151
|
Esposito E, Cuzzocrea S. Targeting the peroxisome proliferator-activated receptors (PPARs) in spinal cord injury. Expert Opin Ther Targets 2011; 15:943-59. [DOI: 10.1517/14728222.2011.581231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
152
|
Mao L, Wang H, Wang X, Liao H, Zhao X. Transcription factor Nrf2 protects the spinal cord from inflammation produced by spinal cord injury. J Surg Res 2011; 170:e105-15. [PMID: 21764072 DOI: 10.1016/j.jss.2011.05.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/15/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Inflammation plays an important role in the pathogenesis of secondary damage after spinal cord injury (SCI). Previous studies have suggested that nuclear factor-erythroid 2-related factor 2 (Nrf2), a pleiotropic transcription factor, may play a key role in modulating inflammation in a variety of experimental models. This study evaluated the neuroprotective role of Nrf2 in the inflammatory response after SCI in mice. MATERIALS AND METHODS Nrf2-deficient (Nrf2(-/-)) and wild-type (Nrf2(+/+)) mice spinal cord compression injury was induced by the application of vascular clips (force of 10 g) to the dura. Sulforaphane (SFN) was used to activate Nrf2 after SCI. Inflammatory cytokines, NF-κB activity, histologic injury score, dying neurons count in grey matter, water content of impaired spinal cord, and Basso open-field motor score (BMS) were assessed to determine the extent of SCI-mediated damage. RESULTS The results showed that SFN activated Nrf2 in impaired spinal cord tissue, improved hindlimb locomotor function assessed by BMS, reduced inflammatory damage, histologic injury, dying neurons count, and spinal cord edema caused by SCI. Nrf2(-/-) mice demonstrated more severe neurologic deficit and spinal cord edema after SCI and did not benefit from the protective effect of SFN. CONCLUSIONS Taken together, our results suggest that Nrf2 may represent a strategic target for SCI therapies.
Collapse
Affiliation(s)
- Lei Mao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, PR China
| | | | | | | | | |
Collapse
|
153
|
Lee H, Sunden Y, Ochiai K, Umemura T. Experimental intracerebral vaccination protects mouse from a neurotropic virus by attracting antibody secreting cells to the CNS. Immunol Lett 2011; 139:102-9. [PMID: 21645547 DOI: 10.1016/j.imlet.2011.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/02/2011] [Accepted: 05/20/2011] [Indexed: 12/25/2022]
Abstract
In previous studies, we showed that intracerebrally (IC) immunized mice had antigen-specific antibodies (Abs) in cerebrospinal fluid and could survive lethal doses of transneurally spreading viruses. To better understand the mechanisms behind this, immune responses in both the central nervous system (CNS) and lymphoid organs following intracerebral immunization against pseudorabies virus (PRV) were investigated by focusing on antibody secreting cells (ASCs). IC immunized mice had significantly higher PRV-specific serum Abs and neutralizing Abs titers than SC immunized mice. Spleen and cervical lymph nodes (CLNs) of IC immunized mice produced significantly more PRV-specific Abs than that of SC immunized mice. ASCs, immunoglobulin and mRNAs of IgG, CXCL9, 10, 13 and BAFF were predominantly detected in the brain of IC immunized mice, but not in SC immunized mice. IC immunized mice (86%) survived more than subcutaneously (SC) immunized mice (33%) by suppression of virus propagation, when PRV was inoculated directly into the brain. In conclusion, IC immunization induced more effective immune responses to protect the CNS from PRV infection by attracting ASCs into the CNS and inducing much more PRV-specific serum neutralizing Abs. This approach may have important implications as a novel treatment procedure for neurotropic virus infections in both humans and animals.
Collapse
Affiliation(s)
- Hyunkyoung Lee
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Sapporo 060-0818, Hokkaido, Japan
| | | | | | | |
Collapse
|
154
|
Prüss H, Kopp MA, Brommer B, Gatzemeier N, Laginha I, Dirnagl U, Schwab JM. Non-resolving aspects of acute inflammation after spinal cord injury (SCI): indices and resolution plateau. Brain Pathol 2011; 21:652-60. [PMID: 21418368 DOI: 10.1111/j.1750-3639.2011.00488.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inflammatory resolution is an active, highly regulated process already encoded at the onset of inflammation and required to prevent the transition into chronic inflammation associated with spreading of tissue injury and exacerbated scarring. We introduce objective, quantitative measurements [resolution indices (R(i) ) and resolution plateau (R(P) )] to characterize inflammatory resolution and to determine the persistence ("dwell time") of differential leukocyte subpopulations at the lesion site after acute experimental spinal cord injury (SCI). The cell type-specific resolution interval R(i) (time between maximum cell numbers and the point when they are reduced to 50%) ranges from 1.2 days for neutrophils, 1.5 days for T lymphocytes, to 55 days for microglia/macrophages. As the resolution interval neglects exiting cell trafficking in the later period of resolution (49%-0% of lesional cells), we introduced the R(P) , a marker for the persisting, chronified leukocyte subsets, which are likely to participate in late degeneration and non-resolving inflammation. Here, we identify the acute inflammatory response in central nervous system (CNS) lesions as partly non self-limiting. Both extended resolution intervals (reduced leukocyte clearance) and elevated plateaus (permanent lesional cell numbers) provide quantitative measures to characterize residual, sustained inflammation and define cognate timeframes of impaired resolution after acute SCI.
Collapse
Affiliation(s)
- Harald Prüss
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité University Medicine Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
155
|
Involvement of SRC-suppressed C kinase substrate in neuronal death caused by the lipopolysaccharide-induced reactive astrogliosis. Inflammation 2011; 33:359-73. [PMID: 20204485 DOI: 10.1007/s10753-010-9194-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Src-suppressed C kinase substrate (SSeCKS), a protein kinase C substrate, is a major lipopolysaccharide (LPS) response protein, regulating the inflammatory process. In the process of spinal inflammatory diseases by LPS intraspinal injection, expression of SSeCKS in the spinal cord was increased, mainly in active astrocytes and neurons. Induced SSeCKS was colabeled with terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling (an apoptosis maker) in the late inflammation processes. These results indicated that SSeCKS might correlate with the inflammatory reaction and late neurodegeneration after LPS injection. A cell type-specific action for SSeCKS was further studied within C6 cells and PC12 cells. Knockdown of SSeCKS by small-interfering RNAs (siRNAs) blocked the LPS-induced inducible nitric oxide synthase (iNOS) expression in C6 cells, while overexpression SSeCKS enhanced iNOS expression. SSeCKS is also participated in regulation of PC12 cell viability. Loss of SSeCKS rescued PC12 cell viability, and excessive SSeCKS exacerbated the cell death upon conditioned medium and tumor necrosis factor-alpha exposure. This study delineates that SSeCKS may be important for host defenses in spinal inflammation and suggests a valuable molecular mechanism by which astrocytes modify neuronal viability during pathological states.
