151
|
Ahmed S, Keniry M, Padilla V, Anaya-Barbosa N, Javed MN, Gilkerson R, Gomez K, Ashraf A, Narula AS, Lozano K. Development of pullulan/chitosan/salvianolic acid ternary fibrous membranes and their potential for chemotherapeutic applications. Int J Biol Macromol 2023; 250:126187. [PMID: 37558036 DOI: 10.1016/j.ijbiomac.2023.126187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
This study investigates the feasibility of centrifugal spinning for producing fibrous membranes containing pullulan, chitosan, and danshen extract. The danshen extract is composed of 20 wt% salvianolic acid B (SA). Citric acid was added to the mixture as a crosslinking agent to promote its use in the aqueous medium. The influence of the danshen concentration (25 wt% and 33 wt%) on fiber morphology, thermal behavior, and the biochemical effect was analyzed. Developed fiber-based membranes consist of long, continuous, and uniform fibers with a sparse scattering of beads. Fiber diameter analysis shows values ranging from 384 ± 123 nm to 644 ± 141 nm depending on the concentration of danshen. The nanofibers show adequate aqueous stability after crosslinking. Thermal analysis results prove that SA is loaded into nanofibers without compromising their structural integrity. Cell-based results indicate that the developed nanofiber membranes promote cell growth and are not detrimental to fibroblast cells. Anticancer studies reveal a promising inhibition to the proliferation of HCT116 colon cancer cells. The developed systems show potential as innovative systems to be used as a bioactive chemotherapeutic drug that could be placed on the removed tumor site to prevent development of colon cancer microdeposits.
Collapse
Affiliation(s)
- Salahuddin Ahmed
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Megan Keniry
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Victoria Padilla
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Narcedalia Anaya-Barbosa
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Md Noushad Javed
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Robert Gilkerson
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Kithzia Gomez
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Ali Ashraf
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | | | - Karen Lozano
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX, USA.
| |
Collapse
|
152
|
Luo J, Wang J, Li Q, Xiong L, Xie R, Lan G, Ning LJ, Xie J, Hu E, Lu B. In situ generation of bioadhesives using dry tannic silk particles: a wet-adhesion strategy relying on removal of hydraulic layer over wet tissues for wound care. Int J Biol Macromol 2023; 250:126087. [PMID: 37536416 DOI: 10.1016/j.ijbiomac.2023.126087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Tissue adhesives have been widely used in biomedical applications. However, the presence of a hydrated layer on the surface of wet tissue severely hinders their adhesion capacities, resulting in ineffective wound treatment. To address this issue, a dry particle dressing (plas@SF/tann-hydro-pwd) capable of removing the hydrated layer and converting in situ to bioadhesives (plas@SF/tann-hydro-gel) was fabricated via simple physical mixing based on the hydrophobic-hydrogen bonding synergistic effect and Schiff-base reaction. It was found that the plas@SF/tann-hydro-gel bioadhesive, which was changed from plas@SF/tann-hydro-pwd dressing by adsorption of water, exhibited good wet adhesion to diverse biological tissues. In addition, the wet adhesion qualities of the plas@SF/tann-hydro-gel adhesive was studied under a variety of demanding conditions, including a wide range of temperatures, varying pH levels, highly concentrated salt solutions, and simulated fluids. Experiments on animals had showed that the adhesive plas@SF/tann-hydro-gel has superior wet adhesion qualities and superior wound healing properties compared to the commercial product Tegaderm™. This study develops a new wet-adhesion technique employing dry particle dressing to eliminate the hydrated layer over wet tissues for the in situ creation of gel bioadhesives for wound healing.
Collapse
Affiliation(s)
- Jinyang Luo
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Junsu Wang
- Chongqing Customs Technology Center, Chongqing 400044, China
| | - Qing Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Li Xiong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Guangqian Lan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Liang-Ju Ning
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jing Xie
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Enling Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong
| | - Bitao Lu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
153
|
Shehabeldine AM, Al-Askar AA, AbdElgawad H, Hagras FA, Ramadan AA, Kamel MR, Ahmed MA, Atia KH, Hashem AH. Wound Dressing Scaffold with High Anti-biofilm Performance Based on Ciprofloxacin-Loaded Chitosan-Hydrolyzed Starch Nanocomposite: In Vitro and In Vivo Study. Appl Biochem Biotechnol 2023; 195:6421-6439. [PMID: 37450215 DOI: 10.1007/s12010-023-04665-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Today, the search for solutions to reduce wound infection and restore wound receptivity also reduces its side effects which are a difficult problem in medical science research. The greatest options for this purpose are hydrogel dressings since they are compatible with tissue and have an antibacterial effect on wound healing. Chronic wounds represent a significant burden on people and healthcare systems worldwide. Bacteria often enter such skin wounds, causing irritation and complicating the healing process. In addition, bacteria cause infection, which inhibits rejuvenation and the production of collagen. This study is aimed at developing novel chitosan (CS)-hydrolyzed starch nanocomposite (HS/Ch-NC) loaded with ciprofloxacin to enhance its skin retention and wound healing efficacy and anti-biofilm efficacy. Drug-loading on the (HS/Ch-NC) and encapsulation efficiency was 55.2% and 97.2%, respectively. The activity of HS-NC loaded with ciprofloxacin as anti-biofilm activity by 72% and 63% against Enterobacter aerogenes and Pseudomonas aeruginosa, respectively. The obtained (HS/Ch-NC) loaded with ciprofloxacin is a promising candidate for the development of improved bandage materials, as cell viability and proliferation was assessed using an SRB assay with half-maximal inhibitory concentrations (IC50) at 119.1 µg/ml. In vitro scratch wound healing assay revealed significant (p ≤ 0.05) acceleration in wound closure at 24 h enhanced by 56.04% 24-h and 100% 72-h post-exposure to (HS/Ch-NC) loaded ciprofloxacin, compared to the negative control. In vivo skin retention study revealed that (HS/Ch-NC)-loaded ciprofloxacin showed 3.65-fold higher retention, respectively, than ciprofloxacin. Thus, our study assumes that ciprofloxacin-loaded HS-NC is a potential delivery system for enhancing ciprofloxacin skin retention and wound healing activity.
Collapse
Affiliation(s)
- Amr M Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Abdulaziz A Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Fatouh A Hagras
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Amr A Ramadan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed R Kamel
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed A Ahmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Kareem H Atia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
154
|
Araújo D, Martins M, Freitas F. Exploring the Drug-Loading and Release Ability of FucoPol Hydrogel Membranes. Int J Mol Sci 2023; 24:14591. [PMID: 37834039 PMCID: PMC10572272 DOI: 10.3390/ijms241914591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
The polysaccharide FucoPol has recently been shown to yield hydrogel membranes (HMs) characterized by good mechanical properties, biocompatibility, and anti-inflammatory activity that render them promising biomaterials for use in the biomedical field. Subsequently to such findings, envisaging their development into novel delivery systems for topical applications, in this study, FucoPol HMs prepared by crosslinking the biopolymer with iron cations were loaded with caffeine or diclofenac sodium as model drugs. Two loading methods, namely diffusion and mixing, were applied to evaluate the FucoPol's HM drug-loading capacity and entrapment efficiency. The diffusion method led to a higher caffeine loading (101.9 ± 19.1 mg/g) in the HM1_DCAF membranes, while the mixing method resulted in a higher diclofenac sodium loading (82.3 ± 5.1 mg/g) in the HM1_DDS membranes. The HM1_DCAF membranes were characterized by increased mechanical and rheological parameters, such as their hardness (130.0 ± 5.3 kPa) and storage modulus (1014.9 ± 109.7 Pa), compared to the HM1_DDS membranes that exhibited lower values (7.3 ± 1.2 kPa and 19.8 ± 3.8 Pa, respectively), probably due to leaching occurring during the drug-loading process. The release profiles revealed a fast release of both APIs from the membranes loaded by diffusion, while a prolonged and sustained release was obtained from the membranes loaded by mixing. Moreover, for all API-loaded membranes, the release mechanism followed Fickian diffusion, with the release rate being essentially governed by the diffusion process. These findings, together with their previously shown biological properties, support the suitability of the developed FucoPol HMs to be used as platforms for the topical delivery of drugs.
Collapse
Affiliation(s)
- Diana Araújo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (D.A.); (M.M.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Matilde Martins
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (D.A.); (M.M.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (D.A.); (M.M.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
155
|
Shen J, Jiao W, Chen Z, Wang C, Song X, Ma L, Tang Z, Yan W, Xie H, Yuan B, Wang C, Dai J, Sun Y, Du L, Jin Y. Injectable multifunctional chitosan/dextran-based hydrogel accelerates wound healing in combined radiation and burn injury. Carbohydr Polym 2023; 316:121024. [PMID: 37321722 DOI: 10.1016/j.carbpol.2023.121024] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Clinical wound management of combined radiation and burn injury (CRBI) remains a huge challenge due to serious injuries induced by redundant reactive oxygen species (ROS), the accompanying hematopoietic, immunologic suppression and stem cell reduction. Herein, the injectable multifunctional Schiff base cross-linked with gallic acid modified chitosan (CSGA)/oxidized dextran (ODex) hydrogels were rationally designed to accelerate wound healing through elimination of ROS in CRBI. CSGA/ODex hydrogels, fabricated by mixing solutions of CSGA and Odex, displayed good self-healing ability, excellent injectability, strong antioxidant activity, and favorable biocompatibility. More importantly, CSGA/ODex hydrogels exhibited excellent antibacterial properties, which is facilitated for wound healing. Furthermore, CSGA/ODex hydrogels significantly suppressed the oxidative damage of L929 cells in an H2O2-induced ROS microenvironment. The recovery of mice with CRBI in mice demonstrated that CSGA/ODex hydrogels significantly reduced the hyperplasia of epithelial cells and the expression of proinflammatory cytokine, and accelerated wound healing which was superior to the treatment with commercial triethanolamine ointment. In conclusion, the CSGA/ODex hydrogels as a wound dressing could accelerate the wound healing and tissue regeneration of CRBI, which provides great potential in clinical treatment of CRBI.
