151
|
Gäumann P, Cartagenova D, Ranocchiari M. Phosphine‐Functionalized Porous Materials for Catalytic Organic Synthesis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Patrick Gäumann
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institut Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - Daniele Cartagenova
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institut Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institut Forschungsstrasse 111 5232 Villigen PSI Switzerland
- Energy System Integration Paul Scherrer Institut Forschungsstrasse 111 5232 Villigen PSI Switzerland
| |
Collapse
|
152
|
Bai M. G M, Nipate AB, Rao MR. Selectively sensing amines through aldehyde-functional conjugated microporous organic polymers via Pd-catalyzed direct arylation. Polym J 2022. [DOI: 10.1038/s41428-022-00736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
153
|
Recent advances in covalent organic frameworks-based heterogeneous catalysts for high-efficiency chemical transformation of carbon dioxide. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
154
|
Saad MA, Sakr MAS, Saroka VA, Abdelsalam H. Chemically modified covalent organic frameworks for a healthy and sustainable environment: First-principles study. CHEMOSPHERE 2022; 308:136581. [PMID: 36162514 DOI: 10.1016/j.chemosphere.2022.136581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Pure water is a key element for a sustainable and healthy environment of human inhabitation. Since major sources of water contamination are industrially generated heavy metal cations there is great demand for efficient methods of their treatment. Here, using density functional theory, we investigate the covalent organic framework's electronic and optical properties and their interaction with the most dangerous heavy metal pollutants, namely Hg+2, Pb+2, and Cd+2. We consider biphenyl boroxine covalent organic frameworks before and after chemical modification with CN, COOH, NH2, and NO2 groups. In addition to the molecular geometries, such parameters as the dipole moment, chemical potential, electronegativity, chemical hardness, and binding energy are calculated. It is found that CN, COOH, and NO2 functional groups are favorable for intermolecular bonding with harmful transition metals. The functionalization with the mentioned groups reduces the band gap of the pristine covalent organic frameworks and increases their reactivity. As a result, strong complexes with Cd+2, Hg+2, and Pb+2 can form, which, as follows from our calculations, can be detected by the red shift in their optical absorption spectra.
Collapse
Affiliation(s)
- Mohamed A Saad
- Center of Basic Science (CBS), Misr University of Science and Technology (MUST), 6th October City, Egypt.
| | - Mahmoud A S Sakr
- Center of Basic Science (CBS), Misr University of Science and Technology (MUST), 6th October City, Egypt.
| | - Vasil A Saroka
- TBpack Ltd., 27 Old Gloucester Street, London, WC1N 3AX, United Kingdom; Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11, 220030, Minsk, Belarus
| | - Hazem Abdelsalam
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China; Theoretical Physics Department, National Research Centre, El-Buhouth Str., 12622, Dokki, Giza, Egypt
| |
Collapse
|
155
|
Chahra BOUCHAMENI, Ouahida ZEGHOUAN, Mahesha, Udaya Kumar A, Chahrazed BEGHIDJA, Richard WELTER, Lokanath N. Design and Structural Analysis of Centrosymmetric and Non-centrosymmetric Zn(II) complexes by the host-guest complexation method. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
156
|
Van Emelen L, Lemmens V, Marquez C, Van Minnebruggen S, Usoltsev OA, Bugaev AL, Janssens K, Cheung KY, Van Velthoven N, De Vos DE. Cu-α-diimine Compounds Encapsulated in Porous Materials as Catalysts for Electrophilic Amination of Aromatic C-H Bonds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51867-51880. [PMID: 36349551 DOI: 10.1021/acsami.2c13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrophilic amination has emerged as a more environmentally benign approach to construct arene C-N bonds. However, heterogeneous catalysts remain largely unexplored in this area, even though their use could facilitate product purification and catalyst recovery. Here we investigate strategies to heterogenize a Cu(2,2'-bipyridine) catalyst for the amination of arenes lacking a directing group with hydroxylamine-O-sulfonic acid (HOSA). Besides immobilization of Cu on a metal-organic framework (MOF) or covalent organic framework (COF) with embedded 2,2'-bipyridines, a ship-in-a-bottle approach was followed in which the Cu complex is encapsulated in the pores of a zeolite. Recyclability and hot centrifugation tests show that zeolite Beta-entrapped CuII(2,2'-bipyridine) is superior in terms of stability. With N-methylmorpholine as a weakly coordinating, weak base, simple arenes, such as mesitylene, could be aminated with yields up to 59%, corresponding to a catalyst TON of 24. The zeolite could be used in three consecutive runs without a decrease in activity. Characterization of the catalyst by EPR and XAS showed that the active catalytic complex consisted of a site-isolated CuII species with one 2,2'-bipyridine ligand.
