|
Berk M, Hallam K, Malhi GS, Henry L, Hasty M, Macneil C, Yucel M, Pantelis C, Murphy B, Vieta E, Dodd S, McGorry PD. Evidence and implications for early intervention in bipolar disorder. J Ment Health 2010; 19:113-26. [DOI: 10.3109/09638230903469111] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
171
|
Toledo EM, Inestrosa NC. Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1DeltaE9 mouse model of Alzheimer's disease. Mol Psychiatry 2010; 15:272-85, 228. [PMID: 19621015 DOI: 10.1038/mp.2009.72] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, accumulation of the amyloid-beta-peptide (Abeta) and synaptic alterations. Treatment with lithium has been shown to provide neuroprotection against several insults, including protection against Abeta neurotoxicity in vitro. Rosiglitazone, a peroxisome proliferator activated receptor-gamma agonist, has been shown to attenuate Abeta-peptide neurotoxic effects, including the inflammatory response of microglia and astrocytes. Both types of drugs activate Wnt signaling, a pathway that has been shown to be related to AD. In this study, a double transgenic mouse model, which coexpresses APPswe and the exon 9 deletion of the presenilin 1 (PSEN1) gene, was used to examine, in vivo, the effect of lithium and rosiglitazone on Abeta neurotoxicity. Mice were tested for spatial memory, and their brain samples were used for histochemical and biochemical analysis. In this study, we report that both drugs significantly reduced (1) spatial memory impairment induced by amyloid burden; (2) Abeta aggregates and Abeta oligomers; and (3) astrocytic and microglia activation. They also prevented changes in presynaptic and postsynaptic marker proteins. Finally, both drugs activate Wnt signaling shown by the increase in beta-catenin and by the inhibition of the glycogen synthase kinase-3beta. We conclude that lithium and rosiglitazone, possibly by the activation of the Wnt signaling pathway, reduce various AD neuropathological markers and may be considered as potential therapeutic agents against the disease.
Collapse
Affiliation(s)
- E M Toledo
- Centro de Envejecimiento y Regeneración, MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chille
| | | |
Collapse
|
172
|
Duncan RE, Bazinet RP. Brain arachidonic acid uptake and turnover: implications for signaling and bipolar disorder. Curr Opin Clin Nutr Metab Care 2010; 13:130-8. [PMID: 20145439 DOI: 10.1097/mco.0b013e328336b615] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Arachidonic acid was first detected in the brain in 1922. Although earlier work examined the role of arachidonic acid in growth and development, more recent advancements have elucidated roles for arachidonic acid in brain health and disease. RECENT FINDINGS In this review, we summarize evidence demonstrating that unesterified arachidonic acid in the plasma pool, which is supplied in part from adipose, is readily taken up and incorporated into brain phospholipids. By labeling plasma unesterified arachidonic acid, it is possible to trace the subsequent release of arachidonic acid from brain phospholipids upon neuroreceptor-mediated release by phospholipase A2 in response to drugs and neuroinflammation in rodents. With the synthesis of 11C labeled fatty acids, brain arachidonic acid signaling can now be measured in humans with position emission tomography. Arachidonic acid signals are known to regulate important biological functions, including neuroinflammation and excitotoxicity, and we focus on how the brain arachidonic acid cascade is a common target of drugs used to treat bipolar disorder (e.g. lithium, carbamazepine and valproate). SUMMARY A better understanding of the regulation of arachidonic acid uptake into the brain and the brain arachidonic acid cascade could lead to new imaging techniques and the identification of novel therapeutic targets in excitotoxicity, neuroinflammation and bipolar disorder.
Collapse
Affiliation(s)
- Robin E Duncan
- Department of Nutritional Science & Toxicology, University of California, Berkeley, California, USA
| | | |
Collapse
|
173
|
Jiang L, Yang J, Fan F, Zhang D, Wang X. The type 2C protein phosphatase FgPtc1p of the plant fungal pathogen Fusarium graminearum is involved in lithium toxicity and virulence. MOLECULAR PLANT PATHOLOGY 2010; 11:277-282. [PMID: 20447276 PMCID: PMC6640505 DOI: 10.1111/j.1364-3703.2009.00598.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Type 2C protein phosphatases (PP2Cs) are monomeric protein serine/threonine phosphatases that play various roles in eukaryotic organisms. In this study, we characterized the PP2C encoded by FgPTC1 in Fusarium graminearum, the major causal agent of Fusarium head blight on wheat and barley. We found that deletion of FgPTC1 delays the mycelium growth of F. graminearum in response to lithium. Consistently, FgPTC1 complemented the function of ScPTC1 in lithium toxicity in Saccharomyces cerevisiae. Furthermore, we showed that deletion of FgPTC1 attenuated the virulence of F. graminearum on wheat. Therefore, FgPTC1 plays an important role in regulating the hyphal growth and virulence of F. graminearum.