Collapse
Affiliation(s)
- Jintao Shen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wencheng Jiao
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Hebei University, Baoding 071002, China
| | - Ziyuan Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chunqing Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xingshuang Song
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Ma
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ziyan Tang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenrui Yan
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Xie
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bochuan Yuan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chenyun Wang
- The Fourth Clinical Center Affiliated to Chinese PLA General Hospital, Beijing 100048, China
| | - Jing Dai
- Information Department, General Hospital of Western War Zone, Chengdu 610083, China
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Hebei University, Baoding 071002, China.
| | - Lina Du
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Hebei University, Baoding 071002, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
156
|
Egorov AR, Kirichuk AA, Rubanik VV, Rubanik VV, Tskhovrebov AG, Kritchenkov AS. Chitosan and Its Derivatives: Preparation and Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6076. [PMID: 37763353 PMCID: PMC10532898 DOI: 10.3390/ma16186076] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
This comprehensive review illuminates the various methods of chitosan extraction, its antibacterial properties, and its multifarious applications in diverse sectors. We delve into chemical, physical, biological, hybrid, and green extraction techniques, each of which presents unique advantages and disadvantages. The choice of method is dictated by multiple variables, including the desired properties of chitosan, resource availability, cost, and environmental footprint. We explore the intricate relationship between chitosan's antibacterial activity and its properties, such as cationic density, molecular weight, water solubility, and pH. Furthermore, we spotlight the burgeoning applications of chitosan-based materials like films, nanoparticles, nonwoven materials, and hydrogels across the food, biomedical, and agricultural sectors. The review concludes by highlighting the promising future of chitosan, underpinned by technological advancements and growing sustainability consciousness. However, the critical challenges of optimizing chitosan's production for sustainability and efficiency remain to be tackled.
Collapse
Affiliation(s)
- Anton R. Egorov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Anatoly A. Kirichuk
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Alexander G. Tskhovrebov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Andreii S. Kritchenkov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| |
Collapse
|
157
|
Zhong W, Hu R, Zhou S, Xu J, Wang K, Yao B, Xiong R, Fu J. Spatiotemporally Responsive Hydrogel Dressing with Self-Adaptive Antibacterial Activity and Cell Compatibility for Wound Sealing and Healing. Adv Healthc Mater 2023; 12:e2203241. [PMID: 37222707 DOI: 10.1002/adhm.202203241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Indexed: 05/25/2023]
Abstract
Adhesive hydrogels containing quaternary ammonium salt (QAS) moieties have shown attractive advantages in treatment for acute wounds, attributed to their high performances in wound sealing and sterilization. However, the introduction of QAS commonly leads to high cytotoxicity and adhesive deterioration. Herein, aimed to solve these two issues, a self-adaptive dressing with delicate spatiotemporal responsiveness is developed by employing cellulose sulfate (CS) as dynamic layers to coat QAS-based hydrogel. In detail, due to the acid environment of wound in the early stages of healing, the CS coating will quickly detach to expose the active QAS groups for maximum disinfectant efficacy; meanwhile, as the wound gradually heals and recovers to a neutral pH, the CS will remain stable to keep QAS screened, realizing a high cell growth-promoting activity for epithelium regeneration. Additionally, attributed to the synergy of temporary hydrophobicity by CS and slow water absorption kinetics of the hydrogel, the resultant dressing possesses outstanding wound sealing and hemostasis performance. At last, this work anticipates this approach to intelligent wound dressings based on dynamic and responsive intermolecular interaction can also be applied to a wide range of self-adaptive biomedical materials employing different chemistries for applications in medical therapy and health monitoring.
Collapse
Affiliation(s)
- Wei Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Rongjian Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shuai Zhou
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jianhua Xu
- Jiangsu Co-Innovation of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Bowen Yao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ranhua Xiong
- Jiangsu Co-Innovation of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiajun Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
158
|
Wang X, Song R, Johnson M, A S, Shen P, Zhang N, Lara-Sáez I, Xu Q, Wang W. Chitosan-Based Hydrogels for Infected Wound Treatment. Macromol Biosci 2023; 23:e2300094. [PMID: 37158294 DOI: 10.1002/mabi.202300094] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Indexed: 05/10/2023]
Abstract
Wound infections slow down the healing process and lead to complications such as septicemia, osteomyelitis, and even death. Although traditional methods relying on antibiotics are effective in controlling infection, they have led to the emergence of antibiotic-resistant bacteria. Hydrogels with antimicrobial function become a viable option for reducing bacterial colonization and infection while also accelerating healing processes. Chitosan is extensively developed as antibacterial wound dressings due to its unique biochemical properties and inherent antibacterial activity. In this review, the recent research progress of chitosan-based hydrogels for infected wound treatment, including the fabrication methods, antibacterial mechanisms, antibacterial performance, wound healing efficacy, etc., is summarized. A concise assessment of current limitations and future trends is presented.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Rijian Song
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 KW52, Ireland
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| |
Collapse
|
159
|
Cakmak HY, Ege H, Yilmaz S, Agturk G, Yontem FD, Enguven G, Sarmis A, Cakmak Z, Gunduz O, Ege ZR. 3D printed Styrax Liquidus (Liquidambar orientalis Miller)-loaded poly (L-lactic acid)/chitosan based wound dressing material: Fabrication, characterization, and biocompatibility results. Int J Biol Macromol 2023; 248:125835. [PMID: 37473890 DOI: 10.1016/j.ijbiomac.2023.125835] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
The medicinal plant of Styrax liquidus (ST) (sweet gum balsam) which extracted from Liquidambar orientalis Mill tree, was loaded into the 3D printed polylactic acid (PLA)/chitosan (CS) based 3D printed scaffolds to investigate its wound healing and closure effect, in this study. The morphological and chemical properties of the ST loaded 3D printed scaffolds with different concentrations (1 %, 2 %, and 3 % wt) were investigated by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR), respectively. In addition, the mechanical and thermal properties of the materials were investigated by Tensile test and Differential Scanning Calorimetry (DSC), respectively. The antimicrobial activities of the ST loaded 3D printed scaffolds and their incubation media in the PBS (pH 7.4, at 37 °C for 24 h) were investigated on two Gram-positive and two Gram-negative standard pathogenic bacteria with the agar disc diffusion method. The colorimetric MTT assay was used to determine the cell viability of human fibroblast cells (CCD-1072Sk) incubated with free ST, ST loaded, and unloaded 3D printed scaffolds. The 1 % and 2 % (wt) ST loaded PLA/CS/ST 3D printed scaffolds showed an increase in the cell number. Annexin V/PI double stain assay was performed to test whether early or late apoptosis was induced in the PLA/CS/1 % ST and PLA/CS/2 % ST loaded groups and the results were consistent with the MTT assay. Furthermore, a wound healing assay was carried out to investigate the effect of ST loaded 3D printed scaffolds on wound healing in CCD-1072Sk cells. The highest wound closure compared to the control group was observed on cells treated with PLA/CS/1 % ST for 72 h. According to the results, novel biocompatible ST loaded 3D printed scaffolds with antimicrobial effect can be used as wound healing material for potential tissue engineering applications.
Collapse
Affiliation(s)
| | - Hasan Ege
- Center for Nanotechnology and Biomaterials Applied and Research, Marmara University, Istanbul, Turkey; Institute of Health Sciences, Department of Physiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Senanur Yilmaz
- Center for Nanotechnology and Biomaterials Applied and Research, Marmara University, Istanbul, Turkey; Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Gokhan Agturk
- Institute of Health Sciences, Department of Physiology, Istanbul University-Cerrahpasa, Istanbul, Turkey; Department of Physiology, School of Medicine, Halic University, Istanbul, Turkey
| | - Fulya Dal Yontem
- Department of Biophysics, Koc University School of Medicine, Koç University, Sariyer, Istanbul, Turkey; Koc University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450 Istanbul, Turkey
| | - Gozde Enguven
- Center for Nanotechnology and Biomaterials Applied and Research, Marmara University, Istanbul, Turkey; Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Abdurrahman Sarmis
- Department of Medical Microbiology Laboratory, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
| | - Zeren Cakmak
- Kartal Prof. Dr. Saban Teoman Durali Science and Art Center, Istanbul, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Applied and Research, Marmara University, Istanbul, Turkey; Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Zeynep Ruya Ege
- Center for Nanotechnology and Biomaterials Applied and Research, Marmara University, Istanbul, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Istanbul, Turkey.
| |
Collapse
|
160
|
Zhang S, Liu H, Li W, Liu X, Ma L, Zhao T, Ding Q, Ding C, Liu W. Polysaccharide-based hydrogel promotes skin wound repair and research progress on its repair mechanism. Int J Biol Macromol 2023; 248:125949. [PMID: 37494997 DOI: 10.1016/j.ijbiomac.2023.125949] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Polysaccharides, being a natural, active, and biodegradable polymer, have garnered significant attention due to their exceptional properties. These properties make them ideal for creating multifunctional hydrogels that can be used as wound dressings for skin injuries. Polysaccharide hydrogel has the ability to both simulate the natural extracellular matrix, promote cell proliferation, and provide a suitable environment for wound healing while protecting it from bacterial invasion. Polysaccharide hydrogels offer a promising solution for repairing damaged skin. This review provides an overview of the mechanisms involved in skin damage repair and emphasizes the potential of polysaccharide hydrogels in this regard. For different skin injuries, polysaccharide hydrogels can play a role in promoting wound healing. However, we still need to conduct more research on polysaccharide hydrogels to provide more possibilities for skin damage repair.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Hongyuan Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xinglong Liu
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Lina Ma
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Ting Zhao
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China.
| |
Collapse
|
161
|
Jin S, Newton MAA, Cheng H, Zhang Q, Gao W, Zheng Y, Lu Z, Dai Z, Zhu J. Progress of Hydrogel Dressings with Wound Monitoring and Treatment Functions. Gels 2023; 9:694. [PMID: 37754375 PMCID: PMC10528853 DOI: 10.3390/gels9090694] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Hydrogels are widely used in wound dressings due to their moisturizing properties and biocompatibility. However, traditional hydrogel dressings cannot monitor wounds and provide accurate treatment. Recent advancements focus on hydrogel dressings with integrated monitoring and treatment functions, using sensors or intelligent materials to detect changes in the wound microenvironment. These dressings enable responsive treatment to promote wound healing. They can carry out responsive dynamic treatment in time to effectively promote wound healing. However, there is still a lack of comprehensive reviews of hydrogel wound dressings that incorporate both wound micro-environment monitoring and treatment functions. Therefore, this review categorizes hydrogel dressings according to wound types and examines their current status, progress, challenges, and future trends. It discusses various wound types, including infected wounds, burns, and diabetic and pressure ulcers, and explores the wound healing process. The review presents hydrogel dressings that monitor wound conditions and provide tailored treatment, such as pH-sensitive, temperature-sensitive, glucose-sensitive, pressure-sensitive, and nano-composite hydrogel dressings. Challenges include developing dressings that meet the standards of excellent biocompatibility, improving monitoring accuracy and sensitivity, and overcoming obstacles to production and commercialization. Furthermore, it provides the current status, progress, challenges, and future trends in this field, aiming to give a clear view of its past, present, and future.