Collapse
Affiliation(s)
- Lisa Van Emelen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Vincent Lemmens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Carlos Marquez
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Sam Van Minnebruggen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Oleg A Usoltsev
- The Smart Materials Research Institute at the Southern Federal University, Sladkova 178/24, Rostov-on-Don 344090, Russia
| | - Aram L Bugaev
- The Smart Materials Research Institute at the Southern Federal University, Sladkova 178/24, Rostov-on-Don 344090, Russia
| | - Kwinten Janssens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Ka Yan Cheung
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Niels Van Velthoven
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| | - Dirk E De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F Post Box 2454, Leuven 3001, Belgium
| |
Collapse
|
157
|
Liu Z, Xu M, Zhang W, Miao X, Wang PG, Li S, Yang S. Recent development in hydrophilic interaction liquid chromatography stationary materials for glycopeptide analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4437-4448. [PMID: 36300821 DOI: 10.1039/d2ay01369j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein glycosylation is one of the most important post-translational modifications, and aberrant glycosylation is associated with the occurrence and development of diseases. Deciphering abnormal glycosylation changes can identify disease-specific signatures to facilitate the discovery of potential disease biomarkers. However, glycosylation analysis is challenging due to the diversity of glycans, heterogeneity of glycosites, and poor electrospray ionization of mass spectrometry. To overcome these obstacles, glycosylation is often elucidated using enriched glycopeptides by removing highly abundant non-glycopeptides. Hydrophilic interaction liquid chromatography (HILIC) is widely used for glycopeptide enrichment due to its excellent selectivity and specificity to hydrophilic glycans and compatibility with mass spectrometry. However, the development of HILIC has lagged far behind hydrophobic interaction chromatography, so efforts to further improve the performance of HILIC are beneficial for glycosylation analysis. This review discusses recent developments in HILIC materials and their advanced applications. Based on the physiochemical properties of glycopeptides, the use of amino acids or peptides as stationary phases showed improved enrichment and separation of glycopeptides. We can envision that the use of glycopeptides as stationary phases would definitely further improve the selectivity and specificity of HILIC for glycosylation analysis.
Collapse
Affiliation(s)
- Zhaoliang Liu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
| | - Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
| | - Wenqi Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China.
| | - Xinyu Miao
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China.
| | - Perry G Wang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Shuwei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China.
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
| |
Collapse
|
158
|
Luo B, Zhang Y, An P, Lan F, Wu Y. Covalent organic framework nanosheet anchored with highly dispersed Au nanoparticles as a novel nanoprobe for DNA methylation detection. J Colloid Interface Sci 2022; 626:241-250. [DOI: 10.1016/j.jcis.2022.06.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 10/31/2022]
|
159
|
Guo Z, Wu H, Chen Y, Zhu S, Jiang H, Song S, Ren Y, Wang Y, Liang X, He G, Li Y, Jiang Z. Missing‐linker Defects in Covalent Organic Framework Membranes for Efficient CO
2
Separation. Angew Chem Int Ed Engl 2022; 61:e202210466. [DOI: 10.1002/anie.202210466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Zheyuan Guo
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin 300072 China
| | - Yu Chen
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- School of Environmental Science and Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Shiyi Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Haifei Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Shuqing Song
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Yuhan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Xu Liang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Guangwei He
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Yonghong Li
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Chemistry and Chemical Engineering Guangdong Laboratory School of Chemical Engineering and Technology Tianjin University Shantou 515031 China
| |
Collapse
|
160
|
Li E, Zhu W, Fang S, Jie K, Huang F. Reimplementing Guest Shape Sorting of Nonporous Adaptive Crystals via Substituent‐Size‐Dependent Solid‐Vapor Postsynthetic Modification. Angew Chem Int Ed Engl 2022; 61:e202211780. [DOI: 10.1002/anie.202211780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Errui Li
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Weijie Zhu
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Shuai Fang
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Kecheng Jie
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| |
Collapse
|
161
|
Su Y, Li B, Xu H, Lu C, Wang S, Chen B, Wang Z, Wang W, Otake KI, Kitagawa S, Huang L, Gu C. Multi-Component Synthesis of a Buta-1,3-diene-Linked Covalent Organic Framework. J Am Chem Soc 2022; 144:18218-18222. [PMID: 36069433 DOI: 10.1021/jacs.2c05701] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a multi-component synthetic strategy on a two-dimensional crystalline covalent organic framework (COF) by connecting acetonitrile with aromatic aldehyde and acetaldehyde moieties to form an unprecedented cyano-substituted buta-1,3-diene linkage. Different from most of the COFs that were crystallized from the condensations from two components, the presented COF is generated from two competitive and reversible reactions among three moieties. The buta-1,3-diene COF exhibits remarkable photoactivity with a low exciton binding energy of 44.4 ± 1.5 meV for promoted charge separation, which enables the buta-1,3-diene-linked COF as an efficient photocatalyst for various aerobic oxidation reactions under visible light. Our multi-component synthesis strategy may provide new sights for synthesizing COFs with structural diversity and functional variability that are hard to achieve by traditional COF synthesis.