Collapse
Affiliation(s)
- Linghuo Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094, China.
| | | | | | | | | |
Collapse
|
174
|
Benedetti F, Poletti S, Radaelli D, Bernasconi A, Cavallaro R, Falini A, Lorenzi C, Pirovano A, Dallaspezia S, Locatelli C, Scotti G, Smeraldi E. Temporal lobe grey matter volume in schizophrenia is associated with a genetic polymorphism influencing glycogen synthase kinase 3-β activity. GENES BRAIN AND BEHAVIOR 2010; 9:365-71. [PMID: 20113358 DOI: 10.1111/j.1601-183x.2010.00566.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
At the crossroad of multiple pathways regulating trophism and metabolism, glycogen synthase kinase (GSK)3 is considered a key factor in influencing the susceptibility of neurons to harmful stimuli (neuronal resilience) and is a target for several psychiatric drugs that directly inhibit it or increase its inhibitory phosphorylation. Inhibition of GSK3 prevents apoptosis and could protect against the neuropathological processes associated with psychiatric disorders. A GSK3-beta promoter single-nucleotide polymorphism (rs334558) influences transcriptional strength, and the less active form was associated with less detrimental clinical features of mood disorders. Here we studied the effect of rs334558 on grey matter volumes (voxel-based morphometry) of 57 patients affected by chronic schizophrenia. Carriers of the less active C allele variant showed significantly higher brain volumes in an area encompassing posterior regions of right middle and superior temporal gyrus, within the boundaries of Brodmann area 21. The temporal lobe is the brain parenchymal region with the most consistently documented morphometric abnormalities in schizophrenia, and neuropathological processes in these regions develop soon at the beginning of the illness. These results support the interest for GSK3-beta as a factor affecting neuropathology in major behavioural disorders, such as schizophrenia, and thus as a possible target for treatment.
Collapse
Affiliation(s)
- F Benedetti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
|
176
|
Camins A, Verdaguer E, Junyent F, Yeste-Velasco M, Pelegrí C, Vilaplana J, Pallás M. Potential mechanisms involved in the prevention of neurodegenerative diseases by lithium. CNS Neurosci Ther 2010; 15:333-44. [PMID: 19889130 DOI: 10.1111/j.1755-5949.2009.00086.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lithium is a monovalent cation that was introduced in 1949 by John Cade for the treatment of bipolar disorder. Clinical reports and subsequent studies confirmed this application and the beneficial effects of this compound. However, over the last 15 years, various authors have also demonstrated the neuroprotective effects of lithium against several neurotoxic paradigms. Thus, experimental studies in neuronal cell cultures and animal models of Alzheimer disease and others pathologies have provided strong evidence for the potential benefits of lithium. The main mechanism underlying its neuroprotective effects is thought to be inhibition of glycogen synthase kinase-3 (GSK-3), although other biochemical pathways in the brain could also be affected. In this review, the main mechanisms of lithium action are summarized, including the modulation of glutamate receptors, effects on arachidonic acid metabolism, its role with respect to AKT, and other potential mechanisms. In addition, its effects on neuroprotective proteins such as Bcl-2 and p53 are also discussed. Although the cellular and molecular biological effects of lithium may constitute an effective therapeutic strategy for Alzheimer disease, further clinical and experimental studies with this drug and specific GSK-3 inhibitors are necessary to confirm the use of lithium in therapeutic approaches to neurodegenerative diseases.