Collapse
Affiliation(s)
- Shanshan Jin
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Md All Amin Newton
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Hongju Cheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Qinchen Zhang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Weihong Gao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Yuansheng Zheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Zan Lu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Zijian Dai
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| |
Collapse
|
162
|
Sundaran S, Kok LC, Chang HY. Fabrication and in vitroevaluation of photo cross-linkable silk fibroin-epsilon-poly-L-lysine hydrogel for wound repair. Biomed Mater 2023; 18:055021. [PMID: 37567188 DOI: 10.1088/1748-605x/acef86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
An optimal wound-healing hydrogel requires effective antibacterial properties and a favorable cell adhesion and proliferation environment. AlthoughBombyx morisilk fibroin (SF) possesses inherent wound-healing properties, it lacks these essential qualities. This study aimed to fabricate a novel photo-polymerizable hydrogel by utilizing SF's wound-healing efficiency and the epsilon-poly-L-lysine (EPL) antimicrobial activity. The SF was modified with three different concentrations of glycidyl methacrylate (GMA) to obtain SF-GMA(L), SF-GMA(M), and SF-GMA(H). A methacrylated EPL (EPL-GMA) was also produced. Then, SF-GMA was mixed with EPL-GMA to produce photo-crosslinkable SF-GMA-EPL hydrogels. The SF-GMA(L)-EPL, SF-GMA(M)-EPL, and SF-GMA(H)-EPL hydrogels, fabricated with 20% EPL-GMA, demonstrated maximum antimicrobial activity and mammalian cell adhesion ability. The hydroxyl radical (•OH) scavenging efficiency of the hydrogels was tested and shown to be between 69% and 74%. These hydrogels also exhibited 60% efficiency in removing bacterial lipopolysaccharides. The water absorption ability of the hydrogels was consistent with the size of their internal pores. The hydrogels exhibited a slow degradation fashion, and their degradation products appeared cytocompatible. Finally, the elastomeric properties of the hydrogels were determined, and a storage modulus (G') of 300-600 Pa was demonstrated. In conclusion, the hydrogels created in this study possess excellent biological and physical properties to support wound healing.
Collapse
Affiliation(s)
- Sneha Sundaran
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Li-Ching Kok
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| |
Collapse
|
163
|
Jiang P, Li Q, Luo Y, Luo F, Che Q, Lu Z, Yang S, Yang Y, Chen X, Cai Y. Current status and progress in research on dressing management for diabetic foot ulcer. Front Endocrinol (Lausanne) 2023; 14:1221705. [PMID: 37664860 PMCID: PMC10470649 DOI: 10.3389/fendo.2023.1221705] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetic foot ulcer (DFU) is a major complication of diabetes and is associated with a high risk of lower limb amputation and mortality. During their lifetime, 19%-34% of patients with diabetes can develop DFU. It is estimated that 61% of DFU become infected and 15% of those with DFU require amputation. Furthermore, developing a DFU increases the risk of mortality by 50%-68% at 5 years, higher than some cancers. Current standard management of DFU includes surgical debridement, the use of topical dressings and wound decompression, vascular assessment, and glycemic control. Among these methods, local treatment with dressings builds a protective physical barrier, maintains a moist environment, and drains the exudate from DFU wounds. This review summarizes the development, pathophysiology, and healing mechanisms of DFU. The latest research progress and the main application of dressings in laboratory and clinical stage are also summarized. The dressings discussed in this review include traditional dressings (gauze, oil yarn, traditional Chinese medicine, and others), basic dressings (hydrogel, hydrocolloid, sponge, foam, film agents, and others), bacteriostatic dressings, composite dressings (collagen, nanomaterials, chitosan dressings, and others), bioactive dressings (scaffold dressings with stem cells, decellularized wound matrix, autologous platelet enrichment plasma, and others), and dressings that use modern technology (3D bioprinting, photothermal effects, bioelectric dressings, microneedle dressings, smart bandages, orthopedic prosthetics and regenerative medicine). The dressing management challenges and limitations are also summarized. The purpose of this review is to help readers understand the pathogenesis and healing mechanism of DFU, help physicians select dressings correctly, provide an updated overview of the potential of biomaterials and devices and their application in DFU management, and provide ideas for further exploration and development of dressings. Proper use of dressings can promote DFU healing, reduce the cost of treating DFU, and reduce patient pain.
Collapse
Affiliation(s)
- Pingnan Jiang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qianhang Li
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanhong Luo
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Feng Luo
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qingya Che
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaoyu Lu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuxiang Yang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Yang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xia Chen
- Department of Endocrinology, Kweichow Moutai Hospital, Renhuai, Guizhou, China
| | - Yulan Cai
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Endocrinology, Kweichow Moutai Hospital, Renhuai, Guizhou, China
| |
Collapse
|
164
|
Panwar V, Sharma A, Murugesan P, Salaria N, Ghosh D. Free-flowing, self-crosslinking, carboxymethyl starch and carboxymethyl cellulose microgels, as smart hydrogel dressings for wound repair. Int J Biol Macromol 2023; 246:125735. [PMID: 37423449 DOI: 10.1016/j.ijbiomac.2023.125735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Hydrogels are widely recognized and favoured as moist wound dressings due to their beneficial properties. However, their limited capacity to absorb fluids restricts their use in highly exuding wounds. Microgels are small sized hydrogels that have recently gained considerable attention in drug delivery applications due to their superior swelling behaviour and ease of application. In this study, we introduce dehydrated microgel particles (μGeld) that rapidly swell and interconnect, forming an integrated hydrogel when exposed to fluid. These free-flowing microgel particles, derived from the interaction of carboxymethylated forms of starch and cellulose, have been designed to significantly absorb fluid and release silver nanoparticles in order to effectively control infection. Studies using simulated wound models validated the microgels ability to efficiently regulate the wound exudate and create a moist environment. While the biocompatibility and hemocompatibility studies confirmed the safety of the μGel particles, its haemostatic property was established using relevant models. Furthermore, the promising results from a full-thickness wounds in rats have highlighted the enhanced healing potential of the microgel particles. These findings suggest that the dehydrated microgels can evolve as a new class of smart wound dressings.
Collapse
Affiliation(s)
- Vineeta Panwar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India.
| | - Anjana Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| | - Preethi Murugesan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| | - Navita Salaria
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
165
|
Roopesh M, Davis D, Jyothi MS, Vandana M, Thippeswamy BS, Hegde G, Vinod TP, Keri RS. Wound healing efficacy of curcumin-loaded sandalwood bark-derived carbon nanosphere/PVA nanofiber matrix. RSC Adv 2023; 13:24320-24330. [PMID: 37583666 PMCID: PMC10424055 DOI: 10.1039/d3ra04181f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
The present investigation deals with the evaluation of the wound healing efficacy of sandalwood bark-derived carbon nanospheres loaded with curcumin-embedded polyvinyl alcohol (PVA) nanofiber membranes (NF). Carbon nanospheres (CNS) were prepared by pyrolyzing sandal wood bark powder at 750 °C. The morphology was confirmed by field emission scanning electron micrographs and a rich amount of carbon was confirmed by the energy dispersive X-ray technique. Curcumin, an active wound healing drug was loaded onto synthesized CNS and confirmed by ATR-IR studies. Drug-loaded CNS were anchored in a PVA matrix via electrospun nanofiber fabrication. The fabricated nanofiber membranes were characterized and evaluated for wound healing efficiency. The cytotoxicity assay proved the non-toxic nature of the prepared PVA/CNS-curcumin-loaded NF. Membranes with active CNS/drug showed better antimicrobial activity against S. aureus and E. coli, which was estimated using the zone of inhibition (ZOI) test. The in vitro scratch wound healing assay of prepared PVA/CNS-curcumin nanofibers was efficient enough and showed 92 to 98% wound closure, which was greater than the control (without drug) nanofiber membranes. The PVA nanofiber matrix with interconnected structure and carbon nanostructures together enhanced the wound healing efficacy of the considered wound healing membrane, which is a promising novel approach for future wound healing patches.
Collapse
Affiliation(s)
- M Roopesh
- Organic and Medicinal Chemistry Laboratory, Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Jain Global Campus, Kanakapura, Jakkasandra Post, Kanakapura Road, Ramanagara District Bangalore Karnataka India - 562112 +918027577199
| | - Deljo Davis
- Department of Chemistry, CHRIST (Deemed to be University) Bhavani Nagar, Hosur Road Bengaluru 560029 India
| | - M S Jyothi
- Department of Chemistry, AMC Engineering College Bannerughatta Main Road Bengaluru-560083 India
| | - M Vandana
- Department of Chemistry, CHRIST (Deemed to be University) Bhavani Nagar, Hosur Road Bengaluru 560029 India
| | - B S Thippeswamy
- Department of Biomedical Science, College of Pharmacy, Shaqra University Al-Dawadmi Campus Kingdom of Saudi Arabia
| | - Gurumurthy Hegde
- Centre for Advanced Research and Development (CARD), CHRIST (Deemed to be University) Bhavani Nagar, Hosur Road Bengaluru 560029 India +91-7019202135
| | - T P Vinod
- Department of Chemistry, CHRIST (Deemed to be University) Bhavani Nagar, Hosur Road Bengaluru 560029 India
| | - Rangappa S Keri
- Organic and Medicinal Chemistry Laboratory, Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Jain Global Campus, Kanakapura, Jakkasandra Post, Kanakapura Road, Ramanagara District Bangalore Karnataka India - 562112 +918027577199
| |
Collapse
|
166
|
Sionkowska A, Lewandowska K, Kurzawa M. Chitosan-Based Films Containing Rutin for Potential Cosmetic Applications. Polymers (Basel) 2023; 15:3224. [PMID: 37571118 PMCID: PMC10422548 DOI: 10.3390/polym15153224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Chitosan is a polysaccharide with film-forming properties. Such properties are widely used for the preparation of beauty masks and wound-healing materials. In this work, chitosan-based films containing hyaluronic acid and rutin have been researched for potential cosmetic applications. Rutin was added to a chitosan solution in lactic acid, and then thin films were fabricated. The structure of the films was studied using FTIR spectroscopy. Surface properties were studied using an AFM microscope. The release of rutin from chitosan-based film was researched by the HPLC method. The properties of the skin, such as elasticity and moisturization, were studied using the Aramo TS 2 apparatus. It was found that the addition of rutin did not have an influence on the chitosan structure but affected its thermal stability. The roughness of the films was bigger after the addition of rutin to chitosan-based films. Skin elasticity and skin moisturization were somewhat improved after the topical application of the proposed chitosan-rutin mask. The maximum release of rutin was found after 20 min at pH 5.5, related to the pH of normal human skin. The average percentage of release from chitosan-based film containing hyaluronic acid was smaller than from chitosan-based films.
