151
|
Tomas-Hernández S, Blanco J, Rojas C, Roca-Martínez J, Ojeda-Montes MJ, Beltrán-Debón R, Garcia-Vallvé S, Pujadas G, Arola L, Mulero M. Resveratrol Potently Counteracts Quercetin Starvation-Induced Autophagy and Sensitizes HepG2 Cancer Cells to Apoptosis. Mol Nutr Food Res 2018; 62. [PMID: 29336118 DOI: 10.1002/mnfr.201700610] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/21/2017] [Indexed: 12/19/2022]
Abstract
SCOPE Resveratrol (RSV) has been described as a potent antioxidant, antisteatotic, and antitumor compound, and it has also been identified as a potent autophagy inducer. On the other hand, quercetin (QCT) is a dietary flavonoid with known antitumor, anti-inflammatory, and antidiabetic effects. Additionally, QCT increases autophagy. To study the hypothetical synergistic effect of both compounds, we test the combined effect of QCT and RSV on the autophagy process in HepG2 cells. METHODS AND RESULTS Autophagy is studied by western blotting, real-time RT-PCR, and cellular staining. Our results clearly indicate a bifunctional molecular effect of RSV. Both polyphenols are individually able to promote autophagy. Strikingly, when RSV is combined with QCT, it promotes a potent reduction of QCT-induced autophagy and influences proapoptotic signaling. CONCLUSION RSV acts differentially on the autophagic process depending on the cellular energetic state. We further characterize the molecular mechanisms related to this effect, and we observe that AMP-activated protein kinase (AMPK) phosphorylation, heme oxygenase 1 (HO-1) downregulation, lysosomal membrane permeabilization (LMP), and Zinc (Zn2+ ) dynamics could be important modulators of such RSV-related effects and could globally represent a promising strategy to sensitize cancer cells to QCT treatment.
Collapse
Affiliation(s)
- Sarah Tomas-Hernández
- Cheminformatic and Nutrition Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain
| | - Jordi Blanco
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Cristina Rojas
- Cheminformatic and Nutrition Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain
| | - Joel Roca-Martínez
- Cheminformatic and Nutrition Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain
| | - María José Ojeda-Montes
- Cheminformatic and Nutrition Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain
| | - Raúl Beltrán-Debón
- Cheminformatic and Nutrition Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain
| | - Santiago Garcia-Vallvé
- Cheminformatic and Nutrition Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain.,Technological Unit of Nutrition and Health, EURECAT-Technological Center of Catalonia, Reus, Spain
| | - Gerard Pujadas
- Cheminformatic and Nutrition Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain.,Technological Unit of Nutrition and Health, EURECAT-Technological Center of Catalonia, Reus, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain.,Technological Unit of Nutrition and Health, EURECAT-Technological Center of Catalonia, Reus, Spain
| | - Miquel Mulero
- Cheminformatic and Nutrition Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Tarragona, Spain
| |
Collapse
|
152
|
Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP, Rupasinghe HPV. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer 2018; 17:48. [PMID: 29455673 PMCID: PMC5817855 DOI: 10.1186/s12943-018-0804-2] [Citation(s) in RCA: 805] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
The human genome encodes 538 protein kinases that transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues. Many of these kinases are associated with human cancer initiation and progression. The recent development of small-molecule kinase inhibitors for the treatment of diverse types of cancer has proven successful in clinical therapy. Significantly, protein kinases are the second most targeted group of drug targets, after the G-protein-coupled receptors. Since the development of the first protein kinase inhibitor, in the early 1980s, 37 kinase inhibitors have received FDA approval for treatment of malignancies such as breast and lung cancer. Furthermore, about 150 kinase-targeted drugs are in clinical phase trials, and many kinase-specific inhibitors are in the preclinical stage of drug development. Nevertheless, many factors confound the clinical efficacy of these molecules. Specific tumor genetics, tumor microenvironment, drug resistance, and pharmacogenomics determine how useful a compound will be in the treatment of a given cancer. This review provides an overview of kinase-targeted drug discovery and development in relation to oncology and highlights the challenges and future potential for kinase-targeted cancer therapies.
Collapse
Affiliation(s)
- Khushwant S Bhullar
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Naiara Orrego Lagarón
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Eileen M McGowan
- Chronic Disease Solutions Team, School of Life Science, University of Technology, New South Wales, Australia
| | - Indu Parmar
- Division of Product Development, Radient Technologies, Edmonton, AB, Canada
| | - Amitabh Jha
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Basil P Hubbard
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada.
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
153
|
Epigallocatechin-3-Gallate (EGCG) Promotes Autophagy-Dependent Survival via Influencing the Balance of mTOR-AMPK Pathways upon Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6721530. [PMID: 29636854 PMCID: PMC5831959 DOI: 10.1155/2018/6721530] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
Abstract
The maintenance of cellular homeostasis is largely dependent on the ability of cells to give an adequate response to various internal and external stimuli. We have recently proposed that the life-and-death decision in endoplasmic reticulum (ER) stress response is defined by a crosstalk between autophagy, apoptosis, and mTOR-AMPK pathways, where the transient switch from autophagy-dependent survival to apoptotic cell death is controlled by GADD34. The aim of the present study was to investigate the role of epigallocatechin-3-gallate (EGCG), the major polyphenol of green tea, in promoting autophagy-dependent survival and to verify the key role in connecting GADD34 with mTOR-AMPK pathways upon prolonged ER stress. Our findings, obtained by using HEK293T cells, revealed that EGCG treatment is able to extend cell viability by inducing autophagy. We confirmed that EGCG-induced autophagy is mTOR-dependent and PKA-independent; furthermore, it also required ULK1. We show that pretreatment of cells with EGCG diminishes the negative effect of GADD34 inhibition (by guanabenz or siGADD34 treatment) on autophagy. EGCG was able to delay apoptotic cell death by upregulating autophagy-dependent survival even in the absence of GADD34. Our data suggest a novel role for EGCG in promoting cell survival via shifting the balance of mTOR-AMPK pathways in ER stress.
Collapse
|
154
|
Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science 2018; 359:359/6374/eaan2788. [DOI: 10.1126/science.aan2788] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
155
|
Staats S, Wagner AE, Kowalewski B, Rieck FT, Soukup ST, Kulling SE, Rimbach G. Dietary Resveratrol Does Not Affect Life Span, Body Composition, Stress Response, and Longevity-Related Gene Expression in Drosophila melanogaster. Int J Mol Sci 2018; 19:ijms19010223. [PMID: 29324667 PMCID: PMC5796172 DOI: 10.3390/ijms19010223] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, we tested the effect of the stilbene resveratrol on life span, body composition, locomotor activity, stress response, and the expression of genes encoding proteins centrally involved in ageing pathways in the model organism Drosophila melanogaster. Male and female w1118 D. melanogaster were fed diets based on sucrose, corn meal, and yeast. Flies either received a control diet or a diet supplemented with 500 µmol/L resveratrol. Dietary resveratrol did not affect mean, median, and maximal life span of male and female flies. Furthermore, body composition remained largely unchanged following the resveratrol supplementation. Locomotor activity, as determined by the climbing index, was not significantly different between control and resveratrol-supplemented flies. Resveratrol-fed flies did not exhibit an improved stress response towards hydrogen peroxide as compared to controls. Resveratrol did not change mRNA steady levels of antioxidant (catalase, glutathione-S-transferase, NADH dehydrogenase, glutathione peroxidase, superoxide dismutase 2) and longevity-related genes, including sirtuin 2, spargel, and I'm Not Dead Yet. Collectively, present data suggest that resveratrol does not affect life span, body composition, locomotor activity, stress response, and longevity-associated gene expression in w1118 D. melanogaster.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, D-24118 Kiel, Germany.
| | - Anika E Wagner
- Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | - Bianca Kowalewski
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, D-24118 Kiel, Germany.
| | - Florian T Rieck
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institute, Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany.
