151
|
Lieberman‐Cribbin W, Domingo‐Relloso A, Navas‐Acien A, Cole S, Haack K, Umans J, Tellez‐Plaza M, Colicino E, Baccarelli AA, Gao X, Kupsco A. Epigenetic Biomarkers of Lead Exposure and Cardiovascular Disease: Prospective Evidence in the Strong Heart Study. J Am Heart Assoc 2022; 11:e026934. [PMID: 36382957 PMCID: PMC9851430 DOI: 10.1161/jaha.122.026934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Lead is a cardiotoxic metal with a variety of adverse health effects. In the absence of data on bone lead exposure, epigenetic biomarkers can serve as indicators of cumulative lead exposure and body burden. Herein, we leveraged novel epigenetic biomarkers of lead exposure to investigate their association with cardiovascular disease (CVD) incidence and mortality. Methods and Results Blood DNA methylation was measured using the Illumina MethylationEPIC BeadChip among 2231 participants of the Strong Heart Study (SHS) at baseline (1989-1991). Epigenetic biomarkers of lead levels in blood, patella, and tibia were estimated using previously identified cytosine-guanine dinucleotide (CpG) sites. CVD incidence and mortality data were available through 2017. Median concentrations of lead epigenetic biomarkers were 13.8 μg/g, 21.3 μg/g, and 2.9 μg/dL in tibia, patella, and blood, respectively. In adjusted models, the hazard ratio (HR) (95% CI) of CVD mortality per doubling increase in lead epigenetic biomarkers were 1.42 (1.07-1.87) for tibia lead, 1.22 (0.93-1.60) for patella lead, and 1.57 (1.16-2.11) for blood lead. The corresponding HRs for incident CVD were 0.99 (0.83-1.19), 1.07 (0.89-1.29), and 1.06 (0.87-1.30). The association between the tibia lead epigenetic biomarker and CVD mortality was modified by sex (interaction P value: 0.014), with men at increased risk (HR, 1.42 [95% CI, 1.17-1.72]) compared with women (HR, 1.04 [95% CI, 0.89-1.22]). Conclusions Tibia and blood epigenetic biomarkers were associated with increased risk of CVD mortality, potentially reflecting the cardiovascular impact of cumulative and recent lead exposures. These findings support that epigenetic biomarkers of lead exposure may capture some of the disease risk associated with lead exposure.
Collapse
Affiliation(s)
- Wil Lieberman‐Cribbin
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNY
| | - Arce Domingo‐Relloso
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNY,Department of Chronic Diseases EpidemiologyNational Center for Epidemiology, Carlos III Health InstituteMadridSpain,Department of Statistics and Operations ResearchUniversity of ValenciaSpain
| | - Ana Navas‐Acien
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNY
| | - Shelley Cole
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTX
| | - Karin Haack
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTX
| | - Jason Umans
- MedStar Health Research InstituteHyattsvilleMarylandUnited States,Georgetown‐Howard Universities Center for Clinical and Translational ScienceWashingtonDC
| | - Maria Tellez‐Plaza
- Department of Chronic Diseases EpidemiologyNational Center for Epidemiology, Carlos III Health InstituteMadridSpain
| | - Elena Colicino
- Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUnited States
| | - Andrea A. Baccarelli
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNY
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public HealthPeking UniversityBeijingChina
| | - Allison Kupsco
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNY
| |
Collapse
|
152
|
Wang K, Wang W, Lei L, Lan Y, Liu Q, Ren L, Wu S. Association between short-term exposure to ambient air pollution and biomarkers of coagulation: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 215:114210. [PMID: 36030918 DOI: 10.1016/j.envres.2022.114210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Ambient air pollution is one of the major global risk factors for cardiovascular health, and coagulation changes have been proposed to mediate this risk. Plasminogen activator inhibitor-1 (PAI-1), von Willebrand factor (vWF), soluble P-selectin (sP-selectin) and tissue plasminogen activator (t-PA) are major coagulation biomarkers. However, there has been no systematic meta-analysis to summarize associations of ambient air pollution with these coagulation biomarkers. To assess the overall associations between ambient particulate matter (PM2.5, PM10), ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO) and major coagulation biomarkers including PAI-1, vWF, sP-selectin and t-PA based on the existing epidemiological research. We performed a systematic literature search of publications reporting the associations of ambient air pollutants (PM2.5, PM10, O3, NO2, and CO) with coagulation biomarkers (PAI-1, vWF, sP-selectin and t-PA) in PubMed, Web of Science, EMBASE, and Scopus databases as of April 5, 2022. Then, we performed a random-effect meta-analysis, which included 27 articles, and then identified the potential sources of heterogeneity. The pooled percent changes of coagulation biomarkers per 10 μg/m3 increase in short-term exposure to ambient PM2.5 were 2.43% (95% CI: 0.59%, 4.29%) in PAI-1, 1.08% (95% CI: 0.21%, 1.96%) in vWF and 1.14% (95% CI: 0.59%, 1.68%) in sP-selectin, respectively. We also found significant associations of short-term exposure to ambient O3 with PAI-1 (1.62%, 95% CI: 0.01%, 3.25%), sP-selectin (9.59%, 95% CI:2.78%, 16.86%) and t-PA (0.45%, 95% CI: 0.02%, 0.88%), respectively. Short-term exposures to ambient PM10, NO2 and CO were not significantly associated with changes in coagulation biomarkers. In conclusion, short-term exposures to PM2.5 and O3 are associated with significant increases in coagulation biomarkers, suggesting an activated coagulation state upon air pollution exposure.
Collapse
Affiliation(s)
- Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Lei Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
153
|
Dwivedi AK, Vishwakarma D, Dubey P, Reddy SY. Air Pollution and the Heart: Updated Evidence from Meta-analysis Studies. Curr Cardiol Rep 2022; 24:1811-1835. [PMID: 36434404 DOI: 10.1007/s11886-022-01819-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Although environmental exposure such as air pollution is detrimental to cardiovascular disease (CVD), the effects of different air pollutants on different CVD endpoints produced variable findings. We provide updated evidence between air pollutants and CVD outcomes including mitigation strategies with meta-analytic evidence. RECENT FINDINGS An increased exposure to any class of air pollutants including particulate matter (PM), gas, toxic metals, and disruptive chemicals has been associated with CVD events. Exposure to PM < 2.5 μm has been consistently associated with most heart diseases and stroke as well as CVDs among at-risk individuals. Despite this, there is no clinical approach available for systemic evaluation of air pollution exposure and management. A large number of epidemiological evidence clearly suggests the importance of air pollution prevention and control for reducing the risk of CVDs and mortality. Cost-effective and feasible strategies for air pollution monitoring, screening, and necessary interventions are urgently required among at-risk populations and those living or working, or frequently commuting in polluted areas.
