151
|
Yuan B, Liu J, Guan R, Jin C, Ji L, Chao H. Endoplasmic reticulum targeted cyclometalated iridium(iii) complexes as efficient photodynamic therapy photosensitizers. Dalton Trans 2019; 48:6408-6415. [PMID: 30994678 DOI: 10.1039/c9dt01072f] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The endoplasmic reticulum (ER) is an indispensable organelle that undertakes the synthesis and export of proteins and membrane lipids. Subtle interferences of the ER redox signaling pathway are very likely to cause ER-stress induced apoptosis. In view of this, we herein present a series of ER-targeted Ir(iii) complexes (Ir1-Ir3) as photodynamic therapy (PDT) photosensitizers with a gradually extended conjugation area in the main ligand, and study the correlation between the conjugation area and PDT performance. The results showed that all of these complexes can accumulate in the ER and effectively induce cell apoptosis after PDT therapeutics (405 nm, 6 J cm-2) by an ER stress mechanism, and both their singlet oxygen quantum yields and cytotoxicities increase as the conjugation area extends. All complexes showed PDT efficacy towards different cancer cell lines. Among them, Ir2 exhibited the highest PI value (94.3) against A549 cells with an IC50 down to 0.65 μM. In addition, the post PDT ER-stress induced apoptosis along with the efflux of Ca2+ from the ER system in A549 cells in a short period of time (45-90 min) with the pretreatment of Ir2 was demonstrated. All of these results indicate the promising potential of Ir2 as an effective PDT photosensitizer.
Collapse
Affiliation(s)
- Bo Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | | | | | | | | | | |
Collapse
|
152
|
Tscheschner H, Meinhardt E, Schlegel P, Jungmann A, Lehmann LH, Müller OJ, Most P, Katus HA, Raake PW. CaMKII activation participates in doxorubicin cardiotoxicity and is attenuated by moderate GRP78 overexpression. PLoS One 2019; 14:e0215992. [PMID: 31034488 PMCID: PMC6488194 DOI: 10.1371/journal.pone.0215992] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
The clinical use of the chemotherapeutic doxorubicin (Dox) is limited by cardiotoxic side-effects. One of the early Dox effects is induction of a sarcoplasmic reticulum (SR) Ca2+ leak. The chaperone Glucose regulated protein 78 (GRP78) is important for Ca2+ homeostasis in the endoplasmic reticulum (ER)—the organelle corresponding to the SR in non-cardiomyocytes—and has been shown to convey resistance to Dox in certain tumors. Our aim was to investigate the effect of cardiac GRP78 gene transfer on Ca2+ dependent signaling, cell death, cardiac function and survival in clinically relevant in vitro and in vivo models for Dox cardiotoxicity.By using neonatal cardiomyocytes we could demonstrate that Dox induced Ca2+ dependent Ca2+ /calmodulin-dependent protein kinase II (CaMKII) activation is one of the factors involved in Dox cardiotoxicity by promoting apoptosis. Furthermore, we found that adeno-associated virus (AAV) mediated GRP78 overexpression partly protects neonatal cardiomyocytes from Dox induced cell death by modulating Ca2+ dependent pathways like the activation of CaMKII, phospholamban (PLN) and p53 accumulation. Most importantly, cardiac GRP78 gene therapy in mice treated with Dox revealed improved diastolic function (dP/dtmin) and survival after Dox treatment. In conclusion, our results demonstrate for the first time that Ca2+ dependent CaMKII activation fosters Dox cardiomyopathy and provide additional insight into possible mechanisms by which GRP78 overexpression protects cardiomyocytes from Doxorubicin toxicity.
Collapse
Affiliation(s)
- Henrike Tscheschner
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Eric Meinhardt
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Philipp Schlegel
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Andreas Jungmann
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Lorenz H. Lehmann
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Oliver J. Müller
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital Kiel, Kiel, Germany
| | - Patrick Most
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Hugo A. Katus
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Philip W. Raake
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
153
|
Zhang P, Holowatyj AN, Roy T, Pronovost SM, Marchetti M, Liu H, Ulrich CM, Edgar BA. An SH3PX1-Dependent Endocytosis-Autophagy Network Restrains Intestinal Stem Cell Proliferation by Counteracting EGFR-ERK Signaling. Dev Cell 2019; 49:574-589.e5. [PMID: 31006650 DOI: 10.1016/j.devcel.2019.03.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/23/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022]
Abstract
The effect of intracellular vesicle trafficking on stem-cell behavior is largely unexplored. We screened the Drosophila sorting nexins (SNXs) and discovered that one, SH3PX1, profoundly affects gut homeostasis and lifespan. SH3PX1 restrains intestinal stem cell (ISC) division through an endocytosis-autophagy network that includes Dynamin, Rab5, Rab7, Atg1, 5, 6, 7, 8a, 9, 12, 16, and Syx17. Blockages in this network stabilize ligand-activated EGFRs, recycling them via Rab11-dependent endosomes to the plasma membrane. This hyperactivated ERK, calcium signaling, and ER stress, autonomously stimulating ISC proliferation. The excess divisions induced epithelial stress, Yki activity, and Upd3 and Rhomboid production in enterocytes, catalyzing feedforward ISC hyperplasia. Similarly, blocking autophagy increased ERK activity in human cells. Many endocytosis-autophagy genes are mutated in cancers, most notably those enriched in microsatellite instable-high and KRAS-wild-type colorectal cancers. Disruptions in endocytosis and autophagy may provide an alternative route to RAS-ERK activation, resulting in EGFR-dependent cancers.
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Andreana N Holowatyj
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Taylor Roy
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Stephen M Pronovost
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Marco Marchetti
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Hanbin Liu
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bruce A Edgar
- Huntsman Cancer Institute and Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
154
|
Kim IK, Lee YS, Kim HS, Dong SM, Park JS, Yoon DS. Specific protein 1(SP1) regulates the epithelial-mesenchymal transition via lysyl oxidase-like 2(LOXL2) in pancreatic ductal adenocarcinoma. Sci Rep 2019; 9:5933. [PMID: 30976063 PMCID: PMC6459819 DOI: 10.1038/s41598-019-42501-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Specific protein 1 (SP1) is associated with aggressive behavior, invasive clinical phenotype and poor clinical outcomes in various cancers. We studied whether SP1 exerts its effect on invasiveness and promotion of the epithelial-mesenchymal transition (EMT) by regulating lysyl oxidase-like 2 (LOXL2) in pancreatic ductal adenocarcinoma (PDAC) cell lines. We showed that silencing of SP1 in MIA Paca-2 cell significantly decreased cell invasion and migration. In MIA Paca-2 cells, silencing of SP1 induced a reduction of LOXL2 expression, whereas LOXL2 silencing did not lead to a decrease in the expression of SP1. Chromatin immunoprecipitation assay demonstrated the binding of SP1 to LOXL2 promoter. Wound healing and transmigration assays also showed that transfection of both SP1 and LOXL2 siRNA induced most significant decrease of cell invasion and migration compared to either SP1 or LOXL2-only silenced cells. Finally, we investigated the prognostic value of SP1 in patients with PDAC and SP1/LOX2 expression was examined by immunochemistry. Univariate and multivariate analyses showed that tumor differentiation and co-expression of SP1 and LOXL2 were independent factors for disease-free survival. In summary, our study demonstrates that SP1 modulates EMT and is involved in tumor invasion and migration of PDAC cells through the regulation of LOXL2.
Collapse
Affiliation(s)
- Im-Kyung Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Sun Lee
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Sun Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | | | - Joon Seong Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.
| | - Dong Sup Yoon
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
155
|
Cui C, Yang J, Fu L, Wang M, Wang X. Progress in understanding mitochondrial calcium uniporter complex-mediated calcium signalling: A potential target for cancer treatment. Br J Pharmacol 2019; 176:1190-1205. [PMID: 30801705 DOI: 10.1111/bph.14632] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/02/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
Due to its Ca2+ buffering capacity, the mitochondrion is one of the most important intracellular organelles in regulating Ca2+ dynamic oscillation. Mitochondrial calcium uniporter (MCU) is the primary mediator of Ca2+ influx into mitochondria, manipulating cell energy metabolism, ROS production, and programmed cell death, all of which are critical for carcinogenesis. The understanding of the uniporter complex was significantly boosted by recent groundbreaking discoveries that identified the uniporter pore-forming subunit MCU and its regulatory molecules, including MCU-dominant negative β subunit (MCUb), essential MCU regulator (EMRE), MCU regulator 1 (MCUR1), mitochondrial calcium uptake (MICU) 1, MICU2, and MICU3. These provide the means and molecular platform to investigate MCU complex (uniplex)-mediated impaired Ca2+ signalling in physiology and pathology. This review aims to summarize the progress of the understanding regulatory mechanisms of uniplex, roles of uniplex-mediated Ca2+ signalling in cancer, and potential pharmacological inhibitors of MCU.
Collapse
Affiliation(s)
- Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianbo Yang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mingyong Wang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
156
|
Jiang X, Liao XH, Huang LL, Sun H, Liu Q, Zhang L. Overexpression of augmenter of liver regeneration (ALR) mitigates the effect of H 2O 2-induced endoplasmic reticulum stress in renal tubule epithelial cells. Apoptosis 2019; 24:278-289. [PMID: 30680481 DOI: 10.1007/s10495-019-01517-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ischemia/reperfusion is a major cause of acute kidney injury and can induce apoptosis in renal epithelial tubule (HK-2) cells. Accumulating evidence indicates that endoplasmic reticulum (ER) stress is a major contributor to apoptosis in acute kidney injury. We previously reported that augmenter of liver regeneration (ALR) functions as an anti-apoptotic factor in H2O2-treated HK-2 cells although the precise mechanism underlying this action remains unclear. In the present study, we investigate the role of ALR in H2O2-induced ER stress-mediated apoptosis. We overexpressed ALR and established a H2O2-induced ER stress model in HK-2 cells. Overexpression of ALR reduced the level of reactive oxygen species and the rate of apoptosis in H2O2-treated HK-2 cells. Using confocal microscopy and western blot, we observed that ALR colocalized with the ER and mitochondria compartment. Moreover, ALR suppressed ER stress by maintaining the morphology of the ER and reducing the levels of the ER-related proteins, glucose-regulated protein 78 (GRP78), phospho-protein kinase-like ER kinase (p-PERK), phospho-eukaryotic initiation factor 2α (p-eIF2α) and C/EBP-homologous protein (CHOP) significantly (p < 0.05). Mechanistically, ALR promoted Bcl-2 expression and suppressed Bax and cleaved-caspase-3 expression significantly during ER-stress induced apoptosis (p < 0.05). Furthermore, ALR attenuated calcium release from the ER, and transfer to mitochondria, under ER stress. To conclude, ALR alleviates H2O2-induced ER stress-mediated apoptosis in HK-2 cells by suppressing ER stress response and by maintaining calcium homeostasis. Consequently, ALR may protect renal tubule epithelial cells from ischemia/reperfusion induced acute kidney injury.
