151
|
Kobori H, Fu Q, Crowley SD, Gonzalez-Villalobos RA, Campos RR. Comments on Point:Counterpoint: The dominant contributor to systemic hypertension: Chronic activation of the sympathetic nervous system vs. Activation of the intrarenal renin-angiotensin system. Activated intrarenal renin-angiotensin system is correlated with high blood pressure in humans. J Appl Physiol (1985) 2010; 109:2003. [PMID: 21148352 PMCID: PMC3774210 DOI: 10.1152/japplphysiol.01160.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Hiroyuki Kobori
- Department of Medicine, Tulane University Health Sciences Center, LA, USA
| | | | | | | | | |
Collapse
|
152
|
Davern P, Jackson K, Nguyen-Huu T, La Greca L, Head G. Cardiovascular reactivity and neuronal activation to stress in Schlager genetically hypertensive mice. Neuroscience 2010; 170:551-8. [DOI: 10.1016/j.neuroscience.2010.07.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 07/16/2010] [Accepted: 07/18/2010] [Indexed: 11/17/2022]
|
153
|
Mitra AK, Gao L, Zucker IH. Angiotensin II-induced upregulation of AT(1) receptor expression: sequential activation of NF-kappaB and Elk-1 in neurons. Am J Physiol Cell Physiol 2010; 299:C561-9. [PMID: 20554912 PMCID: PMC2944315 DOI: 10.1152/ajpcell.00127.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 06/10/2010] [Indexed: 01/16/2023]
Abstract
It has been clearly established that increased circulating angiotensin II (ANG II) with concurrent upregulation of brain and peripheral ANG II type 1 receptors (AT(1)R) are important mediators in the pathophysiology of several diseases characterized by sympatho-excitation. In an effort to further understand the regulation of AT(1)R expression in neurons, we determined the role of sequential activation of the transcription factors nuclear factor-kappaB (NF-kappaB) and Ets-like protein 1 (Elk-1) in AT(1)R upregulation. We used CATH.a neurons as our neuronal cell model. Cells were treated with ANG II (100 nM) over a preset time course. Following ANG II activation, there was a temporal increase in the p65 subunit of NF-kappaB that was observed at 30 min, peaked at 1 h, and was sustained up to 24 h. There was a concomitant decrease of IkappaB and increased IkappaK expression. We also observed an increase in AT(1)R expression which followed the temporal increase of NF-kappaB. The activation of NF-kappaB was blocked by using the inhibitors parthenolide or p65 small interfering RNA (siRNA) which both led to a decrease in AT(1)R expression. The expression of Elk-1 was upregulated over a time period following ANG II activation and was decreased following NF-kappaB inhibition. p65-DNA binding was assessed using electrophoretic mobility shift assay, and it was shown that there was a time-dependent increased binding that was inhibited by means of parthenolide pretreatment or siRNA-mediated p65 gene silencing. Therefore, our results suggest a combined role for the transcription factors NF-kappaB and Elk-1 in the upregulation of AT(1)R in the CATH.a cell neuronal model. These data imply a positive feedback mechanism that may impact neuronal discharge sensitivity in response to ANG II.
Collapse
Affiliation(s)
- Amit K Mitra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | |
Collapse
|
154
|
Kanbar R, Stornetta RL, Cash DR, Lewis SJ, Guyenet PG. Photostimulation of Phox2b medullary neurons activates cardiorespiratory function in conscious rats. Am J Respir Crit Care Med 2010; 182:1184-94. [PMID: 20622037 DOI: 10.1164/rccm.201001-0047oc] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Hypoventilation is typically treated with positive pressure ventilation or, in extreme cases, by phrenic nerve stimulation. This preclinical study explores whether direct stimulation of central chemoreceptors could be used as an alternative method to stimulate breathing. OBJECTIVES To determine whether activation of the retrotrapezoid nucleus (RTN), which is located in the rostral ventrolateral medulla (RVLM), stimulates breathing with appropriate selectivity. METHODS A lentivirus was used to induce expression of the photoactivatable cationic channel channelrhodopsin-2 (ChR2) by RVLM Phox2b-containing neurons, a population that consists of central chemoreceptors (the ccRTN neurons) and blood pressure (BP)-regulating neurons (the C1 cells). The transfected neurons were activated with pulses of laser light. Respiratory effects were measured by plethysmography or diaphragmatic EMG recording and cardiovascular effects by monitoring BP, renal sympathetic nerve discharge, and the baroreflex. MEASUREMENTS AND MAIN RESULTS The RVLM contained 600 to 900 ChR2-transfected neurons (63% C1, 37% ccRTN). RVLM photostimulation significantly increased breathing rate (+42%), tidal volume (21%), minute volume (68%), and peak expiratory flow (48%). Photostimulation increased diaphragm EMG amplitude (19%) and frequency (21%). Photostimulation increased BP (4 mmHg) and renal sympathetic nerve discharge (43%) while decreasing heart rate (15 bpm). CONCLUSIONS Photostimulation of ChR2-transfected RVLM Phox2b neurons produces a vigorous stimulation of breathing accompanied by a small sympathetically mediated increase in BP. These results demonstrate that breathing can be relatively selectively activated in resting unanesthetized mammals via optogenetic manipulation of RVLM neurons presumed to be central chemoreceptors. This methodology could perhaps be used in the future to enhance respiration in humans.
Collapse
Affiliation(s)
- Roy Kanbar
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
155
|
Lin DC, Sharif A. Common multifractality in the heart rate variability and brain activity of healthy humans. CHAOS (WOODBURY, N.Y.) 2010; 20:023121. [PMID: 20590317 DOI: 10.1063/1.3427639] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The influence from the central nervous system on the human multifractal heart rate variability (HRV) is examined under the autonomic nervous system perturbation induced by the head-up-tilt body maneuver. We conducted the multifractal factorization analysis to factor out the common multifractal factor in the joint fluctuation of the beat-to-beat heart rate and electroencephalography data. Evidence of a central link in the multifractal HRV was found, where the transition towards increased (decreased) HRV multifractal complexity is associated with a stronger (weaker) multifractal correlation between the central and autonomic nervous systems.
Collapse
Affiliation(s)
- D C Lin
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3, Canada.
| | | |
Collapse
|
156
|
O'Driscoll DM, Horne RSC, Davey MJ, Hope SA, Walker AM, Nixon GM. The heart rate response to spontaneous arousal from sleep is reduced in children with Down syndrome referred for evaluation of sleep-disordered breathing. Am J Physiol Heart Circ Physiol 2010; 298:H1986-90. [PMID: 20348220 DOI: 10.1152/ajpheart.00701.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Arousal from sleep in healthy adults is associated with a large, transient increase in heart rate (HR). Individuals with Down syndrome (DS) have attenuated cardiovascular responses to autonomic tests during wakefulness. We tested the hypothesis that the HR response to arousal from sleep is reduced in children with DS and obstructive sleep apnea (OSA) compared with healthy children. Twenty children aged 3-17 yr referred for investigation of sleep-disordered breathing (10 DS, and 10 OSA controls) matched for age and obstructive apnea/hypopnea index underwent routine overnight polysomnography. In addition, 10 nonsnoring controls from the general community were studied. Beat-by-beat HR was analyzed from 15 s pre- to 15 s post-spontaneous arousals and compared between groups using two-way ANOVA with repeated measures. Data are presented as means + or - SE. For both rapid eye movement (REM) and non-REM (NREM), arousals were associated with a significant increase in HR in all groups (peak response NREM: DS, 118 + or - 1% at 3 s; OSA controls, 124 + or - 2% at 4 s; and healthy controls, 125 + or - 3% at 4 s; and peak response REM: DS, 116 + or - 2% at 4 s; OSA controls, 123 + or - 3% at 4 s; and healthy controls, 125 + or - 4 at 4 s; P < 0.001 for all). Post hoc analysis revealed that HR in the DS group was significantly lower than both control groups at 1-4 s in NREM and at 4 to 5 s in REM (P < 0.05 for all). In conclusion, the HR response to spontaneous arousal from sleep is reduced in children with DS and OSA compared with healthy children. This attenuated cardiovascular response could be due to reduced sympathetic activation or blunted vagal withdrawal and may have implications for the child with DS and OSA.