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institute, Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany.
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institute, Haid-und-Neu-Strasse 9, D-76131 Karlsruhe, Germany.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, D-24118 Kiel, Germany.
| |
Collapse
|
156
|
Abstract
The ageing trajectory is plastic and can be slowed down by lifestyle factors, including good nutrition, adequate physical activity and avoidance of smoking. In humans, plant-based diets such as the Mediterranean dietary pattern are associated with healthier ageing and lower risk of age-related disease, whereas obesity accelerates ageing and increases the likelihood of most common complex diseases including CVD, T2D, dementia, musculoskeletal diseases and several cancers. As yet, there is only weak evidence in humans about the molecular mechanisms through which dietary factors modulate ageing but evidence from cell systems and animal models suggest that it is probable that better dietary choices influence all 9 hallmarks of ageing. It seems likely that better eating patterns retard ageing in at least two ways including (i) by reducing pervasive damaging processes such as inflammation, oxidative stress/redox changes and metabolic stress and (ii) by enhancing cellular capacities for damage management and repair. From a societal perspective, there is an urgent imperative to discover, and to implement, cost-effective lifestyle (especially dietary) interventions which enable each of us to age well, i.e. to remain physically and socially active and independent and to minimise the period towards the end of life when individuals suffer from frailty and multi-morbidity.
Collapse
Affiliation(s)
- Fiona C Malcomson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
157
|
Sipos F, Székely H, Kis ID, Tulassay Z, Műzes G. Relation of the IGF/IGF1R system to autophagy in colitis and colorectal cancer. World J Gastroenterol 2017; 23:8109-8119. [PMID: 29290648 PMCID: PMC5739918 DOI: 10.3748/wjg.v23.i46.8109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 10/28/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MetS), as a chronic inflammatory disorder has a potential role in the development of inflammatory and cancerous complications of the colonic tissue. The interaction of DNA damage and inflammation is affected by the insulin-like growth factor 1 receptor (IGF1R) signaling pathway. The IGF1R pathway has been reported to regulate autophagy, as well, but sometimes through a bidirectional context. Targeting the IGF1R-autophagy crosstalk could represent a promising strategy for the development of new antiinflammatory and anticancer therapies, and may help for subjects suffering from MetS who are at increased risk of colorectal cancer. However, therapeutic responses to targeted therapies are often shortlived, since a signaling crosstalk of IGF1R with other receptor tyrosine kinases or autophagy exists, leading to acquired cellular resistance to therapy. From a pharmacological point of view, it is attractive to speculate that synergistic benefits could be achieved by inhibition of one of the key effectors of the IGF1R pathway, in parallel with the pharmacological stimulation of the autophagy machinery, but cautiousness is also required, because pharmacologic IGF1R modulation can initiate additional, sometimes unfavorable biologic effects.
Collapse
Affiliation(s)
- Ferenc Sipos
- 2nd Department of Internal Medicine, Semmelweis University, Budapest 1088, Hungary
| | - Hajnal Székely
- 2nd Department of Internal Medicine, Semmelweis University, Budapest 1088, Hungary
| | - Imre Dániel Kis
- Faculty of Medicine, Semmelweis University, Budapest 1088, Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest 1088, Hungary
| | - Györgyi Műzes
- 2nd Department of Internal Medicine, Semmelweis University, Budapest 1088, Hungary
| |
Collapse
|
158
|
Malinovsky FG, Thomsen MLF, Nintemann SJ, Jagd LM, Bourgine B, Burow M, Kliebenstein DJ. An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway. eLife 2017; 6:29353. [PMID: 29231169 PMCID: PMC5730369 DOI: 10.7554/elife.29353] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/27/2017] [Indexed: 11/24/2022] Open
Abstract
To optimize fitness a plant should monitor its metabolism to appropriately control growth and defense. Primary metabolism can be measured by the universally conserved TOR (Target of Rapamycin) pathway to balance growth and development with the available energy and nutrients. Recent work suggests that plants may measure defense metabolites to potentially provide a strategy ensuring fast reallocation of resources to coordinate plant growth and defense. There is little understanding of mechanisms enabling defense metabolite signaling. To identify mechanisms of defense metabolite signaling, we used glucosinolates, an important class of plant defense metabolites. We report novel signaling properties specific to one distinct glucosinolate, 3-hydroxypropylglucosinolate across plants and fungi. This defense metabolite, or derived compounds, reversibly inhibits root growth and development. 3-hydroxypropylglucosinolate signaling functions via genes in the ancient TOR pathway. If this event is not unique, this raises the possibility that other evolutionarily new plant metabolites may link to ancient signaling pathways. Plants, like all organisms, must invest their resources carefully. Growing new roots or shoots may allow a plant to better exploit its environment. But a plant should never leave itself vulnerable to disease. As such, there must be a balance between allocating resources to growth or to defense. Brassicas like cabbage, Brussels sprouts and wasabi use unique compounds called glucosinolates to protect themselves against pests and disease-causing microbes. These same compounds give these vegetables their distinctive flavors, and they are the source of many of the health benefits linked to eating these vegetables. Yet it was not known if glucosinolates could also affect a plant’s growth and development. Malinovsky et al. tested a number of purified glucosinolates with the model plant Arabidopsis thaliana, and found that one (called 3-hydroxypropylglucosinolate) caused the plants to grow with stunted roots. When 10 other species of plant were grown with this glucosinolate, almost all had shorter-than-normal roots. The effect was not limited to plants; baker’s yeast also grew less when its liquid media contained the plant-derived compound. The reason glucosinolates can protect plants against insect pests, provide us with health benefits, and widely inhibit growth is most likely because they have evolved to interact with proteins that are found in many different organisms.Indeed, through experiments with mutant Arabidopsis plants, Malinovsky et al. revealed that their glucosinolate influences the TOR complex. This complex of proteins works in an ancient and widespread signaling pathway that balances growth and development with the available energy and nutrients in organisms ranging from humans to yeast to plants. The TOR complex plays such a vital role in living cells that problems with this complex have been linked to diseases such as cancer and heart disease. Importantly, the chemical structure of this glucosinolate is unlike other compounds that have already been tested against the TOR complex. As such, it is possible that this glucosinolate might lead to new drugs for a range of human diseases. Further, as this compound affects plant growth, it could also act as a starting point for new herbicides. Together these findings show how studying molecules made in model organisms and understanding how they function can lead to the identification of new compounds and targets with an unexpectedly wide range of potential uses.