Collapse
Affiliation(s)
- Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87100 Torun, Poland;
| | - Katarzyna Lewandowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87100 Torun, Poland;
| | - Marzanna Kurzawa
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87100 Torun, Poland;
| |
Collapse
|
167
|
Oliveira C, Sousa D, Teixeira JA, Ferreira-Santos P, Botelho CM. Polymeric biomaterials for wound healing. Front Bioeng Biotechnol 2023; 11:1136077. [PMID: 37576995 PMCID: PMC10415681 DOI: 10.3389/fbioe.2023.1136077] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
Skin indicates a person's state of health and is so important that it influences a person's emotional and psychological behavior. In this context, the effective treatment of wounds is a major concern, since several conventional wound healing materials have not been able to provide adequate healing, often leading to scar formation. Hence, the development of innovative biomaterials for wound healing is essential. Natural and synthetic polymers are used extensively for wound dressings and scaffold production. Both natural and synthetic polymers have beneficial properties and limitations, so they are often used in combination to overcome overcome their individual limitations. The use of different polymers in the production of biomaterials has proven to be a promising alternative for the treatment of wounds, as their capacity to accelerate the healing process has been demonstrated in many studies. Thus, this work focuses on describing several currently commercially available solutions used for the management of skin wounds, such as polymeric biomaterials for skin substitutes. New directions, strategies, and innovative technologies for the design of polymeric biomaterials are also addressed, providing solutions for deep burns, personalized care and faster healing.
Collapse
Affiliation(s)
- Cristiana Oliveira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - Diana Sousa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
- Department of Chemical Engineering, Faculty of Science, University of Vigo, Ourense, Spain
| | - Claudia M. Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| |
Collapse
|
168
|
Mohite P, Rahayu P, Munde S, Ade N, Chidrawar VR, Singh S, Jayeoye TJ, Prajapati BG, Bhattacharya S, Patel RJ. Chitosan-Based Hydrogel in the Management of Dermal Infections: A Review. Gels 2023; 9:594. [PMID: 37504473 PMCID: PMC10379151 DOI: 10.3390/gels9070594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The main objective of this review is to provide a comprehensive overview of the current evidence regarding the use of chitosan-based hydrogels to manage skin infections. Chitosan, a naturally occurring polysaccharide derived from chitin, possesses inherent antimicrobial properties, making it a promising candidate for treating various dermal infections. This review follows a systematic approach to analyze relevant studies that have investigated the effectiveness of chitosan-based hydrogels in the context of dermal infections. By examining the available evidence, this review aims to evaluate these hydrogels' overall efficacy, safety, and potential applications for managing dermal infections. This review's primary focus is to gather and analyze data from different recent studies about chitosan-based hydrogels combating dermal infections; this includes assessing their ability to inhibit the growth of microorganisms and reduce infection-related symptoms. Furthermore, this review also considers the safety profile of chitosan-based hydrogels, examining any potential adverse effects associated with their use. This evaluation is crucial to ensure that these hydrogels can be safely utilized in the management of dermal infections without causing harm to patients. The review aims to provide healthcare professionals and researchers with a comprehensive understanding of the current evidence regarding the use of chitosan-based hydrogels for dermal infection management. The findings from this review can contribute to informed decision-making and the development of potential treatment strategies in this field.
Collapse
Affiliation(s)
- Popat Mohite
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Pudji Rahayu
- Department of Pharmacy of Tanjung Karang State Health Polytechnic, Soekarno-Hatta, Bandar Lampung 35145, Lampung, Indonesia
| | - Shubham Munde
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Nitin Ade
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Vijay R Chidrawar
- SVKM's NMIMS School of Pharmacy and Technology Management, Jadcharla 509301, Telangana, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titilope J Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-be-University, Shirpur 425405, Maharashtra, India
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand 388421, Gujarat, India
| |
Collapse
|
169
|
Cigane U, Palevicius A, Janusas G. A Free-Standing Chitosan Membrane Prepared by the Vibration-Assisted Solvent Casting Method. MICROMACHINES 2023; 14:1419. [PMID: 37512730 PMCID: PMC10386678 DOI: 10.3390/mi14071419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Much attention has been paid to the surface modification of artificial skin barriers for the treatment of skin tissue damage. Chitosan is one of the natural materials that could be characterized by its biocompatibility. A number of methods for the preparation of chitosan membranes have been described in scientific articles, including solvent casting methods. This study investigates an improved technology to produce chitosan membranes. Thus, chitosan membranes were prepared using a vibration-assisted solvent casting method. First, aqueous acetic acid was used to pretreat chitosan. Then, free-standing chitosan membranes were prepared by solvent casting on nanoporous anodized aluminum oxide (AAO) membrane templates, allowing for the solvent to evaporate. Using finite element methods, a study was obtained showing the influence of chitosan solutions of different concentrations on the fluid flow into nanopores using high-frequency excitation. The height of the nanopillars and the surface area of the chitosan membrane were also evaluated. In this study, the surface area of the chitosan membrane was found to increase by 15, 10 and 6 times compared to the original flat surface area. The newly produced nanopillared chitosan membranes will be applicable in the fabrication of skin barriers due to the longer nanopillars on their surface and the larger surface area.
Collapse
Affiliation(s)
- Urte Cigane
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Street 56, 51424 Kaunas, Lithuania
| | - Arvydas Palevicius
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Street 56, 51424 Kaunas, Lithuania
| | - Giedrius Janusas
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Street 56, 51424 Kaunas, Lithuania
| |
Collapse
|
170
|
Remaggi G, Bergamonti L, Graiff C, Ossiprandi MC, Elviri L. Rapid Prototyping of 3D-Printed AgNPs- and Nano-TiO 2-Embedded Hydrogels as Novel Devices with Multiresponsive Antimicrobial Capability in Wound Healing. Antibiotics (Basel) 2023; 12:1104. [PMID: 37508200 PMCID: PMC10376448 DOI: 10.3390/antibiotics12071104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Two antimicrobial agents such as silver nanoparticles (AgNPs) and titanium dioxide (TiO2) have been formulated with natural polysaccharides (chitosan or alginate) to develop innovative inks for the rapid, customizable, and extremely accurate manufacturing of 3D-printed scaffolds useful as dressings in the treatment of infected skin wounds. Suitable chemical-physical properties for the applicability of these innovative devices were demonstrated through the evaluation of water content (88-93%), mechanical strength (Young's modulus 0.23-0.6 MPa), elasticity, and morphology. The antimicrobial tests performed against Staphylococcus aureus and Pseudomonas aeruginosa demonstrated the antimicrobial activities against Gram+ and Gram- bacteria of AgNPs and TiO2 agents embedded in the chitosan (CH) or alginate (ALG) macroporous 3D hydrogels (AgNPs MIC starting from 5 µg/mL). The biocompatibility of chitosan was widely demonstrated using cell viability tests and was higher than that observed for alginate. Constructs containing AgNPs at 10 µg/mL concentration level did not significantly alter cell viability as well as the presence of titanium dioxide; cytotoxicity towards human fibroblasts was observed starting with an AgNPs concentration of 100 µg/mL. In conclusions, the 3D-printed dressings developed here are cheap, highly defined, easy to manufacture and further apply in personalized antimicrobial medicine applications.
Collapse
Affiliation(s)
- Giulia Remaggi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy
| | - Laura Bergamonti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Claudia Graiff
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | | | - Lisa Elviri
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy
| |
Collapse
|
171
|
Tamer TM, Zhou H, Hassan MA, Abu-Serie MM, Shityakov S, Elbayomi SM, Mohy-Eldin MS, Zhang Y, Cheang T. Synthesis and physicochemical properties of an aromatic chitosan derivative: In vitro antibacterial, antioxidant, and anticancer evaluations, and in silico studies. Int J Biol Macromol 2023; 240:124339. [PMID: 37028626 DOI: 10.1016/j.ijbiomac.2023.124339] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
This study was designed to synthesize a functionalized chitosan by coupling the amine groups of chitosan with 2,4,6-Trimethoxybenzaldehyde, producing a chitosan Schiff base (Cs-TMB). The development of Cs-TMB was verified employing FT-IR, 1H NMR, the electronic spectrum, and elemental analysis. Antioxidant assays exhibited significant ameliorations of Cs-TMB, reporting scavenging activities of 69.67 ± 3.48 % and 39.65 ± 1.98 % for ABTS•+ and DPPH, respectively, while native chitosan showed scavenging ratios of 22.69 ± 1.13 % and 8.24 ± 0.4.1 % toward ABTS•+ and DPPH, respectively. Besides, Cs-TMB exerted significant antibacterial activity up to 90 % with remarkable bactericidal capacity against virulent gram-negative and gram-positive bacteria compared to the original chitosan. Furthermore, Cs-TMB exhibited a safe profile against normal fibroblast cells (HFB4). Interestingly, flow cytometric analysis showed that Cs-TMB demonstrated prominent anticancer properties of 52.35 ± 2.99 % against human skin cancer cells (A375), compared to 10.66 ± 0.55 % for Cs-treated cells. Moreover, Python and PyMOL in-house scripts were used to predict the interaction of Cs-TMB with the adenosine A1 receptor and visualized as a protein-ligand system submerged in a lipid membrane. Overall, these findings accentuate that Cs-TMB could be a favorable representative for wound dressing formulations and skin cancer treatment.
Collapse
Affiliation(s)
- Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Hongyan Zhou
- Department of Neurology, Hospital of Sun Yat-sen University, Guangdong 510080, China.