Collapse
Affiliation(s)
- Alok Kumar Dwivedi
- Division of Biostatistics & Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, 5001, El Paso Drive, El Paso, TX, 79905, USA. .,Biostatistics and Epidemiology Consulting Lab, Office of Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
| | - Deepanjali Vishwakarma
- Division of Biostatistics & Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, 5001, El Paso Drive, El Paso, TX, 79905, USA
| | - Pallavi Dubey
- Department of Obstetrics and Gynecology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Sireesha Y Reddy
- Department of Obstetrics and Gynecology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| |
Collapse
|
154
|
Khraishah H, Alahmad B, Ostergard RL, AlAshqar A, Albaghdadi M, Vellanki N, Chowdhury MM, Al-Kindi SG, Zanobetti A, Gasparrini A, Rajagopalan S. Climate change and cardiovascular disease: implications for global health. Nat Rev Cardiol 2022; 19:798-812. [PMID: 35672485 DOI: 10.1038/s41569-022-00720-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/15/2022]
Abstract
Climate change is the greatest existential challenge to planetary and human health and is dictated by a shift in the Earth's weather and air conditions owing to anthropogenic activity. Climate change has resulted not only in extreme temperatures, but also in an increase in the frequency of droughts, wildfires, dust storms, coastal flooding, storm surges and hurricanes, as well as multiple compound and cascading events. The interactions between climate change and health outcomes are diverse and complex and include several exposure pathways that might promote the development of non-communicable diseases such as cardiovascular disease. A collaborative approach is needed to solve this climate crisis, whereby medical professionals, scientific researchers, public health officials and policymakers should work together to mitigate and limit the consequences of global warming. In this Review, we aim to provide an overview of the consequences of climate change on cardiovascular health, which result from direct exposure pathways, such as shifts in ambient temperature, air pollution, forest fires, desert (dust and sand) storms and extreme weather events. We also describe the populations that are most susceptible to the health effects caused by climate change and propose potential mitigation strategies, with an emphasis on collaboration at the scientific, governmental and policy levels.
Collapse
Affiliation(s)
- Haitham Khraishah
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.,Environmental & Occupational Health Department, Faculty of Public Health, Kuwait University, Hawalli, Kuwait
| | | | - Abdelrahman AlAshqar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Mazen Albaghdadi
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nirupama Vellanki
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mohammed M Chowdhury
- Department of Vascular and Endovascular Surgery, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Sadeer G Al-Kindi
- University Hospitals, Harrington Heart & Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Antonio Gasparrini
- Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine, London, UK.,Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK.,Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Sanjay Rajagopalan
- University Hospitals, Harrington Heart & Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
155
|
Jacobsen AP, Khiew YC, Duffy E, O'Connell J, Brown E, Auwaerter PG, Blumenthal RS, Schwartz BS, McEvoy JW. Climate change and the prevention of cardiovascular disease. Am J Prev Cardiol 2022; 12:100391. [PMID: 36164332 PMCID: PMC9508346 DOI: 10.1016/j.ajpc.2022.100391] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022] Open
Abstract
Climate change is a worsening global crisis that will continue negatively impacting population health and well-being unless adaptation and mitigation interventions are rapidly implemented. Climate change-related cardiovascular disease is mediated by air pollution, increased ambient temperatures, vector-borne disease and mental health disorders. Climate change-related cardiovascular disease can be modulated by climate change adaptation; however, this process could result in significant health inequity because persons and populations of lower socioeconomic status have fewer adaptation options. Clear scientific evidence for climate change and its impact on human health have not yet resulted in the national and international impetus and policies necessary to slow climate change. As respected members of society who regularly communicate scientific evidence to patients, clinicians are well-positioned to advocate on the importance of addressing climate change. This narrative review summarizes the links between climate change and cardiovascular health, proposes actionable items clinicians and other healthcare providers can execute both in their personal life and as an advocate of climate policies, and encourages communication of the health impacts of climate change when counseling patients. Our aim is to inspire the reader to invest more time in communicating the most crucial public health issue of the 21st century to their patients.
Collapse
Affiliation(s)
- Alan P. Jacobsen
- Ciccarone Center for the Prevention of Cardiovascular Disease, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yii Chun Khiew
- Division of Gastroenterology, Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Eamon Duffy
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - James O'Connell
- Department of Public Health, Health Service Executive West, Galway, Ireland
| | - Evans Brown
- Department of Medicine, Division of Hospital Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Paul G. Auwaerter
- Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Roger S. Blumenthal
- Ciccarone Center for the Prevention of Cardiovascular Disease, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brian S. Schwartz
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - John William McEvoy
- Ciccarone Center for the Prevention of Cardiovascular Disease, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- National Institute for Prevention and Cardiovascular Health, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
156
|
Easson S, Singh RD, Connors L, Scheidl T, Baker L, Jadli A, Zhu HL, Thompson J. Exploring oxidative stress and endothelial dysfunction as a mechanism linking bisphenol S exposure to vascular disease in human umbilical vein endothelial cells and a mouse model of postnatal exposure. ENVIRONMENT INTERNATIONAL 2022; 170:107603. [PMID: 36335898 DOI: 10.1016/j.envint.2022.107603] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Structural analogues used to replace bisphenol A (BPA) since the introduction of new regulatory restrictions are considered emerging environmental toxicants and remain understudied with respect to their biological actions and health effects. Studies reveal a link between BPA exposure and vascular disease in human populations, whereas the vascular effects of BPA substitutes remain largely unknown. OBJECTIVES To determine the effect of BPS, a commonly used BPA substitute, on redox balance, nitric oxide (NO) availability and microvascular NO-dependent dilation. METHODS In human umbilical vein endothelial cells (HUVEC), production of reactive oxygen species (ROS) and NO after exposure to BPS was measured using fluorescent probes for DCFDA and DAF-FM diacetate, respectively. The contribution of endothelial NO synthase (eNOS) uncoupling to ROS generation was determined by measuring ROS in the presence or absence of an eNOS inhibitor (L-NAME) or eNOS co-factor, BH4, while the contribution of mitochondria-derived ROS was determined by treating cells with mitochondria-specific antioxidants prior to BPS exposure. Bioenergetic profiles were assessed using Seahorse extracellular flux analysis and mitochondria membrane polarization was measured with TMRE and JC-1 assays. In a mouse model of low dose BPS exposure, NO-mediated endothelial function was assessed in pressurized microvessels by inducing endothelium-dependent dilation in the presence or absence of L-NAME. RESULTS BPS exposure (≥25 nM) reduced NO and increased ROS production in HUVEC, the latter corrected by treating cells with L-NAME or BH4. BPS exposure led to a loss of mitochondria membrane potential but had no impact on bioenergetic parameters except for a decrease in the spare respiratory capacity. Treatment of HUVEC with mitochondria-specific antioxidants abolished the effect of BPS on NO and ROS. NO-mediated vasodilation was impaired in male mice exposed to BPS. DISCUSSION Exposure to BPS may promote cardiovascular disease by perturbing NO-mediated vascular homeostasis through the induction of oxidative stress.