Collapse
Affiliation(s)
- Denise M O'Driscoll
- Ritchie Centre for Baby Health Research, Level 5, Monash Medical Centre, 246 Clayton Rd., Clayton Victoria 3168, Australia.
| | | | | | | | | | | |
Collapse
|
157
|
Green AL, Hyam JA, Williams C, Wang S, Shlugman D, Stein JF, Paterson DJ, Aziz TZ. Intra-Operative Deep Brain Stimulation of the Periaqueductal Grey Matter Modulates Blood Pressure and Heart Rate Variability in Humans. Neuromodulation 2010; 13:174-81. [DOI: 10.1111/j.1525-1403.2010.00274.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
158
|
Kishi T, Hirooka Y, Konno S, Ogawa K, Sunagawa K. Angiotensin II Type 1 Receptor–Activated Caspase-3 Through Ras/Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase in the Rostral Ventrolateral Medulla Is Involved in Sympathoexcitation in Stroke-Prone Spontaneously Hypertensive Rats. Hypertension 2010; 55:291-7. [DOI: 10.1161/hypertensionaha.109.138636] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the rostral ventrolateral medulla (RVLM), angiotensin II-derived superoxide anions, which increase sympathetic nerve activity, induce a pressor response by activating the p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-regulated kinase (ERK) pathway. The small G protein Ras mediates a caspase-3–dependent apoptotic pathway through p38 MAPK, ERK, and c-Jun N-terminal kinase. We hypothesized that angiotensin II type 1 receptors activate caspase-3 through the Ras/p38 MAPK/ERK/c-Jun N-terminal kinase pathway in the RVLM and that this pathway is involved in sympathoexcitation in stroke-prone spontaneously hypertensive rats (SHRSP), a model of human hypertension. The activities of Ras, p38 MAPK, ERK, and caspase-3 in the RVLM were significantly higher in SHRSP (14 to 16 weeks old) than in age-matched Wistar-Kyoto rats (WKY). The mitochondrial apoptotic proteins Bax and Bad in the RVLM were significantly increased in SHRSP compared with WKY. c-Jun N-terminal kinase activity did not differ between SHRSP and WKY. In SHRSP, intracerebroventricular infusion of a Ras inhibitor significantly reduced sympathetic nerve activity and improved baroreflex sensitivity, partially because of inhibition of the Ras/p38 MAPK/ERK, Bax, Bad, and caspase-3 pathway in the RVLM. Intracerebroventricular infusion of a caspase-3 inhibitor also inhibited sympathetic nerve activity and improved baroreflex sensitivity in SHRSP. Intracerebroventricular infusion of an angiotensin II type 1 receptor blocker in SHRSP partially inhibited the Ras/p38 MAPK/ERK, Bax, Bad, and caspase-3 pathway in the RVLM. These findings suggest that in SHRSP, angiotensin II type 1 receptor-activated caspase-3 acting through the Ras/p38 MAPK/ERK pathway in the RVLM might be involved in sympathoexcitation, which in turn plays a crucial role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Takuya Kishi
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshitaka Hirooka
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Satomi Konno
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kiyohiro Ogawa
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kenji Sunagawa
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
159
|
Functional asymmetry in the descending cardiovascular pathways from dorsomedial hypothalamic nucleus. Neuroscience 2009; 164:1360-8. [DOI: 10.1016/j.neuroscience.2009.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/04/2009] [Accepted: 09/08/2009] [Indexed: 12/20/2022]
|
160
|
Silvani A, Bastianini S, Berteotti C, Franzini C, Lenzi P, Lo Martire V, Zoccoli G. Central and baroreflex control of heart period during the wake-sleep cycle in consomic rats with different genetic susceptibility to hypertension. Clin Exp Pharmacol Physiol 2009; 37:322-7. [PMID: 19769608 DOI: 10.1111/j.1440-1681.2009.05293.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. In spontaneously hypertensive rats (SHR), the contributions of the baroreflex and central autonomic commands to the control of heart period (HP) vary among wake-sleep states and are impaired during quiet wakefulness and rapid eye movement sleep (REMS), respectively. 2. Dahl salt-sensitive (SS) rats are genetically susceptible to salt-sensitive hypertension, the development of which depends on diet. Substitution of chromosome 13 of SS rats with that of Brown Norway rats confers salt-resistance to consomic SS-13BN rats. 3. In the present study, we tested whether differences in the central and baroreflex contributions to HP control occur among wake-sleep states in SS and SS-13BN rats and reflect genetic susceptibility to hypertension. Rats (n = 5 per group) were fed a prohypertensive diet late during development to minimize hypertension in SS rats and were instrumented with an arterial catheter and electrodes for discriminating wake-sleep states. 4. The cross-correlation function between HP and blood pressure indicated that, in SS and SS-13BN rats, the contributions of the baroreflex and central commands to the control of HP differed significantly among wake-sleep states, with central commands outweighing the baroreflex in REMS. However, these contributions did not differ significantly between SS and SS-13BN rats in any wake-sleep state. 5. The data suggest that differences in the central and baroreflex contributions to HP control among wake-sleep states, which have been demonstrated in SHR, can be generalized to other rat models used in hypertension research. Impairments in the baroreflex and central autonomic control of HP during quiet wakefulness and REMS, respectively, cannot be generalized as an index of genetic susceptibility to hypertension.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Human and General Physiology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
161
|
Valencia JF, Porta A, Vallverdú M, Clarià F, Baranowski R, Orłowska-Baranowska E, Caminal P. Refined Multiscale Entropy: Application to 24-h Holter Recordings of Heart Period Variability in Healthy and Aortic Stenosis Subjects. IEEE Trans Biomed Eng 2009; 56:2202-13. [PMID: 19457745 DOI: 10.1109/tbme.2009.2021986] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- José Fernando Valencia
- Department of Automatic Control (ESAII), Centre for Biomedical Engineering Research, El Centro de Investigación Biomédica en Red of Bioengineering, Biomaterials and Nanomedicine, Technical University of Catalonia, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
162
|
Davern PJ, Nguyen-Huu TP, La Greca L, Abdelkader A, Head GA. Role of the sympathetic nervous system in Schlager genetically hypertensive mice. Hypertension 2009; 54:852-9. [PMID: 19667247 DOI: 10.1161/hypertensionaha.109.136069] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Early studies indicate that the hypertension observed in the Schlager inbred mouse strain may be attributed to a neurogenic mechanism. In this study, we examined the contribution of the sympathetic nervous system in maintaining hypertension in the BPH/2J mouse and used c-Fos immunohistochemistry to elucidate whether neuronal activation in specific brain regions was associated with waking blood pressure. Male hypertensive (BPH/2J; n=14), normotensive (BPN/3J; n=18), and C57/Bl6 (n=5) mice were implanted with telemetry devices, and after 10 days of recovery, recordings of blood pressure, heart rate, and locomotor activity were measured to determine circadian variation. Mean arterial pressure was higher in BPH/2J than in BPN/3J or C57/Bl6 mice (P<0.001), and BPH/2J animals showed exaggerated day-night differences (17+/-2 versus 6+/-1 mm Hg in BPN/3J or +8+/-2 mm Hg in C57/Bl6 mice; P<0.001). Acute sympathetic blockade with pentolinium (7.5 mg/kg IP) during the active and inactive phases reduced blood pressure to comparable levels in BPH/2J and BPN/3J mice. The number of c-Fos-labeled cells was greater in the amygdala (+180%; P<0.01), paraventricular nucleus (+110%; P<0.001), and dorsomedial hypothalamus (+48%; P<0.001) in the active (hypertensive) phase in BPH/2J compared with BPN/3J mice. The level of neuronal activation was mostly similar in these regions in the inactive phase. Of all of the regions studied, neuronal activation in the medial amygdala, as detected by c-Fos, was highly correlated to mean arterial pressure (r=0.98). These findings indicate that the hypertension is largely attributable to sympathetic nervous system activity, possibly generated through greater levels of arousal regulated by neurons located in the medial amygdala.
Collapse
Affiliation(s)
- Pamela J Davern
- Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, 75 Commercial Road, Melbourne, St Kilda Road Central, Melbourne, Victoria 8008, Australia
| | | | | | | | | |
Collapse
|
163
|
Parrish DC, Alston EN, Rohrer H, Hermes SM, Aicher SA, Nkadi P, Woodward WR, Stubbusch J, Gardner RT, Habecker BA. Absence of gp130 in dopamine beta-hydroxylase-expressing neurons leads to autonomic imbalance and increased reperfusion arrhythmias. Am J Physiol Heart Circ Physiol 2009; 297:H960-7. [PMID: 19592611 DOI: 10.1152/ajpheart.00409.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory cytokines that act through glycoprotein (gp)130 are elevated in the heart after myocardial infarction and in heart failure. These cytokines are potent regulators of neurotransmitter and neuropeptide production in sympathetic neurons but are also important for the survival of cardiac myocytes after damage to the heart. To examine the effect of gp130 cytokines on cardiac nerves, we used gp130(DBH-Cre/lox) mice, which have a selective deletion of the gp130 cytokine receptor in neurons expressing dopamine beta-hydroxylase (DBH). Basal sympathetic parameters, including norepinephrine (NE) content, tyrosine hydroxylase expression, NE transporter expression, and sympathetic innervation density, appeared normal in gp130(DBH-Cre/lox) compared with wild-type mice. Likewise, basal cardiovascular parameters measured under isoflurane anesthesia were similar in both genotypes, including mean arterial pressure, left ventricular peak systolic pressure, dP/dt(max), and dP/dt(min). However, pharmacological interventions revealed an autonomic imbalance in gp130(DBH-Cre/lox) mice that was correlated with an increased incidence of premature ventricular complexes after reperfusion. Stimulation of NE release with tyramine and infusion of the beta-agonist dobutamine revealed blunted adrenergic transmission that correlated with decreased beta-receptor expression in gp130(DBH-Cre/lox) hearts. Due to the developmental expression of the DBH-Cre transgene in parasympathetic ganglia, gp130 was eliminated. Cholinergic transmission was impaired in gp130(DBH-Cre/lox) hearts due to decreased parasympathetic drive, but tyrosine hydroxylase immunohistochemistry in the brain stem revealed that catecholaminergic nuclei appeared grossly normal. Thus, the apparently normal basal parameters in gp130(DBH-Cre/lox) mice mask an autonomic imbalance that includes alterations in sympathetic and parasympathetic transmission.