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Sergey Shityakov
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Smaher M Elbayomi
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta City, Damietta 34517, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Yongcheng Zhang
- Department of Breast Care Surgery, Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong 510080, China.
| | - Tuckyun Cheang
- Department of Neurosurgery, Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong 510080, China.
| |
Collapse
|
172
|
Luo J, Liu W, Xie Q, He J, Jiang L. Synthesis and characterisation of a novel poly(2-hydroxyethylmethacrylate)-chitosan hydrogels loaded cerium oxide nanocomposites dressing on cutaneous wound healing on nursing care of chronic wound. IET Nanobiotechnol 2023. [PMID: 37312282 DOI: 10.1049/nbt2.12118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/14/2023] [Accepted: 02/06/2023] [Indexed: 06/15/2023] Open
Abstract
This study was designed to establish the composition of wound dressing based on poly(2-hydroxyethylmethacrylate)-chitosan (PHEM-CS) hydrogels-loaded cerium oxide nanoparticle (CeONPs) composites for cutaneous wound healing on nursing care of the chronic wound. The as-synthesised PHEM-CS/CeONPs hydrogels nanocomposites were characterised by using UV-visible spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermo gravimetric analysis. The influence of PHEM-CS/CeONPs hydrogels nanocomposites on the gelation time, swelling ratio, in vitro degradation, and mechanical properties was investigated. The as-prepared PHEM-CS/CeONPs hydrogels nanocomposites dressing shows high antimicrobial activity against Staphylococcus aureus and Escherichia coli. Similar trends were observed for the treatment of biofilms where PHEM-CS/CeONPs hydrogels nanocomposites displayed better efficiency. Furthermore, the biological properties of PHEM-CS/CeONPs hydrogels nanocomposites had non-toxic in cell viability and excellent cell adhesion behaviour. After 2 weeks, the wounds treated with the PHEM-CS/CeONPs hydrogels nanocomposite wound dressing achieved a significant closure to 98.5 ± 4.95% compared with the PHEM-CS hydrogels with nearly 71 ± 3.55% of wound closure. Hence, this study strongly supports the possibility of using this novel PHEM-CS/CeONPs hydrogels nanocomposites wound dressing for efficient cutaneous wound healing on chronic wound infection and nursing care.
Collapse
Affiliation(s)
- Jingna Luo
- Department of Nursing, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Weijun Liu
- Department of Consumable Reagent, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qiaoling Xie
- Department of Nephrology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Jianshu He
- Department of Nephrology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Liyan Jiang
- Department of Orthopedic Surgery, ChengDu Fifth People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
173
|
Zhao J, Qiu P, Wang Y, Wang Y, Zhou J, Zhang B, Zhang L, Gou D. Chitosan-based hydrogel wound dressing: From mechanism to applications, a review. Int J Biol Macromol 2023:125250. [PMID: 37307982 DOI: 10.1016/j.ijbiomac.2023.125250] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
As promising biomaterials, hydrogels are widely used in the medical engineering field, especially in wound repairing. Compared with traditional wound dressings, such as gauze and bandage, hydrogel could absorb and retain more water without dissolving or losing its three-dimensional structure, thus avoiding secondary injury and promoting wound healing. Chitosan and its derivatives have become hot research topics for hydrogel wound dressing production due to their unique molecular structure and diverse biological activities. In this review, the mechanism of wound healing was introduced systematically. The mechanism of action of chitosan in the first three stages of wound repair (hemostasis, antimicrobial properties and progranulation), the effect of chitosan deacetylation and the molecular weight on its performance are analyzed. Additionally, the recent progress in intelligent and drug-loaded chitosan-based hydrogels and the features and advantages of chitosan were discussed. Finally, the challenges and prospects for the future development of chitosan-based hydrogels were discussed.
Collapse
Affiliation(s)
- Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Peng Qiu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yue Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yufan Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jianing Zhou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Baochun Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Lihong Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
174
|
Zhang K, Liu Y, Shi X, Zhang R, He Y, Zhang H, Wang W. Application of polyvinyl alcohol/chitosan copolymer hydrogels in biomedicine: A review. Int J Biol Macromol 2023:125192. [PMID: 37276897 DOI: 10.1016/j.ijbiomac.2023.125192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/20/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Hydrogels is a hydrophilic, cross-linked polymer of three-dimensional network structures. The application of hydrogels prepared from a single polymer in the biomedical field has many drawbacks. The functional blend of polyvinyl alcohol and chitosan allows hydrogels to have better and more desirable properties than those produced from a single polymer, which is a good biomaterial for development and design. In this paper, we have reviewed the progress in the application of polyvinyl alcohol/chitosan composite hydrogels in various medical fields, the different cross-linking agents and cross-linking methods, and the research progress in the optimization of composite hydrogels for their subsequent wide range of biomedical applications.
Collapse
Affiliation(s)
- Kui Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| | - Yan Liu
- Department of Gynecology, First Affiliated Hospital of Xi 'an Medical College, Xi'an 710000, China
| | - Xuewen Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Ruihao Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Yixiang He
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Huaibin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Wenji Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
175
|
Alnazza Alhamad A, Zeghoud S, Ben Amor I, Hemmami H. Chitosan-based hydrogels for wound healing: correspondence. Int J Surg 2023; 109:1821-1822. [PMID: 37076129 PMCID: PMC10389636 DOI: 10.1097/js9.0000000000000414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Affiliation(s)
- Ali Alnazza Alhamad
- Department of Chemistry, Faculty of Science, University of Aleppo, Aleppo, Syrian Arab Republic
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| |
Collapse
|
176
|
Yaşayan G, Nejati O, Ceylan AF, Karasu Ç, Kelicen Ugur P, Bal-Öztürk A, Zarepour A, Zarrabi A, Mostafavi E. Tackling chronic wound healing using nanomaterials: advancements, challenges, and future perspectives. APPLIED MATERIALS TODAY 2023; 32:101829. [DOI: 10.1016/j.apmt.2023.101829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
177
|
Drozdova M, Vodyakova M, Tolstova T, Chernogortseva M, Sazhnev N, Demina T, Aksenova N, Timashev P, Kildeeva N, Markvicheva E. Composite Hydrogels Based on Cross-Linked Chitosan and Low Molecular Weight Hyaluronic Acid for Tissue Engineering. Polymers (Basel) 2023; 15:polym15102371. [PMID: 37242945 DOI: 10.3390/polym15102371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The objectives of the study were as follows: (1) to develop two methods for the preparation of macroporous composite chitosan/hyaluronic acid (Ch/HA) hydrogels based on covalently cross-linked Ch and low molecular weight (Mw) HA (5 and 30 kDa); (2) to investigate some properties (swelling and in vitro degradation) and structures of the hydrogels; (3) to evaluate the hydrogels in vitro as potential biodegradable matrices for tissue engineering. Chitosan was cross-linked with either genipin (Gen) or glutaraldehyde (GA). Method 1 allowed the distribution of HA macromolecules within the hydrogel (bulk modification). In Method 2, hyaluronic acid formed a polyelectrolyte complex with Ch over the hydrogel surface (surface modification). By varying compositions of the Ch/HA hydrogels, highly porous interconnected structures (with mean pore sizes of 50-450 μm) were fabricated and studied using confocal laser scanning microscopy (CLSM). Mouse fibroblasts (L929) were cultured in the hydrogels for 7 days. Cell growth and proliferation within the hydrogel samples were studied via MTT-assay. The entrapment of low molecular weight HA was found to result in an enhancement of cell growth in the Ch/HA hydrogels compared to that in the Ch matrices. The Ch/HA hydrogels after bulk modification promoted better cell adhesion, growth and proliferation than the samples prepared by using Method 2 (surface modification).
Collapse
Affiliation(s)
- Maria Drozdova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Marina Vodyakova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Tatiana Tolstova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Marina Chernogortseva
- Department of Chemistry and Technology of Polymer Materials and Nanocomposites, The Kosygin Russian State University, 1 Malaya Kaluzhskaya Str., 119071 Moscow, Russia
| | - Nikita Sazhnev
- Department of Chemistry and Technology of Polymer Materials and Nanocomposites, The Kosygin Russian State University, 1 Malaya Kaluzhskaya Str., 119071 Moscow, Russia
| | - Tatiana Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Nadezhda Aksenova
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Nataliya Kildeeva
- Department of Chemistry and Technology of Polymer Materials and Nanocomposites, The Kosygin Russian State University, 1 Malaya Kaluzhskaya Str., 119071 Moscow, Russia
| | - Elena Markvicheva
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| |
Collapse
|
178
|
Mohite P, Shah SR, Singh S, Rajput T, Munde S, Ade N, Prajapati BG, Paliwal H, Mori DD, Dudhrejiya AV. Chitosan and chito-oligosaccharide: a versatile biopolymer with endless grafting possibilities for multifarious applications. Front Bioeng Biotechnol 2023; 11:1190879. [PMID: 37274159 PMCID: PMC10235636 DOI: 10.3389/fbioe.2023.1190879] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Chito-oligosaccharides (COS), derived from chitosan (CH), are attracting increasing attention as drug delivery carriers due to their biocompatibility, biodegradability, and mucoadhesive properties. Grafting, the process of chemically modifying CH/COS by adding side chains, has been used to improve their drug delivery performance by enhancing their stability, targeted delivery, and controlled release. In this review, we aim to provide an in-depth study on the recent advances in the grafting of CH/COS for multifarious applications. Moreover, the various strategies and techniques used for grafting, including chemical modification, enzymatic modification, and physical modification, are elaborated. The properties of grafted CH/COS, such as stability, solubility, and biocompatibility, were reported. Additionally, the review detailed the various applications of grafted CH/COS in drug delivery, including the delivery of small drug molecule, proteins, and RNA interference therapeutics. Furthermore, the effectiveness of grafted CH/COS in improving the pharmacokinetics and pharmacodynamics of drugs was included. Finally, the challenges and limitations associated with the use of grafted CH/COS for drug delivery and outline directions for future research are addressed. The insights provided in this review will be valuable for researchers and drug development professionals interested in the application of grafted CH/COS for multifarious applications.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Sunny R. Shah
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Tanavirsing Rajput
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Nitin Ade
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India
| | - Himanshu Paliwal
- Drug Delivery System Excellence Centre, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Dhaval D. Mori
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| | - Ashvin V. Dudhrejiya
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| |
Collapse
|
179
|
Xu X, Zeng Y, Chen Z, Yu Y, Wang H, Lu X, Zhao J, Wang S. Chitosan-based multifunctional hydrogel for sequential wound inflammation elimination, infection inhibition, and wound healing. Int J Biol Macromol 2023; 235:123847. [PMID: 36863672 DOI: 10.1016/j.ijbiomac.2023.123847] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
In this study, a composite hydrogel (QMPD hydrogel) composed of methacrylate anhydride (MA) grafted quaternary ammonium chitosan (QCS-MA), polyvinylpyrrolidone (PVP), and dopamine (DA) was designed for the sequential wound inflammation elimination, infection inhibition, and wound healing. The QMPD hydrogel formation was initiated by the ultraviolet light-triggered polymerization of QCS-MA. Furthermore, hydrogen bonds, electrostatic interactions, and "π-π" stacking between QCS-MA, PVP, and DA were involved in the hydrogel formation. In this hydrogel, the quaternary ammonium groups of quaternary ammonium chitosan and the photothermal conversion of polydopamine are capable of killing bacteria on wounds, which showed the bacteriostatic ratios of 85.6 % and 92.5 % toward Escherichia coli and Staphylococcus aureus, respectively. Moreover, the oxidation of DA sufficiently scavenged free radicals and introduced the QMPD hydrogel with good anti-oxidant and anti-inflammatory abilities. Together with the extracellular matrix-mimic tropical structure, the QMPD hydrogel significantly promoted the wound management of mice. Therefore, the QMPD hydrogel is expected to provide a new method for the design of wound healing dressings.