Collapse
Affiliation(s)
- Yan Su
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Bo Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Chuangye Lu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shengdong Wang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Bin Chen
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zaoming Wang
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Weitao Wang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Cheng Gu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
162
|
Zheng Y, Han X, Cheng P, Jia X, Xu J, Bu XH. Induction of Chiral Hybrid Metal Halides from Achiral Building Blocks. J Am Chem Soc 2022; 144:16471-16479. [PMID: 36063390 DOI: 10.1021/jacs.2c05063] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chiral hybrid organic-inorganic metal halides (HOMHs) with intrinsic noncentrosymmetry have shown great promise for broad applications in chiroptoelectronics, spintronics, and ferroelectronics. However, the construction strategies for chiral HOMHs often involve chiral building blocks in their frameworks, which greatly limit their chemical diversity. Here, we take advantage of a chiral induction approach and have successfully constructed a series of chiral HOMHs, DMA4MX7 (DMA = dimethylammonium, M = Sb or Bi, X = Cl or Br), based on achiral precursors. The resulting chiral products demonstrate a clear enantioenrichment, as confirmed by single-crystal X-ray diffraction analysis and solid-state circular dichroism (CD) spectroscopy. The induction of chiral HOMHs enables superior nonlinear optical performances with very high thermal stability and laser resistance. The successful employment of such a chiral induction approach might facilitate the construction of libraries of chiral HOMH crystals from diverse achiral precursors, in particular those into which it is not easy to introduce intrinsic chiral centers, and would thus pave a new way for rational preparation and application of chiral HOMH materials.
Collapse
Affiliation(s)
- Yongshen Zheng
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| | - Xiao Han
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| | - Puxin Cheng
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| | - Xiaodi Jia
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| |
Collapse
|
163
|
Bai MMG, Bramhaiah K, Bhattacharyya S, Rao RM. Acid‐Modulated Synthesis of Novel π‐Conjugated Microporous Polymers for Efficient Metal‐Free Photocatalytic Hydrogen Evolution. Chemistry 2022; 28:e202202023. [DOI: 10.1002/chem.202202023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Monika M. G. Bai
- Department of Chemistry IIT Dharwad Dharwad Karnataka 580011 India
| | - K. Bramhaiah
- Department of Chemical Sciences IISER Berhampur Transit Campus (Govt. ITI Building) Engg. School Road Berhampur Odisha 760010 India
| | - Santanu Bhattacharyya
- Department of Chemical Sciences IISER Berhampur Transit Campus (Govt. ITI Building) Engg. School Road Berhampur Odisha 760010 India
| | - Rajeswara M. Rao
- Department of Chemistry IIT Dharwad Dharwad Karnataka 580011 India
| |
Collapse
|
164
|
Superhydrophobic covalent organic frameworks prepared via nucleophilic substitution reaction for effective oil/water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
165
|
Wang B, He D, Zhu D, Lu Y, Li C, Li X, Dong S, Lyu C. Electron-rich ketone-based covalent organic frameworks supported nickel oxyhydroxide for highly efficient peroxymonosulfate activation and sulfadiazine removal: Performance and multi-path reaction mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
166
|
Li E, Zhu W, Fang S, Jie K, Huang F. Reimplementing Guest Shape Sorting of Nonporous Adaptive Crystals via Substituent‐Size‐Dependent Solid‐Vapor Postsynthetic Modification. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Errui Li
- Zhejiang University Department of Chemistry CHINA
| | - Weijie Zhu
- Zhejiang University Department of Chemistry CHINA
| | - Shuai Fang
- Zhejiang University Department of Chemistry CHINA
| | - Kecheng Jie
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Feihe Huang
- Zhejiang University Department of Chemistry Faculty of Sciences 310027 Hangzhou CHINA
| |
Collapse
|
167
|
Guo Z, Wu H, Chen Y, Zhu S, Jiang H, Song S, Ren Y, Wang Y, Liang X, He G, Li Y, Jiang Z. Missing‐linker Defects in Covalent Organic Framework Membranes for Efficient CO2 Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zheyuan Guo
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Hong Wu
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Yu Chen
- Tianjin University School of Environmental Science and Engineering CHINA
| | - Shiyi Zhu
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Haifei Jiang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Shuqing Song
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Yanxiong Ren
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Yuhan Wang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Xu Liang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Guangwei He
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Yonghong Li
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Zhongyi Jiang
- Tianjin University School of Chemical Engineering and Technology Weijin Road 300072 Tianjin CHINA
| |
Collapse
|
168
|
Huang S, Chen G, Ouyang G. Confining enzymes in porous organic frameworks: from synthetic strategy and characterization to healthcare applications. Chem Soc Rev 2022; 51:6824-6863. [PMID: 35852480 DOI: 10.1039/d1cs01011e] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Enzymes are a class of natural catalysts with high efficiency, specificity, and selectivity unmatched by their synthetic counterparts and dictate a myriad of reactions that constitute various cascades in living cells. The development of suitable supports is significant for the immobilization of structurally flexible enzymes, enabling biomimetic transformation in the extracellular environment. Accordingly, porous organic frameworks, including metal organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), have emerged as ideal supports for the immobilization of enzymes because of their structural features including ultrahigh surface area, tailorable porosity, and versatile framework compositions. Specially, organic framework-encased enzymes have shown significant enhancement in stability and reusability, and their tailorable pore opening provides a gatekeeper-like effect for guest sieving, which is beneficial for mimicking intracellular biocatalysis processes. This immobilization technique brings new insight into the development of next-generation enzyme materials and shows huge potential in healthcare applications, such as biomarker diagnosis, biostorage, and cancer and antibacterial therapies. In this review, we describe the state-of-the-art strategies for the structural immobilization of enzymes using the well-explored MOFs and burgeoning COFs and HOFs as scaffolds, with special emphasis on how these porous framework-confined technologies can provide a favorable microenvironment for mimicking natural biocatalysis. Subsequently, advanced characterization techniques for enzyme conformation, the effect of the confined microenvironment on the activity of enzymes, and the emerging healthcare applications will be surveyed.