Collapse
Affiliation(s)
- Antoni Camins
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Institut de Biomedicina (IBUB). Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
177
|
Machado-Vieira R, Manji HK, Zarate CA. Potential novel therapeutics for bipolar disorders. Curr Top Behav Neurosci 2010; 5:303-29. [PMID: 25236562 DOI: 10.1007/7854_2010_51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Existing pharmacological treatments for bipolar disorder (BPD), a severe recurrent mood disorder, are in general insufficient for many patients. Despite adequate doses and treatment duration, many individuals with this disease continue to experience mood episode relapses, residual symptoms, and functional impairment. This chapter reviews a number of targets/compounds that could result in putative novel treatments for BPD, including the dynorphin opioid neuropeptide system, the glutamatergic system, the purinergic system, the cholinergic system (muscarinic and nicotinic systems), the oxidative stress system, and the melatonergic system. The arachidonic acid cascade and intracellular signaling cascades (including glycogen synthase kinase 3 and protein kinase C) are also reviewed, as are agents that affect multiple targets (e.g., modafinil, Uridine RG2417). Further study of these and similar agents may improve our understanding of relevant drug targets and their clinical utility as potential therapeutics for this devastating disorder.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Mark O. Hatfield CRC, Unit 7 SE, Rm. 7-3445, Bethesda, MD, 20892, USA,
| | | | | |
Collapse
|
178
|
Xu CM, Wang J, Wu P, Zhu WL, Li QQ, Xue YX, Zhai HF, Shi J, Lu L. Glycogen synthase kinase 3β in the nucleus accumbens core mediates cocaine-induced behavioral sensitization. J Neurochem 2009; 111:1357-68. [DOI: 10.1111/j.1471-4159.2009.06414.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
179
|
Abstract
OBJECTIVE Despite effective pharmacological treatments for bipolar disorder, we still lack a comprehensive pathophysiological model of the illness. Recent neurobiological research has implicated a number of key brain regions and neuronal components in the behavioural and cognitive manifestations of bipolar disorder. Dopamine has previously been investigated in some depth in bipolar disorder, but of late has not been a primary focus of attention. This article examines the role of dopamine in bipolar disorder, incorporating recent advances into established models where possible. METHODS A critical evaluation of the literature was undertaken, including a review of behavioural, neurochemical, receptor, and imaging studies, as well as genetic studies focusing on dopamine receptors and related metabolic pathways. In addition, pharmacologic manipulation of the central dopaminergic pathways and comparisons with other disease states such as schizophrenia were considered, principally as a means of exploring the hypothesised models. RESULTS Multiple lines of evidence, including data from pharmacological interventions and structural and functional magnetic resonance imaging studies, suggest that the dopaminergic system may play a central role in bipolar disorder. CONCLUSION Future research into the pathophysiological mechanisms of bipolar disorder and the development of new treatments for bipolar disorder should focus on the dopaminergic system.
Collapse
Affiliation(s)
- David A Cousins
- Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| | | | | |
Collapse
|
180
|
Kaidanovich-Beilin O, Lipina TV, Takao K, van Eede M, Hattori S, Laliberté C, Khan M, Okamoto K, Chambers JW, Fletcher PJ, MacAulay K, Doble BW, Henkelman M, Miyakawa T, Roder J, Woodgett JR. Abnormalities in brain structure and behavior in GSK-3alpha mutant mice. Mol Brain 2009; 2:35. [PMID: 19925672 PMCID: PMC2785804 DOI: 10.1186/1756-6606-2-35] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 11/19/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded by two genes that generate two related proteins: GSK-3alpha and GSK-3beta. Mice lacking a functional GSK-3alpha gene were engineered in our laboratory; they are viable and display insulin sensitivity. In this study, we have characterized brain functions of GSK-3alpha KO mice by using a well-established battery of behavioral tests together with neurochemical and neuroanatomical analysis. RESULTS Similar to the previously described behaviours of GSK-3beta(+/-) mice, GSK-3alpha mutants display decreased exploratory activity, decreased immobility time and reduced aggressive behavior. However, genetic inactivation of the GSK-3alpha gene was associated with: decreased locomotion and impaired motor coordination, increased grooming activity, loss of social motivation and novelty; enhanced sensorimotor gating and impaired associated memory and coordination. GSK-3alpha KO mice exhibited a deficit in fear conditioning, however memory formation as assessed by a passive avoidance test was normal, suggesting that the animals are sensitized for active avoidance of a highly aversive stimulus in the fear-conditioning paradigm. Changes in cerebellar structure and function were observed in mutant mice along with a significant decrease of the number and size of Purkinje cells. CONCLUSION Taken together, these data support a role for the GSK-3alpha gene in CNS functioning and possible involvement in the development of psychiatric disorders.
