151
|
Seo Y, Kim HS, Kang I, Choi SW, Shin TH, Shin JH, Lee BC, Lee JY, Kim JJ, Kook MG, Kang KS. Cathepsin S contributes to microglia-mediated olfactory dysfunction through the regulation of Cx3cl1-Cx3cr1 axis in a Niemann-Pick disease type C1 model. Glia 2016; 64:2291-2305. [PMID: 27687148 DOI: 10.1002/glia.23077] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 12/28/2022]
Abstract
Microglia can aggravate olfactory dysfunction by mediating neuronal death in the olfactory bulb (OB) of a murine model of Niemann-Pick disease type C1 (NPC1), a fatal neurodegenerative disorder accompanied by lipid trafficking defects. In this study, we focused on the crosstalk between neurons and microglia to elucidate the mechanisms underlying extensive microgliosis in the NPC1-affected brain. Microglia in the OB of NPC1 mice strongly expressed CX3C chemokine receptor 1 (Cx3cr1), a specific receptor for the neural chemokine C-X3-C motif ligand 1 (Cx3cl1). In addition, a high level of Cx3cl1 was detected in NPC1 mouse-derived CSF due to enhanced catalytic activity of Cathepsin S (Ctss), which is responsible for Cx3cl1 secretion. Notably, nasal delivery of Cx3cl1 neutralizing antibody or Ctss inhibitor could inhibit the Cx3cl1-Cx3cr1 interaction and support neuronal survival through the suppression of microglial activation, leading to an improvement in the olfactory function in NPC1 mice. Relevant in vitro experiments revealed that intracellular cholesterol accumulation could act as a strong inducer of abnormal Ctss activation and, in turn, stimulated the Cx3cl1-Cx3cr1 axis in microglia via p38 mitogen-activated protein kinase signaling. Our data address the significance of Cx3cl1-Cx3cr1 interaction in the development of microglial neurotoxicity and suggest that Ctss is a key upstream regulator. Therefore, this study contributes to a better understanding of the crosstalk between neurons and microglia in the development of the neurodegeneration and provides a new perspective for the management of olfactory deficits and other microglia-dependent neuropathies. GLIA 2016;64:2291-2305.
Collapse
Affiliation(s)
- Yoojin Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,School of Medicine, Pusan National University, Busan, 49241, South Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, South Korea
| | - Hyung-Sik Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,School of Medicine, Pusan National University, Busan, 49241, South Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, South Korea
| | - Insung Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Tae-Hoon Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Ji-Hee Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Byung-Chul Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Jin Young Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Jae-Jun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Myung Geun Kook
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea. .,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
152
|
Fu Q, Shi D, Zhou Y, Zheng H, Xiang H, Tian X, Gao F, Manyande A, Cao F, Tian Y, Ye D. MHC-I promotes apoptosis of GABAergic interneurons in the spinal dorsal horn and contributes to cancer induced bone pain. Exp Neurol 2016; 286:12-20. [PMID: 27619625 DOI: 10.1016/j.expneurol.2016.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/20/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022]
Abstract
Cancer induced bone pain (CIBP) remains one of the most intractable clinical problems due to poor understanding of its underlying mechanisms. Recent studies demonstrate the decline of inhibitory interneurons, especially GABAergic interneurons in the spinal cord, can evoke generation of chronic pain. It has also been reported that neuronal MHC-I expression renders neurons vulnerable to cytotoxic CD8+ T cells and finally lead to neurons apoptosis in a variety neurological disorders. However, whether MHC-I could induce the apoptosis of GABAergic interneurons in spinal cord and contribute to the development of CIBP remains unknown. In this study, we investigated roles of MHC-I and underlying mechanisms in CIBP on a rat model. Our results showed that increased MHC-I expression on GABAergic interneurons could deplete GABAergic interneurons by inducing their apoptosis in the spinal dorsal horn of tumor-bearing rats. Pretreatment of MHC-I RNAi-lentivirus could prevent the apoptosis of GABAergic interneurons and therefore alleviated mechanical allodynia induced by tumor cells intratibial injection. Additionally, we also found that CD8+ T cells were colocalized with MHC-I and GABAergic neurons and presented a significant and persistent increase in the spinal cord of tumor-bearing rats. Taken together, these findings indicated that MHC-I could evoke CIBP by promoting apoptosis of GABAergic interneurons in the dorsal horn, and this apoptosis was closely related to local CD8+ T cells.