Collapse
|
156
|
Izumi B, Nakasa T, Tanaka N, Nakanishi K, Kamei N, Yamamoto R, Nakamae T, Ohta R, Fujioka Y, Yamasaki K, Ochi M. MicroRNA-223 expression in neutrophils in the early phase of secondary damage after spinal cord injury. Neurosci Lett 2011; 492:114-8. [DOI: 10.1016/j.neulet.2011.01.068] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 01/26/2011] [Accepted: 01/26/2011] [Indexed: 12/11/2022]
|
157
|
Diaz-Ruiz A, Salgado-Ceballos H, Montes S, Guizar-Sahagún G, Gelista-Herrera N, Mendez-Armenta M, Diaz-Cintra S, Ríos C. Delayed administration of dapsone protects from tissue damage and improves recovery after spinal cord injury. J Neurosci Res 2011; 89:373-80. [PMID: 21259324 DOI: 10.1002/jnr.22555] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 10/12/2010] [Accepted: 10/22/2010] [Indexed: 12/11/2022]
Abstract
After spinal cord injury (SCI), a complex cascade of pathophysiological processes increases the primary damage. The inflammatory response plays a key role in this pathology. Recent evidence suggests that myeloperoxidase (MPO), an enzyme produced and released by neutrophils, is of special importance in spreading tissue damage. Dapsone (4,4'-diaminodiphenylsulfone) is an irreversible inhibitor of MPO. Recently, we demonstrated, in a model of brain ischemia/reperfusion, that dapsone has antioxidant, antiinflammatory, and antiapoptotic effects. The effects of dapsone on MPO activity, lipid peroxidation (LP) processes, motor function recovery, and the amount of spared tissue were evaluated in a rat model of SCI. MPO activity had increased 24.5-fold 24 hr after SCI vs. the sham group, and it had diminished by 38% and 19% in the groups treated with dapsone at 3 and 5 hr after SCI, respectively. SCI increased LP by 45%, and this increase was blocked by dapsone. In rats treated with dapsone, a significant motor function recovery (Basso-Beattie-Bresnahan score, BBB) was observed beginning during the first week of evaluation and continuing until the end of the study. Spontaneous recovery 8 weeks after SCI was 9.2 ± 1.12, whereas, in the dapsone-treated groups, it reached 13.6 ± 1.04 and 12.9 ± 1.17. Spared tissue increased by 42% and 33% in the dapsone-treated groups (3 and 5 hr after SCI, respectively) vs. SCI without treatment. Dapsone significantly prevented mortality. The results show that inhibition of MPO by dapsone significantly protected the spinal cord from tissue damage and enhanced motor recovery after SCI.
Collapse
Affiliation(s)
- Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., México D.F., México
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Weishaupt N, Silasi G, Colbourne F, Fouad K. Secondary damage in the spinal cord after motor cortex injury in rats. J Neurotrauma 2010; 27:1387-97. [PMID: 20515316 DOI: 10.1089/neu.2010.1346] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.
Collapse
Affiliation(s)
- Nina Weishaupt
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
159
|
Montzka K, Führmann T, Müller-Ehmsen J, Wöltje M, Brook GA. Growth factor and cytokine expression of human mesenchymal stromal cells is not altered in an in vitro model of tissue damage. Cytotherapy 2010; 12:870-80. [DOI: 10.3109/14653249.2010.501789] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
160
|
Herrera JJ, Sundberg LM, Zentilin L, Giacca M, Narayana PA. Sustained expression of vascular endothelial growth factor and angiopoietin-1 improves blood-spinal cord barrier integrity and functional recovery after spinal cord injury. J Neurotrauma 2010; 27:2067-76. [PMID: 20799882 DOI: 10.1089/neu.2010.1403] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) results in immediate disruption of the spinal vascular network, triggering an ischemic environment and initiating secondary degeneration. Promoting angiogenesis and vascular stability through the induction of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1), respectively, provides a possible therapeutic approach in treating SCI. We examined whether supplementing the injured environment with these two factors, which are significantly reduced following injury, has an effect on lesion size and functional outcome. Sustained delivery of both VEGF(165) and Ang-1 was realized using viral vectors based on the adeno-associated virus (AAV), which were injected directly into the lesion epicenter immediately after injury. Our results indicate that the combined treatment with VEGF and Ang-1 resulted in both reduced hyperintense lesion volume and vascular stabilization, as determined by magnetic resonance imaging (MRI). Western blot analysis indicated that the viral vector expression was maintained into the chronic phase of injury, and that the use of the AAV vectors did not exacerbate infiltration of microglia into the lesion epicenter. The combined treatment with AAV-VEGF and AAV-Ang-1 improved locomotor recovery in the chronic phase of injury. These results indicate that combining angiogenesis with vascular stabilization may have potential therapeutic applications following SCI.
Collapse
Affiliation(s)
- Juan J Herrera
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
161
|
Dibaj P, Steffens H, Nadrigny F, Neusch C, Kirchhoff F, Schomburg ED. Long-lasting post-mortem activity of spinal microglia in situ in mice. J Neurosci Res 2010; 88:2431-40. [PMID: 20623536 DOI: 10.1002/jnr.22402] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As CNS macrophages, microglia show a high spontaneous motility of their processes, continuously surveying their microenvironment. Upon CNS injury, microglia react by immediate cellular polarization and process extension toward the lesion site as well as by subsequent amoeboid lesion-directed migration and phagocytosis. To determine the ability of microglia to fulfill their role within distinctively lesioned tissue in the absence of life support, we investigated microglial activity and responsiveness to laser-induced axonal injuries in the spinal dorsal columns in situ after cardiac and respiratory arrest, i.e., post-mortem, in the progressively degrading nervous tissue. For this purpose, we used time-lapse two-photon laser scanning microscopy in double transgenic mice expressing enhanced green fluorescent protein in microglia and enhanced yellow fluorescent protein in projection neurons. Depending on the premortal condition of the animal, microglial activity and responsiveness remain for up to5-10 hr post-mortem. Thereby, the continuously decreasing glial reaction is independent of oxygen and glucose supply but requires residual ATP, suggesting a parasitic form of energy, such as a transmembrane uptake of ATP released from injured nervous tissue. Even though initially microglia are able to detect axonal injury after disruption of the blood supply, the later aspects of glial reaction, for example amoeboid conversion and migration, are absent post- mortem, corresponding to the failure of microglia to prevent secondary damage after injury of nervous tissue.
Collapse
Affiliation(s)
- Payam Dibaj
- Department of Neurology, Georg August University of Göttingen, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
162
|
Hashioka S, Klegeris A, Qing H, McGeer PL. STAT3 inhibitors attenuate interferon-γ-induced neurotoxicity and inflammatory molecule production by human astrocytes. Neurobiol Dis 2010; 41:299-307. [PMID: 20888416 DOI: 10.1016/j.nbd.2010.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 01/05/2023] Open
Abstract
Activation of signal transducer and activator of transcription (STAT) 3 is observable in reactive astrocytes under certain neuropathological conditions. Interferon (IFN)-γ is shown to activate STAT3 in cultured rodent astrocytes. Here we investigated the effects of inhibiting STAT3 signaling on IFNγ-activated human astrocytes since we have recently demonstrated that human astrocytes become neurotoxic when stimulated by IFNγ. We found that 5'-deoxy-5'-(methylthio)adenosine (MTA) (300 μM), S3I-201 (10 μM), STAT3 inhibitor VII (3 μM) and JAK-inhibitor I (0.3 μM) had anti-neurotoxic effects on IFN-γ (50 U/ml)-activated astrocytes and U373-MG astrocytoma cells. Another inhibitor, AG490 (30 μM) had no significant effect. The active inhibitors also attenuated IFN-γ-induced phosphorylation of Tyr(705)-STAT3 and astrocytic expression of intercellular adhesion molecule-1 (ICAM-1). They also decreased astrocytic production of IFN-γ-inducible T cell α chemoattractant (I-TAC). AG490, which did not affect the Tyr(705)-STAT3 phosphorylation or ICAM-1 expression, nevertheless reduced the I-TAC secretion. Because these results indicate that pharmacological inhibition of STAT3 signaling correlates with reduced astrocytic neurotoxicity and ICAM-1 expression, but not that of I-TAC secretion, we consider that STAT3 activation mediates, at least in part, the IFN-γ-induced neurotoxicity and ICAM-1 expression by human astrocytes.