Collapse
|
181
|
Abstract
Zinc is a life-sustaining trace element, serving structural, catalytic, and regulatory roles in cellular biology. It is required for normal mammalian brain development and physiology, such that deficiency or excess of zinc has been shown to contribute to alterations in behavior, abnormal central nervous system development, and neurological disease. In this light, it is not surprising that zinc ions have now been shown to play a role in the neuromodulation of synaptic transmission as well as in cortical plasticity. Zinc is stored in specific synaptic vesicles by a class of glutamatergic or "gluzinergic" neurons and is released in an activity-dependent manner. Because gluzinergic neurons are found almost exclusively in the cerebral cortex and limbic structures, zinc may be critical for normal cognitive and emotional functioning. Conversely, direct evidence shows that zinc might be a relatively potent neurotoxin. Neuronal injury secondary to in vivo zinc mobilization and release occurs in several neurological disorders such as Alzheimer's disease and amyotrophic lateral sclerosis, in addition to epilepsy and ischemia. Thus, zinc homeostasis is integral to normal central nervous system functioning, and in fact its role may be underappreciated. This article provides an overview of zinc neurobiology and reviews the experimental evidence that implicates zinc signals in the pathophysiology of neuropsychiatric diseases. A greater understanding of zinc's role in the central nervous system may therefore allow for the development of therapeutic approaches where aberrant metal homeostasis is implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Byron K Y Bitanihirwe
- Laboratory of Behavioral Neurobiology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | |
Collapse
|
182
|
Shock-induced aggression in mice is modified by lithium. Pharmacol Biochem Behav 2009; 94:380-6. [PMID: 19800363 DOI: 10.1016/j.pbb.2009.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/07/2009] [Accepted: 09/24/2009] [Indexed: 12/13/2022]
Abstract
Aggression is associated with numerous psychiatric disorders. Evidence suggests that lithium decreases aggression in humans and rats. The effects of lithium on aggression related behavior, and in particular shock-induced aggression, has not been as thoroughly explored in mice. Male mice were treated with lithium and tested in the shock-induced aggression and dominance tube tests. Mice treated with lithium were also assessed for thermal pain and shock sensitivity in the hot plate and jump-flinch tests. In the shock-induced aggression paradigm chronic lithium significantly decreased both the frequency and duration of attacks, without affecting social interaction or behavior in the dominance tube. Acute lithium significantly decreased the total duration of attacks and social interaction but did not affect behavior in the dominance tube test. Neither treatment regimen had an effect on temperature sensitivity in the hot plate test or on activity levels in the open field. However, chronic lithium modified the response of mice to shock in the jump-flinch test, but not at the shock level used in the aggression test. The results of this study indicate that lithium decreases shock-induced aggression in mice, but effects on baseline response to shock confound interpretation of this behavioral effect of lithium.
Collapse
|
183
|
Abstract
The inositol-depletion hypothesis was suggested to explain the therapeutic mechanism of mood-stabilizing drugs. Focus was previously on the phosphatidylinositol signalling pathway and on the regulatory roles of Ins(3,4,5)P3 and DAG (diacylglycerol). Recent findings indicate that inositol and inositol-containing molecules, including phosphoinositides and inositol phosphates, have signalling and regulatory roles in many cellular processes. This suggests that depleting inositol may lead to perturbation of a wide range of cellular functions, at least some of which may be associated with bipolar disorder.
Collapse
|
184
|
McKernan DP, Dinan TG, Cryan JF. “Killing the Blues”: A role for cellular suicide (apoptosis) in depression and the antidepressant response? Prog Neurobiol 2009; 88:246-63. [DOI: 10.1016/j.pneurobio.2009.04.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 03/19/2009] [Accepted: 04/29/2009] [Indexed: 01/15/2023]
|
185
|
Abstract
Lithium is widely used to treat bipolar disorder. Nephrogenic diabetes insipidus (NDI) is the most common adverse effect of lithium and occurs in up to 40% of patients. Renal lithium toxicity is characterized by increased water and sodium diuresis, which can result in mild dehydration, hyperchloremic metabolic acidosis and renal tubular acidosis. The concentrating defect and natriuretic effect develop within weeks of lithium initiation. After years of lithium exposure, full-blown nephropathy can develop, which is characterized by decreased glomerular filtration rate and chronic kidney disease. Here, we review the clinical and experimental evidence that the principal cell of the collecting duct is the primary target for the nephrotoxic effects of lithium, and that these effects are characterized by dysregulation of aquaporin 2. This dysregulation is believed to occur as a result of the accumulation of cytotoxic concentrations of lithium, which enters via the epithelial sodium channel (ENaC) on the apical membrane and leads to the inhibition of signaling pathways that involve glycogen synthase kinase type 3beta. Experimental and clinical evidence demonstrates the efficacy of the ENaC inhibitor amiloride for the treatment of lithium-induced NDI; however, whether this agent can prevent the long-term adverse effects of lithium is not yet known.