Collapse
Affiliation(s)
- Qiaochu Fu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dai Shi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yaqun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hua Zheng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongbing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anne Manyande
- School of Psychology, Social Work and Human Sciences, University of West London, London, UK
| | - Fei Cao
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dawei Ye
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
153
|
Hewitt E, Pitcher T, Rizoska B, Tunblad K, Henderson I, Sahlberg BL, Grabowska U, Classon B, Edenius C, Malcangio M, Lindström E. Selective Cathepsin S Inhibition with MIV-247 Attenuates Mechanical Allodynia and Enhances the Antiallodynic Effects of Gabapentin and Pregabalin in a Mouse Model of Neuropathic Pain. J Pharmacol Exp Ther 2016; 358:387-96. [PMID: 27335437 DOI: 10.1124/jpet.116.232926] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/20/2016] [Indexed: 03/08/2025] Open
Abstract
Cathepsin S inhibitors attenuate mechanical allodynia in preclinical neuropathic pain models. The current study evaluated the effects when combining the selective cathepsin S inhibitor MIV-247 with gabapentin or pregabalin in a mouse model of neuropathic pain. Mice were rendered neuropathic by partial sciatic nerve ligation. MIV-247, gabapentin, or pregabalin were administered alone or in combination via oral gavage. Mechanical allodynia was assessed using von Frey hairs. Neurobehavioral side effects were evaluated by assessing beam walking. MIV-247, gabapentin, and pregabalin concentrations in various tissues were measured. Oral administration of MIV-247 (100-200 µmol/kg) dose-dependently attenuated mechanical allodynia by up to approximately 50% reversal when given as a single dose or when given twice daily for 5 days. No behavioral deficits were observed at any dose of MIV-247 tested. Gabapentin (58-350 µmol/kg) and pregabalin (63-377 µmol/kg) also inhibited mechanical allodynia with virtually complete reversal at the highest doses tested. The minimum effective dose of MIV-247 (100 µmol/kg) in combination with the minimum effective dose of pregabalin (75 µmol/kg) or gabapentin (146 µmol/kg) resulted in enhanced antiallodynic efficacy without augmenting side effects. A subeffective dose of MIV-247 (50 µmol/kg) in combination with a subeffective dose of pregabalin (38 µmol/kg) or gabapentin (73 µmol/kg) also resulted in substantial efficacy. Plasma levels of MIV-247, gabapentin, and pregabalin were similar when given in combination as to when given alone. Cathepsin S inhibition with MIV-247 exerts significant antiallodynic efficacy alone, and also enhances the effect of gabapentin and pregabalin without increasing side effects or inducing pharmacokinetic interactions.
Collapse
Affiliation(s)
- Ellen Hewitt
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Thomas Pitcher
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Biljana Rizoska
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Karin Tunblad
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Ian Henderson
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Britt-Louise Sahlberg
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Urszula Grabowska
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Björn Classon
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Charlotte Edenius
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Marzia Malcangio
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| | - Erik Lindström
- Medivir AB, Huddinge, Sweden (E.H., B.R., K.T., I.H., B.-L.S., U.G., B.C., C.E., E.L.); King´s College London, London, United Kingdom (T.P., M.M.)
| |
Collapse
|
154
|
Lieu T, Savage E, Zhao P, Edgington-Mitchell L, Barlow N, Bron R, Poole DP, McLean P, Lohman RJ, Fairlie DP, Bunnett NW. Antagonism of the proinflammatory and pronociceptive actions of canonical and biased agonists of protease-activated receptor-2. Br J Pharmacol 2016; 173:2752-65. [PMID: 27423137 PMCID: PMC4995288 DOI: 10.1111/bph.13554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Diverse proteases cleave protease-activated receptor-2 (PAR2) on primary sensory neurons and epithelial cells to evoke pain and inflammation. Trypsin and tryptase activate PAR2 by a canonical mechanism that entails cleavage within the extracellular N-terminus revealing a tethered ligand that activates the cleaved receptor. Cathepsin-S and elastase are biased agonists that cleave PAR2 at different sites to activate distinct signalling pathways. Although PAR2 is a therapeutic target for inflammatory and painful diseases, the divergent mechanisms of proteolytic activation complicate the development of therapeutically useful antagonists. EXPERIMENTAL APPROACH We investigated whether the PAR2 antagonist GB88 inhibits protease-evoked activation of nociceptors and protease-stimulated oedema and hyperalgesia in rodents. KEY RESULTS Intraplantar injection of trypsin, cathespsin-S or elastase stimulated mechanical and thermal hyperalgesia and oedema in mice. Oral GB88 or par2 deletion inhibited the algesic and proinflammatory actions of all three proteases, but did not affect basal responses. GB88 also prevented pronociceptive and proinflammatory effects of the PAR2-selective agonists 2-furoyl-LIGRLO-NH2 and AC264613. GB88 did not affect capsaicin-evoked hyperalgesia or inflammation. Trypsin, cathepsin-S and elastase increased [Ca(2+) ]i in rat nociceptors, which expressed PAR2. GB88 inhibited this activation of nociceptors by all three proteases, but did not affect capsaicin-evoked activation of nociceptors or inhibit the catalytic activity of the three proteases. CONCLUSIONS AND IMPLICATIONS GB88 inhibits the capacity of canonical and biased protease agonists of PAR2 to cause nociception and inflammation.
Collapse
Affiliation(s)
- T Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - E Savage
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - P Zhao
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - L Edgington-Mitchell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - N Barlow
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - R Bron
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - D P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
- Departments of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - P McLean
- Takeda Pharmaceuticals, Zurich, Switzerland
| | - R-J Lohman
- Centre for Inflammation and Disease Research and Centre for Pain Research, Institute of Molecular Bioscience, University of Queensland, Brisbane, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Australia
| | - D P Fairlie
- Centre for Inflammation and Disease Research and Centre for Pain Research, Institute of Molecular Bioscience, University of Queensland, Brisbane, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Australia
| | - N W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
- Departments of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
155
|
Affiliation(s)
- Toshihiro Nanki
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Tokyo, Japan and
| | | | - Shinichi Kawai
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Tokyo, Japan and
| |
Collapse
|
156
|
Zhao B, Pan Y, Wang Z, Tan Y, Song X. Intrathecal Administration of Tempol Reduces Chronic Constriction Injury-Induced Neuropathic Pain in Rats by Increasing SOD Activity and Inhibiting NGF Expression. Cell Mol Neurobiol 2016; 36:893-906. [PMID: 26433732 PMCID: PMC11482339 DOI: 10.1007/s10571-015-0274-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022]
Abstract
We investigate the antinociceptive effect of intrathecal and intraperitoneal tempol administration in a rat model of chronic constriction injury (CCI)-induced neuropathic pain and explore the underlying antinociceptive mechanisms of tempol. Rats were randomly assigned to four groups (n = 8 per group): sham group, CCI group, Tem1 group (intrathecal injection of tempol), and Tem2 group (intraperitoneal injection of tempol). Neuropathic pain was induced by CCI of the sciatic nerve. Tempol was intrathecally or intraperitoneally administered daily for 7 days beginning on postoperative day one. The mechanical withdrawal threshold and thermal withdrawal latency were tested on preoperative day 3 and postoperative days 1, 3, 5, 7, 10, 14, and 21. Structural changes were examined by hematoxylin and eosin staining, toluidine blue staining, and electron microscopy. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were determined using the thiobarbituric acid and nitroblue tetrazolium methods, respectively. Nerve growth factor (NGF) expression levels were determined by immunohistochemistry and Western blot. Intrathecal, but not intraperitoneal, injection of tempol produced a persistent antinociceptive effect. Intraperitoneal injection of tempol did not result in high enough concentration of tempol in the cerebrospinal fluid. Intrathecal, but not intraperitoneal, injection of tempol inhibited CCI-induced structural damage in the spinal cord reduced MDA levels, and increased SOD activities in the spinal cord. Furthermore, intrathecal, but not intraperitoneal, injection of tempol further downregulated the expression of NGF in the spinal cord following CCI, and this effect was blocked by p38MAPK inhibitor. Intrathecal injection of tempol produces antinociceptive effects and reduces CCI-induced structural damage in the spinal cord by increasing SOD activities and downregulating the expression of NGF via the p38MAPK pathway. Intraperitoneal administration of tempol does not exhibit antinociceptive effects.