Collapse
Affiliation(s)
- Sarah Easson
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Radha Dutt Singh
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Liam Connors
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Taylor Scheidl
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Larissa Baker
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Anshul Jadli
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Hai-Lei Zhu
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Jennifer Thompson
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada.
| |
Collapse
|
157
|
Ganatra S, Dani SS, Al-Kindi SG, Rajagopalan S. Health Care and Climate Change: Challenges and Pathways to Sustainable Health Care. Ann Intern Med 2022; 175:1598-1600. [PMID: 36279542 DOI: 10.7326/m22-1241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sarju Ganatra
- Division of Cardiovascular Medicine, Lahey Hospital & Medical Center, Tufts University School of Medicine, Burlington, Massachusetts (S.G., S.S.D.)
| | - Sourbha S Dani
- Division of Cardiovascular Medicine, Lahey Hospital & Medical Center, Tufts University School of Medicine, Burlington, Massachusetts (S.G., S.S.D.)
| | - Sadeer G Al-Kindi
- Division of Cardiovascular Medicine, Department of Medicine, Case Western Reserve University, and University Hospitals, Cleveland, Ohio (S.G.A., S.R.)
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Department of Medicine, Case Western Reserve University, and University Hospitals, Cleveland, Ohio (S.G.A., S.R.)
| |
Collapse
|
158
|
Gupta K, Al Rifai M, Hussain A, Minhas AMK, Patel J, Kalra D, Samad Z, Virani SS. South Asian ethnicity: What can we do to make this risk enhancer a risk equivalent? Prog Cardiovasc Dis 2022; 75:21-32. [PMID: 36279943 DOI: 10.1016/j.pcad.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
South Asians account for around 25% of the global population and are the fastest-growing ethnicity in the US. This population has an increasing burden of atherosclerotic cardiovascular disease (ASCVD) which is also seen in the diaspora. Current risk prediction equations underestimate this risk and consider the South Asian ethnicity as a risk-enhancer among those with borderline-intermediate risk. In this review, we discuss why the South Asian population is at a higher risk of ASCVD and strategies to mitigate this increased risk.
Collapse
Affiliation(s)
- Kartik Gupta
- Department of Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Mahmoud Al Rifai
- Section of Cardiology and Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Aliza Hussain
- Section of Cardiology and Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Jaideep Patel
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University Medical Center, Richmond, VA, USA; Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
| | - Dinesh Kalra
- Rudd Heart & Lung Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Zainab Samad
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Salim S Virani
- Section of Cardiology and Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Health Policy, Quality & Informatics Program, Health Services Research and Development Center for Innovations in Quality, Effectiveness, and Safety (IQuESt), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA; Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.
| |
Collapse
|
159
|
Mirowsky JE, Carraway MS, Dhingra R, Tong H, Neas L, Diaz-Sanchez D, Cascio WE, Case M, Crooks JL, Hauser ER, Dowdy ZE, Kraus WE, Devlin RB. Exposures to low-levels of fine particulate matter are associated with acute changes in heart rate variability, cardiac repolarization, and circulating blood lipids in coronary artery disease patients. ENVIRONMENTAL RESEARCH 2022; 214:113768. [PMID: 35780850 PMCID: PMC11969562 DOI: 10.1016/j.envres.2022.113768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Exposure to air pollution is a major risk factor for cardiovascular disease, disease risk factors, and mortality. Specifically, particulate matter (PM), and to some extent ozone, are contributors to these effects. In addition, exposures to these pollutants may be especially dangerous for susceptible populations. In this repeated-visit panel study, cardiovascular markers were collected from thirteen male participants with stable coronary artery disease. For 0-4 days prior to the health measurement collections, daily concentrations of fine PM (PM2.5) and ozone were obtained from local central monitoring stations located near the participant's homes. Then, single (PM2.5) and two-pollutant (PM2.5 and ozone) models were used to assess whether there were short-term changes in cardiovascular health markers. Per interquartile range increase in PM2.5, there were decrements in several heart rate variability metrics, including the standard deviation of the normal-to-normal intervals (lag 3, -5.8%, 95% confidence interval (CI) = -11.5, 0.3) and root-mean squared of successive differences (five day moving average, -8.1%, 95% CI = -15.0, -0.7). In addition, increases in PM2.5 were also associated with changes in P complexity (lag 1, 4.4%, 95% CI = 0.5, 8.5), QRS complexity (lag 1, 4.9%, 95% CI = 1.4, 8.5), total cholesterol (five day moving average, -2.1%, 95% CI = -4.1, -0.1), and high-density lipoprotein cholesterol (lag 2, -1.6%, 95% CI = -3.1, -0.1). Comparisons to our previously published work on ozone were conducted. We found that ozone affected inflammation and endothelial function, whereas PM2.5 influenced heart rate variability, repolarization, and lipids. All the health changes from these two studies were found at concentrations below the United States Environmental Protection Agency's National Ambient Air Quality Standards. Our results imply clear differences in the cardiovascular outcomes observed with exposure to the two ubiquitous air pollutants PM2.5 and ozone; this observation suggests different mechanisms of toxicity for these exposures.
Collapse
Affiliation(s)
- Jaime E Mirowsky
- Department of Chemistry, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA; Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, USA.
| | - Martha Sue Carraway
- Department of Medicine, Pulmonary and Critical Care Medicine, Durham VA Medical Center, Durham, NC, USA
| | - Radhika Dhingra
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA; Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Haiyan Tong
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Lucas Neas
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - David Diaz-Sanchez
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Wayne E Cascio
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Martin Case
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - James L Crooks
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA; Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA; Cooperative Studies Program Epidemiology Center, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Z Elaine Dowdy
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA; Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
| | - Robert B Devlin
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| |
Collapse
|
160
|
Andreadis EA, Vourkas GI, Varelas G, Angelopoulos ET, Gerasopoulos E, Mihalopoulos N, Thomopoulos C. Air Pollution and Home Blood Pressure: The 2021 Athens Wildfires. High Blood Press Cardiovasc Prev 2022; 29:619-624. [PMID: 36306104 DOI: 10.1007/s40292-022-00547-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION Fine particulate matter with an aerodynamic diameter < 2.5 μm (PM2.5) in the ambient air has been associated with increased blood pressure (BP) levels and new-onset hypertension. However, the association of BP with a sudden upsurge of PM2.5 in extreme conditions has not yet been demonstrated. AIM To evaluate the association between PM2.5 pollutants the week before, during, and the week after the 2021 wildfires in Athens (Greece) and home BP measurements. METHODS Home BP measurements were performed, and the readings were transferred to the doctor's office through a telemonitoring system on the patient's Smartphone application. Data from a calibrated, sensor-based PM2.5 monitoring network assessed PM2.5 exposure. RESULTS PM2.5 pollutants demonstrated a gradual surge while the particle concentration was not different in the selected air pollution measurement stations. A total of 20 consecutive patients with controlled hypertension, mean age 61 ± 9 years, were included in the analysis. For one unit in μg/m3 increase of PM2.5 particle concentration, an average of 2.1 mmHg increment in systolic BP was observed after adjustment for confounders (P = 0.023). CONCLUSIONS Our findings raise the hypothesis that short-term exposure to raised PM2.5 concentrations in the air appears to be associated with increases in systolic home BP." Telemonitoring systems of home BP recordings may provide important information for the clinical management of hypertensive patients, at least in conditions of major environmental disturbances, such as wildfires.