Collapse
Affiliation(s)
- Frederikke Gro Malinovsky
- DynaMo Center, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie-Louise F Thomsen
- DynaMo Center, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian J Nintemann
- DynaMo Center, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lea Møller Jagd
- DynaMo Center, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Baptiste Bourgine
- DynaMo Center, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Meike Burow
- DynaMo Center, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel J Kliebenstein
- DynaMo Center, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Plant Sciences, University of California, Davis, Davis, United States
| |
Collapse
|
159
|
Zhou Q, Fu X, Wang X, Wu Q, Lu Y, Shi J, Klaunig JE, Zhou S. Autophagy plays a protective role in Mn-induced toxicity in PC12 cells. Toxicology 2017; 394:45-53. [PMID: 29222055 DOI: 10.1016/j.tox.2017.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022]
Abstract
Excessive environmental or occupational exposure to manganese (Mn) is associated with increased risk of neuron degenerative disorders. Oxidative stress and mitochondrial dysfunction are the main mechanisms of Mn mediated neurotoxicity. Selective removal of damaged mitochondria by autophagy has been proposed as a protective mechanism against neuronal toxicant-induced neurotoxicity. Whether autophagic flux plays a role in Mn-induced cytotoxicity remains to be fully elucidated. The present study was designed to investigate the effect of Mn exposure on autophagy, and how modulation of autophagic flux alters the sensitivities of cells to Mn-elicited cytotoxicity. Rat adrenal pheochromocytoma PC12 cells were treated with Mn for 24h to establish a cellular mode of Mn toxicity. Treatment of cells with Mn resulted in increased expression of autophagic marker LC3-II protein, as well as accumulation of p62, indicating an interference of autophagy flux caused by Mn. Pre-incubation of cells with antioxidant N-acetyl-l-cysteine (NAC) or resveratrol improved cell survival, accompanied by decreased LC3-II expression and increased expression level of p62, suggesting a down regulation of autophagy flux. To further determine the role of autophagy in Mn-induced cytotoxicity, the effect of chloroquine and rapamycin on cell viability was examined. Inhibition of autophagy flux by chloroquine exacerbated Mn-induced cytotoxicity, while induction of autophagy by rapamycin significantly reduced cell death caused by Mn. Furthermore, it was found that rapamycin, NAC and resveratrol improved cellular oxygen consumption accompanied by a decrease in cellular ROS generation and increase in GSH level, while chloroquine suppressed cellular respiration and deteriorated cellular oxidative stress. Collectively, these results demonstrate that autophagy plays a protective role in Mn-induced cell toxicity. Antioxidants NAC and resveratrol confer protective role in Mn toxicity mainly through maintaining mitochondrial dynamics and function, other than a modulation of autophagy flux.
Collapse
Affiliation(s)
- Qian Zhou
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Xiaolong Fu
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Xueting Wang
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Qin Wu
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Yuanfu Lu
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Jingshan Shi
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - James E Klaunig
- Department of Environmental Health, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Shaoyu Zhou
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China; Department of Environmental Health, School of Public Health, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
160
|
Streubel MK, Bischof J, Weiss R, Duschl J, Liedl W, Wimmer H, Breitenbach M, Weber M, Geltinger F, Richter K, Rinnerthaler M. Behead and live long or the tale of cathepsin L. Yeast 2017; 35:237-249. [PMID: 29044689 PMCID: PMC5808862 DOI: 10.1002/yea.3286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/12/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022] Open
Abstract
In recent decades Saccharomyces cerevisiae has proven to be one of the most valuable model organisms of aging research. Pathways such as autophagy or the effect of substances like resveratrol and spermidine that prolong the replicative as well as chronological lifespan of cells were described for the first time in S. cerevisiae. In this study we describe the establishment of an aging reporter that allows a reliable and relative quick screening of substances and genes that have an impact on the replicative lifespan. A cDNA library of the flatworm Dugesia tigrina that can be immortalized by beheading was screened using this aging reporter. Of all the flatworm genes, only one could be identified that significantly increased the replicative lifespan of S.cerevisiae. This gene is the cysteine protease cathepsin L that was sequenced for the first time in this study. We were able to show that this protease has the capability to degrade such proteins as the yeast Sup35 protein or the human α‐synuclein protein in yeast cells that are both capable of forming cytosolic toxic aggregates. The degradation of these proteins by cathepsin L prevents the formation of these unfolded protein aggregates and this seems to be responsible for the increase in replicative lifespan.
Collapse
Affiliation(s)
- Maria Karolin Streubel
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Johannes Bischof
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Jutta Duschl
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Wolfgang Liedl
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Herbert Wimmer
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Michael Breitenbach
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Manuela Weber
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Florian Geltinger
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Klaus Richter
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| |
Collapse
|
161
|
Dutra LA, Heidenreich D, Silva GDBD, Man Chin C, Knapp S, Santos JLD. Dietary Compound Resveratrol Is a Pan-BET Bromodomain Inhibitor. Nutrients 2017; 9:nu9111172. [PMID: 29077030 PMCID: PMC5707644 DOI: 10.3390/nu9111172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/19/2022] Open
Abstract
The chemopreventive and anticancer effects of resveratrol (RSV) are widely reported in the literature. Specifically, mechanisms involving epigenetic regulation are promising targets to regulate tumor development. Bromodomains act as epigenetic readers by recognizing lysine acetylation on histone tails and boosting gene expression in order to regulate tissue-specific transcription. In this work, we showed that RSV is a pan-BET inhibitor. Using Differential Scanning Fluorimetry (DSF), we showed that RSV at 100 µM increased the melting temperature (∆Tm) of BET bromodomains by around 2.0 °C. The micromolar dissociation constant (Kd) range was characterized using Isothermal Titration Calorimetry (ITC). The RSV Kd value accounted to 6.6 µM in case of BRD4(1). Molecular docking proposed the binding mode of RSV against BRD4(1) mimicking the acetyl-lysine interactions. All these results suggest that RSV can also recognize epigenetic readers domains by interacting with BET bromodomains.
Collapse
Affiliation(s)
- Luiz Antonio Dutra
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Goethe-University, D-60438 Frankfurt am Main, Germany.
| | - David Heidenreich
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Goethe-University, D-60438 Frankfurt am Main, Germany.
| | | | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Goethe-University, D-60438 Frankfurt am Main, Germany.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| |
Collapse
|
162
|
Schweiger S, Matthes F, Posey K, Kickstein E, Weber S, Hettich MM, Pfurtscheller S, Ehninger D, Schneider R, Krauß S. Resveratrol induces dephosphorylation of Tau by interfering with the MID1-PP2A complex. Sci Rep 2017; 7:13753. [PMID: 29062069 PMCID: PMC5653760 DOI: 10.1038/s41598-017-12974-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/18/2017] [Indexed: 12/24/2022] Open
Abstract
The formation of paired helical filaments (PHF), which are composed of hyperphosphorylated Tau protein dissociating from microtubules, is one of the pathological hallmarks of Alzheimer's disease (AD) and other tauopathies. The most important phosphatase that is capable of dephosphorylating Tau at AD specific phospho-sites is protein phosphatase 2 A (PP2A). Here we show that resveratrol, a polyphenol, significantly induces PP2A activity and reduces Tau phosphorylation at PP2A-dependent epitopes. The increase in PP2A activity is caused by decreased expression of the MID1 ubiquitin ligase that mediates ubiquitin-specific modification and degradation of the catalytic subunit of PP2A when bound to microtubules. Interestingly, we further show that MID1 expression is elevated in AD tissue. Our data suggest a key role of MID1 in the pathology of AD and related tauopathies. Together with previous studies showing that resveratrol reduces β-amyloid toxicity they also give evidence of a promising role for resveratrol in the prophylaxis and therapy of AD.
Collapse
Affiliation(s)
- Susann Schweiger
- Institute for Human Genetics, University of Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Frank Matthes
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str.27, 53127, Bonn, Germany
| | - Karen Posey
- McGovern Medical School at University of Texas in Houston, Department of Pediatrics, 6431 Fannin Street, Houston, Texas, 77030, USA
| | - Eva Kickstein
- Max-Planck Institute for Molecular Genetics, Department of Human Molecular Genetics, Ihnestr. 73, 14195, Berlin, Germany
| | - Stephanie Weber
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str.27, 53127, Bonn, Germany
| | - Moritz M Hettich
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str.27, 53127, Bonn, Germany
| | - Sandra Pfurtscheller
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020, Innsbruck, Austria
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str.27, 53127, Bonn, Germany
| | - Rainer Schneider
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020, Innsbruck, Austria
| | - Sybille Krauß
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str.27, 53127, Bonn, Germany.
| |
Collapse
|
163
|
Fivenson EM, Lautrup S, Sun N, Scheibye-Knudsen M, Stevnsner T, Nilsen H, Bohr VA, Fang EF. Mitophagy in neurodegeneration and aging. Neurochem Int 2017; 109:202-209. [PMID: 28235551 PMCID: PMC5565781 DOI: 10.1016/j.neuint.2017.02.007] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction contributes to normal aging and a wide spectrum of age-related diseases, including neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. It is important to maintain a healthy mitochondrial population which is tightly regulated by proteolysis and mitophagy. Mitophagy is a specialized form of autophagy that regulates the turnover of damaged and dysfunctional mitochondria, organelles that function in producing energy for the cell in the form of ATP and regulating energy homeostasis. Mechanistic studies on mitophagy across species highlight a sophisticated and integrated cellular network that regulates the degradation of mitochondria. Strategies directed at maintaining a healthy mitophagy level in aged individuals might have beneficial effects. In this review, we provide an updated mechanistic overview of mitophagy pathways and discuss the role of reduced mitophagy in neurodegeneration. We also highlight potential translational applications of mitophagy-inducing compounds, such as NAD+ precursors and urolithins.