Collapse
Affiliation(s)
- Xiao Jiang
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xiao-Hui Liao
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Li-Li Huang
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hang Sun
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ling Zhang
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
157
|
Abdelgawad IY, Grant MKO, Zordoky BN. Leveraging the Cardio-Protective and Anticancer Properties of Resveratrol in Cardio-Oncology. Nutrients 2019; 11:nu11030627. [PMID: 30875799 PMCID: PMC6471701 DOI: 10.3390/nu11030627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/25/2022] Open
Abstract
Cardio-oncology is a clinical/scientific discipline which aims to prevent and/or treat cardiovascular diseases in cancer patients. Although a large number of cancer treatments are known to cause cardiovascular toxicity, they are still widely used because they are highly effective. Unfortunately, therapeutic interventions to prevent and/or treat cancer treatment-induced cardiovascular toxicity have not been established yet. A major challenge for such interventions is to protect the cardiovascular system without compromising the therapeutic benefit of anticancer medications. Intriguingly, the polyphenolic natural compound resveratrol and its analogs have been shown in preclinical studies to protect against cancer treatment-induced cardiovascular toxicity. They have also been shown to possess significant anticancer properties on their own, and to enhance the anticancer effect of other cancer treatments. Thus, they hold significant promise to protect the cardiovascular system and fight the cancer at the same time. In this review, we will discuss the current knowledge regarding the cardio-protective and the anticancer properties of resveratrol and its analogs. Thereafter, we will discuss the challenges that face the clinical application of these agents. To conclude, we will highlight important gaps of knowledge and future research directions to accelerate the translation of these exciting preclinical findings to cancer patient care.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
158
|
Antrodia cinnamomea, a Treasured Medicinal Mushroom, Induces Growth Arrest in Breast Cancer Cells, T47D Cells: New Mechanisms Emerge. Int J Mol Sci 2019; 20:ijms20040833. [PMID: 30769922 PMCID: PMC6412332 DOI: 10.3390/ijms20040833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Reported cases of breast cancer have skyrocketed in the last decades with recent advances in examination techniques. Brest cancer has become the second leading cause of mortality among women worldwide, urging the scientific community to develop or find new drugs from natural sources with potent activity and a reasonable safety profile to tackle this ailment. Antrodia cinnamomea (AC) is a treasured medicinal fungus which has attracted attention due to its potent hepatoprotective and cytotoxic activities. We evaluated the antiproliferative activity of the ethanol extract of artificially cultured AC (EEAC) on breast cancer cells (T47D cells) in vivo and in vitro. Ethanol extract of artificially cultured AC inhibited T47D cells' proliferation mediated by cell cycle arrest at G1 phase as well induced autophagy. Immunoblotting assay confirmed that EEAC not only decreased the expression of the cell-cycle-related proteins but also increased the expression of transcription factor FOXO1, autophagic marker LC3 II, and p62. Ethanol extract of artificially cultured AC mediated endoplasmic reticulum stress by promoting the expression of IRE1 (inositol-requiring enzyme 1α), GRP78/Bip (glucose regulating protein 78), and CHOP (C/EBP homologous protein). Apart from previous studies, HDACs (histone deacetylases) activity was inhibited as demonstrated by a cell-free system, immunoblotting, and immunofluorescence assays following EEAC treatment. The in vivo studies demonstrated that EEAC decreased tumor volume and inhibited tumor growth without any significant side effects. High performance liquid chromatography profile demonstrated similar triterpenoids compared to the profile of wild AC ethanol extract. The multiple targets of EEAC on breast cancer cells suggested that this extract may be developed as a potential dietary supplement targeting this debilitating disease.
Collapse
|
159
|
Elksnis A, Martinell M, Eriksson O, Espes D. Heterogeneity of Metabolic Defects in Type 2 Diabetes and Its Relation to Reactive Oxygen Species and Alterations in Beta-Cell Mass. Front Physiol 2019; 10:107. [PMID: 30837889 PMCID: PMC6383038 DOI: 10.3389/fphys.2019.00107] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes (T2D) is a complex and heterogeneous disease which affects millions of people worldwide. The classification of diabetes is at an interesting turning point and there have been several recent reports on sub-classification of T2D based on phenotypical and metabolic characteristics. An important, and perhaps so far underestimated, factor in the pathophysiology of T2D is the role of oxidative stress and reactive oxygen species (ROS). There are multiple pathways for excessive ROS formation in T2D and in addition, beta-cells have an inherent deficit in the capacity to cope with oxidative stress. ROS formation could be causal, but also contribute to a large number of the metabolic defects in T2D, including beta-cell dysfunction and loss. Currently, our knowledge on beta-cell mass is limited to autopsy studies and based on comparisons with healthy controls. The combined evidence suggests that beta-cell mass is unaltered at onset of T2D but that it declines progressively. In order to better understand the pathophysiology of T2D, to identify and evaluate novel treatments, there is a need for in vivo techniques able to quantify beta-cell mass. Positron emission tomography holds great potential for this purpose and can in addition map metabolic defects, including ROS activity, in specific tissue compartments. In this review, we highlight the different phenotypical features of T2D and how metabolic defects impact oxidative stress and ROS formation. In addition, we review the literature on alterations of beta-cell mass in T2D and discuss potential techniques to assess beta-cell mass and metabolic defects in vivo.
Collapse
Affiliation(s)
- Andris Elksnis
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mats Martinell
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
160
|
Li L, Li L, Zhou X, Yu Y, Li Z, Zuo D, Wu Y. Silver nanoparticles induce protective autophagy via Ca 2+/CaMKKβ/AMPK/mTOR pathway in SH-SY5Y cells and rat brains. Nanotoxicology 2019; 13:369-391. [PMID: 30729847 DOI: 10.1080/17435390.2018.1550226] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used for manufacturing products containing antibacterial agents, as well as food technologies such as edible films and food packaging. Routes of AgNPs exposure are principally derived by contacting with certain medical sprays, food, toothpaste, and purification products. Previously, we showed that AgNPs induce endoplasmic reticulum (ER) stress and promote apoptosis progression in SH-SY5Y cells; however, whether AgNP-induced ER stress is able to trigger autophagy in vivo and in vitro, and the role of autophagy in AgNP-induced cytotoxicity remain unclear. In the present study, we found that increased intracellular calcium (Ca2+) levels arising from AgNP-induced-ER stress resulted in activation of calmodulin-dependent protein kinase kinase β (CaMKKβ) and adenosine 5'-monophosphate-activated protein kinase (AMPK), which downregulated the level of mammalian target of rapamycin (mTOR) and upregulated Beclin-1 to activate autophagy in SH-SY5Y cells. Specifically, inhibition of autophagy by the addition of chloroquine (CQ) or silencing of Beclin-1 significantly enhanced the cytotoxicity of AgNPs, suggesting that autophagy plays a protective role in AgNP-induced cell apoptosis. Furthermore, we showed that oral administration of AgNPs for 28 continuous days induced ER stress-mediated apoptosis and autophagy in rats via activation of CaMKKβ and AMPK. In summary, this study is the first to report that AgNPs induce protective autophagy via a Ca2+/CaMKKβ/AMPK/mTOR pathway in vivo and in vitro. Therefore, public exposure to AgNPs should arouse concerns regarding environmental safety and human health. Highlight Silver nanoparticle-induced ER stress elicits protective autophagy via a Ca2+-dependent mechanism in SH-SY5Y cells. The Ca2+/CaMKKβ/AMPK/mTOR pathway is involved in autophagy. Orally administered silver nanoparticles induce ER stress-mediated autophagy and apoptosis in rats.
Collapse
Affiliation(s)
- Lin Li
- a Department of Pharmacology , Shenyang Pharmaceutical University , Shenyang , P.R.China.,b Department of Pharmacy, The First Affiliated Hospital of College of Medicine , Zhejiang University , Hangzhou , P.R. China
| | - Lu Li
- c Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) , Guangzhou , P.R. China
| | - Xuejiao Zhou
- a Department of Pharmacology , Shenyang Pharmaceutical University , Shenyang , P.R.China
| | - Yang Yu
- d Liaoning Medical Device Test Institute , Shenyang , P.R. China
| | - Zengqiang Li
- a Department of Pharmacology , Shenyang Pharmaceutical University , Shenyang , P.R.China
| | - Daiying Zuo
- a Department of Pharmacology , Shenyang Pharmaceutical University , Shenyang , P.R.China
| | - Yingliang Wu
- a Department of Pharmacology , Shenyang Pharmaceutical University , Shenyang , P.R.China
| |
Collapse
|
161
|
Orr AL, Kim C, Jimenez-Morales D, Newton BW, Johnson JR, Krogan NJ, Swaney DL, Mahley RW. Neuronal Apolipoprotein E4 Expression Results in Proteome-Wide Alterations and Compromises Bioenergetic Capacity by Disrupting Mitochondrial Function. J Alzheimers Dis 2019; 68:991-1011. [PMID: 30883359 PMCID: PMC6481541 DOI: 10.3233/jad-181184] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
Apolipoprotein (apo) E4, the major genetic risk factor for Alzheimer's disease (AD), alters mitochondrial function and metabolism early in AD pathogenesis. When injured or stressed, neurons increase apoE synthesis. Because of its structural difference from apoE3, apoE4 undergoes neuron-specific proteolysis, generating fragments that enter the cytosol, interact with mitochondria, and cause neurotoxicity. However, apoE4's effect on mitochondrial respiration and metabolism is not understood in detail. Here we used biochemical assays and proteomic profiling to more completely characterize the effects of apoE4 on mitochondrial function and cellular metabolism in Neuro-2a neuronal cells stably expressing apoE4 or apoE3. Under basal conditions, apoE4 impaired respiration and increased glycolysis, but when challenged or stressed, apoE4-expressing neurons had 50% less reserve capacity to generate ATP to meet energy requirements than apoE3-expressing neurons. ApoE4 expression also decreased the NAD+/NADH ratio and increased the levels of reactive oxygen species and mitochondrial calcium. Global proteomic profiling revealed widespread changes in mitochondrial processes in apoE4 cells, including reduced levels of numerous respiratory complex subunits and major disruptions to all detected subunits in complex V (ATP synthase). Also altered in apoE4 cells were levels of proteins related to mitochondrial endoplasmic reticulum-associated membranes, mitochondrial fusion/fission, mitochondrial protein translocation, proteases, and mitochondrial ribosomal proteins. ApoE4-induced bioenergetic deficits led to extensive metabolic rewiring, but despite numerous cellular adaptations, apoE4-expressing neurons remained vulnerable to metabolic stress. Our results provide insights into potential molecular targets of therapies to correct apoE4-associated mitochondrial dysfunction and altered cellular metabolism.
Collapse
Affiliation(s)
- Adam L. Orr
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Present address: Helen & Robert Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Chaeyoung Kim
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - David Jimenez-Morales
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Present address: Department of Medicine, Division of Cardiovascular Medicine, Stanford University, CA, USA
| | - Billy W. Newton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Jeffrey R. Johnson
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Nevan J. Krogan
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Danielle L. Swaney
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Robert W. Mahley
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Pathology and Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
162
|
Abstract
BCL-2 family members have additional roles beyond direct regulation of mitochondrial outer membrane permeabilization (MOMP) in apoptosis. One such important function is the release of calcium from the endoplasmic reticulum (ER), which critically contributes to the process of apoptosis. Here, we describe a protocol to measure calcium levels in the ER, mitochondria, and cytosol, with specific consideration of BCL-2 family biology.
Collapse
Affiliation(s)
- Marcos A Carpio
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,CIQUIBIC-Department of Biological Chemistry, National University of Cordoba, Cordoba, Argentina
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
163
|
Dickens JA, Malzer E, Chambers JE, Marciniak SJ. Pulmonary endoplasmic reticulum stress-scars, smoke, and suffocation. FEBS J 2019; 286:322-341. [PMID: 29323786 DOI: 10.1111/febs.14381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Protein misfolding within the endoplasmic reticulum (ER stress) can be a cause or consequence of pulmonary disease. Mutation of proteins restricted to the alveolar type II pneumocyte can lead to inherited forms of pulmonary fibrosis, but even sporadic cases of pulmonary fibrosis appear to be strongly associated with activation of the unfolded protein response and/or the integrated stress response. Inhalation of smoke can impair protein folding and may be an important cause of pulmonary ER stress. Similarly, tissue hypoxia can lead to impaired protein homeostasis (proteostasis). But the mechanisms linking smoke and hypoxia to ER stress are only partially understood. In this review, we will examine the role of ER stress in the pathogenesis of lung disease by focusing on fibrosis, smoke, and hypoxia.