Collapse
Affiliation(s)
- Sadayuki Hashioka
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
163
|
Smith RR, Brown EH, Shum-Siu A, Whelan A, Burke DA, Benton RL, Magnuson DSK. Swim training initiated acutely after spinal cord injury is ineffective and induces extravasation in and around the epicenter. J Neurotrauma 2010; 26:1017-27. [PMID: 19331515 DOI: 10.1089/neu.2008-0829] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activity-based rehabilitation is a promising strategy for improving functional recovery following spinal cord injury (SCI). While results from both clinical and animal studies have shown that a variety of approaches can be effective, debate still exists regarding the optimal post-injury period to apply rehabilitation. We recently demonstrated that rats with moderately severe thoracic contusive SCI can be re-trained to swim when training is initiated 2 weeks after injury and that swim training had no effect on the recovery of overground locomotion. We concluded that swim training is a task-specific model of post-SCI activity-based rehabilitation. In the present study, we ask if re-training initiated acutely is more or less effective than when initiated at 2 weeks post-injury. Using the Louisville Swim Scale, an 18-point swimming assessment, supplemented by kinematic assessment of hindlimb movement during swimming, we report that acute re-training is less effective than training initiated at 2 weeks. Using the bioluminescent protein luciferase as a blood-borne macromolecular marker, we also show a significant increase in extravasation in and around the site of SCI following only 8 min of swimming at 3 days post-injury. Taken together, these results suggest that acute re-training in a rat model of SCI may compromise rehabilitation efforts via mechanisms that may involve one or more secondary injury cascades, including acute spinal microvascular dysfunction.
Collapse
Affiliation(s)
- Rebecca R Smith
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Dibaj P, Nadrigny F, Steffens H, Scheller A, Hirrlinger J, Schomburg ED, Neusch C, Kirchhoff F. NO mediates microglial response to acute spinal cord injury under ATP control in vivo. Glia 2010; 58:1133-44. [PMID: 20468054 DOI: 10.1002/glia.20993] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To understand the pathomechanisms of spinal cord injuries will be a prerequisite to develop efficient therapies. By investigating acute lesions of spinal cord white matter in anesthetized mice with fluorescently labeled microglia and axons using in vivo two-photon laser-scanning microscopy (2P-LSM), we identified the messenger nitric oxide (NO) as a modulator of injury-activated microglia. Local tissue damages evoked by high-power laser pulses provoked an immediate attraction of microglial processes. Spinal superfusion with NO synthase and guanylate cyclase inhibitors blocked these extensions. Furthermore, local injection of the NO-donor spermine NONOate (SPNO) or the NO-dependent second messenger cGMP induced efficient migration of microglial cells toward the injection site. High-tissue levels of NO, achieved by uniform superfusion with SPNO and mimicking extended tissue damage, resulted in a fast conversion of the microglial shape from ramified to ameboid indicating cellular activation. When the spinal white matter was preconditioned by increased, ambient ATP (known as a microglial chemoattractant) levels, the attraction of microglial processes to local NO release was augmented, whereas it was abolished at low levels of tissue ATP. Because both signaling molecules, NO and ATP, mediate acute microglial reactions, coordinated pharmacological targeting of NO and purinergic pathways will be an effective mean to influence the innate immune processes after spinal cord injury.
Collapse
Affiliation(s)
- Payam Dibaj
- Department of Neurology, Georg August University of Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Disruption of Nrf2 enhances the upregulation of nuclear factor-kappaB activity, tumor necrosis factor-α, and matrix metalloproteinase-9 after spinal cord injury in mice. Mediators Inflamm 2010; 2010:238321. [PMID: 20862369 PMCID: PMC2938451 DOI: 10.1155/2010/238321] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/06/2010] [Accepted: 07/12/2010] [Indexed: 11/18/2022] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) plays an important role in the acute periods of spinal cord injury (SCI), and its expression is related to the inflammation which could cause the disruption of the blood-spinal barrier (BBB). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that plays a crucial role in cytoprotection against inflammation. The present study investigated the role of Nrf2 in upregulating of nuclear factor kappa B (NF-κB) activity, tumor necrosis factor-α (TNF-α), and MMP-9 after SCI. Wild-type Nrf2 (+/+) and Nrf2-deficient (Nrf (-/-)) mice were subjected to an SCI model induced by the application of vascular clips (force of 10 g) to the dura after a three-level T8-T10 laminectomy. We detected the wet/dry weight ratio of impaired spinal cord tissue, the activation of NF-κB, the mRNA and protein levels of TNF-α and MMP-9, and the enzyme activity of MMP-9. Nrf2 (-/-) mice were demonstrated to have more spinal cord edema, NF-κB activation, TNF-α production, and MMP-9 expression after SCI compared with the wild-type controls. The results suggest that Nrf2 may play an important role in limiting the upregulation of NF-κB activity, TNF-α, and MMP-9 in spinal cord after SCI.
Collapse
|
166
|
Ensinger EM, Boekhoff TMA, Carlson R, Beineke A, Rohn K, Tipold A, Stein VM. Regional topographical differences of canine microglial immunophenotype and function in the healthy spinal cord. J Neuroimmunol 2010; 227:144-52. [PMID: 20728950 DOI: 10.1016/j.jneuroim.2010.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/07/2010] [Accepted: 07/20/2010] [Indexed: 11/26/2022]
Abstract
Differences in the regulation of surface molecule expression and functional activity of microglia, the resident immune effector elements of the central nervous system (CNS), might give important insights into understanding the predilection sites of some diseases within the CNS. Therefore, canine microglial cells in relation to different topographical regions within the healthy CNS were evaluated ex vivo from the brain, cervical, and thoracolumbar spinal cord using density gradient centrifugation and flow cytometry in a homogenous dog population. Immunophenotypical characterization showed physiological regional differences for B7-1, CD14, CD44, CD1c, CD18, CD11b, and CD11c. Both, phagocytosis and ROS generation revealed differences between the brain, cervical, and thoracolumbar spinal cord. Our results emphasize that microglia displays physiological topographical regional differences within the CNS. The dog seems to be an ideal model to further investigate the role of microglia in focal pathological conditions of the spinal cord.
Collapse
Affiliation(s)
- Eva-Maria Ensinger
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, D-30559 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
167
|
Kuffler DP. Combinatorial techniques for enhancing neuroprotection: hypothermia and alkalinization. Ann N Y Acad Sci 2010; 1199:164-74. [PMID: 20633122 DOI: 10.1111/j.1749-6632.2009.05353.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brain and spinal cord (CNS) trauma typically kill a number of neurons, but even more neurons are killed by secondary causes triggered by the initial trauma. Thus, a minor insult may rapidly cause the death of a vastly larger number of neurons and complete paralysis. The best mechanism for reducing the extent of neurological deficits is to minimize the number of neurons killed by post-trauma sequelae. Neuroprotection techniques take many diverse forms with a breadth too great for a short review. Therefore, this review focuses on the neuroprotection provided by hypothermia and a number of other neuroprotective techniques, when administered singly or in combination, because it is generally found that combinations of applications lead to significantly better neuroprotection than is achieved by any one alone. The combinatorial approach to neuroprotection holds great promise for enhancing the degree of neuroprotection following trauma, leading to maximum maintenance of neurological function.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan.