Collapse
Affiliation(s)
- Diana C Parrish
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Zhang Q, Yao F, Raizada MK, O'Rourke ST, Sun C. Apelin gene transfer into the rostral ventrolateral medulla induces chronic blood pressure elevation in normotensive rats. Circ Res 2009; 104:1421-8. [PMID: 19443838 DOI: 10.1161/circresaha.108.192302] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The peripheral apelin system plays a significant role in cardiovascular homeostasis and in the pathophysiology of cardiovascular diseases. However, the central effect of this neurohormonal system in neural control of cardiovascular function remains poorly understood. Thus, this study was undertaken to evaluate the effect of apelin in the rostral ventrolateral medulla (RVLM) on blood pressure, cardiac function, and sympathetic nerve activity. Apelin mRNA and protein levels were detected with real-time RT-PCR and Western blots, respectively. Expression of apelin was significantly enhanced in the RVLM of spontaneously hypertensive rat (SHR) compared with normotensive Wistar-Kyoto (WKY) rats. To study the functional consequence of upregulated apelin expression, apelin was overexpressed by bilateral microinjection of the AAV2-apelin viral vector into the RVLM of WKY rats. Immunofluorescence staining and Western blots demonstrated that microinjection of AAV2-apelin into the RVLM resulted in a significant increase in apelin expression, which was associated with a chronic elevation in blood pressure and cardiac hypertrophy. In addition, direct microinjection of exogenous apelin-13 (200 pmol in 50 nL) into the RVLM caused a 20 mm Hg elevation in blood pressure and a 24% increase in sympathetic nerve activity. The present study is the first to show that apelin expression is enhanced in the RVLM of SHR versus WKY rats and that overexpression of this gene in the RVLM results in chronic blood pressure elevation and cardiac hypertrophy in normotensive rats. Thus, the apelin system in the RVLM may play a very important role in central blood pressure regulation and in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pharmaceutical Sciences, North Dakota State University, 1401 Albrecht Blvd, Fargo, ND 58105, USA
| | | | | | | | | |
Collapse
|
165
|
Gianaros PJ, Sheu LK. A review of neuroimaging studies of stressor-evoked blood pressure reactivity: emerging evidence for a brain-body pathway to coronary heart disease risk. Neuroimage 2009; 47:922-36. [PMID: 19410652 DOI: 10.1016/j.neuroimage.2009.04.073] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/26/2009] [Accepted: 04/22/2009] [Indexed: 02/07/2023] Open
Abstract
An individual's tendency to show exaggerated or otherwise dysregulated cardiovascular reactions to acute stressors has long been associated with increased risk for clinical and preclinical endpoints of coronary heart disease (CHD). However, the 'brain-body' pathways that link stressor-evoked cardiovascular reactions to CHD risk remain uncertain. This review summarizes emerging neuroimaging research indicating that individual differences in stressor-evoked blood pressure reactivity (a particular form of cardiovascular reactivity) are associated with activation patterns in corticolimbic brain areas that are jointly involved in processing stressors and regulating the cardiovascular system. As supported empirically by activation likelihood estimates derived from a meta-analysis, these corticolimbic areas include divisions of the cingulate cortex, insula, and amygdala--as well as networked cortical and subcortical areas involved in mobilizing hemodynamic and metabolic support for stress-related behavioral responding. Contextually, the research reviewed here illustrates how behavioral medicine and health neuroscience methods can be integrated to help characterize the 'brain-body' pathways that mechanistically link stressful experiences with CHD risk.
Collapse
Affiliation(s)
- Peter J Gianaros
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
166
|
Bourassa EA, Sved AF, Speth RC. Angiotensin modulation of rostral ventrolateral medulla (RVLM) in cardiovascular regulation. Mol Cell Endocrinol 2009; 302:167-75. [PMID: 19027823 PMCID: PMC9686041 DOI: 10.1016/j.mce.2008.10.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/05/2008] [Accepted: 10/24/2008] [Indexed: 02/07/2023]
Abstract
The rostral ventrolateral medulla (RVLM) and the presympathetic bulbospinal neurons in this region play a critical role in cardiovascular regulation. However, there is ambiguity regarding the precise anatomical coordinates of the RVLM and much still needs to be learned regarding the regulation and neurochemistry of this region. This brief review discusses some of these issues and focuses on the role of angiotensin-mediated signaling in the RVLM in blood pressure regulation.
Collapse
Affiliation(s)
- Erick A. Bourassa
- Department of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677
- Current address: Biological Sciences, Northwest Missouri State University, Maryville, MO 64468
| | - Alan F. Sved
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Robert C. Speth
- Department of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677
| |
Collapse
|
167
|
Kouvelas D, Amaniti E, Pourzitaki C, Kapoukranidou D, Thomareis O, Papazisis G, Vasilakos D. Baroreceptors discharge due to bilateral aortic denervation evokes acute neuronal damage in rat brain. Brain Res Bull 2009; 79:142-6. [DOI: 10.1016/j.brainresbull.2008.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
|
168
|
Affiliation(s)
- Marc D. Binder
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle Washington, USA
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine University of Tokyo Hongo, Bunkyo‐ku Tokyo, Japan
| | | |
Collapse
|
169
|
Frank H, Heusser K, Geiger H, Fahlbusch R, Naraghi R, Schobel HP. Temporary Reduction of Blood Pressure and Sympathetic Nerve Activity in Hypertensive Patients After Microvascular Decompression. Stroke 2009; 40:47-51. [DOI: 10.1161/strokeaha.108.518670] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Experimental studies suggested neurovascular compression of the brain stem as a cause of hypertension. The aim of our prospective study was to investigate the effect of microvascular decompression in patients with severe hypertension with neurovascular compression on blood pressure and central sympathetic nerve activity in the long-term.
Methods—
Fourteen patients (4 males; mean age, 46±8 years) with essential hypertension underwent microvascular decompression of the brain stem. Vasoconstrictor muscle sympathetic nerve activity (recorded by microneurography: burst frequency, bursts/min) and blood pressure (24-hour profiles) were investigated before surgery and 7 days, 3 months, and every 6 months postoperatively.
Results—
Muscle sympathetic nerve activity was preoperatively elevated and decreased significantly postoperatively (35±13 bursts/min vs 20±9 bursts/min;
P
<0.01). Sympathetic activity remained reduced 3 months (19±8bursts/min;
P
<0.01), 6 months (19±7 bursts/min;
P
<0.01), and 12 months (23±9 bursts/min;
P
<0.01) postoperatively. However, in the long-term, sympathetic nerve activity increased again (18 months after surgery: 28±10 bursts, not significant; 24 months postoperatively: 34±12 bursts/min, not significant). Systolic and diastolic blood pressure decreased from 162±6/98±5 mm Hg preoperatively to 133±6/85±4 mm Hg (7 days postoperatively;
P
<0.01); 136±5/86±4 mm Hg (3 months postoperatively;
P
<0.01); 132±4/85±4 mm Hg (6 months postoperatively;
P
<0.01); 132±3/85±5 mm Hg (12 months postoperatively;
P
<0.01); 132±5/84±5 mm Hg;
P
<0.01). Twenty-four months after microvascular decompression, blood pressure increased again up to 158±7/96±6 mm Hg, corresponding to the sympathetic nerve activity course.
Conclusion—
Sympathetic nerve activity and blood pressure are temporary reduced by microvascular decompression in patients with severe hypertension with neurovascular compression. The data are a hint for sympathetic overactivity as a pathomechanism in this subgroup of patients.