Collapse
Affiliation(s)
- Jennifer A Dickens
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| | - Elke Malzer
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| | - Joseph E Chambers
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| |
Collapse
|
164
|
Nonalcoholic Fatty Liver Disease: Basic Pathogenetic Mechanisms in the Progression From NAFLD to NASH. Transplantation 2019; 103:e1-e13. [DOI: 10.1097/tp.0000000000002480] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
165
|
Qin J, Wang P, Li Y, Yao L, Liu Y, Yu T, Lin J, Fang X, Huang Z. Activation of Sigma-1 Receptor by Cutamesine Attenuates Neuronal Apoptosis by Inhibiting Endoplasmic Reticulum Stress and Mitochondrial Dysfunction in a Rat Model of Asphyxia Cardiac Arrest. Shock 2019; 51:105-113. [PMID: 29424796 DOI: 10.1097/shk.0000000000001119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Global cerebral ischemic/reperfusion (I/R) injury after cardiac arrest (CA) is a major cause of mortality and morbidity in survivors of resuscitation. We utilized a rat model of asphyxia CA to explore the functional effects and mechanisms of Sigma-1 receptor (Sig-1R) activation in cerebral protection using the Sig-1R agonist cutamesine (SA-4503). METHODS After resuscitation, the surviving rats were randomly divided into three groups (n = 18 each): the cardiopulmonary resuscitation (CPR) group (0.9% saline at 1 mL/kg); the SA4503 low-dose group (1 mg/kg SA4503); and the SA4503 high-dose group (2.5 mg/kg SA4503). The neurological deficit scores were recorded, and the cerebral cortex was harvested for western blotting. Mitochondrial transmembrane potential, adenosine triphosphate (ATP) concentrations, calcium homeostasis, and mitochondrial ultrastructure were also studied. RESULTS The SA4503 treatment groups exhibited improved neurological outcomes compared with the CPR group. The protein levels of caspase-3 and the endoplasmic reticulum stress markers C/EBP homologous protein and caspase-12 were lower in the SA4503 treatment groups compared with the CPR group. SA4503 treatment also normalized mitochondrial membrane potential, tissue ATP concentrations, intracellular Ca overload, and upregulated Sig-1R protein level compared with the CPR group. The SA4503 high dose treatment showed significant cerebral protective effects compared with the SA4503 low dose treatment. The therapeutic effect of SA4503 was dose-dependent. CONCLUSIONS CA downregulated Sig-1R protein expression. Activating Sig-1R using SA4503 protected against global cerebral I/R injury in a rat model of asphyxia CA by alleviating endoplasmic reticulum stress and mitochondrial dysfunction and eventually inhibiting neuronal apoptosis.
Collapse
Affiliation(s)
- Jiahong Qin
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Peng Wang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Yi Li
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Lan Yao
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
- Department of Emergency Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yuanshan Liu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Tao Yu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Jiali Lin
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Xiangshao Fang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Zitong Huang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
166
|
Lichota A, Gwozdzinski K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int J Mol Sci 2018; 19:E3533. [PMID: 30423952 PMCID: PMC6275022 DOI: 10.3390/ijms19113533] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
This paper describes the substances of plant and marine origin that have anticancer properties. The chemical structure of the molecules of these substances, their properties, mechanisms of action, their structure⁻activity relationships, along with their anticancer properties and their potential as chemotherapeutic drugs are discussed in this paper. This paper presents natural substances from plants, animals, and their aquatic environments. These substances include the vinca alkaloids, mistletoe plant extracts, podophyllotoxin derivatives, taxanes, camptothecin, combretastatin, and others including geniposide, colchicine, artesunate, homoharringtonine, salvicine, ellipticine, roscovitine, maytanasin, tapsigargin, and bruceantin. Compounds (psammaplin, didemnin, dolastin, ecteinascidin, and halichondrin) isolated from the marine plants and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates (e.g., sponges, tunicates, and soft corals) as well as certain other substances that have been tested on cells and experimental animals and used in human chemotherapy.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| |
Collapse
|
167
|
Guo C, Ma R, Liu X, Xia Y, Niu P, Ma J, Zhou X, Li Y, Sun Z. Silica nanoparticles induced endothelial apoptosis via endoplasmic reticulum stress-mitochondrial apoptotic signaling pathway. CHEMOSPHERE 2018; 210:183-192. [PMID: 29990757 DOI: 10.1016/j.chemosphere.2018.06.170] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Along with their extensively application, human exposure to amorphous silica nanoparticles (SiNPs) has highly increased. Accumulative toxicological researches have provided the scientific correlation between SiNPs exposure and cardiovascular diseases. Endothelial apoptosis is vital in the initiation and progression of atherosclerosis. However, molecular details between SiNPs and endothelial apoptosis remain unidentified. Here, we investigated the uptake and toxic mechanism of SiNPs using HUVECs (Human umbilical vein endothelial cells). Consequently, at 24-h exposure, SiNPs were located freely or within membrane-bound agglomerates in the cytosol, especially in mitochondrial and endoplasmic reticulum (ER) regions with swelled mitochondria, cristae rupture or aggregated ER. Further, we demonstrated that SiNPs induced endothelial apoptosis as evidenced by the Annexin V/PI staining and flow cytometry determination. In line with the ultrastructure alterations, SiNPs triggered mitochondrial ROS generation, ΔΨm collapse, cytosolic Ca2+ overload, as well as ER stress confirmed by enhanced ER staining, up-regulated GRP78/BiP and XBP1 splicing. More notably, in line with the induction of apoptosis, SiNPs-induced ER stress-associated activation of CHOP, caspase-12, and IRE1α/JNK pathways, which may regulate the BCL2 family member as evidenced by a increased proapoptotic BAX while a decline of anti-apoptotic Bcl-2, ultimately facilitate the mitochondria-mediated apoptotic caspase cascade as confirmed by the upregulated expressions of cytochrome c, Caspase-9 and -3. Altogether, our results indicated the activation of ER stress-mitochondria cascade-mediated apoptotic pathways may be a key mechanism among the SiNPs-induced endothelial apoptosis.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiaoying Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yinye Xia
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
168
|
Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018; 69:927-947. [PMID: 29940269 DOI: 10.1016/j.jhep.2018.06.008] [Citation(s) in RCA: 640] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
The global epidemic of obesity has been accompanied by a rising burden of non-alcoholic fatty liver disease (NAFLD), with manifestations ranging from simple steatosis to non-alcoholic steatohepatitis, potentially developing into hepatocellular carcinoma. Although much attention has focused on NAFLD, its pathogenesis remains largely obscure. The hallmark of NAFLD is the hepatic accumulation of lipids, which subsequently leads to cellular stress and hepatic injury, eventually resulting in chronic liver disease. Abnormal lipid accumulation often coincides with insulin resistance in steatotic livers and is associated with perturbed endoplasmic reticulum (ER) proteostasis in hepatocytes. In response to chronic ER stress, an adaptive signalling pathway known as the unfolded protein response is triggered to restore ER proteostasis. However, the unfolded protein response can cause inflammation, inflammasome activation and, in the case of non-resolvable ER stress, the death of hepatocytes. Experimental data suggest that the unfolded protein response influences hepatic tumour development, aggressiveness and response to treatment, offering novel therapeutic avenues. Herein, we provide an overview of the evidence linking ER stress to NAFLD and discuss possible points of intervention.
Collapse
Affiliation(s)
| | - Deborah Vallée
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, 02115 Boston, MA, USA
| | - Eric Chevet
- "Chemistry, Oncogenesis, Stress, Signaling", Inserm U1242, Université de Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | |
Collapse
|
169
|
Park GB, Jin DH, Kim D. Sequential treatment with celecoxib and bortezomib enhances the ER stress-mediated autophagy-associated cell death of colon cancer cells. Oncol Lett 2018; 16:4526-4536. [PMID: 30214587 PMCID: PMC6126195 DOI: 10.3892/ol.2018.9233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/21/2017] [Indexed: 01/07/2023] Open
Abstract
Treatment with celecoxib and bortezomib as single chemotherapeutic agents reduces the viability and proliferation of colorectal cancer cells. The use of these agents in combination with other chemotherapeutic agents is usually associated with adverse effects. In the present study, a combination of celecoxib and bortezomib was investigated for potential synergistic effects in colon cancer cells. The sequential exposure to celecoxib with bortezomib synergistically induced apoptotic death in human colon cancer cells compared with groups treated with a single drug or other drug combinations. c-Jun N-terminal kinase/p38-mitogen-activated protein kinase-induced endoplasmic reticulum (ER) stress through serial exposure to celecoxib and bortezomib may have induced the intracellular Ca2+ release, leading to the generation of autophagosomes in p53-expressing HCT-116 cells. Targeted inhibition of p53 activity or ER stress or treatment with the Ca2+-chelating agent BAPTA-AM suppressed the ER stress-mediated Ca2+ release and apoptosis. Although p53-/- HCT-116 cells were less sensitive to sequential treatment with celecoxib and bortezomib, co-localization of autophagosomes was detected in the absence of CCAAT-enhancer-binding protein homologous protein expression. Treatment of p53-/- HCT-116 cells with BAPTA-AM did not inhibit apoptosis following serial treatment with celecoxib and bortezomib. These results suggest that the order of drug administration is important in treating cancer and that the sequential treatment with celecoxib and bortezomib enhances the ER stress-mediated autophagy-associated cell death of colon cancer cells, regardless of p53 expression.
Collapse
Affiliation(s)
- Ga-Bin Park
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Dong-Hoon Jin
- Department of Convergence, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea,Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea,Correspondence to: Dr Daejin Kim, Department of Anatomy, Inje University College of Medicine, 75 Bokji Street, Busanjin, Busan 47392, Republic of Korea, E-mail:
| |
Collapse
|
170
|
Propofol inhibits parthanatos via ROS-ER-calcium-mitochondria signal pathway in vivo and vitro. Cell Death Dis 2018; 9:932. [PMID: 30224699 PMCID: PMC6141459 DOI: 10.1038/s41419-018-0996-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Parthanatos is a new form of programmed cell death. It has been recognized to be critical in cerebral ischemia–reperfusion injury, and reactive oxygen species (ROS) can induce parthanatos. Recent studies found that propofol, a widely used intravenous anesthetic agent, has an inhibitory effect on ROS and has neuroprotective in many neurological diseases. However, the functional roles and mechanisms of propofol in parthanatos remain unclear. Here, we discovered that the ROS–ER–calcium–mitochondria signal pathway mediated parthanatos and the significance of propofol in parthanatos. Next, we found that ROS overproduction would cause endoplasmic reticulum (ER) calcium release, leading to mitochondria depolarization with the loss of mitochondrial membrane potential. Mitochondria depolarization caused mitochondria to release more ROS, which, in turn, contributed to parthanatos. Also, we found that propofol inhibited parthanatos through impeding ROS overproduction, calcium release from ER, and mitochondrial depolarization in parthanatos. Importantly, our results indicated that propofol protected cerebral ischemia–reperfusion via parthanatos suppression, amelioration of mitochondria, and ER swelling. Our findings provide new insights into the mechanisms of how ER and mitochondria contribute to parthanatos. Furthermore, our studies elucidated that propofol has a vital role in parthanatos prevention in vivo and in vitro, and propofol can be a promising therapeutic approach for nerve injury patients.
Collapse
|
171
|
Bravo-Sagua R, Parra V, Ortiz-Sandoval C, Navarro-Marquez M, Rodríguez AE, Diaz-Valdivia N, Sanhueza C, Lopez-Crisosto C, Tahbaz N, Rothermel BA, Hill JA, Cifuentes M, Simmen T, Quest AFG, Lavandero S. Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER-mitochondria communication during the early phase of ER stress. Cell Death Differ 2018; 26:1195-1212. [PMID: 30209302 PMCID: PMC6748148 DOI: 10.1038/s41418-018-0197-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023] Open
Abstract
Close contacts between endoplasmic reticulum and mitochondria enable reciprocal Ca2+ exchange, a key mechanism in the regulation of mitochondrial bioenergetics. During the early phase of endoplasmic reticulum stress, this inter-organellar communication increases as an adaptive mechanism to ensure cell survival. The signalling pathways governing this response, however, have not been characterized. Here we show that caveolin-1 localizes to the endoplasmic reticulum–mitochondria interface, where it impairs the remodelling of endoplasmic reticulum–mitochondria contacts, quenching Ca2+ transfer and rendering mitochondrial bioenergetics unresponsive to endoplasmic reticulum stress. Protein kinase A, in contrast, promotes endoplasmic reticulum and mitochondria remodelling and communication during endoplasmic reticulum stress to promote organelle dynamics and Ca2+ transfer as well as enhance mitochondrial bioenergetics during the adaptive response. Importantly, caveolin-1 expression reduces protein kinase A signalling, as evidenced by impaired phosphorylation and alterations in organelle distribution of the GTPase dynamin-related protein 1, thereby enhancing cell death in response to endoplasmic reticulum stress. In conclusion, caveolin-1 precludes stress-induced protein kinase A-dependent remodelling of endoplasmic reticulum–mitochondria communication.