Collapse
Affiliation(s)
- Baisong Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Yongying Pan
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Zixin Wang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Yonghong Tan
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, No. 9 Jinsui Road, Tianhe District, Guangzhou, 510623, China.
| |
Collapse
|
157
|
Manzhulo IV, Ogurtsova OS, Kipryushina YO, Latyshev NA, Kasyanov SP, Dyuizen IV, Tyrtyshnaia AA. Neuron-astrocyte interactions in spinal cord dorsal horn in neuropathic pain development and docosahexaenoic acid therapy. J Neuroimmunol 2016; 298:90-7. [PMID: 27609281 DOI: 10.1016/j.jneuroim.2016.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/15/2016] [Accepted: 07/15/2016] [Indexed: 01/19/2023]
Abstract
The analgesic activity of docosahexaenoic acid (DHA, 22:6 n-3) was studied using a chronic constriction injury (CCI) rat model. Animals were subcutaneously injected with DHA emulsion at a dose of 4.5mg/kg (125mМ/kg) daily during 2weeks after surgery. We characterized the dynamics of GFAP-positive astrocyte, substance P (SP) and nNOS-positive neurons activity in the spinal cord dorsal horn (SCDH) superficial lamina. We found that DHA treatment decrease the intensity and duration of neurogenic pain syndrome, results in earlier stabilization of weight distribution, prevents the cold allodynia and dystrophic changings in denervated limb tissue. DHA treatment reduced the reactive astrocyte number, decrease SP-immunopositive fibers and nNOS-positive neurons number in the SCDH in neuropathic pain.
Collapse
Affiliation(s)
- Igor V Manzhulo
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 17 Palchevskii Str., 690041, Russia; School of Biomedicine, Far Eastern Federal University, Vladivostok, 8 Sukhanova Str., 690950, Russia.
| | - Olga S Ogurtsova
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 17 Palchevskii Str., 690041, Russia
| | - Yuliya O Kipryushina
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 17 Palchevskii Str., 690041, Russia
| | - Nikolay A Latyshev
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 17 Palchevskii Str., 690041, Russia
| | - Sergey P Kasyanov
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 17 Palchevskii Str., 690041, Russia
| | - Inessa V Dyuizen
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 17 Palchevskii Str., 690041, Russia
| | - Anna A Tyrtyshnaia
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 17 Palchevskii Str., 690041, Russia; School of Biomedicine, Far Eastern Federal University, Vladivostok, 8 Sukhanova Str., 690950, Russia
| |
Collapse
|
158
|
Tsuda M. P2 receptors, microglial cytokines and chemokines, and neuropathic pain. J Neurosci Res 2016; 95:1319-1329. [DOI: 10.1002/jnr.23816] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/19/2016] [Accepted: 06/13/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Makoto Tsuda
- Department of Life Innovation, Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences; Kyushu University; Fukuoka Japan
| |
Collapse
|
159
|
Taves S, Berta T, Liu DL, Gan S, Chen G, Kim YH, Van de Ven T, Laufer S, Ji RR. Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: Sex-dependent microglial signaling in the spinal cord. Brain Behav Immun 2016; 55:70-81. [PMID: 26472019 PMCID: PMC5502100 DOI: 10.1016/j.bbi.2015.10.006] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/04/2015] [Accepted: 10/10/2015] [Indexed: 12/23/2022] Open
Abstract
Previous studies have shown that activation of p38 mitogen-activating kinase (MAPK) in spinal microglia participates in the generation of inflammatory and neuropathic pain in various rodent models. However, these studies focused on male mice to avoid confounding effects of the estrous cycle of females. Recent studies have shown that some spinal pro-inflammatory signaling such as Toll-like receptor 4-mediated signaling contributes to pain hypersensitivity only in male mice. In this study we investigated the distinct role of spinal p38 in inflammatory and neuropathic pain using a highly selective p38 inhibitor skepinone. Intrathecal injection of skepinone prevented formalin induced inflammatory pain in male but not female mice. Furthermore, intrathecal skepinone reduced chronic constriction injury (CCI) induced neuropathic pain (mechanical allodynia) in male mice on CCI-day 7 but not CCI-day 21. This male-dependent inhibition of neuropathic pain also occurred in rats following intrathecal skepinone. Nerve injury induced spinal p38 activation (phosphorylation) in CX3CR1-GFP(+) microglia on CCI-day 7, and this activation was more prominent in male mice. In contrast, CCI induced comparable microgliosis and expression of the microglial markers CX3CR1 and IBA-1 in both sexes. Notably, intraperitoneal or local perineural administration of skepinone inhibited CCI-induced mechanical allodynia in both sexes of mice. Finally, skepinone only reduced the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in lamina IIo neurons of spinal cord slices of males 7days post CCI. Therefore, the sex-specific p38 activation and signaling is confined to the spinal cord in inflammatory and neuropathic pain conditions.