| |
Collapse
|
168
|
Kuffler DP. Neuroprotection by hypothermia plus alkalinization of dorsal root ganglia neurons through ischemia. Ann N Y Acad Sci 2010; 1199:158-63. [PMID: 20633121 DOI: 10.1111/j.1749-6632.2009.05358.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain and spinal cord (CNS) trauma typically directly kill some neurons leading to permanent neurological deficits. However, they also lead to a number of triggers which in turn frequently kill a vastly larger number of neurons than were killed by the initial insult. The best mechanism for reducing the extent of neurological deficits is to minimize the number of neurons that die immediately due to the trauma, and post-trauma sequelae. Neuroprotection techniques have taken many diverse forms with a breadth too great for a short review. Therefore, this review is focused on the roles of only a small number of neuroprotective agents, with its primary focus being on neuroprotection provided by hypothermia, alone and when combined with the other methods. Included are also recent results involving a novel neuroprotective technique, tested on adult human dorsal root ganglion neurons, comparing the influences of hypothermia and alkalinization singly, providing fourfold and eightfold increases in neuroprotection, respectively, but when combined providing a 26-fold increase in neuroprotection. This combinatorial approach to neuroprotection holds great promise for enhancing the degree of neuroprotection clinically following CNS trauma, leading to the preservation of maximal neurological functions.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan.
| |
Collapse
|
169
|
Conta Steencken AC, Stelzner DJ. Loss of propriospinal neurons after spinal contusion injury as assessed by retrograde labeling. Neuroscience 2010; 170:971-80. [PMID: 20659532 DOI: 10.1016/j.neuroscience.2010.06.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 06/21/2010] [Accepted: 06/25/2010] [Indexed: 11/17/2022]
Abstract
We studied the number, location and size of long descending propriospinal tract neurons (LDPT), located in the cervical enlargement (C3-C6 spinal levels), and short thoracic propriospinal neurons (TPS), located in mid-thoracic spinal cord (T5-T7 spinal levels), 2, 6 and 16 weeks following a moderate low thoracic (T9) spinal cord contusion injury (SCI; 25 mm weight drop) and subsequent injections of fluorogold into the upper lumbosacral enlargement (L2-L4 spinal levels). Retrograde labeling showed that approximately 23% of LDPT and 10% of TPS neurons were labeled 2 weeks after SCI, relative to uninjured animals. No additional significant decrease in number of labeled LDPT and TPS cells was found at the later time points examined, indicating that the maximal loss of propriospinal neurons in these two subpopulations occurs within the first 2 weeks post-SCI. The distribution of labeled cells post-moderate SCI was similar to normal in terms of their location within the gray matter. However, there was a significant change in the size (cross sectional area) of labeled neurons following injury, relative to uninjured controls, indicating a loss in the number of the largest class of propriospinal neurons. Interestingly, the number of labeled LDPT and TPS neurons was not significantly different following different injury severities. Although the rostro-caudal extent of the lesion site expanded between 2 and 16 weeks following injury, there was no significant difference in the number of propriospinal neurons that could be retrogradely labeled at these time points. Possible reasons for these findings are discussed.
Collapse
Affiliation(s)
- A C Conta Steencken
- Department of Cell and Developmental Biology, College of Graduate Studies, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
170
|
Menezes K, de Menezes JRL, Nascimento MA, Santos RDS, Coelho-Sampaio T. Polylaminin, a polymeric form of laminin, promotes regeneration after spinal cord injury. FASEB J 2010; 24:4513-22. [PMID: 20643907 DOI: 10.1096/fj.10-157628] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regeneration of spinal cord injury (SCI) is a major topic of biomedical research. Laminin is an extracellular matrix protein implicated in neural development and regeneration, but despite that, there are no reports of exogenous laminin contributing to improve the outcome of experimental SCI. Here we investigated whether a biomimetic polymer of laminin assembled on pH acidification, henceforth called polylaminin, could be used to treat SCI in rats. Acute local injection of polylaminin, but not of nonpolymerized laminin, improved motor function after thoracic compression, partial or complete transection. In the latter case, the BBB score for open field locomotion 8 wk after lesion increased from 4.2 ± 0.48 to 8.8 ± 1.14 in animals treated with polylaminin of human origin. Accordingly, neurons retrogradely labeled from the sublesion stump were detected in the spinal cord and brain stem, indicating regrowth of short and long fibers across a complete transection. Polylaminin also played an unsuspected anti-inflammatory role, which underlies the early onset of its positive effects on locomotion from the first week after treatment. The beneficial effects of polylaminin were not observed in animals treated with the nonpolymerized protein or vehicle only. We propose that polylaminin is a promising therapeutic agent to treat human SCI.
Collapse
Affiliation(s)
- Karla Menezes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
171
|
Polazzi E, Monti B. Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 2010; 92:293-315. [PMID: 20609379 DOI: 10.1016/j.pneurobio.2010.06.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 12/12/2022]
Abstract
Microglia are the main immune cells in the brain, playing a role in both physiological and pathological conditions. Microglial involvement in neurodegenerative diseases is well-established, being microglial activation and neuroinflammation common features of these neuropathologies. Microglial activation has been considered harmful for neurons, but inflammatory state is not only associated with neurotoxic consequences, but also with neuroprotective effects, such as phagocytosis of dead neurons and clearance of debris. This brought to the idea of protective autoimmunity in the brain and to devise immunomodulatory therapies, aimed to specifically increase neuroprotective aspects of microglia. During the last years, several data supported the intrinsic neuroprotective function of microglia through the release of neuroprotective molecules. These data led to change the traditional view of microglia in neurodegenerative diseases: from the idea that these cells play an detrimental role for neurons due to a gain of their inflammatory function, to the proposal of a loss of microglial neuroprotective function as a causing factor in neuropathologies. This "microglial dysfunction hypothesis" points at the importance of understanding the mechanisms of microglial-mediated neuroprotection to develop new therapies for neurodegenerative diseases. In vitro models are very important to clarify the basic mechanisms of microglial-mediated neuroprotection, mainly for the identification of potentially effective neuroprotective molecules, and to design new approaches in a gene therapy set-up. Microglia could act as both a target and a vehicle for CNS gene delivery of neuroprotective factors, endogenously produced by microglia in physiological conditions, thus strengthening the microglial neuroprotective phenotype, even in a pathological situation.
Collapse
|
172
|
Guo Y, Yao F, Lu S, Cao DY, Reed WR, Zhao Y. The major histocompatibility complex genes are associated with basal pain sensitivity differences between Dark-Agouti and novel congenic DA.1U rats. Life Sci 2010; 86:972-8. [DOI: 10.1016/j.lfs.2010.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 03/17/2010] [Accepted: 05/07/2010] [Indexed: 11/24/2022]
|
173
|
Witte ME, Geurts JJG, de Vries HE, van der Valk P, van Horssen J. Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion 2010; 10:411-8. [PMID: 20573557 DOI: 10.1016/j.mito.2010.05.014] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 04/19/2010] [Accepted: 05/28/2010] [Indexed: 11/15/2022]
Abstract
Dysfunctional mitochondria are thought to play a cardinal role in the pathogenesis of various neurological disorders, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease and stroke. In addition, neuroinflammation is a common denominator of these diseases. Both mitochondrial dysfunction and neuroinflammatory processes lead to increased production of reactive oxygen species (ROS) which are detrimental to neurons. Therefore, neuroinflammation is increasingly recognized to contribute to processes underlying neurodegeneration. Here we describe the involvement of mitochondrial (dys)function in various neurological disorders and discuss the putative link between mitochondrial function and neuroinflammation.