Collapse
Affiliation(s)
- Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 8380492, Santiago, Chile.,Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, 7830490, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 8380492, Santiago, Chile.,Center for Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, 8380492, Santiago, Chile
| | | | - Mario Navarro-Marquez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 8380492, Santiago, Chile
| | - Andrea E Rodríguez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 8380492, Santiago, Chile
| | - Natalia Diaz-Valdivia
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 8380492, Santiago, Chile
| | - Carlos Sanhueza
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 8380492, Santiago, Chile
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 8380492, Santiago, Chile
| | - Nasser Tahbaz
- Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Beverly A Rothermel
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Joseph A Hill
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mariana Cifuentes
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, 7830490, Santiago, Chile.,Center for Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, 8380492, Santiago, Chile
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 8380492, Santiago, Chile. .,Center for Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, 8380492, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, 8380492, Santiago, Chile. .,Center for Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, 8380492, Santiago, Chile. .,Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
172
|
Guo C, Ma R, Liu X, Chen T, Li Y, Yu Y, Duan J, Zhou X, Li Y, Sun Z. Silica nanoparticles promote oxLDL-induced macrophage lipid accumulation and apoptosis via endoplasmic reticulum stress signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:570-579. [PMID: 29533793 DOI: 10.1016/j.scitotenv.2018.02.312] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 05/15/2023]
Abstract
Oxidized low-density lipoprotein (oxLDL), a marker of hyperlipidemia, plays a pivotal role in the development of atherosclerosis through the induction of macrophage-derived foam cell formation and thereafter apoptosis. Previous studies have indicated that silica nanoparticle (SiNPs) may exert a proatherogenic role, which could induce endothelial dysfunction, and monocytes infiltration. However, little is known about SiNPs' effects on macrophage-derived foam cell formation and apoptosis in the pathogenesis of atherosclerosis. In this study, we investigated the effects of SiNPs and oxLDL coexposure on macrophage-derived lipid metabolism, foam cell and apoptosis by using Raw264.7 cells. As a result, SiNPs enhanced cytotoxicity, apoptosis, and lipid accumulation upon oxLDL stimulation. Furthermore, quantitative determination of the expression levels of genes involved in cholesterol influx or efflux showed significantly up-regulated expressions of CD36 and SRA, whereas down-regulated expressions of ATP-binding cassette A1 (ABCA1), ABCG1, and SRB1 in oxLDL-treated macrophages, especially upon the co-exposure with SiNPs. It indicated that SiNPs promoted lipid accumulation in macrophage cells through not only facilitating cholesterol influx but also inhibiting cholesterol efflux. Endoplasmic reticulum (ER) is specialized for the production, modification, even trafficking of lipids. Interestingly, ER response was triggered upon oxLDL treatment, while SiNPs coexposure augmented the ER stress. Taken together, our results revealed that SiNPs promoted oxLDL-induced macrophage foam cell formation and apoptosis, which may be mediated by ER stress signaling. Thus we propose future researches needed for a better understanding of NPs' toxicity and their interactions with various pathophysiological conditions.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaoying Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Junchao Duan
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xianqing Zhou
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
173
|
Li X, Liang M, Jiang J, He R, Wang M, Guo X, Shen M, Qin R. Combined inhibition of autophagy and Nrf2 signaling augments bortezomib-induced apoptosis by increasing ROS production and ER stress in pancreatic cancer cells. Int J Biol Sci 2018; 14:1291-1305. [PMID: 30123077 PMCID: PMC6097472 DOI: 10.7150/ijbs.26776] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (PC) is highly resistant to current therapies; thus, there is an urgent need to develop new treatment strategies. The proteasome is crucially important for proteostasis, which is involved in cell proliferation and survival, making it an attractive therapeutic target in cancer. However, recent studies have indicated that bortezomib, a highly selective proteasome inhibitor, has limited effects in solid tumors including PC. Thus, more mechanistic insights into chemo-sensitization strategies for bortezomib are urgently needed. Herein, we demonstrate that bortezomib induced apoptosis and autophagy via a mechanism involving endoplasmic reticulum (ER) stress in PC cells. Additionally, bortezomib treatment led to increased levels of intracellular reactive oxygen species (ROS), which play critical roles in bortezomib-induced ER stress and apoptosis. Moreover, autophagy functions as a compensatory mechanism to eliminate bortezomib-induced ROS and resists ER stress-mediated apoptosis. Additionally, the Nrf2-mediated antioxidative response, which works against with bortezomib-induced autophagy, also protected cells against bortezomib-induced ROS production. Finally, the dual inhibition of autophagy and Nrf2 signaling cooperatively enhanced bortezomib-induced apoptosis by elevating ROS levels and ER stress. Together, these data demonstrate that activation of autophagy and the Nrf2 antioxidant system, which lowers intracellular ROS, are mechanistically how PC cells overcome bortezomib treatment. In summary, combining proteasome inhibitors with drugs targeting autophagy and Nrf2 signaling could be a promising therapeutic approach for PC treatment.
Collapse
Affiliation(s)
- Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Liang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Jianxin Jiang
- Department of Hepatic-Biliary-Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Shen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
174
|
Abstract
Inhibitor of apoptosis (IAP) family comprises a group of endogenous proteins that function as main regulators of caspase activity and cell death. They are considered the main culprits in evasion of apoptosis, which is a fundamental hallmark of carcinogenesis. Overexpression of IAP proteins has been documented in various solid and hematological malignancies, rendering them resistant to standard chemotherapeutics and radiation therapy and conferring poor prognosis. This observation has urged their exploitation as therapeutic targets in cancer with promising pre-clinical outcomes. This review describes the structural and functional features of IAP proteins to elucidate the mechanism of their anti-apoptotic activity. We also provide an update on patterns of IAP expression in different tumors, their impact on treatment response and prognosis, as well as the emerging investigational drugs targeting them. This aims at shedding the light on the advances in IAP targeting achieved to date, and encourage further development of clinically applicable therapeutic approaches.
Collapse
Affiliation(s)
- Mervat S Mohamed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
- Department of Chemistry, Biochemistry Speciality, Faculty of Science, Cairo University, Giza, Egypt.
- , Tabuk, Kingdom of Saudi Arabia.
| | - Mai K Bishr
- Department of Radiotherapy, Children's Cancer Hospital Egypt (CCHE), Cairo, Egypt
| | - Fahad M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ayat G Ali
- Department of Biochemistry, El Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
175
|
Iuchi K, Morisada Y, Yoshino Y, Himuro T, Saito Y, Murakami T, Hisatomi H. Cold atmospheric-pressure nitrogen plasma induces the production of reactive nitrogen species and cell death by increasing intracellular calcium in HEK293T cells. Arch Biochem Biophys 2018; 654:136-145. [PMID: 30026027 DOI: 10.1016/j.abb.2018.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 01/06/2023]
Abstract
Cold atmospheric-pressure plasma (CAP) has been emerging as a promising tool for cancer therapy in recent times. In this study, we used a CAP device with nitrogen gas (N2CAP) and investigated the effect of the N2CAP on the viability of cultured cells. Moreover, we investigated whether N2CAP-produced hydrogen peroxide (H2O2) in the medium is involved in N2CAP-induced cell death. Here, we found that the N2CAP irradiation inhibited cell proliferation in the human embryonic kidney cell line HEK293T and that the N2CAP induced cell death in an irradiation time- and distance-dependent manner. Furthermore, the N2CAP and H2O2 increased intracellular calcium levels and induced caspase-3/7 activation in HEK293T cells. The N2CAP irradiation induced a time-dependent production of H2O2 and nitrite/nitrate in PBS or culture medium. However, the amount of H2O2 in the solution after N2CAP irradiation was too low to induce cell death. Interestingly, carboxy-PTIO, a nitric oxide scavenger, or BAPTA-AM, a cell-permeable calcium chelator, inhibited N2CAP-induced morphological change and cell death. These results suggest that the production of reactive nitrogen species and the increase in intracellular calcium were involved in the N2CAP-induced cell death.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo, 180-8633, Japan.
| | - Yukina Morisada
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Yuri Yoshino
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Takahiro Himuro
- Department of Systems Design Engineering, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Yoji Saito
- Department of Systems Design Engineering, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Tomoyuki Murakami
- Department of Systems Design Engineering, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Hisashi Hisatomi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| |
Collapse
|
176
|
Oliva-Vilarnau N, Hankeova S, Vorrink SU, Mkrtchian S, Andersson ER, Lauschke VM. Calcium Signaling in Liver Injury and Regeneration. Front Med (Lausanne) 2018; 5:192. [PMID: 30023358 PMCID: PMC6039545 DOI: 10.3389/fmed.2018.00192] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
The liver fulfills central roles in metabolic control and detoxification and, as such, is continuously exposed to a plethora of insults. Importantly, the liver has a unique ability to regenerate and can completely recoup from most acute, non-iterative insults. However, multiple conditions, including viral hepatitis, non-alcoholic fatty liver disease (NAFLD), long-term alcohol abuse and chronic use of certain medications, can cause persistent injury in which the regenerative capacity eventually becomes dysfunctional, resulting in hepatic scaring and cirrhosis. Calcium is a versatile secondary messenger that regulates multiple hepatic functions, including lipid and carbohydrate metabolism, as well as bile secretion and choleresis. Accordingly, dysregulation of calcium signaling is a hallmark of both acute and chronic liver diseases. In addition, recent research implicates calcium transients as essential components of liver regeneration. In this review, we provide a comprehensive overview of the role of calcium signaling in liver health and disease and discuss the importance of calcium in the orchestration of the ensuing regenerative response. Furthermore, we highlight similarities and differences in spatiotemporal calcium regulation between liver insults of different etiologies. Finally, we discuss intracellular calcium control as an emerging therapeutic target for liver injury and summarize recent clinical findings of calcium modulation for the treatment of ischemic-reperfusion injury, cholestasis and NAFLD.
Collapse
Affiliation(s)
- Nuria Oliva-Vilarnau
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Simona Hankeova
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Sabine U Vorrink
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Souren Mkrtchian
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Emma R Andersson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
177
|
Zhang X, Wang H, Coulter JA, Yang R. Octaarginine-modified gold nanoparticles enhance the radiosensitivity of human colorectal cancer cell line LS180 to megavoltage radiation. Int J Nanomedicine 2018; 13:3541-3552. [PMID: 29950834 PMCID: PMC6016276 DOI: 10.2147/ijn.s161157] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background This study investigated the effectiveness and underpinning mechanisms of radiosensitization using octaarginine (R8)-modified gold nanoparticle–poly(ethylene glycol) (GNP-PEG-R8) in colorectal cancer cell line LS180 to megavoltage radiotherapy in vitro. Method In-house synthesized GNP-PEG was characterized by transmission electron microscopy, dynamic light scattering, ultraviolet–visible spectrophotometry, and X-ray photoelectron spectroscopy. Inductively coupled plasma mass spectroscopy was used to quantify internalization. Direct cytotoxicity was established using the Cell Counting Kit-8, while radiosensitivity was determined using the gold standard in vitro clonogenic assay. Cell-cycle distribution, apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were analyzed by flow cytometry, further exploring the key mechanisms driving GNP-PEG-R8 radiosensitization. Results The core GNP diameter was 6.3±1.1 nm (mean±SD). Following functionalization, the hydrodynamic diameter increased to 19.7±2.8 nm and 27.8±1.8 nm for GNP-PEG and GNP-PEG-R8, with respective surface plasmon resonance peaks of 515 nm and 525 nm. Furthermore, incorporation of the R8 significantly increased nanoparticle internalization compared to GNP-PEG (p<0.001) over a 1 h treatment period. Functionalized GNPs confer little cytotoxicity below 400 nM. In clonogenic assays, radiation combined with GNP-PEG-R8 induced a significant reduction in colony formation compared with radiation alone, generating a sensitizer enhancement ratio of 1.59. Furthermore, GNP-PEG-R8 plus radiation predominantly induced cell-cycle arrest in the G2/M phase, increasing G2/M stalling by an additional 10% over GNP-PEG, markedly promoting apoptosis (p<0.001). Finally, ROS levels and alterations in MMP were investigated, indicating a highly significant (p<0.001) change in both parameters following the combined treatment of GNP-PEG-R8 and radiation over radiation alone. Conclusion R8-modified GNPs were efficiently internalized by LS180 cells, exhibiting minimal cytotoxicity. This yielded significant radiosensitization in response to megavoltage radiation. GNP-PEG-R8 may enhance radiosensitivity by arresting cell cycle and inducing apoptosis, with elevated ROS identified as the likely initiator.