Collapse
Affiliation(s)
- Helga Frank
- From Department of Nephrology (H.F.), Klinikum rechts der Isar, Technische Universitaet Muenchen, Germany; Department of Clinical Pharmacology (K.H.), Hannover Medical School, Hannover, Germany; Department of Nephrology (H.G.), University of Frankfurt, Germany; International Neuroscience Institute Hannover (R.F.), Germany; Department of Neurosurgery (R.N.), University of Erlangen-Nuremberg, Germany; Benedictus Krankenhaus Tutzing (H.P.S.), Germany
| | - Karsten Heusser
- From Department of Nephrology (H.F.), Klinikum rechts der Isar, Technische Universitaet Muenchen, Germany; Department of Clinical Pharmacology (K.H.), Hannover Medical School, Hannover, Germany; Department of Nephrology (H.G.), University of Frankfurt, Germany; International Neuroscience Institute Hannover (R.F.), Germany; Department of Neurosurgery (R.N.), University of Erlangen-Nuremberg, Germany; Benedictus Krankenhaus Tutzing (H.P.S.), Germany
| | - Helmut Geiger
- From Department of Nephrology (H.F.), Klinikum rechts der Isar, Technische Universitaet Muenchen, Germany; Department of Clinical Pharmacology (K.H.), Hannover Medical School, Hannover, Germany; Department of Nephrology (H.G.), University of Frankfurt, Germany; International Neuroscience Institute Hannover (R.F.), Germany; Department of Neurosurgery (R.N.), University of Erlangen-Nuremberg, Germany; Benedictus Krankenhaus Tutzing (H.P.S.), Germany
| | - Rudolf Fahlbusch
- From Department of Nephrology (H.F.), Klinikum rechts der Isar, Technische Universitaet Muenchen, Germany; Department of Clinical Pharmacology (K.H.), Hannover Medical School, Hannover, Germany; Department of Nephrology (H.G.), University of Frankfurt, Germany; International Neuroscience Institute Hannover (R.F.), Germany; Department of Neurosurgery (R.N.), University of Erlangen-Nuremberg, Germany; Benedictus Krankenhaus Tutzing (H.P.S.), Germany
| | - Ramin Naraghi
- From Department of Nephrology (H.F.), Klinikum rechts der Isar, Technische Universitaet Muenchen, Germany; Department of Clinical Pharmacology (K.H.), Hannover Medical School, Hannover, Germany; Department of Nephrology (H.G.), University of Frankfurt, Germany; International Neuroscience Institute Hannover (R.F.), Germany; Department of Neurosurgery (R.N.), University of Erlangen-Nuremberg, Germany; Benedictus Krankenhaus Tutzing (H.P.S.), Germany
| | - Hans P. Schobel
- From Department of Nephrology (H.F.), Klinikum rechts der Isar, Technische Universitaet Muenchen, Germany; Department of Clinical Pharmacology (K.H.), Hannover Medical School, Hannover, Germany; Department of Nephrology (H.G.), University of Frankfurt, Germany; International Neuroscience Institute Hannover (R.F.), Germany; Department of Neurosurgery (R.N.), University of Erlangen-Nuremberg, Germany; Benedictus Krankenhaus Tutzing (H.P.S.), Germany
| |
Collapse
|
170
|
Koga Y, Hirooka Y, Araki S, Nozoe M, Kishi T, Sunagawa K. High Salt Intake Enhances Blood Pressure Increase during Development of Hypertension via Oxidative Stress in Rostral Ventrolateral Medulla of Spontaneously Hypertensive Rats. Hypertens Res 2008; 31:2075-83. [DOI: 10.1291/hypres.31.2075] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
171
|
Thompson S, Lupi D, Hankins MW, Peirson SN, Foster RG. The effects of rod and cone loss on the photic regulation of locomotor activity and heart rate. Eur J Neurosci 2008; 28:724-9. [PMID: 18702692 PMCID: PMC3001038 DOI: 10.1111/j.1460-9568.2008.06388.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Behavioral responses to light indirectly affect cardiovascular output, but in anesthetized rodents a direct effect of light on heart rate has also been described. Both the basis for this response and the contribution of rods, cones and melanopsin-based photosensitive retinal ganglion cells (pRGCs) remains unknown. To understand how light acutely regulates heart rate we studied responses to light in mice lacking all rod and cone photoreceptors (rd/rd cl ) along with wild-type controls. Our initial experiments delivered light to anesthetized mice at Zeitgeber time (ZT)16 (4 h after lights off, mid-activity phase) and produced an increase in heart rate in wild-type mice, but not in rd/rd cl animals. By contrast, parallel experiments in freely-moving mice demonstrated that light exposure at this time suppressed heart rate and activity in both genotypes. Because of the effects of anesthesia, all subsequent studies were conducted in freely-moving animals. The effects of light were also assessed at ZT6 (mid-rest phase). At this timepoint, wild-type mice showed an irradiance-dependent increase in heart rate and activity. By contrast, rd/rd cl mice failed to show any modulation of heart rate or activity, even at very high irradiances. Increases in heart rate preceded increases in locomotor activity and remained elevated when locomotor activity ceased, suggesting that these two responses are at least partially uncoupled. Collectively, our results show an acute and phase-dependent effect of light on cardiovascular output in mice. Surprisingly, this irradiance detection response is dependent upon rod and cone photoreceptors, with no apparent contribution from melanopsin pRGCs.
Collapse
Affiliation(s)
- Stewart Thompson
- Nuffield Laboratory of Ophthalmology, The John Radcliffe Hospital, Headley Way, University of Oxford, Roosevelt Drive, Oxford OX3 9DU, UK
| | | | | | | | | |
Collapse
|
172
|
Ployngam T, Collister JP. Role of the median preoptic nucleus in chronic angiotensin II-induced hypertension. Brain Res 2008; 1238:75-84. [DOI: 10.1016/j.brainres.2008.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/28/2008] [Accepted: 08/04/2008] [Indexed: 02/05/2023]
|
173
|
Karamyan VT, Stockmeier CA, Speth RC. Human brain contains a novel non-AT1, non-AT2 binding site for active angiotensin peptides. Life Sci 2008; 83:421-5. [PMID: 18692076 PMCID: PMC2574912 DOI: 10.1016/j.lfs.2008.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/04/2008] [Accepted: 07/09/2008] [Indexed: 11/20/2022]
Abstract
AIMS To determine whether the novel non-AT1, non-AT2 binding site for angiotensins recently discovered in rodent brains occurs in the human brain. MAIN METHODS Radioligand binding assays of (125)I-sarcosine(1), isoleucine(8) angiotensin II binding were carried out in homogenates of the rostral pole of the temporal cortex of human brains containing 0.3 mM parachloromercuribenzoate (PCMB), 10 microM losartan to saturate AT1 receptors, 10 microM PD123319 to saturate AT2 receptors, with or without 10 microM angiotensin II to define specific binding. Competition binding assays employed a variety of angiotensin peptides, specific angiotensin receptor antagonists, several neuropeptides and an endopeptidase inhibitor to determine pharmacological specificity for this binding site. KEY FINDINGS The novel non-AT1, non-AT2 binding site was present in similar amounts in female and male brains: Bmax 1.77+/-0.16 and 1.52+/-0.17 fmol/mg initial wet weight in female and male brains, respectively. The K(D) values, 1.79+/-0.09 nM for females, and 1.53+/-0.06 nM for males were also similar. The binding site shows pharmacological specificity similar to that in rodent brains: sarcosine(1), isoleucine(8) angiotensin II>angiotensin III>angiotensin II>angiotensin I'angiotensin IV>angiotensin 1-7. Shorter angiotensin fragments and non-angiotensin peptides showed low affinity for this binding site. SIGNIFICANCE The presence in human brain of this novel non-AT1, non-AT2 binding site supports the concept that this binding site is an important component of the brain angiotensin system. The functional significance of this binding site, either as a novel angiotensin receptor or a highly specific angiotensinase remains to be determined.
Collapse
Affiliation(s)
- Vardan T. Karamyan
- Department of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Craig A. Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Robert C. Speth
- Department of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
174
|
Napadow V, Dhond R, Conti G, Makris N, Brown EN, Barbieri R. Brain correlates of autonomic modulation: combining heart rate variability with fMRI. Neuroimage 2008; 42:169-77. [PMID: 18524629 PMCID: PMC2603289 DOI: 10.1016/j.neuroimage.2008.04.238] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Revised: 02/29/2008] [Accepted: 04/14/2008] [Indexed: 12/30/2022] Open
Abstract
The central autonomic network (CAN) has been described in animal models but has been difficult to elucidate in humans. Potential confounds include physiological noise artifacts affecting brainstem neuroimaging data, and difficulty in deriving non-invasive continuous assessments of autonomic modulation. We have developed and implemented a new method which relates cardiac-gated fMRI timeseries with continuous-time heart rate variability (HRV) to estimate central autonomic processing. As many autonomic structures of interest are in brain regions strongly affected by cardiogenic pulsatility, we chose to cardiac-gate our fMRI acquisition to increase sensitivity. Cardiac-gating introduces T1-variability, which was corrected by transforming fMRI data to a fixed TR using a previously published method [Guimaraes, A.R., Melcher, J.R., et al., 1998. Imaging subcortical auditory activity in humans. Hum. Brain Mapp. 6(1), 33-41]. The electrocardiogram was analyzed with a novel point process adaptive-filter algorithm for computation of the high-frequency (HF) index, reflecting the time-varying dynamics of efferent cardiovagal modulation. Central command of cardiovagal outflow was inferred by using the resample HF timeseries as a regressor to the fMRI data. A grip task was used to perturb the autonomic nervous system. Our combined HRV-fMRI approach demonstrated HF correlation with fMRI activity in the hypothalamus, cerebellum, parabrachial nucleus/locus ceruleus, periaqueductal gray, amygdala, hippocampus, thalamus, and dorsomedial/dorsolateral prefrontal, posterior insular, and middle temporal cortices. While some regions consistent with central cardiovagal control in animal models gave corroborative evidence for our methodology, other mostly higher cortical or limbic-related brain regions may be unique to humans. Our approach should be optimized and applied to study the human brain correlates of autonomic modulation for various stimuli in both physiological and pathological states.
Collapse
Affiliation(s)
- Vitaly Napadow
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02119, USA.
| | | | | | | | | | | |
Collapse
|
175
|
Engelhardt E, Laks J. Alzheimer disease neuropathology: understanding autonomic dysfunction. Dement Neuropsychol 2008; 2:183-191. [PMID: 29213568 PMCID: PMC5619463 DOI: 10.1590/s1980-57642009dn20300004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 08/22/2008] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease is a widely studied disorder with research focusing on cognitive and functional impairments, behavioral and psychological symptoms, and on abnormal motor manifestations. Despite the importance of autonomic dysfunctions they have received less attention in systematic studies. The underlying neurodegenerative process of AD, mainly affecting cortical areas, has been studied for more than one century. However, autonomic-related structures have not been studied neuropathologically with the same intensity. The autonomic nervous system governs normal visceral functions, and its activity is expressed in relation to homeostatic needs of the organism's current physical and mental activities. The disease process leads to autonomic dysfunction or dysautonomy possibly linked to increased rates of morbidity and mortality. OBJECTIVE The aim of this review was to analyze the cortical, subcortical, and more caudal autonomic-related regions, and the specific neurodegenerative process in Alzheimer's disease that affects these structures. METHODS A search for papers addressing autonomic related-structures affected by Alzheimer's degeneration, and under normal condition was performed through MedLine, PsycInfo and Lilacs, on the bibliographical references of papers of interest, together with a manual search for classic studies in older journals and books, spanning over a century of publications. RESULTS The main central autonomic-related structures are described, including cortical areas, subcortical structures (amygdala, thalamus, hypothalamus, brainstem, cerebellum) and spinal cord. They constitute autonomic neural networks that underpin vital functions. These same structures, affected by specific Alzheimer's disease neurodegeneration, were also described in detail. The autonomic-related structures present variable neurodegenerative changes that develop progressively according to the degenerative stages described by Braak and Braak. CONCLUSION The neural networks constituted by the central autonomic-related structures, when damaged by progressive neurodegeneration, represent the neuropathological substrate of autonomic dysfunction. The presence of this dysfunction and its possible relationship with higher rates of morbidity, and perhaps of mortality, in affected subjects must be kept in mind when managing Alzheimer's patients.