Collapse
Affiliation(s)
- Sarah Taves
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA.
| | - Temugin Berta
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA
| | - Da-Lu Liu
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA
| | - Sophie Gan
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA
| | - Gang Chen
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA
| | - Yong Ho Kim
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA
| | - Thomas Van de Ven
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA
| | - Stefan Laufer
- Departments Pharmacy and Biochemistry, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC 27710, USA.
| |
Collapse
|
160
|
Nakanishi M, Nakae A, Kishida Y, Baba K, Sakashita N, Shibata M, Yoshikawa H, Hagihara K. Go-sha-jinki-Gan (GJG) ameliorates allodynia in chronic constriction injury-model mice via suppression of TNF-α expression in the spinal cord. Mol Pain 2016; 12:12/0/1744806916656382. [PMID: 27296622 PMCID: PMC4956397 DOI: 10.1177/1744806916656382] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Alternative medicine is noted for its clinical effect and minimal invasiveness in the treatment of neuropathic pain. Go-sha-jinki-Gan, a traditional Japanese herbal medicine, has been used for meralgia and numbness in elderly patients. However, the exact mechanism of GJG is unclear. This study aimed to investigate the molecular mechanism of the analgesic effect of GJG in a chronic constriction injury model. Results GJG significantly reduced allodynia and hyperalgesia from the early phase (von Frey test, p < 0.0001; cold-plate test, p < 0.0001; hot-plate test p = 0.011; two-way repeated measures ANOVA). Immunohistochemistry and Western blot analysis revealed that GJG decreased the expression of Iba1 and tumor necrosis factor-α in the spinal cord. Double staining immunohistochemistry showed that most of the tumor necrosis factor-α was co-expressed in Iba1-positive cells at day 3 post-operation. GJG decreased the phosphorylation of p38 in the ipsilateral dorsal horn. Moreover, intrathecal injection of tumor necrosis factor-α opposed the anti-allodynic effect of GJG in the cold-plate test. Conclusions Our data suggest that GJG ameliorates allodynia in chronic constriction injury model mice via suppression of tumor necrosis factor-α expression derived from activated microglia. GJG is a promising drug for the treatment of neuropathic pain induced by neuro-inflammation.
Collapse
Affiliation(s)
| | - Aya Nakae
- Osaka University Graduate School of medicineOsaka University Graduate School of medicineOsaka University Graduate School of medicineOsaka University Graduate School of medicine Osaka University Graduate School of Medicine Osaka University Graduate School of Medicine
| | | | | | | | | | | | - Keisuke Hagihara
- Osaka University Graduate School of medicineOsaka University Graduate School of medicineOsaka University Graduate School of medicineOsaka University Graduate School of medicine Osaka University Graduate School of Medicine Osaka University Graduate School of Medicine
| |
Collapse
|
161
|
Wilkinson RDA, Williams R, Scott CJ, Burden RE. Cathepsin S: therapeutic, diagnostic, and prognostic potential. Biol Chem 2016; 396:867-82. [PMID: 25872877 DOI: 10.1515/hsz-2015-0114] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/09/2015] [Indexed: 01/10/2023]
Abstract
Cathepsin S is a member of the cysteine cathepsin protease family. It is a lysosomal protease which can promote degradation of damaged or unwanted proteins in the endo-lysosomal pathway. Additionally, it has more specific roles such as MHC class II antigen presentation, where it is important in the degradation of the invariant chain. Unsurprisingly, mis-regulation has implicated cathepsin S in a variety of pathological processes including arthritis, cancer, and cardiovascular disease, where it becomes secreted and can act on extracellular substrates. In comparison to many other cysteine cathepsin family members, cathepsin S has uniquely restricted tissue expression and is more stable at a neutral pH, which supports its involvement and importance in localised disease microenvironments. In this review, we examine the known involvement of cathepsin S in disease, particularly with respect to recent work indicating its role in mediating pain, diabetes, and cystic fibrosis. We provide an overview of current literature with regards cathepsin S as a therapeutic target, as well as its role and potential as a predictive diagnostic and/or prognostic marker in these diseases.