Collapse
Affiliation(s)
- Elayne M Fivenson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sofie Lautrup
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus C, Denmark
| | - Nuo Sun
- Center for Molecular Medicine, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Tinna Stevnsner
- Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus C, Denmark
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Evandro F Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
164
|
Nakamura K, Kageyama S, Ke B, Fujii T, Sosa RA, Reed EF, Datta N, Zarrinpar A, Busuttil RW, Kupiec-Weglinski JW. Sirtuin 1 attenuates inflammation and hepatocellular damage in liver transplant ischemia/Reperfusion: From mouse to human. Liver Transpl 2017; 23:1282-1293. [PMID: 28719070 PMCID: PMC5705033 DOI: 10.1002/lt.24821] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/28/2017] [Accepted: 07/09/2017] [Indexed: 12/12/2022]
Abstract
Hepatic ischemia/reperfusion injury (IRI), an inevitable antigen-independent inflammation response in cadaveric liver transplantation, correlates with poor early graft function, rejection episodes, and contributes to donor organ shortage. Sirtuin 1 (SIRT1) is a histone deacetylase that may regulate inflammatory cell activity and manage liver function in IRI, though its functional role and clinical relevance remains to be elucidated. We investigated the efficacy of SIRT1 activation in a murine liver IRI model and verified the concept of putative SIRT1-mediated hepatoprotection in clinical liver transplantation. In the experimental arm, mice were subjected to 90 minutes of liver partial warm ischemia followed by 6 hours of reperfusion with or without adjunctive SIRT1 activation in vivo (resveratrol [Res]). In parallel, bone marrow-derived macrophage (BMDM) or spleen lymphocyte cultures were treated with Res. In the clinical arm, liver biopsies from 21 adult primary liver transplant patients (2 hours after reperfusion) were divided into "low" (n = 11) versus "high" (n = 10) SIRT1 expression groups, assessed by Western blots. Treatment with Res attenuated murine liver IRI while up-regulating SIRT1, suppressing leukocyte infiltration, and decreasing proinflammatory cytokine programs. SIRT1 silencing (small interfering RNA) in BMDM cultures enhanced inflammatory cytokine programs, whereas addition of Res decreased proinflammatory response in a SIRT1-dependent manner. In addition, Res decreased interferon γ production in liver-infiltrating and spleen lymphocyte cultures. Human liver transplants with high SIRT1 levels showed improved hepatocellular function and superior survival (P = 0.04), accompanied by lower proinflammatory cytokine profile. In conclusion, our translational study is the first to identify SIRT1 as a regulator of hepatocellular function in human liver transplant recipients under ischemia/reperfusion stress. By targeting innate and adaptive immune activation, manipulation of SIRT1 signaling should be considered as a novel means to combat inflammation in liver transplantation. Liver Transplantation 23 1282-1293 2017 AASLD.
Collapse
Affiliation(s)
- Kojiro Nakamura
- Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, Los Angeles, CA
| | - Shoichi Kageyama
- Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, Los Angeles, CA
| | - Bibo Ke
- Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, Los Angeles, CA
| | - Takehiro Fujii
- Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, Los Angeles, CA
| | - Rebecca A. Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA
| | - Nakul Datta
- Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, Los Angeles, CA
| | - Ali Zarrinpar
- Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, Los Angeles, CA
| | - Ronald W. Busuttil
- Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, Los Angeles, CA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
165
|
Byun S, Lee E, Lee KW. Therapeutic Implications of Autophagy Inducers in Immunological Disorders, Infection, and Cancer. Int J Mol Sci 2017; 18:ijms18091959. [PMID: 28895911 PMCID: PMC5618608 DOI: 10.3390/ijms18091959] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an essential catabolic program that forms part of the stress response and enables cells to break down their own intracellular components within lysosomes for recycling. Accumulating evidence suggests that autophagy plays vital roles in determining pathological outcomes of immune responses and tumorigenesis. Autophagy regulates innate and adaptive immunity affecting the pathologies of infectious, inflammatory, and autoimmune diseases. In cancer, autophagy appears to play distinct roles depending on the context of the malignancy by either promoting or suppressing key determinants of cancer cell survival. This review covers recent developments in the understanding of autophagy and discusses potential therapeutic interventions that may alter the outcomes of certain diseases.
Collapse
Affiliation(s)
- Sanguine Byun
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea.
| | - Eunjung Lee
- Traditional Alcoholic Beverage Research Team, Korea Food Research Institute, Seongnam 13539, Korea.
| | - Ki Won Lee
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16495, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
166
|
Ferraresi A, Titone R, Follo C, Castiglioni A, Chiorino G, Dhanasekaran DN, Isidoro C. The protein restriction mimetic Resveratrol is an autophagy inducer stronger than amino acid starvation in ovarian cancer cells. Mol Carcinog 2017; 56:2681-2691. [PMID: 28856729 DOI: 10.1002/mc.22711] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 12/26/2022]
Abstract
The potential benefit of nutrient starvation in the prevention and treatment of cancer is presently under consideration. Resveratrol (RV), a dietary polyphenol acting as a protein (caloric) restriction mimetic, could substitute for amino acid starvation. The effects of starvation and of caloric restriction are mediated, among others, by autophagy, a process that contributes to cell homeostasis by promoting the lysosomal degradation of damaged and redundant self-constituents. Up-regulation of autophagy favors cell survival under nutrient shortage situation, and may drive cancer cells into a non-replicative, dormant state. Both RV and amino acid starvation effectively induced the aminoacid response and autophagy. These processes were associated with inhibition of the mTOR pathway and disruption of the BECLIN1-BCL-2 complex. The number of transcripts positively impinging on the autophagy pathway was higher in RV-treated than in starved cancer cells. Consistent with our data, it appears that RV treatment is more effective than and can substitute for starvation for inducing autophagy in cancer cells. The present findings are clinically relevant because of the potential therapeutic implications.