Collapse
Affiliation(s)
- Xia Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Yanbo Zeng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Zheng Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Yang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Haibin Wang
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai 200433, PR China
| | - Xuhua Lu
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Shanghai 200433, PR China.
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China.
| |
Collapse
|
180
|
Hu Y, Yu B, Jia Y, Lei M, Li Z, Liu H, Huang H, Xu F, Li J, Wei Z. Hyaluronate- and Gelatin-based Hydrogels Encapsulating Doxycycline as a Wound Dressing for Burn Injury Therapy. Acta Biomater 2023; 164:151-158. [PMID: 37088160 DOI: 10.1016/j.actbio.2023.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Infection is a critical challenge in burn wound therapy. Wound dressings with antibacterial and multifunctional abilities associated with rapid burn wound healing are urgently needed. Here, we developed a bioadhesive and injectable ECM-mimicking hydrogel dressing with antibacterial capacity for burn injury therapy, which is crosslinked by dynamic boronate ester bonds between modified hyaluronate and gelatin (HG). The antibiotic doxycycline (Doxy) was encapsulated in HG networks for drug delivery around the wound sites. The HG/Doxy hydrogel dressing shows biocompatibility and antibacterial activity against Gram-positive and Gram-negative bacteria. Applying to a rat model of burn wound, the HG/Doxy hydrogel significantly speeds up wound closure by reducing the inflammatory reaction. Furthermore, the HG/Doxy hydrogel accelerates the regeneration of the skin structure by promoting collagen deposition, blood vessel regeneration, and hair follicle formation, eventually shortening the healing periods of burn wounds. These findings demonstrated the clinical potential of the HG/Doxy hydrogels as a promising burn wound dressing.
Collapse
Affiliation(s)
- Yan Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Bangrui Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Meng Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhijie Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Haishui Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jing Li
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038, PR China.
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
181
|
Hu ZH, Ayixiemu YS, Qu Y, Xie JH, Yin LH. [Research advances on the role and mechanism of chitosan-based wound dressing in wound healing]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:386-390. [PMID: 37805744 DOI: 10.3760/cma.j.cn501225-20220506-00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
The skin is the first barrier to maintain the stability of internal environment of the body and resist harmful factors of external environment, and is easily damaged because of various external factors. When full-thickness skin defects reach a certain level, it is difficult for the skin to repair itself, so wound dressings are needed to promote wound healing. Seeking an ideal dressing that can promote wound healing has long been a hot research topic. Chitosan is a unique biopolysaccharide polymer with good biocompatibility, biodegradability, antibacterial activity, and thermal stability, which has great potential in the development and application of wound dressings. Based on the introduction of properties of chitosan, this article reviews the role and mechanism of chitosan-based wound dressings in wound healing, and summarizes the hemostatic effect, antibacterial effect, delivery effect, and tissue regeneration promotion effect of chitosan, aiming to provide a certain reference for the research and development of new chitosan-based wound dressings in the future.
Collapse
Affiliation(s)
- Z H Hu
- Department of Oral Implant, School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Yu Sufu Ayixiemu
- Department of Oral Implant, School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Y Qu
- Department of Oral Implant, School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - J H Xie
- Department of Oral Implant, School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - L H Yin
- Department of Oral Implant, School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
182
|
Michna A, Pomorska A, Ozcan O. Biocompatible Macroion/Growth Factor Assemblies for Medical Applications. Biomolecules 2023; 13:biom13040609. [PMID: 37189357 DOI: 10.3390/biom13040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Growth factors are a class of proteins that play a role in the proliferation (the increase in the number of cells resulting from cell division) and differentiation (when a cell undergoes changes in gene expression becoming a more specific type of cell) of cells. They can have both positive (accelerating the normal healing process) and negative effects (causing cancer) on disease progression and have potential applications in gene therapy and wound healing. However, their short half-life, low stability, and susceptibility to degradation by enzymes at body temperature make them easily degradable in vivo. To improve their effectiveness and stability, growth factors require carriers for delivery that protect them from heat, pH changes, and proteolysis. These carriers should also be able to deliver the growth factors to their intended destination. This review focuses on the current scientific literature concerning the physicochemical properties (such as biocompatibility, high affinity for binding growth factors, improved bioactivity and stability of the growth factors, protection from heat, pH changes or appropriate electric charge for growth factor attachment via electrostatic interactions) of macroions, growth factors, and macroion-growth factor assemblies, as well as their potential uses in medicine (e.g., diabetic wound healing, tissue regeneration, and cancer therapy). Specific attention is given to three types of growth factors: vascular endothelial growth factors, human fibroblast growth factors, and neurotrophins, as well as selected biocompatible synthetic macroions (obtained through standard polymerization techniques) and polysaccharides (natural macroions composed of repeating monomeric units of monosaccharides). Understanding the mechanisms by which growth factors bind to potential carriers could lead to more effective delivery methods for these proteins, which are of significant interest in the diagnosis and treatment of neurodegenerative and civilization diseases, as well as in the healing of chronic wounds.
Collapse
|
183
|
Dehghani N, Haghiralsadat F, Yazdian F, Sadeghian-Nodoushan F, Ghasemi N, Mazaheri F, Pourmadadi M, Naghib SM. Chitosan/silk fibroin/nitrogen-doped carbon quantum dot/α-tricalcium phosphate nanocomposite electrospinned as a scaffold for wound healing application: In vitro and in vivo studies. Int J Biol Macromol 2023; 238:124078. [PMID: 36944378 DOI: 10.1016/j.ijbiomac.2023.124078] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
A highly porous nanofibrous network that can functionalize antibacterial and therapeutic agents can be considered a suitable option for skin wound healing. In this study, α-tricalcium phosphate (α-TCP)/nitrogen-doped carbon quantum dots (N-CQDs) nanocomposite was synthesized and then applied to the fabrication of novel chitosan (CS)/silk fibroin (SF)/N-CQDs/α-TCP wound dressing via electrospinning system. The prepared nanomaterials were well characterized using X-ray diffraction, Fourier-transform infrared, scanning and transmission electron microscopes analyses, and antibacterial assay. Furthermore, nanofibers were evaluated regarding their physical properties, such as tensile behavior, water uptake capacity, and water contact angle. The results reveal that CS/SF/N-CQDs/α-TCP showed lower MIC values against E. coli and S. aureus (1.45 ± 0.26 mg/mL and 1.59 ± 0.12 mg/mL) compared to other synthesized materials. Also, in-vitro investigations were performed, and the MTT assay on the HFF cell line revealed that CS/SF/N-CQDs/α-TCP nanofiber could possess good biocompatibility. Interestingly, the scratch test proved that faster cell migration and proliferation occurred in the presence of CS/SF/N-CQDs/α-TCP (73 ± 3.12 %). Finally, we examined the wound healing ability of CS/SF/N-CQDs/α-TCP nanofiber using an animal model. The results confirmed that produced nanofiber could efficiently promote wound closure by 96.73 ± 1.25 % in 12 days. Histopathological analyses verified accelerated re-epithelization and well-structured epidermis in CS/SF/N-CQDs/α-TCP nanofiber-treated group. Based on our findings, the CS/SF/N-CQDs/α-TCP nanofiber with excellent antimicrobial properties is highly suitable for wound healing and skin tissue regeneration applications.
Collapse
Affiliation(s)
- Niloofar Dehghani
- Department of Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran; Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran; Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Fatemeh Haghiralsadat
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technology, Tehran, Iran.
| | - Fatemeh Sadeghian-Nodoushan
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasrin Ghasemi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Fahime Mazaheri
- Medical Nanotechnology and Tissue Engineering Research Centre, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Research and Clinical Center of Infertility, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, GC, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
184
|
Sukhodub L, Kumeda M, Sukhodub L, Bielai V, Lyndin M. Metal ions doping effect on the physicochemical, antimicrobial, and wound healing profiles of alginate-based composite. Carbohydr Polym 2023; 304:120486. [PMID: 36641185 DOI: 10.1016/j.carbpol.2022.120486] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The alginate (Alg) matrix with immobilized hydroxyapatite (HAp) and zinc oxide (ZnO), cross-linked by chitosan (CS) and metal ions (Men+) Ca2+, Zn2+, and Cu2+ was created as a wound dressing. The effect of Men+ and their concentrations on water vapor transition, fluid handling, dehydration, drug release, and healing are shown. Me-containing samples have a lower sorption capacity, than a commercial Kaltostat, however, a much lower degree of their dehydration provides a longer wound wet. The Men+ presence lowers the environmental pH to slightly acidic values promoting healing. Ca2+, Zn2+, and Cu2+ in complexes with CS increase antimicrobial effect against E. coli and S. aureus, slow down the Anaesthesine release, making it compatible with Fickian diffusion in the Zn2+ and Cu2+ presence, and non-Fickian transport under Ca2+ influence. The material promotes the proliferation of the fibroblasts, an increase of collagen fibres, and new arterial and venous capillaries, indicating the intensity of the healing process.