Collapse
|
162
|
|
163
|
Nieto FR, Clark AK, Grist J, Hathway GJ, Chapman V, Malcangio M. Neuron-immune mechanisms contribute to pain in early stages of arthritis. J Neuroinflammation 2016; 13:96. [PMID: 27130316 PMCID: PMC4851814 DOI: 10.1186/s12974-016-0556-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) patients frequently show weak correlations between the magnitude of pain and inflammation suggesting that mechanisms other than overt peripheral inflammation contribute to pain in RA. We assessed changes in microglial reactivity and spinal excitability and their contribution to pain-like behaviour in the early stages of collagen-induced arthritis (CIA) model. METHODS Mechanically evoked hypersensitivity, spinal nociceptive withdrawal reflexes (NWRs) and hind paw swelling were evaluated in female Lewis rats before and until 13 days following collagen immunization. In the spinal dorsal horn, microgliosis was assayed using immunohistochemistry (Iba-1/p-p38) and cyto(chemo)kine levels in the cerebrospinal fluid (CSF). Intrathecal administration of microglia-targeting drugs A-438079 (P2X7 antagonist) and LHVS (cathepsin S inhibitor) were examined upon hypersensitivity, NWRs, microgliosis and cyto(chemo)kine levels in the early phase of CIA. RESULTS The early phase of CIA was associated with mechanical allodynia and exaggerated mechanically evoked spinal NWRs, evident before hind paw swelling, and exacerbated with the development of swelling. Concomitant with the development of hypersensitivity was the presence of reactive spinal microgliosis and an increase of IL-1β levels in CSF (just detectable in plasma). Prolonged intrathecal administration of microglial inhibitors attenuated the development of mechanical allodynia, reduced microgliosis and attenuated IL-1β increments. Acute spinal application of either microglial inhibitor significantly diminished the sensitization of the spinal NWRs. CONCLUSIONS Mechanical hypersensitivity in the early phase of CIA is associated with central sensitization that is dependent upon microglial-mediated release of IL-1β in the spinal cord. Blockade of these spinal events may provide pain relief in RA patients.
Collapse
Affiliation(s)
- Francisco R Nieto
- Wolfson Centre for Age-Related Diseases, King's College London, Wolfson Wing, Hodgkin Building, Guy's Campus, London, UK
| | - Anna K Clark
- Wolfson Centre for Age-Related Diseases, King's College London, Wolfson Wing, Hodgkin Building, Guy's Campus, London, UK
| | - John Grist
- Wolfson Centre for Age-Related Diseases, King's College London, Wolfson Wing, Hodgkin Building, Guy's Campus, London, UK
| | - Gareth J Hathway
- Arthritis Research UK Pain Centre, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Victoria Chapman
- Arthritis Research UK Pain Centre, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, King's College London, Wolfson Wing, Hodgkin Building, Guy's Campus, London, UK.
| |
Collapse
|
164
|
Muraleedharan CK, McClellan SA, Barrett RP, Li C, Montenegro D, Carion T, Berger E, Hazlett LD, Xu S. Inactivation of the miR-183/96/182 Cluster Decreases the Severity of Pseudomonas aeruginosa-Induced Keratitis. Invest Ophthalmol Vis Sci 2016; 57:1506-17. [PMID: 27035623 PMCID: PMC4819431 DOI: 10.1167/iovs.16-19134] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/20/2016] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The microRNA-183/96/182 cluster (miR-183/96/182) plays important roles in sensory organs. Because the cornea is replete with sensory innervation, we hypothesized that miR-183/96/182 modulates the corneal response to bacterial infection through regulation of neuroimmune interactions. METHODS Eight-week-old miR-183/96/182 knockout (ko) mice and their wild-type littermates (wt) were used. The central cornea of anesthetized mice was scarred and infected with Pseudomonas aeruginosa (PA), strain 19660. Corneal disease was graded at 1, 3, and 5 days postinfection (dpi). Corneal RNA was harvested for quantitative RT-PCR. Polymorphonuclear neutrophils (PMN) were enumerated by myeloperoxidase assays; the number of viable bacteria was determined by plate counts, and ELISA assays were performed to determine cytokine protein levels. A macrophage (Mϕ) cell line and elicited peritoneal PMN were used for in vitro functional assays. RESULTS MicroRNA-183/96/182 is expressed in the cornea, and in Mϕ and PMN of both mice and humans. Inactivation of miR-183/96/182 resulted in decreased corneal nerve density compared with wt mice. Overexpression of miR-183/96/182 in Mϕ decreased, whereas knockdown or inactivation of miR-183/96/182 in Mϕ and PMN increased their capacity for phagocytosis and intracellular killing of PA. In PA-infected corneas, ko mice showed decreased proinflammatory neuropeptides such as substance P and chemoattractant molecules, MIP-2, MCP1, and ICAM1; decreased number of PMN at 1 and 5 dpi; increased viable bacterial load at 1 dpi, but decreased at 5 dpi; and markedly decreased corneal disease. CONCLUSIONS MicroRNA-183/96/182 modulates the corneal response to bacterial infection through its regulation of corneal innervation and innate immunity.
Collapse
Affiliation(s)
- Chithra K. Muraleedharan
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States
| | - Sharon A. McClellan
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States
| | - Ronald P. Barrett
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States
| | - Cui Li
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States
| | - Daniel Montenegro
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States
| | - Thomas Carion
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States
| | - Elizabeth Berger
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States
| | - Linda D. Hazlett
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States
| | - Shunbin Xu
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
165
|
Tashima R, Mikuriya S, Tomiyama D, Shiratori-Hayashi M, Yamashita T, Kohro Y, Tozaki-Saitoh H, Inoue K, Tsuda M. Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury. Sci Rep 2016; 6:23701. [PMID: 27005516 PMCID: PMC4804310 DOI: 10.1038/srep23701] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/09/2016] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence indicates that peripheral nerve injury (PNI) activates spinal microglia that are necessary for neuropathic pain. Recent studies using bone marrow (BM) chimeric mice have reported that after PNI, circulating BM-derived cells infiltrate into the spinal cord and differentiate into microglia-like cells. This raises the possibility that the population of spinal microglia after PNI may be heterogeneous. However, the infiltration of BM cells in the spinal cord remains controversial because of experimental adverse effects of strong irradiation used for generating BM chimeric mice. In this study, we evaluated the PNI-induced spinal infiltration of BM-derived cells not only by irradiation-induced myeloablation with various conditioning regimens, but also by parabiosis and mice with genetically labelled microglia, models without irradiation and BM transplantation. Results obtained from these independent approaches provide compelling evidence indicating little contribution of circulating BM-derived cells to the population of spinal microglia after PNI.