Collapse
Affiliation(s)
- Maarten E Witte
- Department of Pathology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
174
|
Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. J Neurosci 2010; 30:5843-54. [PMID: 20427645 DOI: 10.1523/jneurosci.0137-10.2010] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Scar formation in the nervous system begins within hours after traumatic injury and is characterized primarily by reactive astrocytes depositing proteoglycans that inhibit regeneration. A fundamental question in CNS repair has been the identity of the initial molecular mediator that triggers glial scar formation. Here we show that the blood protein fibrinogen, which leaks into the CNS immediately after blood-brain barrier (BBB) disruption or vascular damage, serves as an early signal for the induction of glial scar formation via the TGF-beta/Smad signaling pathway. Our studies revealed that fibrinogen is a carrier of latent TGF-beta and induces phosphorylation of Smad2 in astrocytes that leads to inhibition of neurite outgrowth. Consistent with these findings, genetic or pharmacologic depletion of fibrinogen in mice reduces active TGF-beta, Smad2 phosphorylation, glial cell activation, and neurocan deposition after cortical injury. Furthermore, stereotactic injection of fibrinogen into the mouse cortex is sufficient to induce astrogliosis. Inhibition of the TGF-beta receptor pathway abolishes the fibrinogen-induced effects on glial scar formation in vivo and in vitro. These results identify fibrinogen as a primary astrocyte activation signal, provide evidence that deposition of inhibitory proteoglycans is induced by a blood protein that leaks in the CNS after vasculature rupture, and point to TGF-beta as a molecular link between vascular permeability and scar formation.
Collapse
|
175
|
White BD, Nathe RJ, Maris DO, Nguyen NK, Goodson JM, Moon RT, Horner PJ. Beta-catenin signaling increases in proliferating NG2+ progenitors and astrocytes during post-traumatic gliogenesis in the adult brain. Stem Cells 2010; 28:297-307. [PMID: 19960516 DOI: 10.1002/stem.268] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wnt/beta-catenin signaling can influence the proliferation and differentiation of progenitor populations in the hippocampus and subventricular zone, known germinal centers in the adult mouse brain. It is not known whether beta-catenin signaling occurs in quiescent glial progenitors in cortex or spinal cord, nor is it known whether beta-catenin is involved in the activation of glial progenitor populations after injury. Using a beta-catenin reporter mouse (BATGAL mouse), we show that beta-catenin signaling occurs in NG2 chondroitin sulfate proteoglycan+ (NG2) progenitors in the cortex, in subcallosal zone (SCZ) progenitors, and in subependymal cells surrounding the central canal. Interestingly, cells with beta-catenin signaling increased in the cortex and SCZ following traumatic brain injury (TBI) but did not following spinal cord injury. Initially after TBI, beta-catenin signaling was predominantly increased in a subset of NG2+ progenitors in the cortex. One week following injury, the majority of beta-catenin signaling appeared in reactive astrocytes but not oligodendrocytes. Bromodeoxyuridine (BrdU) paradigms and Ki-67 staining showed that the increase in beta-catenin signaling occurred in newly born cells and was sustained after cell division. Dividing cells with beta-catenin signaling were initially NG2+; however, by four days after a single injection of BrdU, they were predominantly astrocytes. Infusing animals with the mitotic inhibitor cytosine arabinoside prevented the increase of beta-catenin signaling in the cortex, confirming that the majority of beta-catenin signaling after TBI occurs in newly born cells. These data argue for manipulating the Wnt/beta-catenin pathway after TBI as a way to modify post-traumatic gliogenesis.
Collapse
Affiliation(s)
- Bryan D White
- Program in Neurobiology and Behavior, University of Washington School of Medicine and Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
176
|
Choi DC, Lee JY, Moon YJ, Kim SW, Oh TH, Yune TY. Acupuncture-mediated inhibition of inflammation facilitates significant functional recovery after spinal cord injury. Neurobiol Dis 2010; 39:272-82. [PMID: 20382225 DOI: 10.1016/j.nbd.2010.04.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 01/31/2023] Open
Abstract
Here, we first demonstrated the neuroprotective effect of acupuncture after SCI. Acupuncture applied at two specific acupoints, Shuigou (GV26) and Yanglingquan (GB34) significantly alleviated apoptotic cell death of neurons and oligodendrocytes, thereby leading to improved functional recovery after SCI. Acupuncture also inhibited caspase-3 activation and reduced the size of lesion cavity and extent of loss of axons. We also found that the activation of both p38 mitogen-activated protein kinase and resident microglia after injury are significantly attenuated by acupuncture. In addition, acupuncture significantly reduced the expression or activation of pro-nerve growth factor, proinflammatory factors such as tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, nitric oxide synthase, cycloxygenase-2, and matrix metalloprotease-9 after SCI. Thus, our results suggest that the neuroprotection by acupuncture may be partly mediated via inhibition of inflammation and microglial activation after SCI and acupuncture can be used as a potential therapeutic tool for treating acute spinal injury in human.
Collapse
Affiliation(s)
- Doo C Choi
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
177
|
Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J Cereb Blood Flow Metab 2010; 30:769-82. [PMID: 20029451 PMCID: PMC2949175 DOI: 10.1038/jcbfm.2009.262] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cerebral inflammation involves molecular cascades contributing to progressive damage after traumatic brain injury (TBI). The chemokine CC ligand-2 (CCL2) (formerly monocyte chemoattractant protein-1, MCP-1) is implicated in macrophage recruitment into damaged parenchyma after TBI. This study analyzed the presence of CCL2 in human TBI, and further investigated the role of CCL2 in physiological and cellular mechanisms of secondary brain damage after TBI. Sustained elevation of CCL2 was detected in the cerebrospinal fluid (CSF) of severe TBI patients for 10 days after trauma, and in cortical homogenates of C57Bl/6 mice, peaking at 4 to 12 h after closed head injury (CHI). Neurological outcome, lesion volume, macrophage/microglia infiltration, astrogliosis, and the cerebral cytokine network were thus examined in CCL2-deficient (-/-) mice subjected to CHI. We found that CCL2-/- mice showed altered production of multiple cytokines acutely (2 to 24 h); however, this did not affect lesion size or cell death within the first week after CHI. In contrast, by 2 and 4 weeks, a delayed reduction in lesion volume, macrophage accumulation, and astrogliosis were observed in the injured cortex and ipsilateral thalamus of CCL2-/- mice, corresponding to improved functional recovery as compared with wild-type mice after CHI. Our findings confirm the significant role of CCL2 in mediating post-traumatic secondary brain damage.
Collapse
|
178
|
Su Z, Yuan Y, Cao L, Zhu Y, Gao L, Qiu Y, He C. Triptolide promotes spinal cord repair by inhibiting astrogliosis and inflammation. Glia 2010; 58:901-15. [DOI: 10.1002/glia.20972] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
179
|
Naphade SB, Kigerl KA, Jakeman LB, Kostyk SK, Popovich PG, Kuret J. Progranulin expression is upregulated after spinal contusion in mice. Acta Neuropathol 2010; 119:123-33. [PMID: 19946692 DOI: 10.1007/s00401-009-0616-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 01/22/2023]
Abstract
Progranulin (proepithelin) is a pleiotropic growth-factor associated with inflammation and wound repair in peripheral tissues. It also has been implicated in the response to acute traumatic brain injury as well as to chronic neurodegenerative diseases. To determine whether changes in progranulin expression also accompany acute spinal cord injury, C57BL/6 mice were subjected to mid-thoracic (T9 level) contusion spinal cord injury and analyzed by immunohistochemical and biochemical methods. Whereas spinal cord sections prepared from non-injured laminectomy control animals contained low basal levels of progranulin immunoreactivity in gray matter, sections from injured animals contained intense immunoreactivity throughout the injury epicenter that peaked 7-14 days post injury. Progranulin immunoreactivity colocalized with myeloid cell markers CD11b and CD68, indicating that expression increased primarily in activated microglia and macrophages. Immunoblot analysis confirmed that progranulin protein levels rose after injury. On the basis of quantitative polymerase chain reaction analysis, increased protein levels resulted from a tenfold rise in progranulin transcripts. These data demonstrate that progranulin is dramatically induced in myeloid cells after experimental spinal cord injury and is positioned appropriately both spatially and temporally to influence recovery after injury.