Collapse
|
185
|
Hu Z, Liu D, Wang M, Yu C, Han Z, Xu M, Yue W, Nie G. β-Alanine enhancing the crosslink of chitosan/poly-(γ-glutamic acid) hydrogel for a potential alkaline-adapted wound dressing. Int J Biol Macromol 2023; 231:123157. [PMID: 36649867 DOI: 10.1016/j.ijbiomac.2023.123157] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
Tiny crosslink in chitosan (CS)/poly-(γ-glutamic acid) (γ-PGA) hydrogel leads to some disadvantages including low mechanical strength and high swelling. To enhance the crosslink of CS/γ-PGA hydrogel, amino acid (AA) was introduced to remove the drawbacks. The results indicated that AA can dramatically increase the crosslink and mechanical properties of CS/γ-PGA hydrogel, and AA chain length and concentration have a drastic effect on them. Particularly, 0.5 % β-Alanine (β-Ala) decreased the hydrogel by 70 % in porosity, 52 % in water solubility, and 30 % in swelling, but increased by 2.2-fold in elastic modulus, 2.08-fold in stress, and 1.53-fold in water retention. The porosity of the hydrogel correlates positively with the elastic modulus but negatively with the crosslinking degree. The effect of pH on CS/β-Ala/γ-PGA hydrogel was investigated in the load and release of benzalkonium chlorides (BAC). β-Ala strengthened pH response of the hydrogel in BAC load and release. The loading capacity increased with pH value, and 0.5 % β-Ala increased the hydrogel by 1.25-fold in the release capacity in alkaline environment, suggesting a good buffering effect of β-Ala on pH variation to accelerate the transportation of BAC. CS/β-Ala/γ-PGA hydrogel will be competently applied as a potential material for wound dressing in alkaline environment.
Collapse
Affiliation(s)
- Ziwei Hu
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Dandan Liu
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Mengmeng Wang
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Chenrui Yu
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Zhenxing Han
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Maodong Xu
- School of chemical and environmental engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Wenjin Yue
- School of chemical and environmental engineering, Anhui Polytechnic University, 241000 Wuhu, China.
| | - Guangjun Nie
- College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China.
| |
Collapse
|
186
|
Cao Y, Cong H, Yu B, Shen Y. A review on the synthesis and development of alginate hydrogels for wound therapy. J Mater Chem B 2023; 11:2801-2829. [PMID: 36916313 DOI: 10.1039/d2tb02808e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Convenient and low-cost dressings can reduce the difficulty of wound treatment. Alginate gel dressings have the advantages of low cost and safe usage, and they have obvious potential for development in biomedical materials. Alginate gel dressings are currently a research area of great interest owing to their versatility, intelligent, and their application attempts in treating complex wounds. We present a detailed summary of the preparation of alginate hydrogels and a study of their performance improvement. Herein, we summarize the various applications of alginate hydrogels. The research focuses in this area mainly include designing multifunctional dressings for the treatment of various wounds and fabricating specialized dressings to assist physicians in the treatment of complex wounds (TOC). This review gives an outlook for future directions in the field of alginate hydrogel dressings. We hope to attract more research interest and studies in alginate hydrogel dressings, thus contributing to the creation of low-cost and highly effective wound treatment materials.
Collapse
Affiliation(s)
- Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.,School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
187
|
Bîrcă AC, Chircov C, Niculescu AG, Hildegard H, Baltă C, Roșu M, Mladin B, Gherasim O, Mihaiescu DE, Vasile BȘ, Grumezescu AM, Andronescu E, Hermenean AO. H2O2-PLA-(Alg)2Ca Hydrogel Enriched in Matrigel® Promotes Diabetic Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15030857. [PMID: 36986719 PMCID: PMC10057140 DOI: 10.3390/pharmaceutics15030857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Hydrogel-based dressings exhibit suitable features for successful wound healing, including flexibility, high water-vapor permeability and moisture retention, and exudate absorption capacity. Moreover, enriching the hydrogel matrix with additional therapeutic components has the potential to generate synergistic results. Thus, the present study centered on diabetic wound healing using a Matrigel-enriched alginate hydrogel embedded with polylactic acid (PLA) microspheres containing hydrogen peroxide (H2O2). The synthesis and physicochemical characterization of the samples, performed to evidence their compositional and microstructural features, swelling, and oxygen-entrapping capacity, were reported. For investigating the three-fold goal of the designed dressings (i.e., releasing oxygen at the wound site and maintaining a moist environment for faster healing, ensuring the absorption of a significant amount of exudate, and providing biocompatibility), in vivo biological tests on wounds of diabetic mice were approached. Evaluating multiple aspects during the healing process, the obtained composite material proved its efficiency for wound dressing applications by accelerating wound healing and promoting angiogenesis in diabetic skin injuries.
Collapse
Affiliation(s)
- Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Adelina Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Herman Hildegard
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Cornel Baltă
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Marcel Roșu
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Bianca Mladin
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Correspondence:
| | - Anca Oana Hermenean
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| |
Collapse
|
188
|
Hassan MA, Tamer TM, Omer AM, Baset WMA, Abbas E, Mohy-Eldin MS. Therapeutic potential of two formulated novel chitosan derivatives with prominent antimicrobial activities against virulent microorganisms and safe profiles toward fibroblast cells. Int J Pharm 2023; 634:122649. [PMID: 36709834 DOI: 10.1016/j.ijpharm.2023.122649] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
The development of new antimicrobial agents has been drawing considerable attention due to the extreme escalation of multi-drug resistant microorganisms. We thus sought to ameliorate the antimicrobial activities of the chitosan (Cs) biopolymer by coupling chitosan with cyclohexanone and 2-N-methyl pyrrolidone, synthesizing two novel Schiff bases (CsSB1 and CsSB2), respectively. FT-IR, TGA, DSC, SEM, and potentiometric titration were employed to characterize the formulated chitosan derivatives. The findings exposed that the degrees of deacetylation were 88.12% and 89.98% for CsSB1 and CsSB2, respectively. The antimicrobial capacities of CsSB1 and CsSB2 were substantially enhanced compared with prime chitosan. Furthermore, the CsSB1 and CsSB2 demonstrated minimum inhibitory concentrations (MIC) of 50 µg/ml in relation to all studied microorganisms, whereas chitosan revealed MIC value of 50 µg/ml only for E. coli. Furthermore, CsSB1 with a concentration of 250 µg/ml manifested the highest antibacterial activity against Gram-positive bacteria. Correspondingly, CsSB2 revealed a comparable trend of microbial hindrance with lower activities. Besides, the two derivatives could thwart the growth of Candida albicans (C. albicans). The cytotoxicity assay of the biomaterials accentuated their biocompatibility with fibroblasts. Collectively, the two formulated chitosan derivatives could competently rival the native chitosan, particularly for future applications in wound healing.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt.
| | - Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt.
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt
| | - Walid M A Baset
- National Organization for Drug Control and Research (NODCAR), 51 Wezaret El-Zeraa st., Dokki, Cairo, Egypt
| | - Eman Abbas
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt
| |
Collapse
|
189
|
Gupta AK, Vyas A. Use of chitosan wound dressing for the treatment of surgical site infection: a case report. J Wound Care 2023; 32:S4-S8. [PMID: 36930280 DOI: 10.12968/jowc.2023.32.sup3.s4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Surgical site infections (SSIs) are treated using topical antiseptics and systemic antibiotics, but some cases are unresponsive to such regimens. This case study reports the effective healing of an SSI by a chitosan wound dressing (MaxioCel; Axio Biosolutions Private Limited, India) in a 63-year-old female patient. The patient presented with an infected, hard-to-heal wound in the abdominal region, developed after a hernia surgery, and was initially treated with standard procedures. However, due to the continuous progression of infection, a highly absorbent, bioactive microfibre dressing was selected for the treatment and was continued for two months with alternate-day dressing changes. After 60 days of treatment, wound healing was observed, along with remission from the infection, as well as reduction in exudate level and pain. The use of chitosan wound dressing in management of hard-to-heal infected wounds provides efficient remission of SSI and a faster healing rate.
Collapse
Affiliation(s)
- Alok Kumar Gupta
- Minimal Access Surgery and General Surgery, Max Hospital, Gurugram, Haryana, India, 122001
| | | |
Collapse
|
190
|
Hassani MS, Salehi M, Ehterami A, Mahami S, Bitaraf FS, Rahmati M. Evaluation of collagen type I and III, TGF-β1, and VEGF gene expression in rat skin wound healing treated by Alginate/Chitosan hydrogel containing Crocetin. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
191
|
Guo F, Liu Y, Chen S, Lin Y, Yue Y. A Schiff base hydrogel dressing loading extracts from Periplaneta Americana for diabetic wound healing. Int J Biol Macromol 2023; 230:123256. [PMID: 36641022 DOI: 10.1016/j.ijbiomac.2023.123256] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
As a common complication of diabetic patients, the chronic wound of diabetes has a high incidence, expensive treatment, and recurrence probability, which causes long-term negative impacts on patients' daily life. In this study, the hydrogel was formed by Schiff base reaction between oxidized hyaluronic acid (OHA) and carboxymethyl chitosan (CMCS), and the composite hydrogel dressing was prepared by adding the active polypeptides extract of Periplaneta Americana (PAE). By mass spectrometer determined, PAE mainly includes vitellogenins that can trigger an immune response. The composite hydrogel has good swelling properties, proper fluidity, and a regular 3D network structure. The hydrogel has good cytocompatibility and can promote cell proliferation by L929 fibroblast assay. Finally, it was used to evaluate the effect of diabetic wound repair. The results showed that it could effectively promote wound healing, promote tissue and vascular regeneration, inhibit inflammatory factors, and promote the expression of growth factors. The OHA/CMCS/PAE hydrogels would be promising candidates for chronic wound healing applications.
Collapse
Affiliation(s)
- Fengbiao Guo
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Shengqin Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yukai Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yan Yue
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| |
Collapse
|
192
|
Li X, Jiang F, Duan Y, Li Q, Qu Y, Zhao S, Yue X, Huang C, Zhang C, Pan X. Chitosan electrospun nanofibers derived from Periplaneta americana residue for promoting infected wound healing. Int J Biol Macromol 2023; 229:654-667. [PMID: 36592849 DOI: 10.1016/j.ijbiomac.2022.12.272] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
Periplaneta americana has been used medicinally for years to treat a wide variety of skin lesions or ulcers. However, a sizable portion of the drug residues that are retained after extraction are routinely thrown away, thus posing a hazard to the environment and depleting resources. In this study, low molecular weight Periplaneta americana chitosan (LPCS) and high molecular weight Periplaneta americana chitosan (HPCS) were extracted from Periplaneta americana residue (PAR) based on the conventional acid-base method and two deacetylation methods. Moreover, the physicochemical properties and structural differences between the above two chitosan and commercial chitosan (CS) were compared using different methods. Next, two nanofibers comprising different ratios of Periplaneta americana chitosan (LPCS or HPCS), polyvinyl alcohol (PVA), and polyethylene oxide (PEO) were prepared and optimized. The above nanofibers exhibited excellent mechanical properties, antibacterial properties, and biocompatibility while facilitating wound healing in an infected rat whole-layer wound model by promoting wound closure, epithelialization, collagen deposition, and inflammation reduction. In brief, this study produced an effective and affordable wound dressing and offered a suggestion for the comprehensive utilization of Periplaneta americana residue.