Collapse
Affiliation(s)
- Eliasz Engelhardt
- MD, PhD, Coordinator of the Cognitive and Behavioral Unit
– INDC-UFRJ
| | - Jerson Laks
- MD, PhD, Coordinator of the Alzheimer’s Disease Unit –
CDA/IPUB-UFRJ
| |
Collapse
|
176
|
Laederach-Hofmann K, Rüddel H, Mussgay L. Pathological baroreceptor sensitivity in patients suffering from somatization disorders: do they correlate with symptoms? Biol Psychol 2008; 79:243-9. [PMID: 18611426 DOI: 10.1016/j.biopsycho.2008.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/04/2008] [Accepted: 06/10/2008] [Indexed: 11/17/2022]
Abstract
AIM We conducted a study to investigate whether patients with somatization disorders (ICD-10, F45.0) show abnormal values in autonomic testing. METHOD 35 patients with a diagnosis of somatization disorder (SP) were matched to 35 healthy volunteers (HV). International standardized autonomic testing based on heart rate variation and continuously measured blood pressure signals was used to assess autonomic activity and establish baroreceptor sensitivity (BRS). Three different statistical procedures were used to confirm the reliability of the findings. RESULTS There were no statistical differences between the 2 groups in age, BMI, systolic and diastolic blood pressures, and spectral values (total power, low, and high frequency power). However, heart rate was higher (p=0.044) and baroreceptor sensitivity was lower (p=0.002) in the patients compared to the healthy volunteers. Median BRS (+/-S.E.M.) of patients was 9.09+/-0.65 compared to 12.04+/-0.94 ms/mmHg in healthy volunteers. Twenty-two of the 35 patients had a BRS of -1.0S.D. below the mean of HV. SP with lower values differed from SP with normal BRS in values of total power, low-, mid-, and high-frequency bands (p<0.01 to <0.0001). No differences in psychometric testing were found between patients with lower or higher BRS. In addition, no correlation whatsoever was found in relation to autonomic variables between HV and SP, except for a higher LF/HF quotient in the latter (p<0.05). CONCLUSION Autonomic regulation was impaired in 62% of patients with a somatization disorder. Severity of clinical symptoms measured by psychometric instruments did not preclude autonomic function impairment. Accordingly, autonomic dysfunction may constitute an independent somatic factor in this patient group.
Collapse
Affiliation(s)
- Kurt Laederach-Hofmann
- Psychobiology and Psychosomatic Center, Department of Behavioural Medicine and Rehabilitation, University of Trier, St-Franziska-Stift Psychosomatic Hospital, Bad Kreuznach, Germany.
| | | | | |
Collapse
|
177
|
|
178
|
Guillaume P, Hervé S, Picard S, Lacroix P. Orthostatic Hypotension Induced by Postural Change in the Rat (Tilt Test). ACTA ACUST UNITED AC 2008; Chapter 5:Unit 5.45. [DOI: 10.1002/0471141755.ph0545s40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Stéphane Hervé
- Porsolt and Partners Pharmacology Boulogne‐Billancourt France
| | - Sandra Picard
- Porsolt and Partners Pharmacology Boulogne‐Billancourt France
| | - Pierre Lacroix
- Porsolt and Partners Pharmacology Boulogne‐Billancourt France
| |
Collapse
|
179
|
Bedette D, Santos RAS, Fontes MAP. Cardiovascular reactivity after blockade of angiotensin AT1 receptors in the experimental model of tilting test in conscious rats. Br J Pharmacol 2008; 153:966-71. [PMID: 18193073 DOI: 10.1038/sj.bjp.0707652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND PURPOSE Studies have shown that the angiotensin II AT(1) receptor antagonist, losartan, accentuates the hypotensive response in the orthostatic stress test (tilt) performed in anaesthetized rats. The same effect was not reported with other AT(1) antagonists. The aim of this study was to re-evaluate the effects of AT(1) receptor blockade on the cardiovascular response to tilt in a model developed for conscious rats. EXPERIMENTAL APPROACH Rats (n=5-7 per group) were instrumented for infusion of drugs and recording of cardiovascular parameters and, after recovery, placed in a plastic tube positioned over the tilt board. The tilt test was conducted by raising the head side of the tilt board from horizontal position to 75 degrees head up position for 15 min. KEY RESULTS Compared with control group (NaCl 0.9%, 1 ml kg(-1)), oral treatment with 1 mg kg(-1) per day of losartan or telmisartan did not alter the blood pressure response during tilt. With the 10 mg kg(-1) dose, both antagonists altered the blood pressure response during tilt (mean maximum changes -11+/-3 mm Hg; P<0.01). A post-tilt hypotension was observed with both doses in losartan and telmisartan groups (-13+/-1 and -9+/-2 mm Hg, respectively; P<0.01). CONCLUSIONS AND IMPLICATIONS The present results indicate that the effect of losartan on the cardiovascular reactivity to tilt shares a similar profile to that of other AT(1) antagonists. Evidence discussed addresses the importance of using a conscious model for testing the influence of antihypertensive drugs on the cardiovascular reactivity to orthostatic challenges.
Collapse
Affiliation(s)
- D Bedette
- Hypertension Laboratory, Department of Physiology and Biophysics, ICB, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | | | | |
Collapse
|
180
|
McLachlan EM. Synaptic Signaling in Sympathetic Vasoconstrictor Pathways and the Effects of Injury. Tzu Chi Med J 2007. [DOI: 10.1016/s1016-3190(10)60015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
181
|
Ngampramuan S, Baumert M, Beig MI, Kotchabhakdi N, Nalivaiko E. Activation of 5-HT(1A) receptors attenuates tachycardia induced by restraint stress in rats. Am J Physiol Regul Integr Comp Physiol 2007; 294:R132-41. [PMID: 17959705 DOI: 10.1152/ajpregu.00464.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand the central mechanisms that mediate increases in heart rate (HR) during psychological stress, we examined the effects of systemic and intramedullary (raphe region) administration of the serotonin-1A (5-HT(1A)) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT) on cardiac changes elicited by restraint in hooded Wistar rats with preimplanted ECG telemetric transmitters. 8-OH-DPAT reduced basal HR from 356 +/- 12 to 284 +/- 12 beats/min, predominantly via a nonadrenergic, noncholinergic mechanism. Restraint stress caused tachycardia (an initial transient increase from 318 +/- 3 to 492 +/- 21 beats/min with a sustained component of 379 +/- 12 beats/min). beta-Adrenoreceptor blockade with atenolol suppressed the sustained component, whereas muscarinic blockade with methylscopolamine (50 microg/kg) abolished the initial transient increase, indicating that sympathetic activation and vagal withdrawal were responsible for the tachycardia. Systemic administration of 8-OH-DPAT (10, 30, and 100 microg/kg) attenuated stress-induced tachycardia in a dose-dependent manner, and this effect was suppressed by the 5-HT(1A) antagonist WAY-100635 (100 microg/kg). Given alone, the antagonist had no effect. Systemically injected 8-OH-DPAT (100 microg/kg) attenuated the sympathetically mediated sustained component (from +85 +/- 19 to +32 +/- 9 beats/min) and the vagally mediated transient (from +62 +/- 5 to +25 +/- 3 beats/min). Activation of 5-HT(1A) receptors in the medullary raphe by microinjection of 8-OH-DPAT mimicked the antitachycardic effect of the systemically administered drug but did not affect basal HR. We conclude that tachycardia induced by restraint stress is due to a sustained increase in cardiac sympathetic activity associated with a transient vagal withdrawal. Activation of central 5-HT(1A) receptors attenuates this tachycardia by suppressing autonomic effects. At least some of the relevant receptors are located in the medullary raphe-parapyramidal area.
Collapse
Affiliation(s)
- Sukonthar Ngampramuan
- Neuro-Behavioural Biology Centre, Institute of Science and Technology for Research and Development, Mahidol University, Salaya Nakron Pathom, Thailand
| | | | | | | | | |
Collapse
|
182
|
Poon CS, Tin C, Yu Y. Homeostasis of exercise hyperpnea and optimal sensorimotor integration: the internal model paradigm. Respir Physiol Neurobiol 2007; 159:1-13; discussion 14-20. [PMID: 17416554 PMCID: PMC2225386 DOI: 10.1016/j.resp.2007.02.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 02/28/2007] [Accepted: 02/28/2007] [Indexed: 11/16/2022]
Abstract
Homeostasis is a basic tenet of biomedicine and an open problem for many physiological control systems. Among them, none has been more extensively studied and intensely debated than the dilemma of exercise hyperpnea - a paradoxical homeostatic increase of respiratory ventilation that is geared to metabolic demands instead of the normal chemoreflex mechanism. Classical control theory has led to a plethora of "feedback/feedforward control" or "set point" hypotheses for homeostatic regulation, yet so far none of them has proved satisfactory in explaining exercise hyperpnea and its interactions with other respiratory inputs. Instead, the available evidence points to a far more sophisticated respiratory controller capable of integrating multiple afferent and efferent signals in adapting the ventilatory pattern toward optimality relative to conflicting homeostatic, energetic and other objectives. This optimality principle parsimoniously mimics exercise hyperpnea, chemoreflex and a host of characteristic respiratory responses to abnormal gas exchange or mechanical loading/unloading in health and in cardiopulmonary diseases - all without resorting to a feedforward "exercise stimulus". Rather, an emergent controller signal encoding the projected metabolic level is predicted by the principle as an exercise-induced 'mental percept' or 'internal model', presumably engendered by associative learning (operant conditioning or classical conditioning) which achieves optimality through continuous identification of, and adaptation to, the causal relationship between respiratory motor output and resultant chemical-mechanical afferent feedbacks. This internal model self-tuning adaptive control paradigm opens a new challenge and exciting opportunity for experimental and theoretical elucidations of the mechanisms of respiratory control - and of homeostatic regulation and sensorimotor integration in general.