Collapse
Affiliation(s)
- Emmanuel A Andreadis
- Hypertension and Cardiovascular Disease Prevention Center, Athens Medical Group, Psychiko Clinic, Neo Psychiko, 7, Dimocharous Street, 11521, Athens, Greece.
| | - George I Vourkas
- Hypertension and Cardiovascular Disease Prevention Center, Athens Medical Group, Psychiko Clinic, Neo Psychiko, 7, Dimocharous Street, 11521, Athens, Greece
| | - George Varelas
- Department of Electrical and Computer Engineering, University of the Peloponnese, Tripoli, Greece
| | | | - Evangelos Gerasopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, Athens, Greece
| | - Nikolaos Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, Athens, Greece
- Department of Chemistry, Environmental Chemical Processes Laboratory, 70013, Heraklion, Greece
| | | |
Collapse
|
161
|
Faridi S, Yousefian F, Roostaei V, Harrison RM, Azimi F, Niazi S, Naddafi K, Momeniha F, Malkawi M, Moh'd Safi HA, Rad MK, Hassanvand MS. Source apportionment, identification and characterization, and emission inventory of ambient particulate matter in 22 Eastern Mediterranean Region countries: A systematic review and recommendations for good practice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119889. [PMID: 35932896 DOI: 10.1016/j.envpol.2022.119889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/16/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Little is known about the main sources of ambient particulate matter (PM) in the 22 Eastern Mediterranean Region (EMR) countries. We designed this study to systematically review all published and unpublished source apportionment (SA), identification and characterization studies as well as emission inventories in the EMR. Of 440 articles identified, 82 (11 emission inventory ones) met our inclusion criteria for final analyses. Of 22 EMR countries, Iran with 30 articles had the highest number of studies on source specific PM followed by Pakistan (n = 15 articles) and Saudi Arabia (n = 8 papers). By contrast, there were no studies in Afghanistan, Bahrain, Djibouti, Libya, Somalia, Sudan, Syria, Tunisia, United Arab Emirates and Yemen. Approximately 72% of studies (51) were published within a span of 2015-2021.48 studies identified the sources of PM2.5 and its constituents. Positive matrix factorization (PMF), principal component analysis (PCA) and chemical mass balance (CMB) were the most common approaches to identify the source contributions of ambient PM. Both secondary aerosols and dust, with 12-51% and 8-80% (33% and 30% for all EMR countries, on average) had the greatest contributions in ambient PM2.5. The remaining sources for ambient PM2.5, including mixed sources (traffic, industry and residential (TIR)), traffic, industries, biomass burning, and sea salt were in the range of approximately 4-69%, 4-49%, 1-53%, 7-25% and 3-29%, respectively. For PM10, the most dominant source was dust with 7-95% (49% for all EMR countries, on average). The limited number of SA studies in the EMR countries (one study per approximately 9.6 million people) in comparison to Europe and North America (1 study per 4.3 and 2.1 million people respectively) can be augmented by future studies that will provide a better understanding of emission sources in the urban environment.
Collapse
Affiliation(s)
- Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahid Roostaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Roy M Harrison
- School of Geography Earth and Environmental Science, University of Birmingham, Birmingham, UK; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faramarz Azimi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sadegh Niazi
- International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Momeniha
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazen Malkawi
- Environmental Health Exposures Centre for Environmental Health Action (CEHA), World Health Organization (WHO), Jordan
| | - Heba Adel Moh'd Safi
- Environmental Health Exposures Centre for Environmental Health Action (CEHA), World Health Organization (WHO), Jordan
| | - Mona Khaleghy Rad
- Environmental Health Exposures Centre for Environmental Health Action (CEHA), World Health Organization (WHO), Jordan
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
162
|
Lamas GA, Anstrom KJ, Navas-Acien A, Boineau R, Kim H, Rosenberg Y, Stylianou M, Jones TLZ, Joubert BR, Santella RM, Escolar E, Aude YW, Fonseca V, Elliott T, Lewis EF, Farkouh ME, Nathan DM, Mon AC, Gosnell L, Newman JD, Mark DB. The trial to assess chelation therapy 2 (TACT2): Rationale and design. Am Heart J 2022; 252:1-11. [PMID: 35598636 PMCID: PMC9434822 DOI: 10.1016/j.ahj.2022.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Intravenous edetate disodium-based infusions reduced cardiovascular events in a prior clinical trial. The Trial to Assess Chelation Therapy 2 (TACT2) will replicate the initial study design. METHODS TACT2 is an NIH-sponsored, randomized, 2x2 factorial, double masked, placebo-controlled, multicenter clinical trial testing 40 weekly infusions of a multi-component edetate disodium (disodium ethylenediamine tetra-acetic acid, or Na2EDTA)-based chelation solution and twice daily oral, high-dose multivitamin and mineral supplements in patients with diabetes and a prior myocardial infarction (MI). TACT2 completed enrollment of 1000 subjects in December 2020, and infusions in December 2021. Subjects are followed for 2.5 to 5 years. The primary endpoint is time to first occurrence of all-cause mortality, MI, stroke, coronary revascularization, or hospitalization for unstable angina. The trial has >;85% power to detect a 30% relative reduction in the primary endpoint. TACT2 also includes a Trace Metals and Biorepository Core Lab, to test whether benefits of treatment, if present, are due to chelation of lead and cadmium from patients. Design features of TACT2 were chosen to replicate selected features of the first TACT, which demonstrated a significant reduction in cardiovascular outcomes in the EDTA chelation arm compared with placebo among patients with a prior MI, with the largest effect in patients with diabetes. RESULTS Results are expected in 2024. CONCLUSION TACT2 may provide definitive evidence of the benefit of edetate disodiumbased chelation on cardiovascular outcomes, as well as the clinical importance of longitudinal changes in toxic metal levels of participants.