Collapse
Affiliation(s)
- Swati B Naphade
- Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
180
|
Pluta R, Januszewski S, Jabłoński M, Ułamek M. Factors in Creepy Delayed Neuronal Death in Hippocampus Following Brain Ischemia–Reperfusion Injury with Long-Term Survival. BRAIN EDEMA XIV 2010; 106:37-41. [DOI: 10.1007/978-3-211-98811-4_5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
181
|
Temporal-spatial expression of presenilin 1 and the production of amyloid-beta after acute spinal cord injury in adult rat. Neurochem Int 2009; 56:387-93. [PMID: 19932144 DOI: 10.1016/j.neuint.2009.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/04/2009] [Accepted: 11/10/2009] [Indexed: 01/03/2023]
Abstract
Regulated intramembrane proteolysis (RIP) is one of the signaling pathways mediating information transfer from the extracellular to the intracellular domain. gamma-Secretase is an aspartyl protease of the RIP that cleaves the intramembrane region of type I integral membrane proteins, such as amyloid precursor protein (APP). Presenilin 1 (PS1) is the catalytic subunit of gamma-secretase and PS1 mutations cause Alzheimer's disease, spastic paraplegia and spinal cord atrophy. The biological function of PS1 in the spinal cord has not been fully elucidated. Thus, to clarify the involvement of RIP in spinal cord injury, we examined the expression of PS1, APP and amyloid-beta protein (Abeta) following rat spinal cord hemisection. Western blot analysis showed that PS1, APP and Abeta levels increased 1 day after spinal cord hemisection. Immunohistochemistry showed an increased number of PS1 immunopositive cells about 1mm from the lesion site. PS1, APP and Abeta double staining with cell-type specific markers showed colocalization of PS1 with axons in the white matter of the lesioned side. These findings suggest that RIP signaling occurs following rat spinal cord injury. In the future, the control of RIP may offer a new strategy for the treatment of spinal cord injury.
Collapse
|
182
|
Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci 2009; 29:11511-22. [PMID: 19759299 DOI: 10.1523/jneurosci.1514-09.2009] [Citation(s) in RCA: 349] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Factors that regulate leukocyte entry and spread through CNS parenchyma during different types of CNS insults are incompletely understood. Reactive astrocytes have been implicated in restricting the spread of leukocytes from damaged into healthy parenchyma during the acute and local innate inflammatory events that follow CNS trauma, but the roles of reactive astrocytes during the chronic and widespread CNS inflammation associated with adaptive or acquired immune responses are uncertain. Here, we investigated the effects of transgenically targeted ablation of proliferating, scar-forming reactive astrocytes on the acquired immune inflammation associated with experimental autoimmune encephalitis (EAE). In wild-type mice with EAE, we found that reactive astrocytes densely surrounded perivascular clusters of leukocytes in a manner reminiscent of astrocyte scar formation after CNS trauma. Transgenically targeted ablation of proliferating astrocytes disrupted formation of these perivascular scars and was associated with a pronounced and significant increase in leukocyte entry into CNS parenchyma, including immunohistochemically identified macrophages, T lymphocytes and neutrophils. This exacerbated inflammation was associated with a substantially more severe and rapidly fulminant clinical course. These findings provide experimental evidence that reactive astrocytes form scar-like perivascular barriers that restrict the influx of leukocytes into CNS parenchyma and protect CNS function during peripherally initiated, acquired immune inflammatory responses in the CNS. The findings suggest that loss or disruption of astrocyte functions may underlie or exacerbate the inflammation and pathologies associated with autoimmune diseases of the CNS, including multiple sclerosis.
Collapse
|
183
|
Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. J Immunol Methods 2009; 352:89-100. [PMID: 19800886 DOI: 10.1016/j.jim.2009.09.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 01/10/2023]
Abstract
The mouse spinal cord is an important site for autoimmune and injury models. Skull thinning surgery provides a minimally invasive window for microscopy of the mouse cerebral cortex, but there are no parallel methods for the spinal cord. We introduce a novel, facile and inexpensive method for two-photon laser scanning microscopy of the intact spinal cord in the mouse by taking advantage of the naturally accessible intervertebral space. These are powerful methods when combined with gene-targeted mice in which endogenous immune cells are labeled with green fluorescent protein (GFP). We first demonstrate that generation of the intervertebral window does not elicit a reaction of GFP(+) microglial cells in CX3CR1(gfp/+) mice. We next demonstrate a distinct rostrocaudal migration of GFP(+) immune cells in the spinal cord of CXCR6(gfp/+) mice during active experimental autoimmune encephalomyelitis (EAE). Interestingly, infiltration of the cerebral cortex by GFP(+) cells in these mice required three conditions: EAE induction, cortical injury and expression of CXCR6 on immune cells.
Collapse
|
184
|
Gál P, Kravcuková P, Mokrý M, Kluchová D. Chemokines as possible targets in modulation of the secondary damage after acute spinal cord injury: a review. Cell Mol Neurobiol 2009; 29:1025-35. [PMID: 19363652 PMCID: PMC11506275 DOI: 10.1007/s10571-009-9392-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Accepted: 03/10/2009] [Indexed: 12/23/2022]
Abstract
In spite of many promising experimental studies, an effective treatment dramatically eliminating the secondary damage after spinal cord injury (SCI) is still missing. Since clinical data on the therapeutical effect after methylprednisolone treatment are not conclusive, new therapeutical modalities targeting specific components of secondary spinal cord damage needs to be developed. It is known that immune cells are recruited to injury sites by chemokines, which are small, structurally similar proteins released locally at the site of inflammation. Hence, this review was aimed to summarize possible roles of chemokines in the inflammation following SCI as well as to identify possible new therapeutical targets which can potentially be effective in ameliorating individual components of this inflammatory response. Data concerning inflammation reduction together with techniques improving axonal growth, cell replacement and remyelinization, may be crucial to move a small step forward in an attempt to make paraplegic and quadriplegic patients to walk.
Collapse
Affiliation(s)
- Peter Gál
- Institute of Biology and Ecology, Pavol Jozef Safárik University, 041 80 Kosice, Slovak Republic.
| | | | | | | |
Collapse
|
185
|
Arriagada O, Constandil L, Hernández A, Barra R, Soto-Moyano R, Laurido C. EFFECTS OF INTERLEUKIN-1β ON SPINAL CORD NOCICEPTIVE TRANSMISSION IN INTACT AND PROPENTOFYLLINE-TREATED RATS. Int J Neurosci 2009; 117:617-25. [PMID: 17464780 DOI: 10.1080/00207450600773806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To investigate the contribution of glial cells in the spinal cord nociceptive transmission, the effect of intrathecally administered interleukin-1beta (IL-1beta) was studied in rats treated with the glial cell inactivator propentofylline and submitted to a C-fiber-mediated reflex paradigm evoked by single and repetitive (wind-up) electric stimulation. Intrathecal IL-1beta did not modify the C reflex integrated activity in either group of animals, while producing increased wind-up in intact and decreased wind-up in propentofylline pre-treated rats. Results suggest that the excitatory effect of IL-1beta on spinal wind-up activity in healthy rats is produced by a glial mediator, whereas the inhibitory effect resulted from a direct effect of the cytokine on dorsal horn neurons.