Collapse
Affiliation(s)
- Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Rossella Titone
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Carlo Follo
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Castiglioni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
167
|
Chen X, Li L, Xu S, Bu W, Chen K, Li M, Gu H. Ultraviolet B radiation down-regulates ULK1 and ATG7 expression and impairs the autophagy response in human keratinocytes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:152-164. [PMID: 29154199 DOI: 10.1016/j.jphotobiol.2017.08.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/28/2017] [Accepted: 08/31/2017] [Indexed: 01/06/2023]
Abstract
Autophagy is a self-digestive pathway that helps to maintain cellular homeostasis, and many autophagy-related gene (ATG)s involved the regulation of the autophagy process. Ultraviolet light is a common stressor of skin, but it is unclear how autophagy is regulated after ultraviolet exposure in epidermal keratinocytes. Here, we found that the mRNAs of some key ATG genes such as ULK1, ATG5 and ATG7 exhibited significantly lower levels in the skin tissues of the face and chest with solar ultraviolet exposure, compared with perineal skin. Interestingly, UVB radiation down-regulated the expression of ULK1, ATG3 and ATG7, and it inhibited the autophagy flux via a mechanistic target of rapamycin (MTOR)-independent pathway in human keratinocytes. The inhibition of autophagy in UVB-treated keratinocytes cannot be restored by treatment with the MTOR-dependent autophagy inducer rapamycin. Importantly, UVB treatment perturbs the conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to LC3-II and LC3-II turnover in response to treatment with MTOR inhibitors (Torin 1 and pp242), as well as endoplasmic reticular stress (A23187 and tunicamycin), inositol pathway (L690,330) and autophagy inducers (resveratrol and STF62247). Our study demonstrates that UVB radiation down-regulates several key autophagy-related proteins and impairs the autophagy response in keratinocytes. This study demonstrates a linkage between autophagy and skin disorders associated with ultraviolet exposure.
Collapse
Affiliation(s)
- Xu Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Li Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Song Xu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Wenbo Bu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Kun Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China.
| | - Heng Gu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
168
|
Conte A, Paladino S, Bianco G, Fasano D, Gerlini R, Tornincasa M, Renna M, Fusco A, Tramontano D, Pierantoni GM. High mobility group A1 protein modulates autophagy in cancer cells. Cell Death Differ 2017; 24:1948-1962. [PMID: 28777374 PMCID: PMC5635219 DOI: 10.1038/cdd.2017.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/01/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
High Mobility Group A1 (HMGA1) is an architectural chromatin protein whose overexpression is a feature of malignant neoplasias with a causal role in cancer initiation and progression. HMGA1 promotes tumor growth by several mechanisms, including increase of cell proliferation and survival, impairment of DNA repair and induction of chromosome instability. Autophagy is a self-degradative process that, by providing energy sources and removing damaged organelles and misfolded proteins, allows cell survival under stress conditions. On the other hand, hyper-activated autophagy can lead to non-apoptotic programmed cell death. Autophagy deregulation is a common feature of cancer cells in which has a complex role, showing either an oncogenic or tumor suppressor activity, depending on cellular context and tumor stage. Here, we report that depletion of HMGA1 perturbs autophagy by different mechanisms. HMGA1-knockdown increases autophagosome formation by constraining the activity of the mTOR pathway, a major regulator of autophagy, and transcriptionally upregulating the autophagy-initiating kinase Unc-51-like kinase 1 (ULK1). Consistently, functional experiments demonstrate that HMGA1 binds ULK1 promoter region and negatively regulates its transcription. On the other hand, the increase in autophagosomes is not associated to a proportionate increase in their maturation. Overall, the effects of HMGA1 depletion on autophagy are associated to a decrease in cell proliferation and ultimately impact on cancer cells viability. Importantly, silencing of ULK1 prevents the effects of HMGA1-knockdown on cellular proliferation, viability and autophagic activity, highlighting how these effects are, at least in part, mediated by ULK1. Interestingly, this phenomenon is not restricted to skin cancer cells, as similar results have been observed also in HeLa cells silenced for HMGA1. Taken together, these results clearly indicate HMGA1 as a key regulator of the autophagic pathway in cancer cells, thus suggesting a novel mechanism through which HMGA1 can contribute to cancer progression.
Collapse
Affiliation(s)
- Andrea Conte
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Gaia Bianco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Dominga Fasano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Raffaele Gerlini
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Mara Tornincasa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Maurizio Renna
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome Trust, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Alfredo Fusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Donatella Tramontano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II' and Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) of CNR, Naples, Italy
| |
Collapse
|
169
|
Hwang HY, Cho SM, Kwon HJ. Approaches for discovering novel bioactive small molecules targeting autophagy. Expert Opin Drug Discov 2017; 12:909-923. [PMID: 28758515 DOI: 10.1080/17460441.2017.1349751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In recent years, development of novel bioactive small molecules targeting autophagy has been implicated for autophagy-related disease treatment. Screening new small molecules regulating autophagy allows for the discovery of novel autophagy machinery and therapeutic agents. Areas covered: Two major screening methods for novel autophagy modulators are introduced in this review, namely target based screening and phenotype based screening. With increasing attention focused on chemical compound libraries, coupled with the development of new assay systems, this review attempts to provide an efficient strategy to explore autophagy biology and discover small molecules for the treatment of autophagy-related diseases. Expert opinion: Adopting an appropriate autophagy screening strategy is important for developing small molecules capable of treating neurodegenerative diseases and cancers. Phenotype based screening and target based screening were both used for developing effective small molecules. However, each of these methods has many pros and cons. An efficient approach is suggested to screen for novel lead compounds targeting autophagy, which could provide new hits with better efficiency and rapidity.
Collapse
Affiliation(s)
- Hui-Yun Hwang
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| | - Sung Min Cho
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| | - Ho Jeong Kwon
- a Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology , Yonsei University , Seoul , Republic of Korea
| |
Collapse
|
170
|
Tenta R, Fragopoulou E, Tsoukala M, Xanthopoulou M, Skyrianou M, Pratsinis H, Kletsas D. Antiproliferative Effects of Red and White Wine Extracts in PC-3 Prostate Cancer Cells. Nutr Cancer 2017; 69:952-961. [DOI: 10.1080/01635581.2017.1340489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Roxane Tenta
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | | | - Magafoula Tsoukala
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | | | - Maria Skyrianou
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| |
Collapse
|
171
|
Cheng MF, Lin CS, Chen YH, Sung PJ, Lin SR, Tong YW, Weng CF. Inhibitory Growth of Oral Squamous Cell Carcinoma Cancer via Bacterial Prodigiosin. Mar Drugs 2017; 15:md15070224. [PMID: 28714874 PMCID: PMC5532666 DOI: 10.3390/md15070224] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/02/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy drugs for oral cancers always cause side effects and adverse effects. Currently natural sources and herbs are being searched for treated human oral squamous carcinoma cells (OSCC) in an effort to alleviate the causations of agents in oral cancers chemotherapy. This study investigates the effect of prodigiosin (PG), an alkaloid and natural red pigment as a secondary metabolite of Serratia marcescens, to inhibit human oral squamous carcinoma cell growth; thereby, developing a new drug for the treatment of oral cancer. In vitro cultured human OSCC models (OECM1 and SAS cell lines) were used to test the inhibitory growth of PG via cell cytotoxic effects (MTT assay), cell cycle analysis, and Western blotting. PG under various concentrations and time courses were shown to effectively cause cell death and cell-cycle arrest in OECM1 and SAS cells. Additionally, PG induced autophagic cell death in OECM1 and SAS cells by LC3-mediated P62/LC3-I/LC3-II pathway at the in vitro level. These findings elucidate the role of PG, which may target the autophagic cell death pathways as a potential agent in cancer therapeutics.
Collapse
Affiliation(s)
- Ming-Fang Cheng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 10086, Taiwan.
- Division of Histology and Clinical Pathology, Hualian Army Forces General Hospital, Hualien 97144, Taiwan.
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 10086, Taiwan.
| | - Yu-Hsin Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 94450, Taiwan.
| | - Ping-Jyun Sung
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 94450, Taiwan.