Collapse
Affiliation(s)
- Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
169
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
170
|
Nguyen HL, Gropp C, Hanikel N, Möckel A, Lund A, Yaghi OM. Hydrazine-Hydrazide-Linked Covalent Organic Frameworks for Water Harvesting. ACS CENTRAL SCIENCE 2022; 8:926-932. [PMID: 35912353 PMCID: PMC9336147 DOI: 10.1021/acscentsci.2c00398] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report a postsynthetic strategy and its implementation to make covalent organic frameworks (COFs) with irreversible hydrazide linkages. This involved the synthesis of three 2D and 3D hydrazine-linked frameworks and their partial oxidation. The linkage synthesis and functional group transformation-hydrazine and hydrazide-were evidenced by 15N multi-CP-MAS NMR. In addition, the isothermal water uptake profiles of these frameworks were studied, leading to the discovery of one hydrazine-hydrazide-linked COF suitable for water harvesting from air in arid conditions. This COF displayed characteristic S-shaped water sorption profiles, a steep pore-filling step below 18% relative humidity at 25 °C, and a total uptake capacity of 0.45 g g-1. We found that even small changes made on the molecular level can lead to major differences in the water isotherm profiles, therefore pointing to the utility of water sorption analysis as a complementary analytical tool to study linkage transformations.
Collapse
Affiliation(s)
- Ha L. Nguyen
- Department
of Chemistry, University of California−Berkeley,
Kavli Energy Nanoscience Institute at UC Berkeley; and Berkeley Global
Science Institute, Berkeley, California 94720, United States
- Joint
UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Cornelius Gropp
- Department
of Chemistry, University of California−Berkeley,
Kavli Energy Nanoscience Institute at UC Berkeley; and Berkeley Global
Science Institute, Berkeley, California 94720, United States
| | - Nikita Hanikel
- Department
of Chemistry, University of California−Berkeley,
Kavli Energy Nanoscience Institute at UC Berkeley; and Berkeley Global
Science Institute, Berkeley, California 94720, United States
| | - Anna Möckel
- Department
of Chemistry, University of California−Berkeley,
Kavli Energy Nanoscience Institute at UC Berkeley; and Berkeley Global
Science Institute, Berkeley, California 94720, United States
| | - Alicia Lund
- Department
of Chemistry, University of California−Berkeley, Berkeley, California 94720, United States
| | - Omar M. Yaghi
- Department
of Chemistry, University of California−Berkeley,
Kavli Energy Nanoscience Institute at UC Berkeley; and Berkeley Global
Science Institute, Berkeley, California 94720, United States
- Joint
UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
171
|
Wu D, Han D, Zhou Y, Zhang Z, Qian H, Zhou Q, Zhang Y, Khodakov AY, Ordomsky VV. Synthesis of stack plate covalent organic framework nanotubes using a self-assembled acid as a soft template. Chem Commun (Camb) 2022; 58:9148-9151. [PMID: 35894235 DOI: 10.1039/d2cc01735k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
COF-LZU1 with nanotube-like morphology has been synthesized with high crystallinity and pore volume in the presence of trimesic acid as a template. The as-synthesized COF nanotubes consist of a stack of plates with a diameter of about 100 nm with a hollow channel inside of about 20 nm.
Collapse
Affiliation(s)
- Dan Wu
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. .,School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Dandan Han
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Yong Zhou
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Zhen Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Hang Qian
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Qian Zhou
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Yongsheng Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Andrei Y Khodakov
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Vitaly V Ordomsky
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| |
Collapse
|
172
|
Yue JY, Song LP, Ding XL, Wang YT, Yang P, Ma Y, Tang B. Ratiometric Fluorescent pH Sensor Based on a Tunable Multivariate Covalent Organic Framework. Anal Chem 2022; 94:11062-11069. [PMID: 35880804 DOI: 10.1021/acs.analchem.2c01999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ratiometric detection of pH is always significant in environmental regulation, medical diagnosis, synthetic chemistry, and beyond. The construction of practical ratiometric pH sensors with reusability is still challenging. Herein, by exploiting a multivariate strategy, we first synthesized and reported a series of novel three-component covalent organic frameworks (COF-COOHX, X = 33, 50, and 67) through Schiff base reaction between 2-hydroxybenzene-1,3,5-tricarbaldehyde (HTA), 4,4'-diamino-3,3'-biphenyldicarboxylic acid (DBA), and 5,5'-diamino-2,2'-bipyridine (BPY) at various molar ratios (X = [DBA]/([BPY] + [DBA]) × 100 = 33, 50, and 67). COF-COOHX (X = 33, 50, and 67) displayed ratiometric pH sensing performance in acidic conditions with selectivity and repeatability. By tuning the molar ratio of DBA and BPY, the fluorescent properties, linear pH responsive ranges, and pKa values of COF-COOHX (X = 33, 50, and 67) can be regulated. Meanwhile, the two-component COF-COOH0 and COF-COOH100 did not exhibit ratiometric pH detection ability. Moreover, the constructed three ratiometric sensors can be applied to detect pH in drug solutions and carbonated drinks with satisfactory results. This work sheds new light on the design and fabrication of innovative ratiometric fluorescent sensors using COFs.