Collapse
Affiliation(s)
- Osvaldo Arriagada
- Laboratory of Neurobiology, Department of Biology Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
186
|
Smith RR, Brown EH, Shum-Siu A, Whelan A, Burke DA, Benton RL, Magnuson DS. Swim Training Initiated Acutely after Spinal Cord Injury Is Ineffective and Induces Extravasation In and Around the Epicenter. J Neurotrauma 2009. [DOI: 10.1089/neu.2008.0829] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Rebecca R. Smith
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
| | - Edward H. Brown
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
| | - Alice Shum-Siu
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
| | - Ashley Whelan
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
| | - Darlene A. Burke
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
| | - Richard L. Benton
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - David S.K. Magnuson
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
187
|
Tallantyre EC, Bø L, Al-Rawashdeh O, Owens T, Polman CH, Lowe J, Evangelou N. Greater loss of axons in primary progressive multiple sclerosis plaques compared to secondary progressive disease. Brain 2009; 132:1190-9. [PMID: 19420101 DOI: 10.1093/brain/awp106] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The pathological substrate of progressive disability in multiple sclerosis is hypothesized to be axonal loss. Differences in the demographic, pathological and radiological features of patients with primary progressive compared with secondary progressive multiple sclerosis raise the question as to whether they actually represent separate clinical entities. So far, large pathological studies comparing axonal damage between primary progressive and secondary progressive multiple sclerosis have not been reported. In this clinico-pathological study we examined the cervical spinal cord in patients with primary and secondary progressive multiple sclerosis. Human cervical spinal cord was derived at autopsy from 54 patients (17 primary progressive, 30 secondary progressive and 7 controls). Tissue was stained immunohistochemically and examined to determine: (i) the number of surviving corticospinal tract axons; (ii) the extent of grey and white matter demyelination; (iii) the degree of inflammation inside and outside of lesions; and (iv) the relationship between demyelination and axonal loss. Associated clinical data was used to calculate expanded disability status scale for each patient preceding death. Motor disability in the primary progressive and secondary progressive groups was similar preceding death. Secondary progressive multiple sclerosis patients showed considerably more extensive demyelination of both the white and grey matter of the cervical spinal cord. The total number of corticospinal axons was equally low in primary progressive and secondary progressive multiple sclerosis groups versus controls. The reduction of axonal density in demyelinated regions compared to normal appearing white matter was significantly more extensive in primary progressive versus secondary progressive patients (33% reduction versus 16% reduction, P < 0.001). These findings suggest axonal loss is the pathological substrate of progressive disability in both primary progressive and secondary progressive multiple sclerosis with a common plaque-centred mechanism. More extensive axonal loss within areas of demyelination in primary progressive multiple sclerosis could explain high levels of axonal loss observed in these patients despite low levels of demyelination.
Collapse
Affiliation(s)
- E C Tallantyre
- Department of Clinical Neurology, School of Clinical Sciences, University of Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
188
|
Mitchell CS, Lee RH. Pathology dynamics predict spinal cord injury therapeutic success. J Neurotrauma 2009; 25:1483-97. [PMID: 19125684 DOI: 10.1089/neu.2008.0658] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Secondary injury, the complex cascade of cellular events following spinal cord injury (SCI), is a major source of post-insult neuron death. Experimental work has focused on the details of individual factors or mechanisms that contribute to secondary injury, but little is known about the interactions among factors leading to the overall pathology dynamics that underlie its propagation. Prior hypotheses suggest that the pathology is dominated by interactions, with therapeutic success lying in combinations of neuroprotective treatments. In this study, we provide the first comprehensive, system-level characterization of the entire secondary injury process using a novel relational model methodology that aggregates the findings of approximately 250 experimental studies. Our quantitative examination of the overall pathology dynamics suggests that, while the pathology is initially dominated by "fire-like", rate-dependent interactions, it quickly switches to a "flood-like", accumulation-dependent process with contributing factors being largely independent. Our evaluation of approximately 20,000 potential single and combinatorial treatments indicates this flood-like pathology results in few highly influential factors at clinically realistic treatment time frames, with multi-factor treatments being merely additive rather than synergistic in reducing neuron death. Our findings give new fundamental insight into the understanding of the secondary injury pathology as a whole, provide direction for alternative therapeutic strategies, and suggest that ultimate success in treating SCI lies in the pursuit of pathology dynamics in addition to individually involved factors.
Collapse
Affiliation(s)
- Cassie S Mitchell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
189
|
Batchelor PE, Tan S, Wills TE, Porritt MJ, Howells DW. Comparison of inflammation in the brain and spinal cord following mechanical injury. J Neurotrauma 2009; 25:1217-25. [PMID: 18986223 DOI: 10.1089/neu.2007.0308] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inflammation in the CNS predominantly involves microglia and macrophages, and is believed to be a significant cause of secondary injury following trauma. This study compares the microglial and macrophage response in the rat brain and spinal cord following discrete mechanical injury to better appreciate the degree to which these cells could contribute to secondary damage in these areas. We find that, 1 week after injury, the microglial and macrophage response is significantly greater in the spinal cord compared to the brain. This is the case for injuries to both gray and white matter. In addition, we observed a greater inflammatory response in white matter compared to gray matter within both the brain and spinal cord. Because activated microglia and macrophages appear to be effectors of secondary damage, a greater degree of inflammation in the spinal cord is likely to result in more extensive secondary damage. Tissue saving strategies utilizing anti-inflammatory treatments may therefore be more useful in traumatic spinal cord than brain injury.
Collapse
Affiliation(s)
- Peter E Batchelor
- Department of Medicine, University of Melbourne, Austin Health, Victoria, Australia
| | | | | | | | | |
Collapse
|
190
|
Sharma HS. New perspectives for the treatment options in spinal cord injury. Expert Opin Pharmacother 2009; 9:2773-800. [PMID: 18937612 DOI: 10.1517/14656566.9.16.2773] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Spinal cord injury (SCI) is a serious clinical disorder that leads to lifetime disability for which no suitable therapeutic agents are available so far. Further research is needed to understand the basic mechanisms of spinal cord pathology that results in permanent disability and poses a heavy burden on our society. In the past, a lot of effort was placed on improving functional outcome with the help of various therapeutic agents, however less attention has been paid on the development and propagation of spinal cord pathology over time. Thus, it is still unclear whether improvement of functional outcome is related to spinal cord pathology or vice versa. Few drugs are able to influence functional outcome without having any improvement on cord pathology. Some drugs, however, can lessen cord pathology but fail to influence the functional outcome. The goal of future treatment options for SCI is therefore to find suitable new drugs or a combination of existing drugs and to use various cellular transplants, neurotrophic factors, myelin-inhibiting factors, tissue engineering and nano-drug delivery to improve both the functional and the pathological outcome in the inured patient. This review deals with the key aspects of the latest treatments for SCI and suggests some possible future therapeutic measures to enhance healthcare in clinical situations.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Uppsala University, University Hospital, Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Anaesthesiology & Intensive Care Medicine, SE-75185 Uppsala, Sweden.