Collapse
Affiliation(s)
- Xuyang Zhang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Hao Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | | | - Ruijie Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
178
|
Nyisztor Z, Denes V, Kovacs-Valasek A, Hideg O, Berta G, Gabriel R. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP1-38) Exerts Both Pro and Anti-Apoptotic Effects on Postnatal Retinal Development in Rat. Neuroscience 2018; 385:59-66. [PMID: 29906550 DOI: 10.1016/j.neuroscience.2018.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
Abstract
PACAP1-38, a ubiquitous and multifunctional regulator has been in the focus of neurotoxicity research due to its impressive neuroprotective potential. Although the literature extensively demonstrated its repressive effect on the apoptotic machinery in neurodegenerative models, there is a striking absence of analysis on its role in normal development. We performed quantitative analyses on caspase activity in developing retina upon 100, 50, 25 or 1 pmol intravitreal PACAP1-38 injection from postnatal day 1 (P1) through P7 in Wistar rats. Retinas were harvested at 6, 12, 18, 24 or 48 h post-injection. Apoptotic activity was revealed using fluorescent caspase 3/7 enzyme assay, western blots and TUNEL assay. Unexpectedly, we found that 100 pmol PACAP1-38 increased the activity of caspase 3/7 at P1 and P5 whereas it had no effect at P7. At P3, as a biphasic effect, PACAP1-38 repressed active caspase 3/7 at 18 h post-injection while increased their activity in 24 h post-injection. Amounts, smaller than 100 pmol, could not inhibit apoptosis whereas 50, 25 or 1 pmol PACAP1-38 could evoke significant elevation in caspase 3/7 activity. TUNEL-positive cells appeared in the proximal part of inner nuclear as well as ganglion cell layers in response to PACAP1-38 treatment. The fundamental novelty of these results is that PACAP1-38 induces apoptosis during early postnatal retinogenesis. The dose as well as stage-dependent response suggests that PACAP1-38 has a Janus face in apoptosis regulation. It not only inhibits development-related apoptosis, but as a long-term effect, facilitates it.
Collapse
Affiliation(s)
- Zsolt Nyisztor
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.
| | - Andrea Kovacs-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Orsolya Hideg
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Gergely Berta
- Institute of Medical Biology, School of Medicine, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
179
|
Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, Federico A, Persico M. Role of Oxidative Stress in Pathophysiology of Nonalcoholic Fatty Liver Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9547613. [PMID: 29991976 PMCID: PMC6016172 DOI: 10.1155/2018/9547613] [Citation(s) in RCA: 468] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Liver steatosis without alcohol consumption, namely, nonalcoholic fatty liver disease (NAFLD), is a common hepatic condition that encompasses a wide spectrum of presentations, ranging from simple accumulation of triglycerides in the hepatocytes without any liver damage to inflammation, necrosis, ballooning, and fibrosis (namely, nonalcoholic steatohepatitis) up to severe liver disease and eventually cirrhosis and/or hepatocellular carcinoma. The pathophysiology of fatty liver and its progression is influenced by multiple factors (environmental and genetics), in a "multiple parallel-hit model," in which oxidative stress plays a very likely primary role as the starting point of the hepatic and extrahepatic damage. The aim of this review is to give a comprehensive insight on the present researches and findings on the role of oxidative stress mechanisms in the pathogenesis and pathophysiology of NAFLD. With this aim, we evaluated the available data in basic science and clinical studies in this field, reviewing the most recent works published on this topic.
Collapse
Affiliation(s)
- Mario Masarone
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, Italy
| | - Valerio Rosato
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, Italy
| | - Marcello Dallio
- Hepatogastroenterology Division, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonietta Gerarda Gravina
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, Italy
| | - Andrea Aglitti
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, Italy
| | - Carmelina Loguercio
- Hepatogastroenterology Division, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Alessandro Federico
- Hepatogastroenterology Division, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marcello Persico
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, Italy
| |
Collapse
|
180
|
Davidson S, Steiner A, Harapas CR, Masters SL. An Update on Autoinflammatory Diseases: Interferonopathies. Curr Rheumatol Rep 2018; 20:38. [PMID: 29846818 DOI: 10.1007/s11926-018-0748-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Type I interferons (IFNαβ) induce the expression of hundreds of genes; thus, it is unsurprising that the initiation, transmission, and resolution of the IFNαβ-mediated immune response is tightly controlled. Mutations that alter nucleic acid processing and recognition, ablate IFNαβ-specific negative feedback mechanisms, or result in dysfunction of the proteasome system can all induce pathogenic IFNαβ signalling and are the focus of this review. RECENT FINDINGS Recent advances have delineated the precise cytoplasmic mechanisms that facilitate self-DNA to be recognised by cGAS and self-RNA to be recognised by RIG-I or MDA-5. This helps clarify interferonopathies associated with mutations in genes which code for DNase-II and ADAR1, among others. Similarly, loss of function mutations in Pol α, which lowers the presence of antagonistic ligands in the cytosol, or gain of function mutations in RIG-I and MDA-5, result in increased propensity for receptor activation and therefore IFNαβ induction. As the aetiology of monogenic autoinflammatory diseases are uncovered, novel and sometimes unsuspected molecular interactions and signalling pathways are being defined. This review covers developments that have come to light over the past 3 years, with reference to the study of interferonopathies.
Collapse
Affiliation(s)
- Sophia Davidson
- Inflammation division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.
| | - Annemarie Steiner
- Inflammation division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cassandra R Harapas
- Inflammation division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
| | - Seth L Masters
- Inflammation division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
181
|
Honrath B, Krabbendam IE, IJsebaart C, Pegoretti V, Bendridi N, Rieusset J, Schmidt M, Culmsee C, Dolga AM. SK channel activation is neuroprotective in conditions of enhanced ER-mitochondrial coupling. Cell Death Dis 2018; 9:593. [PMID: 29789578 PMCID: PMC5964177 DOI: 10.1038/s41419-018-0590-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/08/2018] [Accepted: 04/12/2018] [Indexed: 12/26/2022]
Abstract
Alterations in the strength and interface area of contact sites between the endoplasmic reticulum (ER) and mitochondria contribute to calcium (Ca2+) dysregulation and neuronal cell death, and have been implicated in the pathology of several neurodegenerative diseases. Weakening this physical linkage may reduce Ca2+ uptake into mitochondria, while fortifying these organelle contact sites may promote mitochondrial Ca2+ overload and cell death. Small conductance Ca2+-activated K+ (SK) channels regulate mitochondrial respiration, and their activation attenuates mitochondrial damage in paradigms of oxidative stress. In the present study, we enhanced ER–mitochondrial coupling and investigated the impact of SK channels on survival of neuronal HT22 cells in conditions of oxidative stress. Using genetically encoded linkers, we show that mitochondrial respiration and the vulnerability of neuronal cells to oxidative stress was inversely linked to the strength of ER–mitochondrial contact points and the increase in mitochondrial Ca2+ uptake. Pharmacological activation of SK channels provided protection against glutamate-induced cell death and also in conditions of increased ER–mitochondrial coupling. Together, this study revealed that SK channel activation provided persistent neuroprotection in the paradigm of glutamate-induced oxytosis even in conditions where an increase in ER–mitochondrial coupling potentiated mitochondrial Ca2+ influx and impaired mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Birgit Honrath
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043, Marburg, Germany. .,Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Research School of Behavioural and Cognitive Neurosciences (BCN), Department of Molecular Pharmacology, University of Groningen, 9713 AV, Groningen, The Netherlands.
| | - Inge E Krabbendam
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Research School of Behavioural and Cognitive Neurosciences (BCN), Department of Molecular Pharmacology, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Carmen IJsebaart
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Research School of Behavioural and Cognitive Neurosciences (BCN), Department of Molecular Pharmacology, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Valentina Pegoretti
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Research School of Behavioural and Cognitive Neurosciences (BCN), Department of Molecular Pharmacology, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Nadia Bendridi
- INSERM U1060, INRA U1235, Laboratoire CarMeN, Lyon University, Université Claude Bernard Lyon1, INSA-Lyon, F-69921, Oullins, France
| | - Jennifer Rieusset
- INSERM U1060, INRA U1235, Laboratoire CarMeN, Lyon University, Université Claude Bernard Lyon1, INSA-Lyon, F-69921, Oullins, France
| | - Martina Schmidt
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Research School of Behavioural and Cognitive Neurosciences (BCN), Department of Molecular Pharmacology, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043, Marburg, Germany
| | - Amalia M Dolga
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043, Marburg, Germany. .,Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Research School of Behavioural and Cognitive Neurosciences (BCN), Department of Molecular Pharmacology, University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
182
|
van Vliet AR, Sassano ML, Agostinis P. The Unfolded Protein Response and Membrane Contact Sites: Tethering as a Matter of Life and Death? ACTA ACUST UNITED AC 2018. [DOI: 10.1177/2515256418770512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endoplasmic reticulum (ER) is the most extensive organelle of the eukaryotic cell and constitutes the major site of protein and lipid synthesis and regulation of intracellular Ca2+ levels. To exert these functions properly, the ER network is shaped in structurally and functionally distinct domains that dynamically remodel in response to intrinsic and extrinsic cues. Moreover, the ER establishes a tight communication with virtually all organelles of the cell through specific subdomains called membrane contact sites. These contact sites allow preferential, nonvesicular channeling of key biological mediators including lipids and Ca2+ between organelles and are harnessed by the ER to interface with and coregulate a variety of organellar functions that are vital to maintain homeostasis. When ER homeostasis is lost, a condition that triggers the activation of an evolutionarily conserved pathway called the unfolded protein response (UPR), the ER undergoes rapid remodeling. These dynamic changes in ER morphology are functionally coupled to the modulation or formation of contact sites with key organelles, such as mitochondria and the plasma membrane, which critically regulate cell fate decisions of the ER-stressed cells. Certain components of the UPR have been shown to facilitate the formation of contact sites through various mechanisms including remodeling of the actin cytoskeleton. In this review, we discuss old and emerging evidence linking the UPR machinery to contact site formation in mammalian cells and discuss their important role in cellular homeostasis.