Collapse
Affiliation(s)
- Ryoichi Tashima
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Satsuki Mikuriya
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Daisuke Tomiyama
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Miho Shiratori-Hayashi
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomohiro Yamashita
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuta Kohro
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hidetoshi Tozaki-Saitoh
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
166
|
Tjondrokoesoemo A, Schips TG, Sargent MA, Vanhoutte D, Kanisicak O, Prasad V, Lin SCJ, Maillet M, Molkentin JD. Cathepsin S Contributes to the Pathogenesis of Muscular Dystrophy in Mice. J Biol Chem 2016; 291:9920-8. [PMID: 26966179 DOI: 10.1074/jbc.m116.719054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 11/06/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by mutations in the gene encoding dystrophin. Loss of dystrophin protein compromises the stability of the sarcolemma membrane surrounding each muscle cell fiber, leading to membrane ruptures and leakiness that induces myofiber necrosis, a subsequent inflammatory response, and progressive tissue fibrosis with loss of functional capacity. Cathepsin S (Ctss) is a cysteine protease that is actively secreted in areas of tissue injury and ongoing inflammation, where it participates in extracellular matrix remodeling and healing. Here we show significant induction of Ctss expression and proteolytic activity following acute muscle injury or in muscle from mdx mice, a model of DMD. To examine the functional ramifications associated with greater Ctss expression, the Ctss gene was deleted in the mdx genetic background, resulting in protection from muscular dystrophy pathogenesis that included reduced myofiber turnover and histopathology, reduced fibrosis, and improved running capacity. Mechanistically, deletion of the Ctss gene in the mdx background significantly increased myofiber sarcolemmal membrane stability with greater expression and membrane localization of utrophin, integrins, and β-dystroglycan, which anchor the membrane to the basal lamina and underlying cytoskeletal proteins. Consistent with these results, skeletal muscle-specific transgenic mice overexpressing Ctss showed increased myofiber necrosis, muscle histopathology, and a functional deficit reminiscent of muscular dystrophy. Hence, Ctss induction during muscular dystrophy is a pathologic event that partially underlies disease pathogenesis, and its inhibition might serve as a new therapeutic strategy in DMD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jeffery D Molkentin
- From the Department of Pediatrics and Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229
| |
Collapse
|
167
|
A Multiplex Protein Panel Applied to Cerebrospinal Fluid Reveals Three New Biomarker Candidates in ALS but None in Neuropathic Pain Patients. PLoS One 2016; 11:e0149821. [PMID: 26914813 PMCID: PMC4767403 DOI: 10.1371/journal.pone.0149821] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/04/2016] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to develop and apply a novel multiplex panel of solid-phase proximity ligation assays (SP-PLA) requiring only 20 μL of samples, as a tool for discovering protein biomarkers for neurological disease and treatment thereof in cerebrospinal fluid (CSF). We applied the SP-PLA to samples from two sets of patients with poorly understood nervous system pathologies amyotrophic lateral sclerosis (ALS) and neuropathic pain, where patients were treated with spinal cord stimulation (SCS). Forty-seven inflammatory and neurotrophic proteins were measured in samples from 20 ALS patients and 15 neuropathic pain patients, and compared to normal concentrations in CSF from control individuals. Nineteen of the 47 proteins were detectable in more than 95% of the 72 controls. None of the 21 proteins detectable in CSF from neuropathic pain patients were significantly altered by SCS. The levels of the three proteins, follistatin, interleukin-1 alpha, and kallikrein-5 were all significantly reduced in the ALS group compared to age-matched controls. These results demonstrate the utility of purpose designed multiplex SP-PLA panels in CSF biomarker research for understanding neuropathological and neurotherapeutic mechanisms. The protein changes found in the CSF of ALS patients may be of diagnostic interest.
Collapse
|
168
|
Hernangómez M, Klusáková I, Joukal M, Hradilová-Svíženská I, Guaza C, Dubový P. CD200R1 agonist attenuates glial activation, inflammatory reactions, and hypersensitivity immediately after its intrathecal application in a rat neuropathic pain model. J Neuroinflammation 2016; 13:43. [PMID: 26891688 PMCID: PMC4759712 DOI: 10.1186/s12974-016-0508-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/10/2016] [Indexed: 12/15/2022] Open
Abstract
Background Interaction of CD200 with its receptor CD200R has an immunoregulatory role and attenuates various types of neuroinflammatory diseases. Methods Immunofluorescence staining, western blot analysis, and RT-PCR were used to investigate the modulatory effects of CD200 fusion protein (CD200Fc) on activation of microglia and astrocytes as well as synthesis of pro- (TNF, IL-1β, IL-6) and anti-inflammatory (IL-4, IL-10) cytokines in the L4–L5 spinal cord segments in relation to behavioral signs of neuropathic pain after unilateral sterile chronic constriction injury (sCCI) of the sciatic nerve. Withdrawal thresholds for mechanical hypersensitivity and latencies for thermal hypersensitivity were measured in hind paws 1 day before operation; 1, 3, and 7 days after sCCI operation; and then 5 and 24 h after intrathecal application of artificial cerebrospinal fluid or CD200Fc. Results Seven days from sCCI operation and 5 h from intrathecal application, CD200Fc reduced mechanical and thermal hypersensitivity when compared with control animals. Simultaneously, CD200Fc attenuated activation of glial cells and decreased proinflammatory and increased anti-inflammatory cytokine messenger RNA (mRNA) levels. Administration of CD200Fc also diminished elevation of CD200 and CD200R proteins as a concomitant reaction of the modulatory system to increased neuroinflammatory reactions after nerve injury. The anti-inflammatory effect of CD200Fc dropped at 24 h after intrathecal application. Conclusions Intrathecal administration of the CD200R1 agonist CD200Fc induces very rapid suppression of neuroinflammatory reactions associated with glial activation and neuropathic pain development. This may constitute a promising and novel therapeutic approach for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Miriam Hernangómez