Collapse
Affiliation(s)
- Jean-Pierre Grünfeld
- Department of Nephrology, Necker Hospital, Université Paris Descartes, Paris, France.
| | | |
Collapse
|
186
|
Néel BD, Lopez J, Chabadel A, Gillet G. Lithium suppresses motility and invasivity of v-src-transformed cells by glutathione-dependent activation of phosphotyrosine phosphatases. Oncogene 2009; 28:3246-60. [DOI: 10.1038/onc.2009.190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
187
|
Rapoport SI, Basselin M, Kim HW, Rao JS. Bipolar disorder and mechanisms of action of mood stabilizers. ACTA ACUST UNITED AC 2009; 61:185-209. [PMID: 19555719 DOI: 10.1016/j.brainresrev.2009.06.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/03/2009] [Accepted: 06/15/2009] [Indexed: 11/30/2022]
Abstract
Bipolar disorder (BD) is a major medical and social burden, whose cause, pathophysiology and treatment are not agreed on. It is characterized by recurrent periods of mania and depression (Bipolar I) or of hypomania and depression (Bipolar II). Its inheritance is polygenic, with evidence of a neurotransmission imbalance and disease progression. Patients often take multiple agents concurrently, with incomplete therapeutic success, particularly with regard to depression. Suicide is common. Of the hypotheses regarding the action of mood stabilizers in BD, the "arachidonic acid (AA) cascade" hypothesis is presented in detail in this review. It is based on evidence that chronic administration of lithium, carbamazepine, sodium valproate, or lamotrigine to rats downregulated AA turnover in brain phospholipids, formation of prostaglandin E(2), and/or expression of AA cascade enzymes, including cytosolic phospholipase A(2), cyclooxygenase-2 and/or acyl-CoA synthetase. The changes were selective for AA, since brain docosahexaenoic or palmitic acid metabolism, when measured, was unaffected, and topiramate, ineffective in BD, did not modify the rat brain AA cascade. Downregulation of the cascade by the mood stabilizers corresponded to inhibition of AA neurotransmission via dopaminergic D(2)-like and glutamatergic NMDA receptors. Unlike the mood stabilizers, antidepressants that increase switching of bipolar depression to mania upregulated the rat brain AA cascade. These observations suggest that the brain AA cascade is a common target of mood stabilizers, and that bipolar symptoms, particularly mania, are associated with an upregulated cascade and excess AA signaling via D(2)-like and NMDA receptors. This review presents ways to test these suggestions.
Collapse
Affiliation(s)
- Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
188
|
Molteni R, Calabrese F, Racagni G, Fumagalli F, Riva MA. Antipsychotic drug actions on gene modulation and signaling mechanisms. Pharmacol Ther 2009; 124:74-85. [PMID: 19540875 DOI: 10.1016/j.pharmthera.2009.06.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a debilitating chronic mental disorder characterized by significant lifetime risk and high social costs. Although its etiology remains unknown, many of its symptoms may be mitigated by treatment with antipsychotic drugs (APDs). These compounds, generally classified as first- or second-generation antipsychotics, have complex receptor profiles that may account for short-term clinical response and normalization of acute manifestation of the disease. However, APDs have additional therapeutic properties that may not be directly related to receptor mechanisms, but rather involve neuroadaptive changes in selected brain regions. Indeed the neurodevelopmental origin of schizophrenia suggests that the disease is characterized by neuroanatomical and pathophysiological impairments that, at molecular level, may reflect compromised neuroplasticity; the process by which the brain adapts to changes in a specific environment. Accordingly, it is possible that the long-term clinical efficacy of APDs might result from their ability in modulating systems crucially involved in neuroplasticity and cellular resilience. We have reviewed and discussed the results of several studies investigating the post-receptor mechanisms in the action of APDs. We specifically focused on intracellular signaling cascades (PKA, DARPP-32, MAPK, Akt/GSK-3, beta arrestin-2), neurotrophic factors and the glutamatergic system as important mediators for antipsychotic drug induced-neuroplasticity. Altogether, these data highlight the possibility that post-receptor mechanisms will eventually be promising targets for the development of novel drugs that, through their impact on neuroplasticity, may contribute to the improved treatment of patients diagnosed with schizophrenia.