Collapse
Affiliation(s)
- Alexander R. van Vliet
- Cell Death Research & Therapy Laboratory, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven, Belgium
| | - Maria Livia Sassano
- Cell Death Research & Therapy Laboratory, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy Laboratory, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven, Belgium
| |
Collapse
|
183
|
Guo C, Wang J, Jing L, Ma R, Liu X, Gao L, Cao L, Duan J, Zhou X, Li Y, Sun Z. Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:926-936. [PMID: 29074197 DOI: 10.1016/j.envpol.2017.10.060] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 05/15/2023]
Abstract
As silica nanoparticles (SiNPs) pervade the global economy, however, the followed emissions during the manufacturing, use, and disposal stages inevitably bring an environmental release, potentially result in harmful impacts. Endothelial dysfunction precedes cardiovascular disease, and is often accompanied by mitochondrial impairment and dysfunction. We had reported endothelial dysfunction induced by SiNPs, however, the related mechanisms by which SiNPs interact with mitochondria are not well understood. In the present study, we examined SiNPs-induced mitochondrial dysfunction, and further demonstrated their adverse effects on mitochondrial dynamics and biogenesis in endothelial cells (HUVECs). Consequently, SiNPs entered mitochondria, caused mitochondrial swelling, cristae disruption and even disappearance. Further analyses revealed SiNPs increased the intracellular level of mitochondrial reactive oxygen species, eventually resulting in the collapse of mitochondrial membrane potential, impairments in ATP synthesis, cellular respiration and the activities of three ATP-dependent enzymes (including Na+/K+-ATPase, Ca2+-ATPase and Ca2+/Mg2+-ATPase), as well as an elevated intracellular calcium level. Furthermore, mitochondria in SiNPs-treated HUVECs displayed a fission phenotype. Accordingly, dysregulation of the key gene expressions (FIS1, DRP1, OPA1, Mfn1 and Mfn2) involved in fission/fusion event further certified the SiNPs-induced perturbation of mitochondrial dynamics. Meanwhile, SiNPs-treated HUVECs displayed declined levels of mitochondrial DNA copy number, PGC-1α, NRF1 and also TFAM, indicating an inhibition of mitochondrial biogenesis triggered by SiNPs via PGC-1α-NRF1-TFAM signaling. Overall, SiNPs triggered endothelial toxicity through mitochondria as target, including the induction of mitochondrial dysfunction, as well as the perturbations of their dynamics and biogenesis.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Li Jing
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaoying Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lifang Gao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lige Cao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Junchao Duan
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xianqing Zhou
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
184
|
Johannsmeier S, Heeger P, Terakawa M, Kalies S, Heisterkamp A, Ripken T, Heinemann D. Gold nanoparticle-mediated laser stimulation induces a complex stress response in neuronal cells. Sci Rep 2018; 8:6533. [PMID: 29695746 PMCID: PMC5917034 DOI: 10.1038/s41598-018-24908-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/11/2018] [Indexed: 11/12/2022] Open
Abstract
Stimulation of neuronal cells generally resorts to electric signals. Recent advances in laser-based stimulation methods could present an alternative with superior spatiotemporal resolution. The avoidance of electronic crosstalk makes these methods attractive for in vivo therapeutic application. In particular, nano-mediators, such as gold nanoparticles, can be used to transfer the energy from a laser pulse to the cell membrane and subsequently activate excitable cells. Although the underlying mechanisms of neuronal activation have been widely unraveled, the overall effect on the targeted cell is not understood. Little is known about the physiological and pathophysiological impact of a laser pulse targeted onto nanoabsorbers on the cell membrane. Here, we analyzed the reaction of the neuronal murine cell line Neuro-2A and murine primary cortical neurons to gold nanoparticle mediated laser stimulation. Our study reveals a severe, complex and cell-type independent stress response after laser irradiation, emphasizing the need for a thorough assessment of this approach’s efficacy and safety.
Collapse
Affiliation(s)
- Sonja Johannsmeier
- Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V, Hollerithallee 8, 30419, Hannover, Germany. .,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany.
| | - Patrick Heeger
- Cluster of Excellence "Hearing4All", Hannover, Germany.,Institute of quantum optics, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Mitsuhiro Terakawa
- School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.,Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Stefan Kalies
- Institute of quantum optics, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Alexander Heisterkamp
- Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V, Hollerithallee 8, 30419, Hannover, Germany.,Cluster of Excellence "Hearing4All", Hannover, Germany.,Institute of quantum optics, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Tammo Ripken
- Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V, Hollerithallee 8, 30419, Hannover, Germany.,Cluster of Excellence "Hearing4All", Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Dag Heinemann
- Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V, Hollerithallee 8, 30419, Hannover, Germany.,Cluster of Excellence "Hearing4All", Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| |
Collapse
|
185
|
Kim MY. [The Progression of Liver Fibrosis in Non-alcoholic Fatty Liver Disease]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2018. [PMID: 28637102 DOI: 10.4166/kjg.2017.69.6.341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the pathogenesis of non-alcoholic steatohepatitis (NASH) and its fibrosis progression is still evolving. Nonetheless, current evidence suggests that mechanisms involved are very complex parallel processes with multiple metabolic factors. Lipotoxicity related with excess saturated free fatty acids, obesity, and insulin resistance acts as the central driver of cellular injury via oxidative stress. Hepatocyte apoptosis and/or senescence are also contribute to the activation of inflammasome via various intra- and inter-cellular signaling mechanisms that lead to fibrosis. Current evidence suggests that periportal components, including ductular reaction and expansion of the hepatic progenitor cell compartment, may be involved and that the T-helper 17 cell response may mediate disease progression. This review aims to provide a brief overview of the pathogenesis of NASH and fibrosis progression from inflammation to fibrosis.
Collapse
Affiliation(s)
- Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
186
|
Shin DH, Leem DG, Shin JS, Kim JI, Kim KT, Choi SY, Lee MH, Choi JH, Lee KT. Compound K induced apoptosis via endoplasmic reticulum Ca 2+ release through ryanodine receptor in human lung cancer cells. J Ginseng Res 2018; 42:165-174. [PMID: 29719463 PMCID: PMC5926506 DOI: 10.1016/j.jgr.2017.01.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Extended endoplasmic reticulum (ER) stress may initiate apoptotic pathways in cancer cells, and ER stress has been reported to possibly increase tumor death in cancer therapy. We previously reported that caspase-8 played an important role in compound K-induced apoptosis via activation of caspase-3 directly or indirectly through Bid cleavage, cytochrome c release, and caspase-9 activation in HL-60 human leukemia cells. The mechanisms leading to apoptosis in A549 and SK-MES-1 human lung cancer cells and the role of ER stress have not yet been understood. METHODS The apoptotic effects of compound K were analyzed using flow cytometry, and the changes in protein levels were determined using Western blot analysis. The intracellular calcium levels were monitored by staining with Fura-2/AM and Fluo-3/AM. RESULTS Compound K-induced ER stress was confirmed through increased phosphorylation of eIF2α and protein levels of GRP78/BiP, XBP-1S, and IRE1α in human lung cancer cells. Moreover, compound-K led to the accumulation of intracellular calcium and an increase in m-calpain activities that were both significantly inhibited by pretreatment either with BAPTA-AM (an intracellular Ca2+ chelator) or dantrolene (an RyR channel antagonist). These results were correlated with the outcome that compound K induced ER stress-related apoptosis through caspase-12, as z-ATAD-fmk (a specific inhibitor of caspase-12) partially ameliorated this effect. Interestingly, 4-PBA (ER stress inhibitor) dramatically improved the compound K-induced apoptosis. CONCLUSION Cell survival and intracellular Ca2+ homeostasis during ER stress in human lung cancer cells are important factors in the induction of the compound K-induced apoptotic pathway.
Collapse
Affiliation(s)
- Dong-Hyun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Gyu Leem
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Joo-Il Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung-Tack Kim
- Traditional Food Research Center, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Sang Yoon Choi
- Traditional Food Research Center, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Myung-Hee Lee
- Traditional Food Research Center, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
187
|
Bryant JL, Guda PR, Asemu G, Subedi R, Ray S, Khalid OS, Shukla V, Patel D, Davis H, Nimmagadda VKC, Makar TK. Glomerular mitochondrial changes in HIV associated renal injury. Exp Mol Pathol 2018; 104:175-189. [PMID: 29608912 DOI: 10.1016/j.yexmp.2018.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022]
Abstract
HIV-associated nephropathy (HIVAN) is an AIDs-related disease of the kidney. HIVAN is characterized by severe proteinuria, podocyte hyperplasia, collapse, glomerular, and tubulointerstitial damage. HIV-1 transgenic (Tg26) mouse is the most popular model to study the HIV manifestations that develop similar renal presentations as HIVAN. Viral proteins, including Tat, Nef, and Vpr play a significant role in renal cell damage. It has been shown that mitochondrial changes are involved in several kidney diseases, and therefore, mitochondrial dysfunction may be implicated in the pathology of HIVAN. In the present study, we investigated the changes of mitochondrial homeostasis, biogenesis, dynamics, mitophagy, and examined the role of reactive oxygen species (ROS) generation and apoptosis in the Tg26 mouse model. The Tg26 mice showed significant impairment of kidney function, which was accompanied by increased blood urea nitrogen (BUN), creatinine and protein urea level. In addition, histological, western blot and PCR analysis of the Tg26 mice kidneys showed a downregulation of NAMPT, SIRT1, and SIRT3 expressions levels. Furthermore, the kidney of the Tg26 mice showed a downregulation of PGC1α, MFN2, and PARKIN, which are coupled with decrease of mitochondrial biogenesis, imbalance of mitochondrial dynamics, and downregulation of mitophagy, respectively. Furthermore, our results indicate that mitochondrial dysfunction were associated with ER stress, ROS generation and apoptosis. These results strongly suggest that the impaired mitochondrial morphology, homeostasis, and function associated with HIVAN. These findings indicated that a new insight on pathological mechanism associated with mitochondrial changes in HIVAN and a potential therapeutic target.
Collapse
Affiliation(s)
- Joseph L Bryant
- Institute of Human Virology, University of Maryland, Baltimore, MD, United States
| | | | - Girma Asemu
- Institute of Human Virology, University of Maryland, Baltimore, MD, United States
| | - Rogin Subedi
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Sugata Ray
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Omar S Khalid
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Vivek Shukla
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Dhruvil Patel
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Harry Davis
- Institute of Human Virology, University of Maryland, Baltimore, MD, United States
| | | | - Tapas K Makar
- Department of Neurology, University of Maryland, Baltimore, MD, United States.
| |
Collapse
|
188
|
Scrima R, Piccoli C, Moradpour D, Capitanio N. Targeting Endoplasmic Reticulum and/or Mitochondrial Ca 2+ Fluxes as Therapeutic Strategy for HCV Infection. Front Chem 2018; 6:73. [PMID: 29619366 PMCID: PMC5871704 DOI: 10.3389/fchem.2018.00073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/06/2018] [Indexed: 01/16/2023] Open
Abstract
Chronic hepatitis C is characterized by metabolic disorders and by a microenvironment in the liver dominated by oxidative stress, inflammation and regeneration processes that can in the long term lead to liver cirrhosis and hepatocellular carcinoma. Several lines of evidence suggest that mitochondrial dysfunctions play a central role in these processes. However, how these dysfunctions are induced by the virus and whether they play a role in disease progression and neoplastic transformation remains to be determined. Most in vitro studies performed so far have shown that several of the hepatitis C virus (HCV) proteins also localize to mitochondria, but the consequences of these interactions on mitochondrial functions remain contradictory and need to be confirmed in the context of productively replicating virus and physiologically relevant in vitro and in vivo model systems. In the past decade we have been proposing a temporal sequence of events in the HCV-infected cell whereby the primary alteration is localized at the mitochondria-associated ER membranes and causes release of Ca2+ from the ER, followed by uptake into mitochondria. This ensues successive mitochondrial dysfunction leading to the generation of reactive oxygen and nitrogen species and a progressive metabolic adaptive response consisting in decreased oxidative phosphorylation and enhanced aerobic glycolysis and lipogenesis. Here we resume the major results provided by our group in the context of HCV-mediated alterations of the cellular inter-compartmental calcium flux homeostasis and present new evidence suggesting targeting of ER and/or mitochondrial calcium transporters as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Darius Moradpour
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
189
|
Pan M, Han Y, Basu A, Dai A, Si R, Willson C, Balistrieri A, Scott BT, Makino A. Overexpression of hexokinase 2 reduces mitochondrial calcium overload in coronary endothelial cells of type 2 diabetic mice. Am J Physiol Cell Physiol 2018. [PMID: 29513568 DOI: 10.1152/ajpcell.00350.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coronary microvascular rarefaction, due to endothelial cell (EC) dysfunction, is one of the causes of increased morbidity and mortality in diabetes. Coronary ECs in diabetes are more apoptotic due partly to mitochondrial calcium overload. This study was designed to investigate the role of hexokinase 2 (HK2, an endogenous inhibitor of voltage-dependent anion channel) in coronary endothelial dysfunction in type 2 diabetes. We used mouse coronary ECs (MCECs) isolated from type 2 diabetic mice and human coronary ECs (HCECs) from type 2 diabetic patients to examine protein levels and mitochondrial function. ECs were more apoptotic and capillary density was lower in the left ventricle of diabetic mice than the control. MCECs from diabetic mice exhibited significant increase in mitochondrial Ca2+ concentration ([Ca2+]mito) compared with the control. Among several regulatory proteins for [Ca2+]mito, hexokinase 1 (HK1) and HK2 were significantly lower in MCECs from diabetic mice than control MCECs. We also found that the level of HK2 ubiquitination was higher in MCECs from diabetic mice than in control MCECs. In line with the data from MCECs, HCECs from diabetic patients showed lower HK2 protein levels than HCECs from nondiabetic patients. High-glucose treatment, but not high-fat treatment, significantly decreased HK2 protein levels in MCECs. HK2 overexpression in MCECs of diabetic mice not only lowered the level of [Ca2+]mito, but also reduced mitochondrial reactive oxygen species production toward the level seen in control MCECs. These data suggest that HK2 is a potential therapeutic target for coronary microvascular disease in diabetes by restoring mitochondrial function in coronary ECs.