Collapse
Affiliation(s)
- Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Fuchen Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yun Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Qing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Xuan Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Chi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| | - Xiaoli Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
193
|
Xu Y, Deng Z, Chen Y, Wu FF, Huang C, Hu Y. Preparation and characterization of mussel-inspired hydrogels based on methacrylated catechol-chitosan and dopamine methacrylamide. Int J Biol Macromol 2023; 229:443-451. [PMID: 36599382 DOI: 10.1016/j.ijbiomac.2022.12.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/02/2023]
Abstract
A novel mussel-inspired adhesive hydrogel with enhanced adhesion based on methacrylated catechol-chitosan (MCCS) and dopamine methacrylate (DMA) was prepared via photopolymerization. The structure and morphology of the MCCS/DMA adhesive hydrogel were investigated by using FTIR, NMR, XRD, TG, and SEM. The rheological and texture properties, swelling and degradation characteristics, as well as the adhesion mechanism of the hydrogels were also examined. These results revealed that the MCCS/DMA hydrogels have a dense double cross-linking network structure with porous internal microstructures, and exhibited controllable swelling and degradation properties, good thermostability, and stable rheological characteristics. Furthermore, the adhesive mechanism of MCCS/DMA hydrogel has been confirmed by the FTIR and 2D correlation FTIR spectroscopy. Additionally, the results of in vitro cytotoxicity assessment indicated that the resulting hydrogels have good cytocompatibility. Overall, the MCCS/DMA adhesive hydrogel may have potential applications in medical bioadhesives.
Collapse
Affiliation(s)
- Yuan Xu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Zhicheng Deng
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Fang Fang Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528458, PR China.
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528458, PR China.
| |
Collapse
|
194
|
Vesel A. Deposition of Chitosan on Plasma-Treated Polymers-A Review. Polymers (Basel) 2023; 15:1109. [PMID: 36904353 PMCID: PMC10007447 DOI: 10.3390/polym15051109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Materials for biomedical applications often need to be coated to enhance their performance, such as their biocompatibility, antibacterial, antioxidant, and anti-inflammatory properties, or to assist the regeneration process and influence cell adhesion. Among naturally available substances, chitosan meets the above criteria. Most synthetic polymer materials do not enable the immobilization of the chitosan film. Therefore, their surface should be altered to ensure the interaction between the surface functional groups and the amino or hydroxyl groups in the chitosan chain. Plasma treatment can provide an effective solution to this problem. This work aims to review plasma methods for surface modification of polymers for improved chitosan immobilization. The obtained surface finish is explained in view of the different mechanisms involved in treating polymers with reactive plasma species. The reviewed literature showed that researchers usually use two different approaches: direct immobilization of chitosan on the plasma-treated surface or indirect immobilization by additional chemistry and coupling agents, which are also reviewed. Although plasma treatment leads to remarkably improved surface wettability, this was not the case for chitosan-coated samples, where a wide range of wettability was reported ranging from almost superhydrophilic to hydrophobic, which may have a negative effect on the formation of chitosan-based hydrogels.
Collapse
Affiliation(s)
- Alenka Vesel
- Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
195
|
Chitosan Based Materials in Cosmetic Applications: A Review. Molecules 2023; 28:molecules28041817. [PMID: 36838805 PMCID: PMC9959028 DOI: 10.3390/molecules28041817] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
This review provides a report on the properties and recent advances in the application of chitosan and chitosan-based materials in cosmetics. Chitosan is a polysaccharide that can be obtained from chitin via the deacetylation process. Chitin most commonly is extracted from cell walls in fungi and the exoskeletons of arthropods, such as crustaceans and insects. Chitosan has attracted significant academic interest, as well as the attention of the cosmetic industry, due to its interesting properties, which include being a natural humectant and moisturizer for the skin and a rheology modifier. This review paper covers the structure of chitosan, the sources of chitosan used in the cosmetic industry, and the role played by this polysaccharide in cosmetics. Future aspects regarding applications of chitosan-based materials in cosmetics are also mentioned.
Collapse
|
196
|
Das P, Manna S, Roy S, Nandi SK, Basak P. Polymeric biomaterials-based tissue engineering for wound healing: a systemic review. BURNS & TRAUMA 2023; 11:tkac058. [PMID: 36761088 PMCID: PMC9904183 DOI: 10.1093/burnst/tkac058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/04/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Background Biomaterials are vital products used in clinical sectors as alternatives to several biological macromolecules for tissue engineering techniques owing to their numerous beneficial properties, including wound healing. The healing pattern generally depends upon the type of wounds, and restoration of the skin on damaged areas is greatly dependent on the depth and severity of the injury. The rate of wound healing relies on the type of biomaterials being incorporated for the fabrication of skin substitutes and their stability in in vivo conditions. In this review, a systematic literature search was performed on several databases to identify the most frequently used biomaterials for the development of successful wound healing agents against skin damage, along with their mechanisms of action. Method The relevant research articles of the last 5 years were identified, analysed and reviewed in this paper. The meta-analysis was carried out using PRISMA and the search was conducted in major scientific databases. The research of the most recent 5 years, from 2017-2021 was taken into consideration. The collected research papers were inspected thoroughly for further analysis. Recent advances in the utilization of natural and synthetic biomaterials (alone/in combination) to speed up the regeneration rate of injured cells in skin wounds were summarised. Finally, 23 papers were critically reviewed and discussed. Results In total, 2022 scholarly articles were retrieved from databases utilizing the aforementioned input methods. After eliminating duplicates and articles published before 2017, ~520 articles remained that were relevant to the topic at hand (biomaterials for wound healing) and could be evaluated for quality. Following different procedures, 23 publications were selected as best fitting for data extraction. Preferred Reporting Items for Systematic Reviews and Meta-Analyses for this review illustrates the selection criteria, such as exclusion and inclusion parameters. The 23 recent publications pointed to the use of both natural and synthetic polymers in wound healing applications. Information related to wound type and the mechanism of action has also been reviewed carefully. The selected publication showed that composites of natural and synthetic polymers were used extensively for both surgical and burn wounds. Extensive research revealed the effects of polymer-based biomaterials in wound healing and their recent advancement. Conclusions The effects of biomaterials in wound healing are critically examined in this review. Different biomaterials have been tried to speed up the healing process, however, their success varies with the severity of the wound. However, some of the biomaterials raise questions when applied on a wide scale because of their scarcity, high transportation costs and processing challenges. Therefore, even if a biomaterial has good wound healing qualities, it may be technically unsuitable for use in actual medical scenarios. All of these restrictions have been examined closely in this review.
Collapse
Affiliation(s)
- Pratik Das
- School of Bioscience and Engineering, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata 700032, West Bengal, India
| | | | | | - Samit K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata 700037, West Bengal, India
| | | |
Collapse
|
197
|
Yang J, Wang S. Polysaccharide-Based Multifunctional Hydrogel Bio-Adhesives for Wound Healing: A Review. Gels 2023; 9:138. [PMID: 36826308 PMCID: PMC9957293 DOI: 10.3390/gels9020138] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Wound healing is a long-term and complex biological process that involves multiple hemostasis, inflammation, proliferation, and remodeling stages. In order to realize comprehensive and systematic wound management, appropriate wound treatment bio-adhesives are urgently needed. Hydrogel bio-adhesives have excellent properties and show unique and remarkable advantages in the field of wound management. This review begins with a detailed description of the design criteria and functionalities of ideal hydrogel bio-adhesives for wound healing. Then, recent advances in polysaccharide-based multifunctional hydrogel bio-adhesives, which involve chitosan, hyaluronic acid, alginate, cellulose, dextran, konjac glucomannan, chondroitin sulfate, and other polysaccharides, are comprehensively discussed. Finally, the current challenges and future research directions of polysaccharide-based hydrogel bio-adhesives for wound healing are proposed to stimulate further exploration by researchers.
Collapse
Affiliation(s)
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
198
|
Brites A, Ferreira M, Bom S, Grenho L, Claudio R, Gomes PS, Fernandes MH, Marto J, Santos C. Fabrication of antibacterial and biocompatible 3D printed Manuka-Gelatin based patch for wound healing applications. Int J Pharm 2023; 632:122541. [PMID: 36566824 DOI: 10.1016/j.ijpharm.2022.122541] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Development of multifunctional 3D patches with appropriate antibacterial and biocompatible properties is needed to deal with wound care regeneration. Combining gelatin-based hydrogel with a well-known natural antibacterial honey (Manuka honey, MH) in a 3D patch can provide improved printability and at the same time provide favourable biological effects that may be useful in regenerative wound treatment. In this study, an antibacterial Manuka-Gelatin 3D patches was developed by an extrusion-based printing process, with controlled porosity, high shape fidelity, and structural stability. It was demonstrated the antibacterial activity of Manuka-Gelatin 3D patches against both gram-positive bacteria (S. epidermidis and S. aureus) and gram-negative (E. coli), common in wound infection. The 3D Manuka-Gelatin base patches demonstrated antibacterial activity, and moreover enhanced the proliferation of human dermal fibroblasts and human epidermal keratinocytes, and promotion of angiogenesis. Moreover, the ease of printing achieved by the addition of honey, coupled with the interesting biological response obtained, makes this 3D patch a good candidate for wound healing applications.
Collapse
Affiliation(s)
- Ana Brites
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049 001 Lisboa, Portugal
| | - Marta Ferreira
- ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal
| | - Sara Bom
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal
| | - Liliana Grenho
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Ricardo Claudio
- ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal; IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro S Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Maria H Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal.
| | - Catarina Santos
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049 001 Lisboa, Portugal; ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal.
| |
Collapse
|
199
|
Preparation of tetracycline hydrochloride loaded chitosan/silk fibroin/ZnO antibacterial biocomposite hydrogel sponges for wound healing application. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
200
|
Kong B, Liu R, Cheng Y, Cai X, Liu J, Zhang D, Tan H, Zhao Y. Natural biopolymers derived hydrogels with injectable, self-healing, and tissue adhesive abilities for wound healing. NANO RESEARCH 2023; 16:2798-2807. [DOI: 10.1007/s12274-022-4936-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/06/2025]
|