Collapse
Affiliation(s)
- Jie-Yu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Li-Ping Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Xiu-Li Ding
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Yu-Tong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| |
Collapse
|
173
|
Saghanezhad SJ, Vaccaro L, Zarei Ahmady A, Farsi R. Phosphotungstic acid-supported melamine–terephthalaldehyde covalent organic framework as a novel and reusable nanostructured catalyst in three-component synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
174
|
Facile synthesis of amine-substituted cyclosiloxanes via a photocatalytic thiol-ene reaction to generate ketoenamine-linked hybrid networks. Polym J 2022. [DOI: 10.1038/s41428-022-00678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
175
|
Selective Detection of Nucleotides in Infant Formula Using an N-Rich Covalent Triazine Porous Polymer. NANOMATERIALS 2022; 12:nano12132213. [PMID: 35808047 PMCID: PMC9268561 DOI: 10.3390/nano12132213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023]
Abstract
The aromatic structure and the rich nitrogen content of polymers based on covalent triazine-based frameworks (CTF) and their unique hydrophilic-lipophilic-balanced adsorption properties make them promising candidates for an adsorbent that can be used for sample pretreatment. Herein, a new covalent triazine-based framework (CTF-DBF) synthesized by a Friedel−Crafts reaction was used for the determination of the content of nucleotides in commercial infant formula. It was shown that the synthetic materials had an amorphous microporous structure, a BET surface area of up to 595.59 m2/g, and 0.39 nm and 0.54 nm micropores. The versatile adsorption properties of this material were evaluated by quantum chemistry theory calculations and batch adsorption experiments using five nucleotides as probes. The quantum chemistry results demonstrated that CTF-DBF can participate in multiple interactions with nucleotides. All the analyses performed present good linearity with R2 > 0.9993. The detection limits of targets ranged from 0.3 to 0.5 mg/kg, the spiked recoveries were between 85.8 and 105.3% and the relative standard deviations (RSD, n = 6) were between 1.1 and 4.5%. All these results suggest that this versatile CTF-DBF has great potential for sample pretreatment.
Collapse
|
176
|
Xu N, Diao Y, Xu Z, Ke H, Zhu X. Covalent Triazine Frameworks Embedded with Ir Complexes for Enhanced Photocatalytic Hydrogen Evolution. ACS APPLIED ENERGY MATERIALS 2022; 5:7473-7478. [DOI: 10.1021/acsaem.2c00977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Nanfeng Xu
- Faculty of Materials Science & Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon, Hong Kong 000000, P. R. China
| | - Yingxue Diao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 000000, P. R. China
| | - Zhengtao Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 000000, P. R. China
| | - Hanzhong Ke
- Faculty of Materials Science & Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
| | - Xunjin Zhu
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon, Hong Kong 000000, P. R. China
| |
Collapse
|
177
|
Electrochemical (Bio)Sensors Based on Covalent Organic Frameworks (COFs). SENSORS 2022; 22:s22134758. [PMID: 35808255 PMCID: PMC9268951 DOI: 10.3390/s22134758] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023]
Abstract
Covalent organic frameworks (COFs) are defined as crystalline organic polymers with programmable topological architectures using properly predesigned building blocks precursors. Since the development of the first COF in 2005, many works are emerging using this kind of material for different applications, such as the development of electrochemical sensors and biosensors. COF shows superb characteristics, such as tuneable pore size and structure, permanent porosity, high surface area, thermal stability, and low density. Apart from these special properties, COF’s electrochemical behaviour can be modulated using electroactive building blocks. Furthermore, the great variety of functional groups that can be inserted in their structures makes them interesting materials to be conjugated with biological recognition elements, such as antibodies, enzymes, DNA probe, aptamer, etc. Moreover, the possibility of linking them with other special nanomaterials opens a wide range of possibilities to develop new electrochemical sensors and biosensors.