Collapse
Affiliation(s)
- Chi-Sang Poon
- Harvard-MIT Division of Health Sciences and Technology, Bldg. 56-046, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
183
|
Cortelli P, Guaraldi P, Leone M, Pierangeli G, Barletta G, Grimaldi D, Cevoli S, Bussone G, Baruzzi A, Montagna P. Effect of deep brain stimulation of the posterior hypothalamic area on the cardiovascular system in chronic cluster headache patients. Eur J Neurol 2007; 14:1008-15. [PMID: 17718693 DOI: 10.1111/j.1468-1331.2007.01850.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of this study was to determine the cardiovascular effects of chronic stimulation of the posterior hypothalamic area (PHA) in cluster headache (CH) patients. Systolic and diastolic blood pressure (SBP, DBP), cardiac output, total peripheral resistance (TPR), heart rate (HR) and breathing were monitored at supine rest and during head-up tilt test (HUTT), Valsalva manoeuvre, deep breathing, cold face test and isometric handgrip in eight drug-resistant chronic CH patients who underwent monolateral electrode implantation in the PHA for therapeutic purposes. Autoregressive power spectral analysis (PSA) of HR variability (HRV) was calculated at rest and during HUTT. Each subject was studied before surgery (condition A) and after chronic deep brain stimulation (DBS) of PHA (condition B). Baseline SBP, DBP, HR and cardiovascular reflexes were normal and similar in both conditions. With respect to condition A, DBP, TPR and the LF/HF obtained from the PSA of HRV were significantly (P < 0.05) increased during HUTT in condition B. In conclusion, chronic DBS of the PHA in chronic CH patients is associated with an enhanced sympathoexcitatory drive on the cardiovascular system during HUTT.
Collapse
Affiliation(s)
- P Cortelli
- Department of Neurological Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Mravec B, Lukackova R, Bodnar I, Kiss A, Pacak K, Palkovits M, Kvetnansky R. Stress-induced alterations in catecholamine enzymes gene expression in the hypothalamic dorsomedial nucleus are modulated by caudal brain and not hypothalamic paraventricular nucleus neurons. Brain Res Bull 2007; 74:147-54. [PMID: 17683801 DOI: 10.1016/j.brainresbull.2007.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 06/05/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022]
Abstract
The hypothalamic dorsomedial nucleus (DMN) represents an important coordinate center for regulation of autonomic and neuroendocrine systems, especially during stress response. The present study was focused on the gene expression of catecholamine-synthesizing enzymes and the protein levels of tyrosine hydroxylase in DMN, both in control and stressed rats. Moreover, pathways modulating the gene expression of tyrosine hydroxylase in DMN during immobilization (IMO) stress were also investigated. Gene expressions of all catecholamine-synthesizing enzymes were detected in DMN samples. While the levels of tyrosine hydroxylase and phenylethanolamine N-methyltransferase mRNA were increased in IMO rats, aromatic L-amino acid decarboxylase and dopamine-beta-hydroxylase mRNA remained unchanged. Tyrosine hydroxylase protein levels were significantly elevated in the DMN only after repeated IMO stress. Postero-lateral deafferentations of the DMN, or transections of the ascending catecholaminergic pathways originating in the lower brainstem abolished the IMO-induced increase of tyrosine hydroxylase gene expression in the DMN. Nevertheless, postero-lateral deafferentations of the hypothalamic paraventricular nucleus (PVN), which separate the DMN from the PVN, had no effect on IMO-induced elevation of tyrosine hydroxylase mRNA in the DMN. The present data indicate that certain DMN neurons synthesize mRNA of catecholamine enzymes. The stress-induced increase of tyrosine hydroxylase and phenylethanolamine N-methyltransferase mRNA in DMN neurons indicates the involvement of these catecholaminergic neurons in stress response. The gene expression of tyrosine hydroxylase in DMN is modulated by lower brainstem and/or spinal cord, but not by PVN afferents.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
185
|
Ployngam T, Collister JP. An intact median preoptic nucleus is necessary for chronic angiotensin II-induced hypertension. Brain Res 2007; 1162:69-75. [PMID: 17618605 PMCID: PMC2040032 DOI: 10.1016/j.brainres.2007.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 05/30/2007] [Accepted: 06/04/2007] [Indexed: 11/23/2022]
Abstract
The median preoptic nucleus (MnPO) receives afferent input from the subfornical organ, a circumventricular organ that has been shown to be necessary in mediating the full chronic hypertensive response to angiotensin II (ANG II) administration. In addition, intravenous ANG II infusion has been shown to cause activation of a number of neurons in both the dorsal and ventral part of MnPO. Taken together, we hypothesized that the MnPO is necessary for the full hypertensive response observed during chronic ANG II-induced hypertension. To test this hypothesis, male Sprague-Dawley rats were subjected to either sham (SHAM) or electrolytic lesion of both the dorsal and ventral part of the MnPO (MnPOx). During the same surgery, rats were instrumented with venous catheters, and radiotelemetric transducers for the intravenous administration of ANG II and the measurement of blood pressure and heart rate, respectively. Rats were then given a week recovery period. After 3 days of saline control infusion, ANG II was intravenously infused (10 ngxkg(-1).min(-1)) in both sham and MnPOx animals for 10 consecutive days, and followed by 3 recovery days. By day 7 of ANG II infusion, MAP had increased 38+/-3 mm Hg in sham lesion rats (n=6), but MAP of MnPOx rats (>90% MnPO ablated; n=5) had only increased 18+/-2 mm Hg. This trend continued through day 10 of ANG II treatment. These results support the hypothesis that the MnPO is necessary for the chronic hypertensive response to ANG II administration.
Collapse
Affiliation(s)
- Trasida Ployngam
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 295 Animal Science/Vet Medicine, 1988 Fitch Ave., St. Paul, MN 55108, USA.
| | | |
Collapse
|
186
|
Salomé N, Ngampramuan S, Nalivaiko E. Intra-amygdala injection of GABAA agonist, muscimol, reduces tachycardia and modifies cardiac sympatho-vagal balance during restraint stress in rats. Neuroscience 2007; 148:335-41. [PMID: 17683873 DOI: 10.1016/j.neuroscience.2007.06.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Revised: 06/11/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
At present, little is known about the brain origin of stress-induced cardiac sympathetic drive responsible for stress-induced tachycardia. Our aim was to determine the effect of bilateral microinjections of the GABA(A) receptor agonist, muscimol, into the amygdaloid complex on both the heart rate and cardiac autonomic activity during restraint stress. Experiments were performed in male Sprague-Dawley rats (n=9), with pre-implanted electrocardiographic electrodes. Heart rate increased sharply after the onset of the restraint and reached a peak 1-2 min later (from 344+/-6-440+/-20 BPM). Subsequently, heart rate began to fall, and during the next 10-15 min approached the steady-state level of 384+/-11. After vehicle, mean heart rate during each of three 10-min restraint epochs was significantly higher compared with the pre-restraint level. After muscimol, mean heart rate was significantly elevated only during the first 10 min of restraint. There was no difference in the early peak tachycardia between both conditions. Muscimol substantially accelerated the fall of the HR from the peak to the steady-state level, and thus the area under the curve value for muscimol (503+/-162 BPM x min) was significantly smaller than that for vehicle (1221+/-231 BPM x min); P<0.05. After vehicle, the high-frequency spectral power of the heart rate decreased and the low-frequency power increased during the restraint, resulting in a significant rise of the low frequency/high frequency ratio from 1.2+/-0.2-2.8+/-0.6 (n=9, P<0.05). Muscimol suppressed these stress-induced effects. We conclude that inhibition of the amygdala neurons abolishes the sustained component of tachycardia during the restraint, has no effect on the early tachycardic component, and prevents stress-induced alterations in the heart rate variability indices.
Collapse
Affiliation(s)
- N Salomé
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
187
|
Synaptic transmission in sympathetic vasoconstrictor pathways and its modification after injuries. NEUROPHYSIOLOGY+ 2007. [DOI: 10.1007/s11062-007-0035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
188
|
Leineweber K, Heusch G, Schulz R. Regulation and Role of the Presynaptic and Myocardial Na+/H+Exchanger NHE1: Effects on the Sympathetic Nervous System in Heart Failure. ACTA ACUST UNITED AC 2007; 25:123-31. [PMID: 17614935 DOI: 10.1111/j.1527-3466.2007.00010.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In acute myocardial ischemia and in chronic heart failure, sympathetic activation with excessive norepinephrine (NE) release from and reduced NE reuptake into sympathetic nerve endings is a prominent cause of arrhythmias and cardiac dysfunction. The Na(+)/H(+) exchanger NHE1 is the predominant isoform in the heart. It contributes to cellular acid-base balance, and electrolyte, and volume homeostasis, and is activated in response to intracellular acidosis and/or activation of guanine nucleotide binding (G) protein-coupled receptors. NHE1 mediates its signaling via protein kinases A (PKA) or C (PKC). In cardiomyocytes, NHE1 is restricted to specialized membrane domains, where it regulates the activity of pH-sensitive proteins and modulates the driving force of the Na(+)/Ca(2+) exchanger. During acute ischemia/reperfusion and in heart failure the activity/amount of NHE1 is increased, leading to intracellular Ca(2+) overload and promoting structural (apoptosis, hypertrophy) and functional (arrhythmias, hypercontraction) myocardial damage. In sympathetic nerve endings, increased NHE1 activity results in the accumulation of axoplasmic Na(+) that diminishes the inward and/or favors the outward transport of NE via the neuronal norepinephrine transporter (NET). The increased NE levels within the nerve-muscle junction facilitate the sustained stimulation of myocardial alpha- and beta-adrenoceptors (ARs), which in turn aggravate the increases in myocardial NHE1 activity and the associated deleterious effects. Furthermore, the responsiveness of the beta-AR declines overtime, which results in further release of NE, initiating a vicious cycle. Accordingly, NHE1 is a potential candidate for targeted intervention to suppress this feedback loop.