Collapse
Affiliation(s)
- Raffaella Molteni
- Center of Neuropharmacology, Department of Pharmacological Sciences, Universita' degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
189
|
Lithium and genetic inhibition of GSK3beta enhance the effect of methamphetamine on circadian rhythms in the mouse. Behav Pharmacol 2009; 20:174-83. [PMID: 19339873 DOI: 10.1097/fbp.0b013e32832a8f43] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lithium, a drug commonly used to treat mood disorders, and the psychostimulant methamphetamine are both capable of altering circadian rhythmicity. Although the actions of lithium on the circadian system are thought to occur through inhibition of glycogen synthase kinase-3beta (GSK3beta), the mechanism by which methamphetamine alters circadian rhythms is unknown. We tested the effects of concurrent methamphetamine and lithium treatment on the circadian wheel-running behavior of mice. Methamphetamine alone lengthened both the active duration and the free-running period of locomotor activity in animals housed in constant conditions. Administering lithium enhanced the period-lengthening effects of methamphetamine in animals housed in constant darkness. This effect was even more pronounced when animals were housed in constant light. Lithium increased both methamphetamine intake and serum levels of methamphetamine, possibly contributing to the effects on circadian behavior. We also tested the effect of methamphetamine in mutant mice possessing only one allele for Gsk3beta. These animals, when treated with methamphetamine, responded like wild-type mice treated with a combination of methamphetamine and lithium, displaying long, free-running rhythms. These data, together with many others in the literature, point to a complicated interaction between the circadian system and the development and possible treatment of psychopathologies such as bipolar disorder and drug addiction.
Collapse
|
190
|
|
191
|
Martinowich K, Schloesser RJ, Manji HK. Bipolar disorder: from genes to behavior pathways. J Clin Invest 2009; 119:726-36. [PMID: 19339764 DOI: 10.1172/jci37703] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder (BPD) is a devastating illness that is characterized by recurrent episodes of mania and depression. In addition to these cyclic episodes, individuals with BPD exhibit changes in psychovegetative function, cognitive performance, and general health and well being. In this article we draw from neuroimaging findings in humans, postmortem data, and human genetic and pharmacological studies as well as data from animal models of behavior to discuss the neurobiology of BPD. We conclude with a synthesis of where the field stands and with suggestions and strategies for future areas of study to further increase our conceptual understanding of this complex illness.
Collapse
Affiliation(s)
- Keri Martinowich
- Johnson & Johnson Pharmaceutical Research and Development, 1125 Trenton-Harbourton Road, E32000, Titusville, New Jersey 08560, USA.
| | | | | |
Collapse
|
192
|
Martinowich K, Schloesser RJ, Manji HK. Bipolar disorder: from genes to behavior pathways. J Clin Invest 2009. [PMID: 19339764 DOI: 10.1172/jci37703.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bipolar disorder (BPD) is a devastating illness that is characterized by recurrent episodes of mania and depression. In addition to these cyclic episodes, individuals with BPD exhibit changes in psychovegetative function, cognitive performance, and general health and well being. In this article we draw from neuroimaging findings in humans, postmortem data, and human genetic and pharmacological studies as well as data from animal models of behavior to discuss the neurobiology of BPD. We conclude with a synthesis of where the field stands and with suggestions and strategies for future areas of study to further increase our conceptual understanding of this complex illness.
Collapse
Affiliation(s)
- Keri Martinowich
- Johnson & Johnson Pharmaceutical Research and Development, 1125 Trenton-Harbourton Road, E32000, Titusville, New Jersey 08560, USA.
| | | | | |
Collapse
|
193
|
Dmitrzak-Weglarz M, Rybakowski JK, Suwalska A, Skibinska M, Leszczynska-Rodziewicz A, Szczepankiewicz A, Hauser J. Association studies of the BDNF and the NTRK2 gene polymorphisms with prophylactic lithium response in bipolar patients. Pharmacogenomics 2009; 9:1595-603. [PMID: 19018715 DOI: 10.2217/14622416.9.11.1595] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuroplasticity hypothesis of bipolar disorder indicates that the BDNF/Trk signaling pathway is associated with the pathogenesis of this illness and treatment with mood stabilizers, such as lithium. This paper describes a relationship between response to lithium prophylaxis and polymorphisms of two functionally connected genes: BDNF and NTRK2, in bipolar illness. Analyses of four SNPs of the BDNF gene (rs2030324, rs988748, rs6265 [Val66Met]and rs2203877) and three of the NTRK2 gene (rs1187326, rs2289656, rs1187327) were performed in the 108 bipolar patients, classified as excellent responders (23%), partial responders (51%) and nonresponders (26%) to lithium. An association of C/G (rs988748) and G/A (rs6265) polymorphisms of the BDNF gene with a degree of prophylactic lithium response were found. No association with lithium response was revealed with the polymorphism of NTRK2 gene, neither with interaction of BDNF and NTRK2 genes.