Collapse
Affiliation(s)
- Minglin Pan
- Department of Medicine, University of Illinois at Chicago , Chicago, Illinois.,The Second Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Ying Han
- Department of Physiology, University of Arizona , Tucson, Arizona.,Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Aninda Basu
- Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Anzhi Dai
- Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Rui Si
- Department of Physiology, University of Arizona , Tucson, Arizona
| | - Conor Willson
- Department of Physiology, University of Arizona , Tucson, Arizona
| | - Angela Balistrieri
- Department of Physiology, University of Arizona , Tucson, Arizona.,Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Brian T Scott
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ayako Makino
- Department of Physiology, University of Arizona , Tucson, Arizona.,Department of Medicine, University of Arizona , Tucson, Arizona.,Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| |
Collapse
|
190
|
Xue J, Li R, Zhao X, Ma C, Lv X, Liu L, Liu P. Morusin induces paraptosis-like cell death through mitochondrial calcium overload and dysfunction in epithelial ovarian cancer. Chem Biol Interact 2018; 283:59-74. [PMID: 29421517 DOI: 10.1016/j.cbi.2018.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 01/02/2023]
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death among all gynecological cancers. Morusin, a prenylated flavonoid extracted from the root bark of Morus australis, has been reported to exhibit anti-tumor activity against various human cancers except EOC. In the present study, we explored the potential anti-cancer activity of morusin against EOC in vitro and in vivo and possible underlying mechanisms for the first time. We first found that morusin effectively inhibited EOC cell proliferation and survival in vitro and suppressed tumor growth in vivo. Then we observed that treatment of EOC cells with morusin resulted in paraptosis-like cell death, a novel mode of non-apoptotic programmed cell death that is characterized by extensive cytoplasmic vacuolation due to dilation of the endoplasmic reticulum (ER) and mitochondria and lack of apoptotic hallmarks. In addition, we discovered that morusin induced obvious increase in mitochondrial Ca2+ levels, accumulation of ER stress markers, generation of reactive oxygen species (ROS), and loss of mitochondrial membrane potential (Δψm) in EOC cells. Furthermore, pretreatment with 4, 4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS), a chemical inhibitor of voltage-dependent anion channel (VDAC) on the outer mitochondrial membrane, effectively inhibited mitochondrial Ca2+ influx, cytoplasmic vacuolation and cell death induced by morusin in EOC cells. Moreover, DIDS pretreatment also suppressed morusin-induced accumulation of ER stress markers, ROS production and depletion of Δψm. Consistently, tumor xenograft assays showed that co-treatment with DIDS partially reversed the inhibitory effects of morusin on tumor growth in vivo and inhibited the increased levels of ER stress markers induced by morusin in tumor tissues. Collectively, our results suggest that VDAC-mediated Ca2+ influx into mitochondria and subsequent mitochondrial Ca2+ overload contribute to mitochondrial swelling and dysfunction, leading to morusin-induced paraptosis-like cell death in EOC. This study may provide alternative therapeutic strategies for EOC exhibiting resistance to apoptosis.
Collapse
Affiliation(s)
- Jing Xue
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Rui Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Xinrui Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Congcong Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Xin Lv
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Lidong Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| |
Collapse
|
191
|
Singh MP, Chauhan AK, Kang SC. Morin hydrate ameliorates cisplatin-induced ER stress, inflammation and autophagy in HEK-293 cells and mice kidney via PARP-1 regulation. Int Immunopharmacol 2018; 56:156-167. [PMID: 29414646 DOI: 10.1016/j.intimp.2018.01.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/31/2022]
Abstract
The present study assessed the possible therapeutic potential of a natural flavonoid morin hydrate (MH), against cisplatin (CP) induced toxicity in HEK-293 cells and mice kidney. Herein, we observed that exposure of HEK-293 cells to CP (20 μM, 24 h) reduced the cell viability, and increased the intracellular ROS generation, nuclear DNA damage, Ca++ release, and accumulation of acidic vacuoles. Concomitantly, acute exposure of CP (30 mg/kg, 72 h) to male ICR mice induced histopathological changes in kidney tissue, and alterations in serum creatinine and blood urea nitrogen (BUN) levels. Oxidative stress mediated ER-stress was evidenced by the reduced expression of antioxidant enzymes such as SOD-1, SOD-2, GR, and Trx, and increased expression levels of CytP450, IRE1-α, PERK, and CHOP. The expression levels of major inflammatory response markers such as NF-κB, TNF-α, IL-1β, COX-2 and iNOS were significantly increased in the HEK-293 cells and mice kidney. Temporal up-regulation of p-AMPK and LC3I/II, and down regulation of mTOR was also noticed after CP treatment. CP-induced DNA damage led to activation of PARP-1, which plays a crucial role in inflammation, apoptosis and autophagy activation. Concurrently, co-treatment of CP-MH and CP-ANI (PARP-1 inhibitor) significantly attenuated the expression level of PARP-1, reduced cellular death, alleviated inflammatory responses, and inhibited autophagy stimulation in HEK-293 cells and mice kidney. On the basis of above findings, we suggest MH as a potential therapeutic agent against CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Mahendra Pal Singh
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Anil Kumar Chauhan
- Daegu Cancer Center, Research and Development Unit, Dong Sung Bio-Pharmaceutical Co. Ltd., Dong-gu, Daegu, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
192
|
Metallic gold and bioactive quinacrine hybrid nanoparticles inhibit oral cancer stem cell and angiogenesis by deregulating inflammatory cytokines in p53 dependent manner. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:883-896. [PMID: 29366881 DOI: 10.1016/j.nano.2018.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/26/2017] [Accepted: 01/09/2018] [Indexed: 01/13/2023]
Abstract
Complete eradication of aggressive oral cancer remains a challenge due to the presence of CSCs. They resist conventional chemotherapeutic agents due to their self-renewal, drug efflux, and efficient DNA repair capacity. Here, we formulated a hybrid-nanoparticle (QAuNP) using quinacrine and gold and characterized/investigated its anti-angiogenic and anti-metastatic effect on OSCC-CSCs. QAuNP significantly inhibited cellular proliferation, caused apoptosis in vitro, and disrupted angiogenesis in vivo and tumor regression in xenograft mice model. It not only inhibited crucial angiogenic markers Ang-1, Ang-2 and VEGF but also depleted MMP-2 in H-357-PEMT cells in a p53 and p21-dependent manner. QAuNP also increased the ROS and NO generation in OSCC-CSCs and reduced the mitochondrial membrane potential. It altered the level of inflammatory cytokines IL-6, IL-1β, TNF-α and metastasis-associated markers (CD-44, CD-133) in H-357-PEMT and CM-treated endothelial cells (HUVEC) in p53/p21-dependent manner. Therefore, QAuNP will be a useful therapeutic agent against metastatic OSCC.
Collapse
|
193
|
Yen TTC, Yang A, Chiu WT, Li TN, Wang LH, Wu YH, Wang HC, Chen L, Wang WC, Huang W, Chang CW, Chang MDT, Shen MR, Su IJ, Wang LHC. Hepatitis B virus PreS2-mutant large surface antigen activates store-operated calcium entry and promotes chromosome instability. Oncotarget 2018; 7:23346-60. [PMID: 26992221 PMCID: PMC5029631 DOI: 10.18632/oncotarget.8109] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/28/2016] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) is a driver of hepatocellular carcinoma, and two viral products, X and large surface antigen (LHBS), are viral oncoproteins. During chronic viral infection, immune-escape mutants on the preS2 region of LHBS (preS2-LHBS) are gain-of-function mutations that are linked to preneoplastic ground glass hepatocytes (GGHs) and early disease onset of hepatocellular carcinoma. Here, we show that preS2-LHBS provoked calcium release from the endoplasmic reticulum (ER) and triggered stored-operated calcium entry (SOCE). The activation of SOCE increased ER and plasma membrane (PM) connections, which was linked by ER- resident stromal interaction molecule-1 (STIM1) protein and PM-resident calcium release- activated calcium modulator 1 (Orai1). Persistent activation of SOCE induced centrosome overduplication, aberrant multipolar division, chromosome aneuploidy, anchorage-independent growth, and xenograft tumorigenesis in hepatocytes expressing preS2- LHBS. Chemical inhibitions of SOCE machinery and silencing of STIM1 significantly reduced centrosome numbers, multipolar division, and xenograft tumorigenesis induced by preS2-LHBS. These results provide the first mechanistic link between calcium homeostasis and chromosome instability in hepatocytes carrying preS2-LHBS. Therefore, persistent activation of SOCE represents a novel pathological mechanism in HBV-mediated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Tim Ting-Chung Yen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Anderson Yang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.,Center of Infectious Diseases and Signal Transduction, National Cheng Kung University, Tainan 701, Taiwan
| | - Tian-Neng Li
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Lyu-Han Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yi-Hsuan Wu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hui-Chen Wang
- Institute of Pharmaceutics, Development Center for Biotechnology, Taipei 22180, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Margaret Dah-Tsyr Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Meng-Ru Shen
- Center of Infectious Diseases and Signal Transduction, National Cheng Kung University, Tainan 701, Taiwan.,Department of Pharmacology, National Cheng Kung University, Tainan 701, Taiwan
| | - Ih-Jen Su
- Center of Infectious Diseases and Signal Transduction, National Cheng Kung University, Tainan 701, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 704, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
194
|
Corazao-Rozas P, Guerreschi P, André F, Gabert PE, Lancel S, Dekiouk S, Fontaine D, Tardivel M, Savina A, Quesnel B, Mortier L, Marchetti P, Kluza J. Mitochondrial oxidative phosphorylation controls cancer cell's life and death decisions upon exposure to MAPK inhibitors. Oncotarget 2018; 7:39473-39485. [PMID: 27250023 PMCID: PMC5129946 DOI: 10.18632/oncotarget.7790] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/05/2016] [Indexed: 12/24/2022] Open
Abstract
Although MAPK pathway inhibitors are becoming a promising anticancer strategy, they are insufficient to fully eliminate cancer cells and their long-term efficacy is strikingly limited in patients with BRAF-mutant melanomas. It is well established that BRAF inhibitors (BRAFi) hamper glucose uptake before the apparition of cell death. Here, we show that BRAFi induce an extensive restructuring of mitochondria including an increase in mitochondrial activity and biogenesis associated with mitochondrial network remodeling. Furthermore, we report a close interaction between ER and mitochondria in melanoma exposed to BRAFi. This physical connection facilitates mitochondrial Ca2+ uptake after its release from the ER. Interestingly, Mfn2 silencing disrupts the ER–mitochondria interface, intensifies ER stress and exacerbates ER stress-induced apoptosis in cells exposed to BRAFi in vitro and in vivo. This mitochondrial control of ER stress-mediated cell death is similar in both BRAF- and NRAS-mutant melanoma cells exposed to MEK inhibitors. This evidence reinforces the relevance in combining MAPK pathway inhibitors with mitochondriotropic drugs to improve targeted therapies.