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.
| | - Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Yi-Wen Tong
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 94450, Taiwan.
| |
Collapse
|
172
|
A system to identify inhibitors of mTOR signaling using high-resolution growth analysis in Saccharomyces cerevisiae. GeroScience 2017; 39:419-428. [PMID: 28707282 DOI: 10.1007/s11357-017-9988-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a central regulator of growth and proliferation and mTOR inhibition is a promising therapy for a variety of diseases and disorders. Inhibition of mTOR complex I (mTORC1) with rapamycin delays aging and increases healthy longevity in laboratory animals and is used clinically at high doses to prevent organ transplant rejection and to treat some forms of cancer. Clinical use of rapamycin is associated with several unwanted side effects, however, and several strategies are being taken to identify mTORC1 inhibitors with fewer side effects. We describe here a yeast-based growth assay that can be used to screen for novel inhibitors of mTORC1. By testing compounds using a wild-type strain and isogenic cells lacking either TOR1 or FPR1, we can resolve not only whether a compound is an inhibitor of mTORC1 but also whether the inhibitor acts through a mechanism similar to rapamycin by binding Fpr1. Using this assay, we show that rapamycin derivatives behave similarly to rapamycin, while caffeine and the ATP competitive inhibitors Torin 1 and GSK2126458 are mTORC1 inhibitors in yeast that act independently of Fpr1. Some mTOR inhibitors in mammalian cells do not inhibit mTORC1 in yeast, and several nutraceutical compounds were not found to specifically inhibit mTOR but resulted in a general inhibition of yeast growth. Our screening method holds promise as a means of effectively assaying drug libraries for mTOR-inhibitory molecules in vivo that may be adapted as novel treatments to fight diseases and extend healthy longevity.
Collapse
|
173
|
Kania E, Roest G, Vervliet T, Parys JB, Bultynck G. IP 3 Receptor-Mediated Calcium Signaling and Its Role in Autophagy in Cancer. Front Oncol 2017; 7:140. [PMID: 28725634 PMCID: PMC5497685 DOI: 10.3389/fonc.2017.00140] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/19/2017] [Indexed: 01/09/2023] Open
Abstract
Calcium ions (Ca2+) play a complex role in orchestrating diverse cellular processes, including cell death and survival. To trigger signaling cascades, intracellular Ca2+ is shuffled between the cytoplasm and the major Ca2+ stores, the endoplasmic reticulum (ER), the mitochondria, and the lysosomes. A key role in the control of Ca2+ signals is attributed to the inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), the main Ca2+-release channels in the ER. IP3Rs can transfer Ca2+ to the mitochondria, thereby not only stimulating core metabolic pathways but also increasing apoptosis sensitivity and inhibiting basal autophagy. On the other hand, IP3-induced Ca2+ release enhances autophagy flux by providing cytosolic Ca2+ required to execute autophagy upon various cellular stresses, including nutrient starvation, chemical mechanistic target of rapamycin inhibition, or drug treatment. Similarly, IP3Rs are able to amplify Ca2+ signals from the lysosomes and, therefore, impact autophagic flux in response to lysosomal channels activation. Furthermore, indirect modulation of Ca2+ release through IP3Rs may also be achieved by controlling the sarco/endoplasmic reticulum Ca2+ ATPases Ca2+ pumps of the ER. Considering the complex role of autophagy in cancer development and progression as well as in response to anticancer therapies, it becomes clear that it is important to fully understand the role of the IP3R and its cellular context in this disease. In cancer cells addicted to ER–mitochondrial Ca2+ fueling, IP3R inhibition leads to cancer cell death via mechanisms involving enhanced autophagy or mitotic catastrophe. Moreover, IP3Rs are the targets of several oncogenes and tumor suppressors and the functional loss of these genes, as occurring in many cancer types, can result in modified Ca2+ transport to the mitochondria and in modulation of the level of autophagic flux. Similarly, IP3R-mediated upregulation of autophagy can protect some cancer cells against natural killer cells-induced killing. The involvement of IP3Rs in the regulation of both autophagy and apoptosis, therefore, directly impact cancer cell biology and contribute to the molecular basis of tumor pathology.
Collapse
Affiliation(s)
- Elzbieta Kania
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Gemma Roest
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Tim Vervliet
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Jan B Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| |
Collapse
|
174
|
Wang N, Zhang F, Yang L, Zou J, Wang H, Liu K, Liu M, Zhang H, Xiao X, Wang K. Resveratrol protects against L-arginine-induced acute necrotizing pancreatitis in mice by enhancing SIRT1-mediated deacetylation of p53 and heat shock factor 1. Int J Mol Med 2017; 40:427-437. [PMID: 28586010 PMCID: PMC5504992 DOI: 10.3892/ijmm.2017.3012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022] Open
Abstract
Acute necrotizing pancreatitis (ANP) is a common severe critical illness with a high mortality rate. Resveratrol, a polyphenol compound derived from various plants such as grape skin, peanut, berry and veratrum, exhibits multiple biological activities, especially potent anti‑inflammatory activity, but its effect on ANP has not yet been fully elucidated. The present study aimed to investigate the effects of resveratrol on L-arginine-induced ANP and the possible mechanisms. A mouse model of ANP was established by 2 hourly intraperitoneal injections of 8% L-arginine (4 g/kg). Then the mice were treated by intragastric administration of resveratrol (80 mg/kg) every 12 h immediately after the second injection of L-arginine. Mice with ANP showed increased apoptosis of pancreatic acinar cells, pancreatic myeloperoxidase activity, serum lactate dehydrogenase activity, amylase, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) levels as well as decreased serum IL-10 level, pancreatic expression of heat shock factor 1 (HSF1), sirtuin 1 (SIRT1) and p53, but the ratio of acetylated HSF1 and p53 was markedly increased. Resveratrol enhanced the survival rate of mice with ANP from 47.8 to 71.4% and obviously restored the changes in mice with ANP as mentioned above. Additionally, interactions between SIRT1 and p53 and between SIRT1 and HSF1 in the pancreas of the mice were confirmed by co-immunoprecipitation. These data suggest that resveratrol protects against L-arginine-induced ANP, which may be related to the enhancement of SIRT1-mediated deacetylation of p53 and HSF1.
Collapse
Affiliation(s)
- Nian Wang
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Fen Zhang
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Liu Yang
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jiang Zou
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Hao Wang
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ke Liu
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Meidong Liu
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Huali Zhang
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xianzhong Xiao
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Kangkai Wang
- Translational Medicine Center of Sepsis, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
175
|
Huang SS, Ding DF, Chen S, Dong CL, Ye XL, Yuan YG, Feng YM, You N, Xu JR, Miao H, You Q, Lu X, Lu YB. Resveratrol protects podocytes against apoptosis via stimulation of autophagy in a mouse model of diabetic nephropathy. Sci Rep 2017; 7:45692. [PMID: 28374806 PMCID: PMC5379482 DOI: 10.1038/srep45692] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 03/03/2017] [Indexed: 12/30/2022] Open
Abstract
Podocyte apoptosis coincides with albuminuria onset and precedes podocytopenia in diabetic nephropathy. However, there is a lack of effective therapeutic drugs to protect podocytes from apoptosis. Here, we demonstrated that resveratrol relieved a series of indicators of diabetic nephropathy and attenuated apoptosis of podocytes in db/db diabetic model mice. In addition, resveratrol induced autophagy in both db/db mice and human podocytes. Furthermore, inhibition of autophagy by 3-methyladenine (3-MA) and autophagy gene 5 (Atg5) short hairpin RNA (shRNA) reversed the protective effects of resveratrol on podocytes. Finally, we found that resveratrol might regulate autophagy and apoptosis in db/db mice and podocytes through the suppression of microRNA-383-5p (miR-383-5p). Together, our results indicate that resveratrol effectively attenuates high glucose-induced apoptosis via the activation of autophagy in db/db mice and podocytes, which involves miR-383-5p. Thus, this study reveals a new possible strategy to treat diabetic nephropathy.