Collapse
Affiliation(s)
- Monika Dmitrzak-Weglarz
- Laboratory of Psychiatric Genetics, Department of Psychiatry, University of Medical Sciences, ul. Szpitalna 27/33, 60-572 Poznan, Poland.
| | | | | | | | | | | | | |
Collapse
|
194
|
Savage MJ, Gingrich DE. Advances in the development of kinase inhibitor therapeutics for Alzheimer's disease. Drug Dev Res 2009. [DOI: 10.1002/ddr.20287] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
195
|
Neznanova O, Björk K, Rimondini R, Hansson AC, Hyytiä P, Heilig M, Sommer WH. Acute ethanol challenge inhibits glycogen synthase kinase-3beta in the rat prefrontal cortex. Int J Neuropsychopharmacol 2009; 12:275-80. [PMID: 19007447 PMCID: PMC2698134 DOI: 10.1017/s1461145708009620] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Intracellular signalling pathways emerge as key mediators of the molecular and behavioural effects of addictive drugs including ethanol. Previously, we demonstrated that the innate high ethanol preference in AA rats is driven by dysfunctional endocannabinoid signalling in the medial prefrontal cortex (mPFC). Here, we report that acute ethanol challenge, at a dose commonly regarded as reinforcing, strongly phosphorylates glycogen synthase kinase-3beta (GSK-3beta) in this region with corresponding increased phosphorylation of AKT, a major regulator of GSK-3beta. In the non-preferring counterpart ANA line we found a weaker, AKT-independent phosphorylation of GSK-3beta by ethanol. Furthermore, AA rats showed rapid and transient dephosphorylation of ERK1/2 upon acute ethanol challenge in the medial prefrontal cortex (mPFC) and to a lesser degree in the nucleus accumbens; ANA rats were completely non-responsive for this mechanism. Together, these results identify candidate pathways for mediating high ethanol preference and emphasize the importance of the mPFC in controlling this behaviour.
Collapse
Affiliation(s)
- Olga Neznanova
- Laboratory of Clinical and Translational Studies, NIAAA, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
196
|
Beaulieu JM, Gainetdinov RR, Caron MG. Akt/GSK3 Signaling in the Action of Psychotropic Drugs. Annu Rev Pharmacol Toxicol 2009; 49:327-47. [DOI: 10.1146/annurev.pharmtox.011008.145634] [Citation(s) in RCA: 442] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Raul R. Gainetdinov
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710;
- Current affiliation: Department of Neuroscience and Brain Technology, Italian Institute of Technology, Genova, Italy;
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710;
| |
Collapse
|
197
|
McIntyre RS, Rasgon NL, Kemp DE, Nguyen HT, Law CWY, Taylor VH, Woldeyohannes HO, Alsuwaidan MT, Soczynska JK, Kim B, Lourenco MT, Kahn LS, Goldstein BI. Metabolic syndrome and major depressive disorder: co-occurrence and pathophysiologic overlap. Curr Diab Rep 2009; 9:51-9. [PMID: 19192425 DOI: 10.1007/s11892-009-0010-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The metabolic syndrome and its components are associated with depressive symptomatology. This article discusses the rate of co-occurrence and the points of pathophysiologic commonality between the metabolic syndrome and major depressive disorder.