Collapse
Affiliation(s)
- Paola Corazao-Rozas
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France.,Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France.,SIRIC OncoLille, Lille, France
| | - Pierre Guerreschi
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France.,Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France.,SIRIC OncoLille, Lille, France
| | - Fanny André
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France.,Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France.,SIRIC OncoLille, Lille, France
| | - Pierre-Elliott Gabert
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France.,Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France.,SIRIC OncoLille, Lille, France
| | - Steve Lancel
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, Lille, France
| | - Salim Dekiouk
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France.,Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France.,SIRIC OncoLille, Lille, France
| | - Delphine Fontaine
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France.,Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France.,SIRIC OncoLille, Lille, France
| | - Meryem Tardivel
- Bioimaging Center, Lille Nord de France-Campus HU, Université de Lille 2, Lille, France
| | | | - Bruno Quesnel
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France.,Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France.,SIRIC OncoLille, Lille, France
| | - Laurent Mortier
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France.,Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France.,SIRIC OncoLille, Lille, France
| | - Philippe Marchetti
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France.,Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France.,SIRIC OncoLille, Lille, France.,Centre de Bio-Pathologie, Plate-forme de Biothérapie, Banque de Tissus, CHRU Lille, Lille, France
| | - Jérome Kluza
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France.,Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France.,SIRIC OncoLille, Lille, France
| |
Collapse
|
195
|
Abstract
B-cell lymphoma 2 (BCL-2) family proteins gather at the biologic cross-roads of renal cell survival: the outer mitochondrial membrane. Despite shared sequence and structural features, members of this conserved protein family constantly antagonize each other in a life-and-death battle. BCL-2 members innocently reside within renal cells until activated or de-activated by physiologic stresses caused by common nephrotoxins, transient ischemia, or acute glomerulonephritis. Recent experimental data not only illuminate the intricate mechanisms of apoptosis, the most familiar form of BCL-2-mediated cell death, but emphasizes their newfound roles in necrosis, necroptosis, membrane pore transition regulated necrosis, and other forms of acute cell demise. A major paradigm shift in non-cell death roles of the BCL-2 family has occurred. BCL-2 proteins also regulate critical daily renal cell housekeeping functions including cell metabolism, autophagy (an effective means for recycling cell components), mitochondrial morphology (organelle fission and fusion), as well as mitochondrial biogenesis. This article considers new concepts in the biochemical and structural regulation of BCL-2 proteins that contribute to membrane pore permeabilization, a universal feature of cell death. Despite these advances, persistent BCL-2 family mysteries continue to challenge cell biologists. Given their interface with many intracellular functions, it is likely that BCL-2 proteins determine cell viability under many pathologic circumstances relevant to the nephrologist and, as a consequence, represent an ideal therapeutic target.
Collapse
Affiliation(s)
- Steven C Borkan
- Evans Biomedical Research Center, Boston University Medical Center, Boston, MA.
| |
Collapse
|
196
|
Jeong JS, Kim SR, Lee YC. Can Controlling Endoplasmic Reticulum Dysfunction Treat Allergic Inflammation in Severe Asthma With Fungal Sensitization? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:106-120. [PMID: 29411551 PMCID: PMC5809759 DOI: 10.4168/aair.2018.10.2.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/05/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022]
Abstract
Severe asthma is a heterogeneous disease entity to which diverse cellular components and pathogenetic mechanisms contribute. Current asthma therapies, including new biologic agents, are mainly targeting T helper type 2 cell-dominant inflammation, so that they are often unsatisfactory in the treatment of severe asthma. Respiratory fungal exposure has long been regarded as a precipitating factor for severe asthma phenotype. Moreover, as seen in clinical definitions of allergic bronchopulmonary aspergillosis (ABPA) and severe asthma with fungal sensitization (SAFS), fungal allergy-associated severe asthma phenotype is increasingly thought to have distinct pathobiologic mechanisms requiring different therapeutic approaches other than conventional treatment. However, there are still many unanswered questions on the direct causality of fungal sensitization in inducing severe allergic inflammation in SAFS. Recently, growing evidence suggests that stress response from the largest organelle, endoplasmic reticulum (ER), is closely interconnected to diverse cellular immune/inflammatory platforms, thereby being implicated in severe allergic lung inflammation. Interestingly, a recent study on this issue has suggested that ER stress responses and several associated molecular platforms, including phosphoinositide 3-kinase-δ and mitochondria, may be crucial players in the development of severe allergic inflammation in the SAFS. Defining emerging roles of ER and associated cellular platforms in SAFS may offer promising therapeutic options in the near future.
Collapse
Affiliation(s)
- Jae Seok Jeong
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, Korea
| | - So Ri Kim
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Medical School, Jeonju, Korea
| | - Yong Chul Lee
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, Korea.,Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Medical School, Jeonju, Korea.
| |
Collapse
|
197
|
Oh YS, Bae GD, Baek DJ, Park EY, Jun HS. Fatty Acid-Induced Lipotoxicity in Pancreatic Beta-Cells During Development of Type 2 Diabetes. Front Endocrinol (Lausanne) 2018; 9:384. [PMID: 30061862 PMCID: PMC6054968 DOI: 10.3389/fendo.2018.00384] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes is caused by chronic insulin resistance and progressive decline in beta-cell function. Optimal beta-cell function and mass is essential for glucose homeostasis and beta-cell impairment leads to the development of diabetes. Elevated levels of circulating fatty acids (FAs) and disturbances in lipid metabolism regulation are associated with obesity, and they are major factors influencing the increase in the incidence of type 2 diabetes. Chronic free FA (FFA) treatment induces insulin resistance and beta-cell dysfunction; therefore, reduction of elevated plasma FFA levels might be an important therapeutic target in obesity and type 2 diabetes. Lipid signals via receptors, and intracellular mechanisms are involved in FFA-induced apoptosis. In this paper, we discuss lipid actions in beta cells, including effects on metabolic pathways and stress responses, to help further understand the molecular mechanisms of lipotoxicity-induced type 2 diabetes.
Collapse
Affiliation(s)
- Yoon S. Oh
- Department of Food and Nutrition, Eulji University, Seongnam, South Korea
- *Correspondence: Yoon S. Oh
| | - Gong D. Bae
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| | - Dong J. Baek
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, South Korea
| | - Eun-Young Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, South Korea
| | - Hee-Sook Jun
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
- Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Incheon, South Korea
- Gachon University Gil Medical Center, Gachon Medical and Convergence Institute, Incheon, South Korea
| |
Collapse
|
198
|
Park KC, Kim SW, Jeon JY, Jo AR, Choi HJ, Kim J, Lee HG, Kim Y, Mills GB, Noh SH, Lee MG, Park ES, Cheong JH. Survival of Cancer Stem-Like Cells Under Metabolic Stress via CaMK2α-mediated Upregulation of Sarco/Endoplasmic Reticulum Calcium ATPase Expression. Clin Cancer Res 2017; 24:1677-1690. [DOI: 10.1158/1078-0432.ccr-17-2219] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/24/2017] [Accepted: 12/20/2017] [Indexed: 11/16/2022]
|
199
|
TrkAIII signals endoplasmic reticulum stress to the mitochondria in neuroblastoma cells, resulting in glycolytic metabolic adaptation. Oncotarget 2017; 9:8368-8390. [PMID: 29492201 PMCID: PMC5823587 DOI: 10.18632/oncotarget.23618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Alternative TrkAIII splicing characterises advanced stage metastatic disease and post-therapeutic relapse in neuroblastoma (NB), and in NB models TrkAIII exhibits oncogenic activity. In this study, we report a novel role for TrkAIII in signaling ER stress to the mitochondria in SH-SY5Y NB cells that results in glycolytic metabolic adaptation. The ER stress-inducing agents DTT, A23187 and thapsigargin activated the ER stress-response in control pcDNA SH-SY5Y and TrkAIII expressing SH-SY5Y cells and in TrkAIII SH-SY5Y cells increased TrkAIII targeting to mitochondria and internalisation into inner-mitochondrial membranes. Within inner-mitochondrial membranes, TrkAIII was subjected to Omi/HtrA2-dependent cleavage to tyrosine phosphorylated 45–48kDa carboxyl terminal active fragments, localised predominantly in tyrosine kinase-domain mitochondrial matrix orientation. This stress-induced activation of mitochondrial TrkAIII was associated with increased ROS production, prevented by the ROS scavenger Resveratrol and underpinned by changes in Ca2+ movement, implicating ROS/Ca2+ interplay in overcoming the mitochondrial TrkAIII activation threshold. Stress-induced, cleavage-activation of mitochondrial TrkAIII resulted in mitochondrial PDHK1 tyrosine phosphorylation, leading to glycolytic metabolic adaptation. This novel mitochondrial role for TrkAIII provides a potential self-perpetuating, drug reversible way through which tumour microenvironmental stress may maintain the metastasis promoting “Warburg effect” in TrkAIII expressing NBs.
Collapse
|
200
|
Dilshara MG, Jayasooriya RGPT, Molagoda IMN, Jeong JW, Lee S, Park SR, Kim GY, Choi YH. Silibinin sensitizes TRAIL-mediated apoptosis by upregulating DR5 through ROS-induced endoplasmic reticulum stress-Ca 2+-CaMKII-Sp1 pathway. Oncotarget 2017. [PMID: 29535810 PMCID: PMC5828202 DOI: 10.18632/oncotarget.23129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this study, we addressed how silibinin enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in various cancer cells. Combined treatment with silibinin and TRAIL (silibinin/TRAIL) induced apoptosis accompanied by the activation of caspase-3, caspase-8, caspase-9, and Bax, and cytosolic accumulation of cytochrome c. Anti-apoptotic proteins such as Bcl-2, IAP-1, and IAP-2 were inhibited as well. Silibinin also triggered TRAIL-induced apoptosis in A549 cells through upregulation of death receptor 5 (DR5). Pretreatment with DR5/Fc chimeric protein and DR5-targeted small interfering RNA (siRNA) significantly blocked silibinin/TRAIL-mediated apoptosis in A549 cells. Furthermore, silibinin increased the production of reactive oxygen species (ROS), which led to the induction of TRAIL-mediated apoptosis through DR5 upregulation. Antioxidants such as N-acetyl-L-cysteine and glutathione reversed the apoptosis-inducing effects of TRAIL. Silibinin further induced endoplasmic reticulum (ER) stress as was indicated by the increase in ER marker proteins such as PERK, eIF2α, and ATF-4, which stimulate the expression of CCAAT/enhancer binding protein homologous protein (CHOP). CHOP-targeted siRNA eliminated the induction of DR5 and resulted in a significant decrease in silibinin/TRAIL-mediated apoptosis. We also found that silibinin/TRAIL-induced apoptosis was accompanied with intracellular influx of Ca2+, which was stimulated by ER stress and the Ca2+ chelator, ethylene glycol tetraacetic acid (EGTA). Ca2+/calmodulin-dependent protein kinase (CaMKII) inhibitor, K252a, blocked silibinin/TRAIL-induced DR5 expression along with TRAIL-mediated apoptosis. Accordingly, we showed that ROS/ER stress-induced CaMKII activated Sp1, which is an important transcription factor for DR5 expression. Our results showed that silibinin enhanced TRAIL-induced apoptosis by upregulating DR5 expression through the ROS-ER stress-CaMKII-Sp1 axis.
Collapse
Affiliation(s)
| | | | | | - Jin-Woo Jeong
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Seungheon Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Sang Rul Park
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| |
Collapse
|