Collapse
Affiliation(s)
- Gervasio A Lamas
- Division of Cardiology, Mount Sinai Medical Center, Miami Beach, FL, USA.
| | - Kevin J Anstrom
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Ana Navas-Acien
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Robin Boineau
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Hwasoon Kim
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Yves Rosenberg
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mario Stylianou
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Teresa L Z Jones
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bonnie R Joubert
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Regina M Santella
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Esteban Escolar
- Division of Cardiology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Y Wady Aude
- Heart and Vascular Specialists of South Texas, McAllen, TX, USA
| | - Vivian Fonseca
- Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Eldrin F Lewis
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - David M Nathan
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana C Mon
- Division of Cardiology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Leigh Gosnell
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | | | - Daniel B Mark
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| |
Collapse
|
163
|
Manfrini O, Bugiardini R. Behavioural risk factors and cardiovascular disease: are women at higher risk? Lancet 2022; 400:788-789. [PMID: 36088937 DOI: 10.1016/s0140-6736(22)01736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Olivia Manfrini
- Laboratory of Epidemiological and Clinical Cardiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, St Orsola University Hospital, Bologna, Italy.
| | - Raffaele Bugiardini
- Laboratory of Epidemiological and Clinical Cardiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
164
|
Abstract
Wildfire smoke is a rapidly growing threat to global cardiovascular health. We review the literature linking wildfire smoke exposures to cardiovascular effects. We find substantial evidence that short-term exposures are associated with key cardiovascular outcomes, including mortality, hospitalization, and acute coronary syndrome. Wildfire smoke exposures will continue to increase over the majority of Earth's surface. For example, the United States alone has experienced a 5-fold increase in annual area burned since 1972, with 82 million individuals estimated to be exposed to wildfire smoke by midcentury. The associated rise in excess morbidity and mortality constitutes a growing global public health crisis. Fortunately, the effect of wildfire smoke on cardiovascular health is modifiable at the individual and population levels through specific interventions. Health systems therefore have an opportunity to help safeguard patients from smoke exposures. We provide a roadmap of evidence-based interventions to reduce risk and protect cardiovascular health. Key interventions include preparing health systems for smoke events; identifying and educating vulnerable patients; reducing outdoor activities; creating cleaner air environments; using air filtration devices and personal respirators; and aggressive management of chronic diseases and traditional risk factors. Further research is needed to test the efficacy of interventions on reducing cardiovascular outcomes.
Collapse
Affiliation(s)
| | - Sarah B Henderson
- British Columbia Centre for Disease Control, Vancouver, Canada (S.B.H.).,University of British Columbia, Vancouver, Canada (S.B.H., M.B.)
| | - Michael Brauer
- University of British Columbia, Vancouver, Canada (S.B.H., M.B.).,Institute for Health Metrics and Evaluation, University of Washington, Seattle (M.B.)
| | | |
Collapse
|
165
|
Gulati M. The role of the preventive cardiologist in addressing climate change. Am J Prev Cardiol 2022; 11:100375. [PMID: 36090522 PMCID: PMC9449550 DOI: 10.1016/j.ajpc.2022.100375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022] Open
|
166
|
Health burden and economic loss attributable to ambient PM 2.5 in Iran based on the ground and satellite data. Sci Rep 2022; 12:14386. [PMID: 35999246 PMCID: PMC9399101 DOI: 10.1038/s41598-022-18613-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/16/2022] [Indexed: 01/02/2023] Open
Abstract
We estimated mortality and economic loss attributable to PM2·5 air pollution exposure in 429 counties of Iran in 2018. Ambient PM2.5-related deaths were estimated using the Global Exposure Mortality Model (GEMM). According to the ground-monitored and satellite-based PM2.5 data, the annual mean population-weighted PM2·5 concentrations for Iran were 30.1 and 38.6 μg m-3, respectively. We estimated that long-term exposure to ambient PM2.5 contributed to 49,303 (95% confidence interval (CI) 40,914-57,379) deaths in adults ≥ 25 yr. from all-natural causes based on ground monitored data and 58,873 (95% CI 49,024-68,287) deaths using satellite-based models for PM2.5. The crude death rate and the age-standardized death rate per 100,000 population for age group ≥ 25 year due to ground-monitored PM2.5 data versus satellite-based exposure estimates was 97 (95% CI 81-113) versus 116 (95% CI 97-135) and 125 (95% CI 104-145) versus 149 (95% CI 124-173), respectively. For ground-monitored and satellite-based PM2.5 data, the economic loss attributable to ambient PM2.5-total mortality was approximately 10,713 (95% CI 8890-12,467) and 12,792.1 (95% CI 10,652.0-14,837.6) million USD, equivalent to nearly 3.7% (95% CI 3.06-4.29) and 4.3% (95% CI 3.6-4.5.0) of the total gross domestic product in Iran in 2018.
Collapse
|
167
|
Basith S, Manavalan B, Shin TH, Park CB, Lee WS, Kim J, Lee G. The Impact of Fine Particulate Matter 2.5 on the Cardiovascular System: A Review of the Invisible Killer. NANOMATERIALS 2022; 12:nano12152656. [PMID: 35957086 PMCID: PMC9370264 DOI: 10.3390/nano12152656] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/26/2022]
Abstract
Air pollution exerts several deleterious effects on the cardiovascular system, with cardiovascular disease (CVD) accounting for 80% of all premature deaths caused by air pollution. Short-term exposure to particulate matter 2.5 (PM2.5) leads to acute CVD-associated deaths and nonfatal events, whereas long-term exposure increases CVD-associated risk of death and reduces longevity. Here, we summarize published data illustrating how PM2.5 may impact the cardiovascular system to provide information on the mechanisms by which it may contribute to CVDs. We provide an overview of PM2.5, its associated health risks, global statistics, mechanistic underpinnings related to mitochondria, and hazardous biological effects. We elaborate on the association between PM2.5 exposure and CVD development and examine preventive PM2.5 exposure measures and future strategies for combating PM2.5-related adverse health effects. The insights gained can provide critical guidelines for preventing pollution-related CVDs through governmental, societal, and personal measures, thereby benefitting humanity and slowing climate change.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
| | - Wang-Soo Lee
- Department of Internal Medicine, Division of Cardiology, College of Medicine, Chung-Ang University, Seoul 06973, Korea;
| | - Jaetaek Kim
- Department of Internal Medicine, Division of Endocrinology and Metabolism, College of Medicine, Chung-Ang University, Seoul 06973, Korea
- Correspondence: (J.K.); (G.L.)
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.B.); (T.H.S.); (C.B.P.)