Collapse
Affiliation(s)
- Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Millan MJ. Dual- and triple-acting agents for treating core and co-morbid symptoms of major depression: novel concepts, new drugs. Neurotherapeutics 2009; 6:53-77. [PMID: 19110199 PMCID: PMC5084256 DOI: 10.1016/j.nurt.2008.10.039] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The past decade of efforts to find improved treatment for major depression has been dominated by genome-driven programs of rational drug discovery directed toward highly selective ligands for nonmonoaminergic agents. Selective drugs may prove beneficial for specific symptoms, for certain patient subpopulations, or both. However, network analyses of the brain and its dysfunction suggest that agents with multiple and complementary modes of action are more likely to show broad-based efficacy against core and comorbid symptoms of depression. Strategies for improved multitarget exploitation of monoaminergic mechanisms include triple inhibitors of dopamine, serotonin (5-HT) and noradrenaline reuptake, and drugs interfering with feedback actions of monoamines at inhibitory 5-HT(1A), 5-HT(1B) and possibly 5-HT(5A) and 5-HT(7) receptors. Specific subsets of postsynaptic 5-HT receptors mediating antidepressant actions are under study (e.g., 5-HT(4) and 5-HT(6)). Association of a clinically characterized antidepressant mechanism with a nonmonoaminergic component of activity is an attractive strategy. For example, agomelatine (a melatonin agonist/5-HT(2C) antagonist) has clinically proven activity in major depression. Dual neurokinin(1) antagonists/5-HT reuptake inhibitors (SRIs) and melanocortin(4) antagonists/SRIs should display advantages over their selective counterparts, and histamine H(3) antagonists/SRIs, GABA(B) antagonists/SRIs, glutamatergic/SRIs, and cholinergic agents/SRIs may counter the compromised cognitive function of depression. Finally, drugs that suppress 5-HT reuptake and blunt hypothalamo-pituitary-adrenocorticotrophic axis overdrive, or that act at intracellular proteins such as GSK-3beta, may abrogate the negative effects of chronic stress on mood and neuronal integrity. This review discusses the discovery and development of dual- and triple-acting antidepressants, focusing on novel concepts and new drugs disclosed over the last 2 to 3 years.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Institut du Recherches Servier, Centre de Recherches de Croissy, Paris, France.
| |
Collapse
|
199
|
Marmol F. Lithium: bipolar disorder and neurodegenerative diseases Possible cellular mechanisms of the therapeutic effects of lithium. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1761-71. [PMID: 18789369 DOI: 10.1016/j.pnpbp.2008.08.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 12/12/2022]
Abstract
Bipolar illness is a major psychiatric disorder that affects 1-3% of the worldwide population. Epidemiological studies have demonstrated that this illness is substantially heritable. However, the genetic characteristics remain unknown and a clear personality has not been identified for these patients. The clinical history of lithium began in mid-19th century when it was used to treat gout. In 1940, it was used as a substitute for sodium chloride in hypertensive patients. However, it was then banned, as it had major side effects. In 1949, Cade reported that lithium could be used as an effective treatment for bipolar disorder and subsequent studies confirmed this effect. Over the years, different authors have proposed many biochemical and biological effects of lithium in the brain. In this review, the main mechanisms of lithium action are summarised, including ion dysregulation; effects on neurotransmitter signalling; the interaction of lithium with the adenylyl cyclase system; inositol phosphate and protein kinase C signalling; and possible effects on arachidonic acid metabolism. However, none of the above mechanisms are definitive, and sometimes results have been contradictory. Recent advances in cellular and molecular biology have reported that lithium may represent an effective therapeutic strategy for treating neurodegenerative disorders like Alzheimer's disease, due to its effects on neuroprotective proteins like Bcl-2 and its actions on regulators of apoptosis and cellular resilience, such as GSK-3. However, results are contradictory and more specific studies into the use of lithium in therapeutic approaches for neurodegenerative diseases are required.
Collapse
Affiliation(s)
- Frederic Marmol
- Unitat de Farmacologia, Facultat de Medicina, Universitat de Barcelona, Casanova, 143, 08036 Barcelona, Spain.
| |
Collapse
|
200
|
Abstract
Current pharmacotherapy for bipolar disorder is generally unsatisfactory for a large number of patients. Even with adequate modern bipolar pharmacological therapies, many afflicted individuals continue to have persistent mood episode relapses, residual symptoms, functional impairment, and psychosocial disability. Creating novel therapeutics for bipolar disorder is urgently needed. Promising drug targets and compounds for bipolar disorder worthy of further study include both systems and intracellular pathways and targets. Specifically, the purinergic system, the dynorphin opioid neuropeptide system, the cholinergic system (muscarinic and nicotinic systems), the melatonin and serotonin [5-hydroxytryptamine receptor 2C] system, the glutamatergic system, and the hypothalamic-pituitary adrenal axis have all been implicated. Intracellular pathways and targets worthy of further study include glycogen synthase kinase-3 protein, protein kinase C, and the arachidonic acid cascade.
Collapse
Affiliation(s)
- Carlos A Zarate
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Research Program, National Institute of Mental Health, Bethesda, MD, USA.
| | | |
Collapse
|