Collapse
|
178
|
Pasricha S, Chaudhary A, Srivastava A. Evolving Trends for C−C Bond Formation Using Functionalized Covalent Organic Frameworks as Heterogeneous Catalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202200576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sharda Pasricha
- Department of Chemistry Sri Venkateswara College University of Delhi India
| | - Ankita Chaudhary
- Department of Chemistry Maitreyi College, Bapu New Delhi 110021 India
| | - Abhay Srivastava
- Abhay Srivastava Material Research Centre Indian Institute of Science, Bangalore India
| |
Collapse
|
179
|
Guo J, Liu J, Cui Y, Liu C, Wang Y, Wang M, Huang D, Chen G, Wang W, Xia D, Fang X. Timing matters: pre-assembly versus post-assembly functionalization of a polyoxovanadate-organic cuboid. Chem Sci 2022; 13:5718-5725. [PMID: 35694331 PMCID: PMC9116283 DOI: 10.1039/d2sc00533f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
The pre-assembly and post-assembly approaches in the functionalization of a polyoxovanadate-organic cuboid, [{V6S}8(QPTC)8{V3}2]10-, are discussed. We have shown that the two pathways have led to distinctly different systems, with either an expanded or contracted interior void space, when phenylphosphonate is introduced at different stages of the self-assembly. One leaves the cuboid framework largely intact, whereas the other results in a compact, twisted cuboid. Kinetic factors will have to be considered in the equilibrium of these complex processes. Furthermore, the exceptional stability of these polyoxometalate-organic systems facilitates mass spectrometric characterization, which confirms the composition of the complexes and also indicates that the methoxide groups on the vanadium cluster nodes are labile. The results will help deepen the mechanistic understanding of the formation mechanisms of polyoxovanadate-based metal-organic cages and other functionalized polyoxovanadate clusters in general.
Collapse
Affiliation(s)
- Ji Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Junrui Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Xiamen Fujian 361021 China
| | - Yingcui Cui
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Chuanhong Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Yangming Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Mou Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Danmeng Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Wei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Xiamen Fujian 361021 China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Xikui Fang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
180
|
Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
181
|
Zhang T, Gregoriou VG, Gasparini N, Chochos CL. Porous organic polymers in solar cells. Chem Soc Rev 2022; 51:4465-4483. [PMID: 35583184 DOI: 10.1039/d2cs00123c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Owing to their unique porosity and large surface area, porous organic polymers (POPs) have shown their presence in numerous novel applications. The tunability and functionality of both the pores and backbone of the material enable its suitability in photovoltaic devices. The porosity induced host-guest configurations as well as periodic donor-acceptor structures benefit the charge separation and charge transfer in photophysical processes. The role of POPS in other critical device components, such as hole transporting layers and electrodes, has also been demonstrated. Herein, this review will primarily focus on the recent progress made in applying POPs for solar cell device performance enhancement, covering organic solar cells, perovskite solar cells, and dye-sensitized solar cells. Based on the efforts in recent years in unraveling POP's photophysical process and its relevance with device performances, an in-depth analysis will be provided to address the gradual shift of attention from an entirely POP-based active layer to other device functional components. Combining the insights from device physics, material synthesis, and microfabrication, we aim to unfold the fundamental limitations and challenges of POPs and shed light on future research directions.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, W12 0BZ, UK
| | - Vasilis G Gregoriou
- Advent Technologies SA, Stadiou Street, Platani, Rio, Patras 26504, Greece. .,National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, W12 0BZ, UK
| | - Christos L Chochos
- Advent Technologies SA, Stadiou Street, Platani, Rio, Patras 26504, Greece. .,Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| |
Collapse
|
182
|
Haldar S, Wang M, Bhauriyal P, Hazra A, Khan AH, Bon V, Isaacs MA, De A, Shupletsov L, Boenke T, Grothe J, Heine T, Brunner E, Feng X, Dong R, Schneemann A, Kaskel S. Porous Dithiine-Linked Covalent Organic Framework as a Dynamic Platform for Covalent Polysulfide Anchoring in Lithium-Sulfur Battery Cathodes. J Am Chem Soc 2022; 144:9101-9112. [PMID: 35543441 DOI: 10.1021/jacs.2c02346] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dithiine linkage formation via a dynamic and self-correcting nucleophilic aromatic substitution reaction enables the de novo synthesis of a porous thianthrene-based two-dimensional covalent organic framework (COF). For the first time, this organo-sulfur moiety is integrated as a structural building block into a crystalline layered COF. The structure of the new material deviates from the typical planar interlayer π-stacking of the COF to form undulated layers caused by bending along the C-S-C bridge, without loss of aromaticity and crystallinity of the overall COF structure. Comprehensive experimental and theoretical investigations of the COF and a model compound, featuring the thianthrene moiety, suggest partial delocalization of sulfur lone pair electrons over the aromatic backbone of the COF decreasing the band gap and promoting redox activity. Postsynthetic sulfurization allows for direct covalent attachment of polysulfides to the carbon backbone of the framework to afford a molecular-designed cathode material for lithium-sulfur (Li-S) batteries with a minimized polysulfide shuttle. The fabricated coin cell delivers nearly 77% of the initial capacity even after 500 charge-discharge cycles at 500 mA/g current density. This novel sulfur linkage in COF chemistry is an ideal structural motif for designing model materials for studying advanced electrode materials for Li-S batteries on a molecular level.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Preeti Bhauriyal
- Chair of Theoretical Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Arpan Hazra
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Arafat H Khan
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Mark A Isaacs
- Department of Chemistry, University College London, London WC1H 0AJ, U.K.,HarwellXPS, Rutherford Appleton Laboratories, Research Complex at Harwell, Didcot OX11 0FA, U.K
| | - Ankita De
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Leonid Shupletsov
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Tom Boenke
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany.,Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, Dresden 01277, Germany
| | - Julia Grothe
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Thomas Heine