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: (J.K.); (G.L.)
| |
Collapse
|
168
|
Jiménez T, Pollán M, Domínguez-Castillo A, Lucas P, Sierra MÁ, Fernández de Larrea-Baz N, González-Sánchez M, Salas-Trejo D, Llobet R, Martínez I, Pino MN, Martínez-Cortés M, Pérez-Gómez B, Lope V, García-Pérez J. Residential proximity to industrial pollution and mammographic density. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154578. [PMID: 35304152 DOI: 10.1016/j.scitotenv.2022.154578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/25/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Mammographic density (MD), expressed as percentage of fibroglandular breast tissue, is an important risk factor for breast cancer. Our objective is to investigate the relationship between MD and residential proximity to pollutant industries in premenopausal Spanish women. METHODS A cross-sectional study was carried out in a sample of 1225 women extracted from the DDM-Madrid study. Multiple linear regression models were used to assess the association of MD percentage (and their 95% confidence intervals (95%CIs)) and proximity (between 1 km and 3 km) to industries included in the European Pollutant Release and Transfer Register. RESULTS Although no association was found between MD and distance to all industries as a whole, several industrial sectors showed significant association for some distances: "surface treatment of metals and plastic" (β = 4.98, 95%CI = (0.85; 9.12) at ≤1.5 km, and β = 3.00, 95%CI = (0.26; 5.73) at ≤2.5 km), "organic chemical industry" (β = 6.73, 95%CI = (0.50; 12.97) at ≤1.5 km), "pharmaceutical products" (β = 4.14, 95%CI = (0.58; 7.70) at ≤2 km; β = 3.55, 95%CI = (0.49; 6.60) at ≤2.5 km; and β = 3.11, 95%CI = (0.20; 6.01) at ≤3 km), and "urban waste-water treatment plants" (β = 8.06, 95%CI = (0.82; 15.30) at ≤1 km; β = 5.28; 95%CI = (0.49; 10.06) at ≤1.5 km; β = 4.30, 95%CI = (0.03; 8.57) at ≤2 km; β = 5.26, 95%CI = (1.83; 8.68) at ≤2.5 km; and β = 3.19, 95%CI = (0.46; 5.92) at ≤3 km). Moreover, significant increased MD was observed in women close to industries releasing specific pollutants: ammonia (β = 4.55, 95%CI = (0.26; 8.83) at ≤1.5 km; and β = 3.81, 95%CI = (0.49; 7.14) at ≤2 km), dichloromethane (β = 3.86, 95%CI = (0.00; 7.71) at ≤2 km), ethylbenzene (β = 8.96, 95%CI = (0.57; 17.35) at ≤3 km), and phenols (β = 2.60, 95%CI = (0.21; 5.00) at ≤2.5 km). CONCLUSIONS Our results suggest no statistically significant relationship between MD and proximity to industries as a whole, although we detected associations with various industrial sectors and some specific pollutants, which suggests that MD could have a mediating role in breast carcinogenesis.
Collapse
Affiliation(s)
- Tamara Jiménez
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Marina Pollán
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Alejandro Domínguez-Castillo
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain.
| | - Pilar Lucas
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain.
| | - María Ángeles Sierra
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Nerea Fernández de Larrea-Baz
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Mario González-Sánchez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Dolores Salas-Trejo
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain; Valencian Breast Cancer Screening Program, General Directorate of Public Health, Valencia, Spain; Center for Public Health Research CSISP, FISABIO, Valencia, Spain.
| | - Rafael Llobet
- Institute of Computer Technology, Universitat Politècnica de València, Valencia, Spain.
| | - Inmaculada Martínez
- Valencian Breast Cancer Screening Program, General Directorate of Public Health, Valencia, Spain; Center for Public Health Research CSISP, FISABIO, Valencia, Spain.
| | - Marina Nieves Pino
- Servicio de Prevención y Promoción de la Salud, Madrid Salud, Ayuntamiento de Madrid, Madrid, Spain.
| | - Mercedes Martínez-Cortés
- Servicio de Prevención y Promoción de la Salud, Madrid Salud, Ayuntamiento de Madrid, Madrid, Spain.
| | - Beatriz Pérez-Gómez
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain; Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain.
| | - Virginia Lope
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Javier García-Pérez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| |
Collapse
|
169
|
Varieur BM, Fisher S, Landrigan PJ. Air Pollution, Political Corruption, and Cardiovascular Disease in the Former Soviet Republics. Ann Glob Health 2022; 88:48. [PMID: 35854924 PMCID: PMC9249009 DOI: 10.5334/aogh.3702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/10/2022] [Indexed: 11/20/2022] Open
Abstract
Background Ambient air pollution is a serious problem in many Eastern European countries. Elevated levels of fine airborne particulate matter (PM2.5) pollution in the former Soviet republics relative to the rest of Europe contribute to elevated rates of disease, especially cardiovascular disease (CVD). Objective Information on the underlying social and political causes of air pollution in Eastern Europe is important for pollution control and disease prevention. Methods To quantify relationships between pollution, and air-pollution-related CVD, and political corruption throughout Europe and particularly in the former Soviet republics, we relied on the State of Global Air report for information on air pollution levels; on the 2019 Global Burden of Disease study (GBD) for estimates of the burden of air-pollution-related CVD; and on Transparency International (TI) for rankings of governmental corruption. Findings Air-pollution-related CVD was responsible for an estimated 178,000 (UI: 112,000-251,000) premature deaths and for the loss of 4,010,000 (UI: 2,518,000--5,611,000) productive years of life (DALYs) in 2019 in the former Soviet republics. A significant positive correlation (R = 0.72, p 1.7e-8) was found across Europe between air-pollution-related CVD mortality rates and national corruption rankings. Conclusions We conclude that lack of governmental transparency, inadequate air pollution monitoring, and opposition by vested interests have hindered air pollution control and perpetuated high rates of pollution-related morbidity and mortality in the former Soviet republics. Ending corruption and modernizing industrial production will be key to air pollution and related diseases.
Collapse
Affiliation(s)
- Benjamin M. Varieur
- Global Public Health and the Common Good, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, US
| | - Samantha Fisher
- Global Public Health and the Common Good, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, US
| | - Philip J. Landrigan
- Global Public Health and the Common Good, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, US
| |
Collapse
|
170
|
Assi HI, Meouchy P, El Mahmoud A, Massouh A, Bou Zerdan M, Alameh I, Chamseddine N, Kazarian H, Zeineldine S, Saliba NA, Noureddine S. A Survey on the Knowledge, Attitudes, and Practices of Lebanese Physicians Regarding Air Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137907. [PMID: 35805567 PMCID: PMC9265911 DOI: 10.3390/ijerph19137907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
Introduction: Air pollution imposes a significant burden on public health. It is emerging as a modifiable risk factor for cancer, diabetes, and respiratory and cardiovascular diseases. This study aims to assess the knowledge, attitudes, and practices of Lebanese physicians regarding air pollution. Methods: This observational study uses a descriptive cross-sectional correlational design. The data were collected using a self-administered online survey that was sent to 874 potential respondents who are members of the Lebanese Order of Physicians. Data analysis was done using descriptive statistics and a chi-square test. Results: The results show a deficiency in the knowledge of physicians regarding many sources of air pollution, including dust, the smell of perfume, candles, vacuum cleaners, air fresheners, electronic cigarettes, etc. The majority of physicians agree that air pollution increases the risk of several health problems. Only 38% of physicians routinely ask their patients about exposure to air pollution, and 75% of them believe that they have a role as physicians in reducing air pollution levels. Over half of the sample are confident in counseling their patients on sources of air pollution, and two thirds of them are in support of including assessment of air pollution exposure during regular medical visits. Conclusion: Air pollution levels are progressively increasing over time. Given the health impact of exposure to air pollution, healthcare professionals need to stay up to date on this topic. The results of this study suggest the need for continuing education about air pollution for physicians and developing guidelines for what exactly to ask patients in assessing their exposure.