Collapse
Affiliation(s)
- Shan-Shan Huang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- Department of Endocrinology, Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| | - Da-Fa Ding
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Sheng Chen
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Cheng-Long Dong
- Department of Emergency, Yancheng First People’s Hospital, Yancheng, China
| | - Xiao-Long Ye
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yang-Gang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ya-Min Feng
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Na You
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jia-Rong Xu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Heng Miao
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiang You
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yi-Bing Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
176
|
Sheu SJ, Chen JL, Bee YS, Chen YA, Lin SH, Shu CW. Differential autophagic effects of vital dyes in retinal pigment epithelial ARPE-19 and photoreceptor 661W cells. PLoS One 2017; 12:e0174736. [PMID: 28358857 PMCID: PMC5373602 DOI: 10.1371/journal.pone.0174736] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/14/2017] [Indexed: 12/22/2022] Open
Abstract
Indocyanine green (ICG) and brilliant blue G (BBG) are commonly used vital dyes to remove internal limiting membrane (ILM) in vitreoretinal surgery. The vital dyes have shown cytotoxic effects in ocular cells. Autophagy is a stress responsive pathway for either protecting cells or promoting cell death. However, the role of autophagy in ocular cells in response to the vital dyes remains unknown. In this study, we found that ICG and BBG reduced cell viability in both human retinal pigment epithelial ARPE-19 and mouse photoreceptor 661W cells. ICG and BBG induced lipidated GFP-LC3-II and LC3-II in ARPE-19 and 661W cells. Combination treatment with the autophagy inhibitor chloroquine indicated that ICG and BBG reduced autophagic flux in ARPE-19 cells, whereas the vital dyes induced autophagic flux in 661W cells. Moreover, genetic and pharmacological ablation of autophagy enhanced vital dyes-induced cytotoxicity in ocular cells. Dietary supplements, including resveratrol, lutein, and CoQ10, induced autophagy and diminished the cytotoxic effects of ICG and BBG in ocular cells. These results suggest that autophagy may protect ARPE-19 and 661W cells from vital dyes-induced damage.
Collapse
Affiliation(s)
- Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jiunn-Liang Chen
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Youn-Shen Bee
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| | - Yi-An Chen
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shi-Han Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
177
|
Luyten T, Welkenhuyzen K, Roest G, Kania E, Wang L, Bittremieux M, Yule DI, Parys JB, Bultynck G. Resveratrol-induced autophagy is dependent on IP 3Rs and on cytosolic Ca 2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:947-956. [PMID: 28254579 DOI: 10.1016/j.bbamcr.2017.02.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 12/14/2022]
Abstract
Previous work revealed that intracellular Ca2+ signals and the inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) are essential to increase autophagic flux in response to mTOR inhibition, induced by either nutrient starvation or rapamycin treatment. Here, we investigated whether autophagy induced by resveratrol, a polyphenolic phytochemical reported to trigger autophagy in a non-canonical way, also requires IP3Rs and Ca2+ signaling. Resveratrol augmented autophagic flux in a time-dependent manner in HeLa cells. Importantly, autophagy induced by resveratrol (80μM, 2h) was completely abolished in the presence of 10μM BAPTA-AM, an intracellular Ca2+-chelating agent. To elucidate the IP3R's role in this process, we employed the recently established HEK 3KO cells lacking all three IP3R isoforms. In contrast to the HEK293 wt cells and to HEK 3KO cells re-expressing IP3R1, autophagic responses in HEK 3KO cells exposed to resveratrol were severely impaired. These altered autophagic responses could not be attributed to alterations in the mTOR/p70S6K pathway, since resveratrol-induced inhibition of S6 phosphorylation was not abrogated by chelating cytosolic Ca2+ or by knocking out IP3Rs. Finally, we investigated whether resveratrol by itself induced Ca2+ release. In permeabilized HeLa cells, resveratrol neither affected the sarco- and endoplasmic reticulum Ca2+ ATPase (SERCA) activity nor the IP3-induced Ca2+ release nor the basal Ca2+ leak from the ER. Also, prolonged (4 h) treatment with 100μM resveratrol did not affect subsequent IP3-induced Ca2+ release. However, in intact HeLa cells, although resveratrol did not elicit cytosolic Ca2+ signals by itself, it acutely decreased the ER Ca2+-store content irrespective of the presence or absence of IP3Rs, leading to a dampened agonist-induced Ca2+ signaling. In conclusion, these results reveal that IP3Rs and cytosolic Ca2+ signaling are fundamentally important for driving autophagic flux, not only in response to mTOR inhibition but also in response to non-canonical autophagy inducers like resveratrol. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Tomas Luyten
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Kirsten Welkenhuyzen
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Gemma Roest
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Elzbieta Kania
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium
| | - Liwei Wang
- University of Rochester, Department of Pharmacology and Physiology, Rochester, NY 14642, USA
| | - Mart Bittremieux
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium
| | - David I Yule
- University of Rochester, Department of Pharmacology and Physiology, Rochester, NY 14642, USA
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium.
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-I box 802, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
178
|
Lv XX, Liu SS, Hu ZW. Autophagy-inducing natural compounds: a treasure resource for developing therapeutics against tissue fibrosis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:101-108. [PMID: 28252344 DOI: 10.1080/10286020.2017.1279151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Tissue fibrosis is a common pathologic change of many chronic diseases, which is characterized by extracellular matrix accumulation in tissues and dysfunction of the injured organs. Despite there recently gain mechanistic insight into the pathogenesis of tissue fibrosis, therapeutics for tissue fibrosis and thus many chronic diseases remain a significant clinical unmet need. Recent progressions indicate that autophagy, a conserved lysosomal degradation process in eukaryotic cells, not only plays an important regulatory role in maintaining cellular and tissue homeostasis, but also contributes to the development and progression of tissue fibrosis in a diversity of organs. Interestingly, a number of natural compounds derived from plant or Chinese Herb Medicines (CHM), have been identified as modulators of autophagy, and may function as potential therapeutic agents for the treatment of different fibrotic diseases. In this review, we focus on several plant natural compounds that have well-known anti-fibrotic effects through regulating autophagic signal pathways or autophagy activity. These findings should provide important therapeutic clues and strategy for the development of new anti-fibrosis drugs.
Collapse
Affiliation(s)
- Xiao-Xi Lv
- a Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Shan-Shan Liu
- a Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Zhuo-Wei Hu
- a Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
179
|
Kornicka K, Nawrocka D, Lis-Bartos A, Marędziak M, Marycz K. Polyurethane–polylactide-based material doped with resveratrol decreases senescence and oxidative stress of adipose-derived mesenchymal stromal stem cell (ASCs). RSC Adv 2017. [DOI: 10.1039/c7ra02334k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to evaluate the influence of resveratrol (RES)-doped polyurethane (TPU)–polylactide (PLA) biomaterials on the senescence and oxidative stress factor of adipose-derived stem cells (ASCs) for tissue engineering.