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Dresden 01069, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Leipzig Research Branch, Permoser Str. 15, 04316 Leipzig, Germany.,Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Korea
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany.,Max Planck Institute of Microstructure Physics, Halle (Saale) 06120, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany.,Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany.,Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, Dresden 01277, Germany
| |
Collapse
|
183
|
Yan X, Lyu S, Xu X, Chen W, Shang P, Yang Z, Zhang G, Chen W, Wang Y, Chen L. Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation. Angew Chem Int Ed Engl 2022; 61:e202201900. [DOI: 10.1002/anie.202201900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoli Yan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Shanzhi Lyu
- Department of Energy and Power Engineering Tsinghua University Beijing 100084 China
| | - Xiao‐Qi Xu
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Weiben Chen
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Pengna Shang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Zongfan Yang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Guang Zhang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Weihua Chen
- College of Chemistry and Green Catalysis Center Zhengzhou University Henan 450001 China
| | - Yapei Wang
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| |
Collapse
|
184
|
Glutathione-functionalized highly crystalline fluorescent covalent organic framework as a fluorescence-sensing and adsorption double platform for cationic dyes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120673] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
185
|
|
186
|
Guo ZC, You ML, Wang ZJ, Li ZF, Li G. Metal@COFs Possess High Proton Conductivity with Mixed Conducting Mechanisms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15687-15696. [PMID: 35315661 DOI: 10.1021/acsami.2c02298] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The inherent porous structures and aligned functional units inside the skeleton of covalent organic frameworks (COFs) provide an extraordinary promise for post-modification and deservedly expand their application in the field of proton conduction. Herein, we tactfully introduced copper ions into a two-dimensional COF (TpTta) furnished with ample N,O-chelating sites by a post-modification strategy to achieve two copper(II)-modified products, namely, CuCl2@TpTta-3 and CuCl2@TpTta-10. Inspiringly, the two modified COFs demonstrated the higher conductivities of 1.77 × 10-3 and 8.81 × 10-3 S cm-1 under 100 °C and 98% relative humidity, respectively, among the previously reported COFs with higher σ values. In comparison to the pristine COFs, the σ values of CuCl2@TpTta-3 and CuCl2@TpTta-10 are boosted by 2 orders of magnitude. On the basis of structural analyses, nitrogen and water vapor adsorption tests, and proton conduction mechanism analysis, we deeply analyzed the reason why the conductivity of the modified COFs was significantly increased. To the best of our knowledge, it is the first time to employ the CuCl2-modified strategy to boost the conductivity of COFs, which offers a wise idea for the fabrication of highly conductive materials in the field of fuel cells.
Collapse
Affiliation(s)
- Zhong-Cheng Guo
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Mei-Lin You
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Zi-Jie Wang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Zi-Feng Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Gang Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
187
|
Gulbalkan HC, Haslak ZP, Altintas C, Uzun A, Keskin S. Multi-scale computational screening to accelerate discovery of IL/COF composites for CO2/N2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
188
|
Ma H, Wang S, Ren Y, Liang X, Wang Y, Zhu Z, He G, Jiang Z. Microstructure Manipulation of Covalent Organic Frameworks (COFs)-based Membrane for Efficient Separations. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1474-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
189
|
Yan X, Lyu S, Xu X, Chen W, Shang P, Yang Z, Zhang G, Chen W, Wang Y, Chen L. Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoli Yan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Shanzhi Lyu
- Department of Energy and Power Engineering Tsinghua University Beijing 100084 China
| | - Xiao‐Qi Xu
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Weiben Chen
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Pengna Shang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Zongfan Yang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Guang Zhang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Weihua Chen
- College of Chemistry and Green Catalysis Center Zhengzhou University Henan 450001 China
| | - Yapei Wang
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| |
Collapse
|
190
|
Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022; 51:2544-2582. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.
Collapse
Affiliation(s)
- Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Alec Wang
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Orysia Zaremba
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Hans W Scheeren
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Roger M Pallares
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefan Wuttke
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
191
|
Charged nanochannels endow COF membrane with weakly concentration-dependent methanol permeability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
192
|
Liu M, Nothling MD, Zhang S, Fu Q, Qiao GG. Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
193
|
Immobilization poly(ionic liquid)s into hierarchical porous covalent organic frameworks as heterogeneous catalyst for cycloaddition of CO2 with epoxides. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
194
|
Huang Y, Hao X, Ma S, Wang R, Wang Y. Covalent organic framework-based porous materials for harmful gas purification. CHEMOSPHERE 2022; 291:132795. [PMID: 34748797 DOI: 10.1016/j.chemosphere.2021.132795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) with 2D or 3D networks are a class of novel porous crystalline materials, and have attracted more and more attention in the field of gas purification owing to their attractive physicochemical properties, such as high surface area, adjustable functionality and structure, low density, and high stability. However, few systematic reviews about the application statuses of COFs in gas purification are available, especially about non-CO2 harmful gases. In this review, the recent progress of COFs about the capture, catalysis, and detection of common harmful gases (such as CO2, NOx, SO2, H2S, NH3 and volatile pollutants) were comprehensively discussed. The design strategies of COF functional materials from porosity adjustment to surface functionalization (including bottom-up approach, post-synthetic approach, and blending with other materials) for certain application were summarized in detail. Furthermore, the faced challenges and future research directions of COFs in the harmful gas treatment were clearly proposed to inspire the development of COFs.