Collapse
Affiliation(s)
- Hazem I. Assi
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, P.O. Box 11-0236, Beirut 1107, Lebanon; (H.I.A.); (P.M.); (A.E.M.); (M.B.Z.); (I.A.); (N.C.)
| | - Paul Meouchy
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, P.O. Box 11-0236, Beirut 1107, Lebanon; (H.I.A.); (P.M.); (A.E.M.); (M.B.Z.); (I.A.); (N.C.)
| | - Ahmad El Mahmoud
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, P.O. Box 11-0236, Beirut 1107, Lebanon; (H.I.A.); (P.M.); (A.E.M.); (M.B.Z.); (I.A.); (N.C.)
| | - Angela Massouh
- Hariri School of Nursing, American University of Beirut, P.O. Box 11-0236, Beirut 1107, Lebanon; (A.M.); (H.K.)
| | - Maroun Bou Zerdan
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, P.O. Box 11-0236, Beirut 1107, Lebanon; (H.I.A.); (P.M.); (A.E.M.); (M.B.Z.); (I.A.); (N.C.)
| | - Ibrahim Alameh
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, P.O. Box 11-0236, Beirut 1107, Lebanon; (H.I.A.); (P.M.); (A.E.M.); (M.B.Z.); (I.A.); (N.C.)
| | - Nathalie Chamseddine
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, P.O. Box 11-0236, Beirut 1107, Lebanon; (H.I.A.); (P.M.); (A.E.M.); (M.B.Z.); (I.A.); (N.C.)
| | - Houry Kazarian
- Hariri School of Nursing, American University of Beirut, P.O. Box 11-0236, Beirut 1107, Lebanon; (A.M.); (H.K.)
| | - Salah Zeineldine
- Department of Internal Medicine, Pulmonary and Critical Care Division, American University of Beirut Medical Center, P.O. Box 11-0236, Beirut 1107, Lebanon;
| | - Najat A. Saliba
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut 1107, Lebanon;
| | - Samar Noureddine
- Hariri School of Nursing, American University of Beirut, P.O. Box 11-0236, Beirut 1107, Lebanon; (A.M.); (H.K.)
- Correspondence: ; Tel.: +961-135-00-00 (ext. 5966)
| |
Collapse
|
171
|
Faridi S, Brook RD, Yousefian F, Hassanvand MS, Nodehi RN, Shamsipour M, Rajagopalan S, Naddafi K. Effects of respirators to reduce fine particulate matter exposures on blood pressure and heart rate variability: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119109. [PMID: 35271952 PMCID: PMC10411486 DOI: 10.1016/j.envpol.2022.119109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Particulate-filtering respirators (PFRs) have been recommended as a practical personal-level intervention to protect individuals from the health effects of particulate matter exposure. However, the cardiovascular benefits of PFRs including improvements in key surrogate endpoints remain unclear. We performed a systematic review and meta-analysis of randomized studies (wearing versus not wearing PFRs) reporting the effects on blood pressure (BP) and heart rate variability (HRV). The search was performed on January 3, 2022 to identify published papers until this date. We queried three English databases, including PubMed, Web of Science Core Collection and Scopus. Of 527 articles identified, eight trials enrolling 312 participants (mean age ± standard deviation: 36 ± 19.8; 132 female) met our inclusion criteria for analyses. Study participants wore PFRs from 2 to 48 h during intervention periods. Wearing PFRs was associated with a non-significant pooled mean difference of -0.78 mmHg (95% confidence interval [CI]: -2.06, 0.50) and -0.49 mmHg (95%CI: -1.37, 0.38) in systolic and diastolic BP (SBP and DBP). There was a marginally significant reduction of mean arterial pressure (MAP) by nearly 1.1 mmHg (95%CI: -2.13, 0.01). The use of PFRs was associated with a significant increase of 38.92 ms2 (95%CI: 1.07, 76.77) in pooled mean high frequency (power in the high frequency band (0.15-0.4 Hz)) and a reduction in the low (power in the low frequency band (0.04-0.15Hz))-to-high frequency ratio [-0.14 (95%CI: -0.27, 0.00)]. Other HRV indices were not significantly changed. Our meta-analysis demonstrates modest or non-significant improvements in BP and many HRV parameters from wearing PFRs over brief periods. However, these findings are limited by the small number of trials as well as variations in experimental designs and durations. Given the mounting global public health threat posed by air pollution, larger-scale trials are warranted to elucidate more conclusively the potential health benefits of PFRs.
Collapse
Affiliation(s)
- Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh Nodehi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
172
|
Bernardi M, Biondi-Zoccai G, Versaci F. Air pollution and cardiovascular risk: is it time to change guidelines? Open Heart 2022; 9:e001961. [PMID: 35750421 PMCID: PMC9234796 DOI: 10.1136/openhrt-2022-001961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/04/2022] Open
Affiliation(s)
- Marco Bernardi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, University of Rome La Sapienza, Rome, Lazio, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Rome, Lazio, Italy
- Mediterranea Cardiocentro, Napoli, Campania, Italy
| | - Francesco Versaci
- UOC UTIC Emodinamica e Cardiologia, Ospedale Santa Maria Goretti, Latina, Lazio, Italy
| |
Collapse
|
173
|
Notariale R, Perrone P, Mele L, Lettieri G, Piscopo M, Manna C. Olive Oil Phenols Prevent Mercury-Induced Phosphatidylserine Exposure and Morphological Changes in Human Erythrocytes Regardless of Their Different Scavenging Activity. Int J Mol Sci 2022; 23:ijms23105693. [PMID: 35628502 PMCID: PMC9147954 DOI: 10.3390/ijms23105693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Phosphatidylserine (PS) translocation to the external membrane leaflet represents a key mechanism in the pathophysiology of human erythrocytes (RBC) acting as an "eat me" signal for the removal of aged/stressed cells. Loss of physiological membrane asymmetry, however, can lead to adverse effects on the cardiovascular system, activating a prothrombotic activity. The data presented indicate that structurally related olive oil phenols prevent cell alterations induced in intact human RBC exposed to HgCl2 (5-40 µM) or Ca2+ ionophore (5 µM), as measured by hallmarks including PS exposure, reactive oxygen species generation, glutathione depletion and microvesicles formation. The protective effect is observed in a concentration range of 1-30 µM, hydroxytyrosol being the most effective; its in vivo metabolite homovanillic alcohol still retains the biological activity of its dietary precursor. Significant protection is also exerted by tyrosol, in spite of its weak scavenging activity, indicating that additional mechanisms are involved in the protective effect. When RBC alterations are mediated by an increase in intracellular calcium, the protective effect is observed at higher concentrations, indicating that the selected phenols mainly act on Ca2+-independent mechanisms, identified as protection of glutathione depletion. Our findings strengthen the nutritional relevance of olive oil bioactive compounds in the claimed health-promoting effects of the Mediterranean Diet.