Collapse
Affiliation(s)
- Kirsten Leineweber
- Institute of Pathophysiology, University of Essen School of Medicine, D-45122 Essen, Germany.
| | | | | |
Collapse
|
189
|
Oikawa R, Nasa Y, Ishii R, Kuwaki T, Tanoue A, Tsujimoto G, Takeo S. Vasopressin V1A receptor enhances baroreflex via the central component of the reflex arc. Eur J Pharmacol 2007; 558:144-50. [PMID: 17224142 DOI: 10.1016/j.ejphar.2006.11.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 11/24/2006] [Accepted: 11/29/2006] [Indexed: 11/19/2022]
Abstract
The neurohypophyseal peptide [Arg(8)]-vasopressin (AVP) exerts its physiological actions via 3 distinct receptor isoforms designated V1A, V1B, and V2. We recently showed that V1A receptor was involved in the baroreflex control of heart rate using V1A receptor knockout mice. The present study was undertaken to further clarify this finding. In conscious mice, resting blood pressure of the knockout group was lower than that of the wild-type group (wild-type, 108+/-2.0 mm Hg; knockout, 98+/-3.8 mm Hg; n=6-7) without notable change in heart rate. Although phenylephrine and nitroprusside-induced changes in blood pressure did not differ in these strains, the subsequent bradycardia and tachycardia were markedly blunted in the knockout mice (mean slopes for baroreflex curve after phenylephrine treatment; wild-type, -5.65+/-0.30 bpm/mm Hg; knockout, -3.97+/-0.52 bpm/mm Hg; those after nitroprusside treatment; wild-type, -0.51+/-0.10 bpm/mm Hg; knockout, -0.18+/-0.05 bpm/mm Hg; n=6-7). Under urethane anesthesia (1.0-1.2 g/kg, i.p.), electrical stimulation of the vagal afferent nerve evoked frequency-dependent hypotension and bradycardia in the wild-type mice. In contrast, in the knockout mice such stimulation induced a pressor, not a depressor, response and diminished bradycardia. Moreover, electrical stimulation-induced hemodynamic changes through the vagal afferent nerve in the wild-type mice were significantly attenuated by pretreatment with intravenously administered V1A receptor antagonist d(CH(2))(5)Tyr(Me)AVP. Electrical stimulation of the vagal efferent nerve-induced hemodynamic changes (depressor and bradycardia) and chronotropic responses to adrenergic and cholinergic stimuli were not different between the 2 strains. These results suggest that the V1A receptor in the central nervous system is involved in the regulation of the heart rate via the baroreflex arc.
Collapse
Affiliation(s)
- Ryo Oikawa
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Science, 1432-1, Horinouchi, Hachioji, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
190
|
Hassan M, El-Brawany M, Sharaf M. A functional cardiovascular model with disorders. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2005:5089-92. [PMID: 17281391 DOI: 10.1109/iembs.2005.1615621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This paper introduces a functional model of the cardiovascular system that is capable of describing its behavior in normal as well as pathologic cases. The developed model includes all the main compartments of the circulatory system and also the baroreflex-feedback regulatory mechanism. The model response to the incorporation of two critical cardiovascular disorders namely hypertension and acute congestive heart failure is realistic and within the expected range of the results of the literature experimental data.
Collapse
Affiliation(s)
- M Hassan
- M. E. Hassan Industrial Electronics and Control Engineering Department, Faculty of, Electronic Engineering, Minufiya University, Menouf 32952 Egypt
| | | | | |
Collapse
|
191
|
McLachlan EM. Diversity of sympathetic vasoconstrictor pathways and their plasticity after spinal cord injury. Clin Auton Res 2007; 17:6-12. [PMID: 17264977 PMCID: PMC1797061 DOI: 10.1007/s10286-006-0394-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 01/02/2007] [Indexed: 02/01/2023]
Abstract
Sympathetic vasoconstrictor pathways pass through paravertebral ganglia carrying ongoing and reflex activity arising within the central nervous system to their vascular targets. The pattern of reflex activity is selective for particular vascular beds and appropriate for the physiological outcome (vasoconstriction or vasodilation). The preganglionic signals are distributed to most postganglionic neurones in ganglia via synapses that are always suprathreshold for action potential initiation (like skeletal neuromuscular junctions). Most postganglionic neurones receive only one of these “strong” inputs, other preganglionic connections being ineffective. Pre- and postganglionic neurones discharge normally at frequencies of 0.5–1 Hz and maximally in short bursts at <10 Hz. Animal experiments have revealed unexpected changes in these pathways following spinal cord injury. (1) After destruction of preganglionic neurones or axons, surviving terminals in ganglia sprout and rapidly re-establish strong connections, probably even to inappropriate postganglionic neurones. This could explain aberrant reflexes after spinal cord injury. (2) Cutaneous (tail) and splanchnic (mesenteric) arteries taken from below a spinal transection show dramatically enhanced responses in vitro to norepinephrine released from perivascular nerves. However the mechanisms that are modified differ between the two vessels, being mostly postjunctional in the tail artery and mostly prejunctional in the mesenteric artery. The changes are mimicked when postganglionic neurones are silenced by removal of their preganglionic input. Whether or not other arteries are also hyperresponsive to reflex activation, these observations suggest that the greatest contribution to raised peripheral resistance in autonomic dysreflexia follows the modifications of neurovascular transmission.
Collapse
Affiliation(s)
- Elspeth M McLachlan
- Spinal Injuries Research Centre, Prince of Wales Medical Research Institute, Randwick, NSW, Australia.
| |
Collapse
|
192
|
Abstract
1. Heart Failure (HF) is a serious, debilitating condition with poor survival rates and an increasing level of prevalence. A characteristic of HF is a compensatory neurohumoral activation that increases with the severity of the condition. 2. The increase in sympathetic activity may be beneficial initially, providing inotropic support to the heart and peripheral vasoconstriction, but in the longer term it promotes disease progression and worsens prognosis. This is particularly true for the increase in cardiac sympathetic nerve activity, as shown by the strong inverse correlation between cardiac noradrenaline spillover and prognosis and by the beneficial effect of beta-adrenoceptor antagonists. 3. Possible causes for the raised level of sympathetic activity in HF include altered neural reflexes, such as those from baroreceptors and chemoreceptors, raised levels of hormones, such as angiotensin II, acting on circumventricular organs, and changes in central mechanisms that may amplify the responses to these inputs. 4. The control of sympathetic activity to different organs is regionally heterogeneous, as demonstrated by a lack of concordance in burst patterns, different responses to reflexes, opposite responses of cardiac and renal sympathetic nerves to central angiotensin and organ-specific increases in sympathetic activity in HF. These observations indicate that, in HF, it is essential to study the factors causing sympathetic activation in individual outflows, in particular those that powerfully, and perhaps preferentially, increase cardiac sympathetic nerve activity.
Collapse
Affiliation(s)
- A M D Watson
- Howard Florey Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
193
|
Abstract
In this Paton Lecture I have tried to trace the key experiments that have developed ideas on how the brain regulates the cardiovascular system. It is a personal view and inevitably, owing to constraints on space and time, I have not been able to cover areas such as the nucleus tractus solitarius and cardiac vagal neurones, although I acknowledge that some may consider the story is incomplete without them. Starting with the crucial discovery of vasomotor nerves and 'vasomotor tone', the patterns of activity in sympathetic nerves which led to the important idea of central oscillating networks of neurones are described. I discuss how this knowledge has informed current controversies on the origin of vasomotor activity in presympathetic neurones in the ventral medulla, which identify intrinsic pacemaker activity or synaptic input from multiple oscillators as prime mechanisms. I present an emerging view that the role of other regions of the brain, in particular supramedullary sites, has been underplayed. These regions are pivotal for the non-uniform distribution of cardiac output that is unique to each reflex and behavioural state. I discuss the most recent evidence for 'central command' neurones that offers a plausible explanation for how these patterns of sympathetic activity are achieved. Finally, I stress the importance of these current ideas to the understanding of pathological changes in sympathetic activity in cardiovascular diseases such as hypertension or congestive heart failure.