Collapse
Affiliation(s)
- Yan Huang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Xiaoqian Hao
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Yazhou Wang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| |
Collapse
|
195
|
Su P, Li M, Li X, Yuan X, Gong Z, Wu L, Song J, Yang Y. Glutathione functionalized magnetic covalent organic frameworks with dual-hydrophilicity for highly efficient and selective enrichment of glycopeptides. J Chromatogr A 2022; 1667:462869. [DOI: 10.1016/j.chroma.2022.462869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/31/2022]
|
196
|
Cao LM, Zhang J, Zhang XF, He CT. Confinement synthesis in porous molecule-based materials: a new opportunity for ultrafine nanostructures. Chem Sci 2022; 13:1569-1593. [PMID: 35282621 PMCID: PMC8827140 DOI: 10.1039/d1sc05983a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
A balance between activity and stability is greatly challenging in designing efficient metal nanoparticles (MNPs) for heterogeneous catalysis. Generally, reducing the size of MNPs to the atomic scale can provide high atom utilization, abundant active sites, and special electronic/band structures, for vastly enhancing their catalytic activity. Nevertheless, due to the dramatically increased surface free energy, such ultrafine nanostructures often suffer from severe aggregation and/or structural degradation during synthesis and catalysis, greatly weakening their reactivities, selectivities and stabilities. Porous molecule-based materials (PMMs), mainly including metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and porous organic polymers (POPs) or cages (POCs), exhibit high specific surface areas, high porosity, and tunable molecular confined space, being promising carriers or precursors to construct ultrafine nanostructures. The confinement effects of their nano/sub-nanopores or specific binding sites can not only effectively limit the agglomeration and growth of MNPs during reduction or pyrolysis processes, but also stabilize the resultant ultrafine nanostructures and modulate their electronic structures and stereochemistry in catalysis. In this review, we highlight the latest advancements in the confinement synthesis in PMMs for constructing atomic-scale nanostructures, such as ultrafine MNPs, nanoclusters, and single atoms. Firstly, we illustrated the typical confinement methods for synthesis. Secondly, we discussed different confinement strategies, including PMM-confinement strategy and PMM-confinement pyrolysis strategy, for synthesizing ultrafine nanostructures. Finally, we put forward the challenges and new opportunities for further applications of confinement synthesis in PMMs.
Collapse
Affiliation(s)
- Li-Ming Cao
- Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University Nanchang 330022 China
| | - Jia Zhang
- Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University Nanchang 330022 China
| | - Xue-Feng Zhang
- Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University Nanchang 330022 China
| | - Chun-Ting He
- Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University Nanchang 330022 China
| |
Collapse
|
197
|
Zhang Z, Jia J, Zhi Y, Ma S, Liu X. Porous organic polymers for light-driven organic transformations. Chem Soc Rev 2022; 51:2444-2490. [PMID: 35133352 DOI: 10.1039/d1cs00808k] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a new generation of porous materials, porous organic polymers (POPs), have recently emerged as a powerful platform of heterogeneous photocatalysis. POPs are constructed using extensive organic synthesis methodologies, with various functional organic units being connected via high-energy covalent bonds. This review systematically presents the recent advances in POPs for visible-light driven organic transformations. Herein, we firstly summarize the common construction strategies for POP-based photocatalysts based on two major approaches: pre-design and post-modification; secondly, we categorize and summarize the synthesis methods and organic reaction types for constructing various types of POPs. We then classify and introduce the specific reactions of current light-driven POP-mediated organic transformations. Finally, we outline the current state of development and the problems faced in light-driven organic transformations by POPs, and we present some perspectives to motivate the reader to explore solutions to these problems and confront the present challenges in the development process.
Collapse
Affiliation(s)
- Zhenwei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Ji Jia
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Yongfeng Zhi
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China. .,Department of Materials Science & Engineering, National University of Singapore, Engineering Drive 1, Singapore 117575, Singapore
| | - Si Ma
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xiaoming Liu
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
198
|
Gong K, Li C, Zhang D, Lu H, Wang Y, Li H, Zhang H. Sulfonic acid functionalized covalent organic frameworks as efficient catalyst for the one-pot tandem reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
199
|
Bi S, Zhang Z, Meng F, Wu D, Chen J, Zhang F. Heteroatom‐Embedded Approach to Vinylene‐Linked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuai Bi
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zixing Zhang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jie‐Sheng Chen
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
200
|
|