Collapse
Affiliation(s)
- Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.N.); (P.P.)
| | - Pasquale Perrone
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.N.); (P.P.)
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.L.); (M.P.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.L.); (M.P.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.N.); (P.P.)
- Correspondence:
| |
Collapse
|
174
|
Sonawane AR, Aikawa E, Aikawa M. Connections for Matters of the Heart: Network Medicine in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:873582. [PMID: 35665246 PMCID: PMC9160390 DOI: 10.3389/fcvm.2022.873582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/19/2022] [Indexed: 01/18/2023] Open
Abstract
Cardiovascular diseases (CVD) are diverse disorders affecting the heart and vasculature in millions of people worldwide. Like other fields, CVD research has benefitted from the deluge of multiomics biomedical data. Current CVD research focuses on disease etiologies and mechanisms, identifying disease biomarkers, developing appropriate therapies and drugs, and stratifying patients into correct disease endotypes. Systems biology offers an alternative to traditional reductionist approaches and provides impetus for a comprehensive outlook toward diseases. As a focus area, network medicine specifically aids the translational aspect of in silico research. This review discusses the approach of network medicine and its application to CVD research.
Collapse
Affiliation(s)
- Abhijeet Rajendra Sonawane
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
175
|
Joint associations between neighborhood walkability, greenness, and particulate air pollution on cardiovascular mortality among adults with a history of stroke or acute myocardial infarction. Environ Epidemiol 2022; 6:e200. [PMID: 35434462 PMCID: PMC9005250 DOI: 10.1097/ee9.0000000000000200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/29/2022] [Indexed: 11/26/2022] Open
Abstract
Fine particulate matter (PM2.5) is a known risk factor for cardiovascular disease (CVD). Neighborhood walkability and greenness may also be associated with CVD, but there is limited evidence on their joint or interacting effects with PM2.5.
Collapse
|
176
|
Heusch G. Coronary blood flow in heart failure: cause, consequence and bystander. Basic Res Cardiol 2022; 117:1. [PMID: 35024969 PMCID: PMC8758654 DOI: 10.1007/s00395-022-00909-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/31/2023]
Abstract
Heart failure is a clinical syndrome where cardiac output is not sufficient to sustain adequate perfusion and normal bodily functions, initially during exercise and in more severe forms also at rest. The two most frequent forms are heart failure of ischemic origin and of non-ischemic origin. In heart failure of ischemic origin, reduced coronary blood flow is causal to cardiac contractile dysfunction, and this is true for stunned and hibernating myocardium, coronary microembolization, myocardial infarction and post-infarct remodeling, possibly also for the takotsubo syndrome. The most frequent form of non-ischemic heart failure is dilated cardiomyopathy, caused by genetic mutations, myocarditis, toxic agents or sustained tachyarrhythmias, where alterations in coronary blood flow result from and contribute to cardiac contractile dysfunction. Hypertrophic cardiomyopathy is caused by genetic mutations but can also result from increased pressure and volume overload (hypertension, valve disease). Heart failure with preserved ejection fraction is characterized by pronounced coronary microvascular dysfunction, the causal contribution of which is however not clear. The present review characterizes the alterations of coronary blood flow which are causes or consequences of heart failure in its different manifestations. Apart from any potentially accompanying coronary atherosclerosis, all heart failure entities share common features of impaired coronary blood flow, but to a different extent: enhanced extravascular compression, impaired nitric oxide-mediated, endothelium-dependent vasodilation and enhanced vasoconstriction to mediators of neurohumoral activation. Impaired coronary blood flow contributes to the progression of heart failure and is thus a valid target for established and novel treatment regimens.
Collapse
Affiliation(s)
- Gerd Heusch
- grid.5718.b0000 0001 2187 5445Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
177
|
Shati AA, Zaki MSA, Alqahtani YA, Haidara MA, Al-Shraim M, Dawood AF, Eid RA. Potential Protective Effect of Vitamin C on Qunalphos-Induced Cardiac Toxicity: Histological and Tissue Biomarker Assay. Biomedicines 2021; 10:39. [PMID: 35052719 PMCID: PMC8772816 DOI: 10.3390/biomedicines10010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Insecticides and toxicants abound in nature, posing a health risk to humans. Concurrent exposure to many environmental contaminants has been demonstrated to harm myocardial performance and reduce cardiac oxidative stress. The purpose of this research was to study the protective effect of vitamin C (Vit C) on quinalphos (QP)-induced cardiac tissue damage in rats. Eighteen albino male rats were randomly categorised into three groups (n = 6). Control, QP group: rats received distilled water. QP insecticide treatment: an oral administration of QP incorporated in drinking water. QP + Vit C group: rats received QP and Vit C. All the experiments were conducted for ten days. Decline of cardiac antioxidant biomarkers catalase (CAT) and reduced glutathione (GPx) along with increased proinflammatory markers tumour necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) indicated oxidative and inflammatory damage to the heart following administration of QP when compared to control rats. The light microscopic and ultrastructure appearance of QP-treated cardiomyocytes exhibited cardiac damage. Administration of Vit C showed decreased oxidative and inflammatory biomarkers, confirmed with histological and electron microscopic examination. In conclusion, Vit C protected the heart from QP-induced cardiac damage due to decreased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia; (A.A.S.); (Y.A.A.)
| | - Mohamed Samir A. Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia;
- Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig P.O. Box 31527, Egypt
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia; (A.A.S.); (Y.A.A.)
| | - Mohamed A. Haidara
- Department of Physiology, Kasr al-Aini Faculty of Medicine, Cairo University, Cairo P.O. Box 11519, Egypt;
| | - Mubarak Al-Shraim
- Department of Pathology, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia;
| | - Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia;
| |
Collapse
|