| |
Collapse
|
191
|
|
192
|
Holmberg E, Zhang SX, Sarmiere PD, Kluge BR, White JT, Doolen S. Statins decrease chondroitin sulfate proteoglycan expression and acute astrocyte activation in central nervous system injury. Exp Neurol 2008; 214:78-86. [DOI: 10.1016/j.expneurol.2008.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Revised: 06/24/2008] [Accepted: 07/18/2008] [Indexed: 12/27/2022]
|
193
|
Liu WL, Lee YH, Tsai SY, Hsu CY, Sun YY, Yang LY, Tsai SH, Yang WCV. Methylprednisolone inhibits the expression of glial fibrillary acidic protein and chondroitin sulfate proteoglycans in reactivated astrocytes. Glia 2008; 56:1390-400. [DOI: 10.1002/glia.20706] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
194
|
Lipopolysaccharide-Induced Upregulation of Tumor Necrosis Factor-α (TNF-α) in Rat Spinal Cord. Inflammation 2008; 31:336-43. [DOI: 10.1007/s10753-008-9083-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
195
|
Evaled Expression of ICAM-1 and Its Ligands in the Rat Spinal Cord Following Lipopolysaccharide Intraspinal Injection. Neuromolecular Med 2008; 10:385-92. [DOI: 10.1007/s12017-008-8049-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 08/14/2008] [Indexed: 01/09/2023]
|
196
|
Stirling DP, Yong VW. Dynamics of the inflammatory response after murine spinal cord injury revealed by flow cytometry. J Neurosci Res 2008; 86:1944-58. [PMID: 18438914 DOI: 10.1002/jnr.21659] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spinal cord injury (SCI) triggers a robust inflammatory response that contributes in part to the secondary degeneration of spared tissue. Here, we use flow cytometry to quantify the inflammatory response after SCI. Besides its objective evaluation, flow cytometry allows for levels of particular markers to be documented that further aid in the identification of cellular subsets. Analyses of blood from SCI mice for CD45 (common leukocyte antigen), CD11b (complement receptor-3), Gr-1 (neutrophil/monocyte marker), and CD3 (T-cell marker) revealed a marked increase in circulating neutrophils (CD45(high):Gr-1(high)) at 12 hr compared with controls. Monocyte density in blood increased at 24 hr, and in contrast, lymphocyte numbers were significantly decreased. Mirroring the early increase in neutrophils within the blood, flow analysis of the spinal cord lesion site revealed a significant (P < 0.01) and maintained increase in blood-derived leukocytes (CD45(high):CD11b(high)) from 12 to 96 hr compared with sham-injured and naive controls. Importantly, this technique clearly distinguishes blood-derived neutrophils (CD45:Gr-1(high):F4/80(negative)) and monocyte/macrophages (CD45(high)) from resident microglia (CD45(low)) and revealed that the majority of the blood-derived infiltrate were neutrophils. Our results highlight an assumed, but previously uncharacterized, marked and transient increase in leukocyte populations in blood early after SCI followed by the orchestrated invasion of neutrophils and monocytes into the injured cord. In contrast to mobilization of neutrophils, SCI induces lymphopenia that may contribute negatively to the overall outcome after spinal cord trauma.
Collapse
Affiliation(s)
- David P Stirling
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
197
|
Robust axonal growth and a blunted macrophage response are associated with impaired functional recovery after spinal cord injury in the MRL/MpJ mouse. Neuroscience 2008; 156:498-514. [PMID: 18786615 DOI: 10.1016/j.neuroscience.2008.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 01/19/2023]
Abstract
Spinal cord injury (SCI) in mammals leads to a robust inflammatory response followed by the formation of a glial and connective tissue scar that comprises a barrier to axonal regeneration. The inbred MRL/MpJ mouse strain exhibits reduced inflammation after peripheral injury and shows true regeneration without tissue scar formation following an ear punch wound. We hypothesized that following SCI, the unique genetic wound healing traits of this strain would result in reduced glial and connective tissue scar formation, increased axonal growth, and improved functional recovery. Adult MRL/MpJ and C57BL/6J mice were subjected to a mid-thoracic spinal contusion and the distribution of axon profiles and selected cellular and extracellular matrix components was compared at 1, 2, 4 and 6 weeks post-injury. Recovery of hind-limb locomotor function was assessed over the same time period. The MRL/MpJ mice exhibited robust axon growth within the lesion, beginning at 4 weeks post-injury. This growth was accompanied by reduced macrophage staining at 1, 2, 4 and 6 weeks post-injury, decreased chondroitin sulfate proteoglycan staining at 1-2 weeks and increased laminin staining throughout the lesion at 2-6 weeks post-injury. Paradoxically, the extent of locomotor recovery was impaired in the MRL/MpJ mice. Close examination of the chronic lesion site revealed evidence of ongoing degeneration both within and surrounding the lesion site. Thus, the regenerative genetic wound healing traits of the MRL/MpJ mice contribute to the evolution of a lesion environment that supports enhanced axon growth after SCI. However, this response occurs at the expense of meaningful functional recovery.
Collapse
|
198
|
Ha GK, Pastrana M, Huang Z, Petitto JM. T cell memory in the injured facial motor nucleus: relation to functional recovery following facial nerve crush. Neurosci Lett 2008; 443:150-4. [PMID: 18687384 DOI: 10.1016/j.neulet.2008.07.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/03/2008] [Accepted: 07/21/2008] [Indexed: 01/28/2023]
Abstract
T cells have the ability to mount a memory response to a previously encountered antigen such that re-exposure to the antigen results in a response that is greater in magnitude and function. Following facial nerve transection, T cells have been shown to traffic to injured motor neurons in the facial motor nucleus (FMN) and may have the ability to promote neuronal survival and functional recovery. Previously, we demonstrated that early exposure to neuronal injury on one side of the brain during young adulthood elicited a T cell response that was greater in magnitude following exposure to the same form of injury on the contralateral side later in adulthood. Whether the T cell memory response to neuronal injury influenced functional recovery following nerve crush injury was unknown. In the current study, we tested the hypotheses that (1) transection of the right facial nerve in sensitized mice would result in faster recovery of the whisker response when the contralateral facial nerve is crushed 10 weeks later, and (2) the early recovery would be associated with an increase in the magnitude of the T cell response in the contralateral FMN following crush injury in sensitized mice. The onset of modest recovery in sensitized mice occurred between 3 and 5 days following crush injury of the contralateral facial nerve, approximately 1.5 days earlier than naïve mice, and was associated with more than a two-fold increase in the magnitude of the T cell response in the contralateral FMN following crush injury. There was no difference between groups in the number of days to full recovery. Further study of how T cell memory influences neuroregeneration may have important implications for translational research.
Collapse
Affiliation(s)
- Grace K Ha
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
199
|
Shen A, Zhou D, Shen Q, Liu HO, Sun L, Liu Y, Chen J, Yang J, Ji Y, Cheng C. The Expression of Tumor Necrosis Factor-α (TNF-α) by the Intrathecal Injection of Lipopolysaccharide in the Rat Spinal Cord. Neurochem Res 2008; 34:333-41. [DOI: 10.1007/s11064-008-9780-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 06/10/2008] [Indexed: 12/11/2022]
|
200
|
Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury. Neuroscience 2008; 158:1112-21. [PMID: 18674593 DOI: 10.1016/j.neuroscience.2008.07.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/26/2008] [Accepted: 07/01/2008] [Indexed: 12/12/2022]
Abstract
Traumatic spinal cord injury (SCI) in mammals causes widespread glial activation and recruitment to the CNS of innate (e.g. neutrophils, monocytes) and adaptive (e.g. T and B lymphocytes) immune cells. To date, most studies have sought to understand or manipulate the post-traumatic functions of astrocytes, microglia, neutrophils or monocytes. Significantly less is known about the consequences of SCI-induced lymphocyte activation. Yet, emerging data suggest that T and B cells are activated by SCI and play significant roles in shaping post-traumatic inflammation and downstream cascades of neurodegeneration and repair. Here, we provide neurobiologists with a timely review of the mechanisms and implications of SCI-induced lymphocyte activation, including a discussion of different experimental strategies that have been designed to manipulate lymphocyte function for therapeutic gain.
Collapse
|