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | - Ilona Klusáková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, 62500, Brno, Czech Republic. .,Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | - Marek Joukal
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | - Ivana Hradilová-Svíženská
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, 62500, Brno, Czech Republic. .,Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | - Carmen Guaza
- Department of Functional and Systems Neurobiology, Neuroimmunology Group, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Petr Dubový
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, 62500, Brno, Czech Republic. .,Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| |
Collapse
|
169
|
Ma Y, Wang J, Wang Y, Yang GY. The biphasic function of microglia in ischemic stroke. Prog Neurobiol 2016; 157:247-272. [PMID: 26851161 DOI: 10.1016/j.pneurobio.2016.01.005] [Citation(s) in RCA: 547] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/22/2015] [Accepted: 01/10/2016] [Indexed: 12/16/2022]
Abstract
Microglia are brain resident macrophages originated from primitive progenitor cells in the yolk sac. Microglia can be activated within hours and recruited to the lesion site. Traditionally, microglia activation is considered to play a deleterious role in ischemic stroke, as inhibition of microglia activation attenuates ischemia induced brain injury. However, increasing evidence show that microglia activation is critical for attenuating neuronal apoptosis, enhancing neurogenesis, and promoting functional recovery after cerebral ischemia. Differential polarization of microglia could likely explain the biphasic role of microglia in ischemia. We comprehensively reviewed the mechanisms involved in regulating microglia activation and polarization. The latest discoveries of microRNAs in modulating microglia function are discussed. In addition, the interaction between microglia and other cells including neurons, astrocytes, oligodendrocytes, and stem cells were also reviewed. Future therapies targeting microglia may not exclusively aim at suppressing microglia activation, but also at modulating microglia polarization at different stages of ischemic stroke. More work is needed to elucidate the cellular and molecular mechanisms of microglia polarization under ischemic environment. The roles of microRNAs and transplanted stem cells in mediating microglia activation and polarization during brain ischemia also need to be further studied.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jixian Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Rehabilitation, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
170
|
Ihmaid SK, Ahmed HEA, Zayed MF, Abadleh MM. Self Organizing Map-Based Classification of Cathepsin k and S Inhibitors with Different Selectivity Profiles Using Different Structural Molecular Fingerprints: Design and Application for Discovery of Novel Hits. Molecules 2016; 21:175. [PMID: 26840291 PMCID: PMC6272978 DOI: 10.3390/molecules21020175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 11/25/2022] Open
Abstract
The main step in a successful drug discovery pipeline is the identification of small potent compounds that selectively bind to the target of interest with high affinity. However, there is still a shortage of efficient and accurate computational methods with powerful capability to study and hence predict compound selectivity properties. In this work, we propose an affordable machine learning method to perform compound selectivity classification and prediction. For this purpose, we have collected compounds with reported activity and built a selectivity database formed of 153 cathepsin K and S inhibitors that are considered of medicinal interest. This database has three compound sets, two K/S and S/K selective ones and one non-selective KS one. We have subjected this database to the selectivity classification tool ‘Emergent Self-Organizing Maps’ for exploring its capability to differentiate selective cathepsin inhibitors for one target over the other. The method exhibited good clustering performance for selective ligands with high accuracy (up to 100 %). Among the possibilites, BAPs and MACCS molecular structural fingerprints were used for such a classification. The results exhibited the ability of the method for structure-selectivity relationship interpretation and selectivity markers were identified for the design of further novel inhibitors with high activity and target selectivity.
Collapse
Affiliation(s)
- Saleh K Ihmaid
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, P. O. Box 30039, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
- School of Pharmacy and Applied Science, La Trobe University, P. O. Box 199, Bendigo 3552, Australia.
| | - Hany E A Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, P. O. Box 30039, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, P. O. Box 11651, Cairo 11884, Egypt.
| | - Mohamed F Zayed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, P. O. Box 30039, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, P. O. Box 11651, Cairo 11884, Egypt.
| | - Mohammed M Abadleh
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, P. O. Box 30039, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| |
Collapse
|
171
|
Xu F, Huang J, He Z, Chen J, Tang X, Song Z, Guo Q, Huang C. Microglial polarization dynamics in dorsal spinal cord in the early stages following chronic sciatic nerve damage. Neurosci Lett 2016; 617:6-13. [PMID: 26820376 DOI: 10.1016/j.neulet.2016.01.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 11/19/2022]
Abstract
Peripheral nerve injury can lead to activation of spinal microglia, which can mediate neuroinflammation and contribute to neuropathic pain following nerve injury. Activated microglia may manifest with either pro-inflammatory M1 phenotype or anti-inflammatory M2 phenotype, which may lead to detrimental or beneficial roles in the nervous system. In this study, microglia numbers, morphology and gene profiles were examined in the dorsal spinal cord of rats over 14 days following sciatic nerve chronic constriction injury (CCI). The morphology of some microglia changed from a surveying to an activated state within 1 day of CCI. Neuropathic pain developed within seven to 14 days following injury and microglia numbers were increased, with almost all in the dorsal spinal cord morphologically defined as activated. At day one after CCI, both M1 and M2 microglia-related genes were increased but only M1 microglia-related genes remained elevated at day seven and 14 thereafter. These results indicate that both M1 and M2 microglia were activated in the dorsal spinal cord one day after CCI but the microglia skewed towards M1 phenotype during the following seven and 14 days.