Collapse
Affiliation(s)
- K. Kornicka
- Department of Experimental Biology
- University of Environmental and Life Sciences
- Wrocław
- Poland
- Wroclaw Research Centre EIT+
| | - D. Nawrocka
- Department of Experimental Biology
- University of Environmental and Life Sciences
- Wrocław
- Poland
| | - A. Lis-Bartos
- Department of Biomaterials
- AGH University of Science and Technology
- Kraków
- Poland
| | - M. Marędziak
- Faculty of Veterinary Medicine
- University of Environmental and Life Sciences
- Wrocław
- Poland
| | - K. Marycz
- Department of Experimental Biology
- University of Environmental and Life Sciences
- Wrocław
- Poland
- Wroclaw Research Centre EIT+
| |
Collapse
|
180
|
GADD34 Keeps the mTOR Pathway Inactivated in Endoplasmic Reticulum Stress Related Autophagy. PLoS One 2016; 11:e0168359. [PMID: 27992581 PMCID: PMC5161374 DOI: 10.1371/journal.pone.0168359] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/30/2016] [Indexed: 01/03/2023] Open
Abstract
The balance of protein synthesis and proteolysis (i.e. proteostasis) is maintained by a complex regulatory network in which mTOR (mechanistic target of rapamycin serine/threonine kinase) pathway and unfolded protein response are prominent positive and negative actors. The interplay between the two systems has been revealed; however the mechanistic details of this crosstalk are largely unknown. The aim of the present study was to investigate the elements of crosstalk during endoplasmic reticulum stress and to verify the key role of GADD34 in the connection with the mTOR pathway. Here, we demonstrate that a transient activation of autophagy is present in endoplasmic reticulum stress provoked by thapsigargin or tunicamycin, which is turned into apoptotic cell death. The transient phase can be characterized by the elevation of the autophagic marker LC3II/I, by mTOR inactivation, AMP-activated protein kinase activation and increased GADD34 level. The switch from autophagy to apoptosis is accompanied with the appearance of apoptotic markers, mTOR reactivation, AMP-activated protein kinase inactivation and a decrease in GADD34. Inhibition of autophagy by 3-methyladenine shortens the transient phase, while inhibition of mTOR by rapamycin or resveratrol prolongs it. Inhibition of GADD34 by guanabenz or transfection of the cells with siGADD34 results in down-regulation of autophagy-dependent survival and a quick activation of mTOR, followed by apoptotic cell death. The negative effect of GADD34 inhibition is diminished when guanabenz or siGADD34 treatment is combined with rapamycin or resveratrol addition. These data confirm that GADD34 constitutes a mechanistic link between endoplasmic reticulum stress and mTOR inactivation, therefore promotes cell survival during endoplasmic reticulum stress.
Collapse
|
181
|
Resveratrol and cisplatin in a malignant mesothelioma cell model. Food Chem Toxicol 2016; 98:308-309. [PMID: 27856297 DOI: 10.1016/j.fct.2016.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 11/23/2022]
|
182
|
Role of nutraceutical SIRT1 modulators in AMPK and mTOR pathway: Evidence of a synergistic effect. Nutrition 2016; 34:82-96. [PMID: 28063518 DOI: 10.1016/j.nut.2016.09.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/04/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of different natural substances on SIRT1 expression and on AMPK and mTOR phosphorylation. Moreover, we investigated the presence of a synergistic effect between the substances. METHODS Human cervical carcinoma cells were seeded in 12-well plates, then incubated with the nine tested substances (resveratrol, quercetin, berberine, catechin, tyrosol, ferulic acid, niclosamide, curcumin, and malvidin) at different concentrations and left in incubation for 3, 6, and 24 h. The targeting proteins' expression and phosphorylation were evaluated by immunoblotting, and cytotoxicity tests were performed by CellTiter-Blue Cell Viability Assay. RESULTS No statistically significant decrease (P > 0.05) in the number of viable cells was found. The expression of SIRT1 was significantly increased in all experimental groups compared with the control group (P < 0.001). Instead, the simultaneous administration involved a significant and synergistic increase in the expression of SIRT1 for some but not all of the tested compounds. Finally, the individual administration of berberine, quercetin, ferulic acid, and tyrosol resulted in a statistically significant increase in AMPK activation and mTOR inhibition, whereas their associated administration did not reveal a synergistic effect. CONCLUSIONS Our results provide evidence that all compounds have the potential to stimulate SIRT1 and sustain the stimulating action of resveratrol on SIRT1, already widely reported in the literature. In this regard, we confirm the interaction of these substances also with the pathway of AMPK and mTOR, in support of the studies that highlight the importance of SIRT1/AMPK and mTOR pathway in many diseases.
Collapse
|
183
|
Conte A, Kisslinger A, Procaccini C, Paladino S, Oliviero O, de Amicis F, Faicchia D, Fasano D, Caputo M, Matarese G, Pierantoni GM, Tramontano D. Convergent Effects of Resveratrol and PYK2 on Prostate Cells. Int J Mol Sci 2016; 17:ijms17091542. [PMID: 27649143 PMCID: PMC5037816 DOI: 10.3390/ijms17091542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 01/03/2023] Open
Abstract
Resveratrol, a dietary polyphenol, is under consideration as chemopreventive and chemotherapeutic agent for several diseases, including cancer. However, its mechanisms of action and its effects on non-tumor cells, fundamental to understand its real efficacy as chemopreventive agent, remain largely unknown. Proline-rich tyrosine kinase 2 (PYK2), a non-receptor tyrosine kinase acting as signaling mediator of different stimuli, behaves as tumor-suppressor in prostate. Since, PYK2 and RSV share several fields of interaction, including oxidative stress, we have investigated their functional relationship in human non-transformed prostate EPN cells and in their tumor-prone counterpart EPN-PKM, expressing a PYK2 dead-kinase mutant. We show that RSV has a strong biological activity in both cell lines, decreasing ROS production, inducing morphological changes and reversible growth arrest, and activating autophagy but not apoptosis. Interestingly, the PYK2 mutant increases basal ROS and autophagy levels, and modulates the intensity of RSV effects. In particular, the anti-oxidant effect of RSV is more potent in EPN than in EPN-PKM, whereas its anti-proliferative and pro-autophagic effects are more significant in EPN-PKM. Consistently, PYK2 depletion by RNAi replicates the effects of the PKM mutant. Taken together, our results reveal that PYK2 and RSV act on common cellular pathways and suggest that RSV effects on prostate cells may depend on mutational-state or expression levels of PYK2 that emerges as a possible mediator of RSV mechanisms of action. Moreover, the observation that resveratrol effects are reversible and not associated to apoptosis in tumor-prone EPN-PKM cells suggests caution for its use in humans.
Collapse
Affiliation(s)
- Andrea Conte
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
- Institute of Experimental Oncology and Endocrinology, National Research Council of Italy, 80131 Naples, Italy.
| | - Annamaria Kisslinger
- Institute of Experimental Oncology and Endocrinology, National Research Council of Italy, 80131 Naples, Italy.
| | - Claudio Procaccini
- Institute of Experimental Oncology and Endocrinology, National Research Council of Italy, 80131 Naples, Italy.
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
- Centro di Ingegneria Genetica (CEINGE)-Biotecnologie Avanzate, 80131 Naples, Italy.
| | - Olimpia Oliviero
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, 80131 Naples, Italy.
| | - Francesca de Amicis
- Centro Sanitario, University of Calabria, 87036 Rende (CS), Italy.
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende (CS), Italy.
| | - Deriggio Faicchia
- Department of Medical and Translational Science, University Federico II of Naples, 80131 Naples, Italy.
| | - Dominga Fasano
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
| | - Marilena Caputo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
| | - Giuseppe Matarese
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
| | - Donatella Tramontano
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
184
|
Oxidative Stress and Treg and Th17 Dysfunction in Systemic Lupus Erythematosus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2526174. [PMID: 27597882 PMCID: PMC4997077 DOI: 10.1155/2016/2526174] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/15/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organ systems. The pathogenic mechanisms that cause SLE remain unclear; however, it is well recognized that the immune balance is disturbed and that this imbalance contributes to the autoimmune symptoms of SLE. Oxidative stress represents an imbalance between the production and manifestation of reactive oxygen species and the ability of the biological system to readily detoxify the reactive intermediates or to repair the resulting damage. In humans, oxidative stress is involved in many diseases, including atherosclerosis, myocardial infarction, and autoimmune diseases. Numerous studies have confirmed that oxidative stress plays an important role in the pathogenesis of SLE. This review mainly focuses on the recent research advances with respect to oxidative stress and regulatory T (Treg)/helper T 17 (Th17) cell dysfunction in the pathogenesis of SLE.
Collapse
|