Collapse
Affiliation(s)
- John H Coote
- Division of Neuroscience, The Medical School, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
194
|
Bernard JF, Netzer F, Gau R, Hamon M, Laguzzi R, Sévoz-Couche C. Critical role of B3 serotonergic cells in baroreflex inhibition during the defense reaction triggered by dorsal periaqueductal gray stimulation. J Comp Neurol 2007; 506:108-21. [DOI: 10.1002/cne.21532] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
195
|
Yuill EA, Hoyda TD, Ferri CC, Zhou QY, Ferguson AV. Prokineticin 2 depolarizes paraventricular nucleus magnocellular and parvocellular neurons. Eur J Neurosci 2007; 25:425-34. [PMID: 17284183 PMCID: PMC2667317 DOI: 10.1111/j.1460-9568.2006.05293.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blind whole-cell patch-clamp techniques were used to examine the effects of prokineticin 2 (PK2) on the excitability of magnocellular (MNC), parvocellular preautonomic (PA), and parvocellular neuroendocrine (NE) neurons within the hypothalamic paraventricular nucleus (PVN) of the rat. The majority of MNC neurons (76%) depolarized in response to 10 nm PK2, effects that were eliminated in the presence of tetrodotoxin (TTX). PK2 also caused an increase in excitatory postsynaptic potential (EPSP) frequency, a finding that was confirmed by voltage clamp recordings demonstrating increases in excitatory postsynaptic current (EPSC) frequency. The depolarizing effects of PK2 on MNC neurons were also abolished by kynurenic acid (KA), supporting the conclusion that the effects of PK2 are mediated by the activation of glutamate interneurons within the hypothalamic slice. PA (68%) and NE (67%) parvocellular neurons also depolarized in response to 10 nm PK2. However, in contrast to MNC neurons, these effects were maintained in TTX, indicating that PK2 directly affects PA and NE neurons. PK2-induced depolarizations observed in PA and NE neurons were found to be concentration-related and receptor mediated, as experiments performed in the presence of A1MPK1 (a PK2 receptor antagonist) abolished the effects of PK2 on these subpopulations of neurons. The depolarizing effects of PK2 on PA and NE neurons were also shown to be abolished by PD 98059 (a mitogen activated protein kinase (MAPK) inhibitor) suggesting that PK2 depolarizes PVN parvocellular neurons through a MAPK signalling mechanism. In combination, these studies have identified separate cellular mechanisms through which PK2 influences the excitability of different subpopulations of PVN neurons.
Collapse
Affiliation(s)
- Erik A Yuill
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
196
|
Naschitz JE, Slobodin G, Elias N, Rosner I. The patient with supine hypertension and orthostatic hypotension: a clinical dilemma. Postgrad Med J 2006; 82:246-53. [PMID: 16597811 PMCID: PMC2579630 DOI: 10.1136/pgmj.2005.037457] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Coexistent supine hypertension and orthostatic hypotension (SH-OH) pose a particular therapeutic dilemma, as treatment of one aspect of the condition may worsen the other. Studies of SH-OH are to be found by and large on patients with autonomic nervous disorders as well as patients with chronic arterial hypertension. In medical practice, however, the aetiologies and clinical presentation of the syndrome seem to be more varied. In the most typical cases the diagnosis is straightforward and the responsible mechanism evident. In those patients with mild or non-specific symptoms, the diagnosis is more demanding and the investigation may benefit from results of the tilt test, bedside autonomic tests as well as haemodynamic assessment. Discrete patterns of SH-OH may be recognisable. This review focuses on the management of the patient with coexistent SH-OH.
Collapse
Affiliation(s)
- J E Naschitz
- Department of Internal Medicine A, Bnai-Zion Medical Center and Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | |
Collapse
|
197
|
Stojicić S, Milutinović S, Sarenac O, Zivković S, Japundzić-Zigon N. Central vasopressin V1aand V1breceptors modulate the cardiovascular response to air-jet stress in conscious rats. BIOMED ENG-BIOMED TE 2006; 51:268-71. [PMID: 17061955 DOI: 10.1515/bmt.2006.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study investigates the contribution of central vasopressin receptors in the modulation of systolic arterial pressure (SAP) and heart rate (HR) response to air-jet stress in conscious Wistar rats equipped with a femoral arterial catheter and intracerebroventricular cannula using novel non-peptide and selective vasopressin V(1a) (SR49059) and V(1b) (SSR149415) antagonists. The effects of stress on SAP and HR were evaluated by measuring the maximal response to stress, the latency of the maximal response, the duration of the recovery period, and the increase in the low frequency (LF) short-term variability component. Stress induced a parallel and almost immediate increase in both SAP and HR, followed by enhanced LF SAP variability in the recovery period. Pretreatment of rats with V(1a) antagonist did not affect the maximal increase or the latency of SAP and HR response to acute stress, but shortened the recovery period of SAP and HR and prevented the increase in LF SAP. The V(1b) antagonist reduced the maximal increase in SAP without affecting HR and their latencies, shortened the recovery period of SAP and inhibited the increase in LF SAP variability. These results indicate that both central V(1a) and V(1b) receptors mediate cardiovascular changes induced by air-jet stress in conscious rats.
Collapse
Affiliation(s)
- Sonja Stojicić
- Clinic for Conservative Dentistry and Endodontics, School of Dentistry, University of Belgrade, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
198
|
Abstract
Hypertension - the chronic elevation of blood pressure - is a major human health problem. In most cases, the root cause of the disease remains unknown, but there is mounting evidence that many forms of hypertension are initiated and maintained by an elevated sympathetic tone. This review examines how the sympathetic tone to cardiovascular organs is generated, and discusses how elevated sympathetic tone can contribute to hypertension.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, Health Sciences Center, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908-0735, USA.
| |
Collapse
|
199
|
Sartor DM, Verberne AJM. The sympathoinhibitory effects of systemic cholecystokinin are dependent on neurons in the caudal ventrolateral medulla in the rat. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1390-8. [PMID: 16793934 DOI: 10.1152/ajpregu.00314.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gastrointestinal hormone CCK inhibits a subset of presympathetic neurons in the rostroventrolateral medulla (RVLM) that may be responsible for driving the sympathetic vasomotor outflow to the gastrointestinal circulation. We tested the hypothesis that the central neurocircuitry of this novel sympathoinhibitory reflex involves a relay in the caudal ventrolateral medullary (CVLM) depressor area. Blood pressure and greater splanchnic sympathetic nerve discharge (SSND) or lumbar sympathetic nerve discharge (LSND) were monitored in anesthetised, paralyzed male Sprague-Dawley rats. The effects of phenylephrine (PE, 10 microg/kg iv; baroreflex activation), phenylbiguanide (PBG, 10 microg/kg iv; von Bezold-Jarisch reflex) and CCK (4 or 8 microg/kg iv) on SSND or LSND, were tested before and after bilateral injection of 50-100 nl of the GABAA agonist muscimol (1.75 mM; n=6, SSND; n=7, LSND) or the excitatory amino acid antagonist kynurenate (55 mM; n=7, SSND) into the CVLM. PE and PBG elicited splanchnic and lumbar sympathoinhibitory responses that were abolished by bilateral muscimol or kynurenate injection into the CVLM. Similarly, the inhibitory effect of CCK on SSND was abolished after neuronal inhibition within the CVLM. In contrast, CCK-evoked lumbar sympathoexcitation was accentuated following bilateral CVLM inhibition. In control experiments (n=7), these agents were injected outside the CVLM and had no effect on splanchnic sympathoinhibitory responses to PE, PBG, and CCK. In conclusion, neurons in the CVLM are necessary for the splanchnic but not lumbar sympathetic vasomotor reflex response to CCK. This strengthens the view that subpopulations of RVLM neurons supply sympathetic vasomotor outflow to specific vascular territories.
Collapse
Affiliation(s)
- D M Sartor
- University of Melbourne, Clinical Pharmacology and Therapeutics Unit, Dept. of Medicine, Austin Health, Heidelberg, Victoria 3084, Australia.
| | | |
Collapse
|
200
|
Campos LA, Iliescu R, Fontes MAP, Schlegel WP, Bader M, Baltatu OC. Enhanced isoproterenol-induced cardiac hypertrophy in transgenic rats with low brain angiotensinogen. Am J Physiol Heart Circ Physiol 2006; 291:H2371-6. [PMID: 16731636 DOI: 10.1152/ajpheart.01145.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that a permanent deficiency in the brain renin-angiotensin system (RAS) may increase the sensitivity of the baroreflex control of heart rate. In this study we aimed at studying the involvement of the brain RAS in the cardiac reactivity to the beta-adrenoceptor (beta-AR) agonist isoproterenol (Iso). Transgenic rats with low brain angiotensinogen (TGR) were used. In isolated hearts, Iso induced a significantly greater increase in left ventricular (LV) pressure and maximal contraction (+dP/dt(max)) in the TGR than in the Sprague-Dawley (SD) rats. LV hypertrophy induced by Iso treatment was significantly higher in TGR than in SD rats (in g LV wt/100 g body wt, 0.28 +/- 0.004 vs. 0.24 +/- 0.004, respectively). The greater LV hypertrophy in TGR rats was associated with more pronounced downregulation of beta-AR and upregulation of LV beta-AR kinase-1 mRNA levels compared with those in SD rats. The decrease in the heart rate (HR) induced by the beta-AR antagonist metoprolol in conscious rats was significantly attenuated in TGR compared with SD rats (-9.9 +/- 1.7% vs. -18.1 +/- 1.5%), whereas the effect of parasympathetic blockade by atropine on HR was similar in both strains. These results indicate that TGR are more sensitive to beta-AR agonist-induced cardiac inotropic response and hypertrophy, possibly due to chronically low sympathetic outflow directed to the heart.
Collapse
Affiliation(s)
- Luciana A Campos
- Dept. of Physiology and Biophysics, The Center for Excellence in Cardiovascular-Renal Research, Univ. of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216-4505, USA
| | | | | | | | | | | |
Collapse
|