Collapse
Affiliation(s)
- Fangting Xu
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Juan Huang
- Department of Breast Surgery, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Zhenghua He
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Jia Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiaoting Tang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, China.
| |
Collapse
|
172
|
Abstract
UNLABELLED Treating pain is one of the most difficult challenges in medicine and a key facet of disease management. The isolation of morphine by Friedrich Sertürner in 1804 added an essential pharmacological tool in the treatment of pain and spawned the discovery of a new class of drugs known collectively as opioid analgesics. Revered for their potent pain-relieving effects, even Morpheus the god of dreams could not have dreamt that his opium tincture would be both a gift and a burden to humankind. To date, morphine and other opioids remain essential analgesics for alleviating pain. However, their use is plagued by major side effects, such as analgesic tolerance (diminished pain-relieving effects), hyperalgesia (increased pain sensitivity), and drug dependence. This review highlights recent advances in understanding the key causes of these adverse effects and explores the effect of chronic pain on opioid reward. SIGNIFICANCE STATEMENT Chronic pain is pervasive and afflicts >100 million Americans. Treating pain in these individuals is notoriously difficult and often requires opioids, one of the most powerful and effective classes of drugs used for controlling pain. However, their use is plagued by major side effects, such as a loss of pain-relieving effects (analgesic tolerance), paradoxical pain (hyperalgesia), and addiction. Despite the potential side effects, opioids remain the pharmacological cornerstone of modern pain therapy. This review highlights recent breakthroughs in understanding the key causes of these adverse effects and explores the cellular control of opioid systems in reward and aversion. The findings will challenge traditional views of the good, the bad, and the ugly of opioids.
Collapse
|
173
|
Popiolek-Barczyk K, Mika J. Targeting the Microglial Signaling Pathways: New Insights in the Modulation of Neuropathic Pain. Curr Med Chem 2016; 23:2908-2928. [PMID: 27281131 PMCID: PMC5427777 DOI: 10.2174/0929867323666160607120124] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 12/30/2022]
Abstract
The microglia, once thought only to be supporting cells of the central nervous system (CNS), are now recognized to play essential roles in many pathologies. Many studies within the last decades indicated that the neuro-immune interaction underlies the generation and maintenance of neuropathic pain. Through a large number of receptors and signaling pathways, the microglial cells communicate with neurons, astrocytes and other cells, including those of the immune system. A disturbance or loss of CNS homeostasis causes rapid responses of the microglia, which undergo a multistage activation process. The activated microglia change their cell shapes and gene expression profiles, which induce proliferation, migration, and the production of pro- or antinociceptive factors. The cells release a large number of mediators that can act in a manner detrimental or beneficial to the surrounding cells and can indirectly alter the nociceptive signals. This review discusses the most important microglial intracellular signaling cascades (MAPKs, NF-kB, JAK/STAT, PI3K/Akt) that are essential for neuropathic pain development and maintenance. Our objective was to identify new molecular targets that may result in the development of powerful tools to control the signaling associated with neuropathic pain.
Collapse
Affiliation(s)
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str., 31-343 Krakow, Poland.
| |
Collapse
|
174
|
m-Trifluoromethyl-diphenyl diselenide, a multi-target selenium compound, prevented mechanical allodynia and depressive-like behavior in a mouse comorbid pain and depression model. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:35-46. [PMID: 26025319 DOI: 10.1016/j.pnpbp.2015.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/17/2015] [Accepted: 05/07/2015] [Indexed: 12/30/2022]
Abstract
Chronic pain and depression are two complex states that often coexist in the clinical setting and traditional antidepressants and analgesics have shown limited clinical efficacy. There is an intricate communication between the immune system and the central nervous system and inflammation has been considered a common mediator of pain-depression comorbidity. This study evaluated the effect of m-trifluoromethyl diphenyl diselenide [(m-CF3-PhSe)2], an organoselenium compound that has been reported to have both antinociceptive and antidepressant-like actions, in the comorbidity of chronic pain and depression induced by partial sciatic nerve ligation (PSNL) in an inflammatory approach. Mice were submitted to PSNL during 4weeks and treated with (m-CF3-PhSe)2 acutely (0.1-10mg/kg, i.g.) or subchronically (0.1mg/kg, i.g., once a day during the 3rd and 4th weeks). Both treatments prevented PSNL-increased pain sensitivity and depressive-like behavior observed in Von-Frey hair (VFH) and forced swimming (FST) tests, respectively. These effects could be mainly associated with an anti-inflammatory action of (m-CF3-PhSe)2 which reduced the levels of pro-inflammatory cytokines, NF-κB and COX-2, and p38 MAPK activation that were increased by PSNL. (m-CF3-PhSe)2 also increased the BDNF levels and reduced glutamate release and 5-HT uptake altered by PSNL. Although acute and subchronic treatments with (m-CF3-PhSe)2 prevented these alterations induced by PSNL, the best results were found when (m-CF3-PhSe)2 was subchronically administered to mice. Considering the potential common mechanisms involved in the comorbidity of inflammation-induced depression and chronic pain, the results found in this study indicate that (m-CF3-PhSe)2 could become an interesting molecule to treat long-lasting pathological pain associated with depression.
Collapse
|
175
|
Olson OC, Joyce JA. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer 2015; 15:712-29. [PMID: 26597527 DOI: 10.1038/nrc4027] [Citation(s) in RCA: 479] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cysteine cathepsin protease activity is frequently dysregulated in the context of neoplastic transformation. Increased activity and aberrant localization of proteases within the tumour microenvironment have a potent role in driving cancer progression, proliferation, invasion and metastasis. Recent studies have also uncovered functions for cathepsins in the suppression of the response to therapeutic intervention in various malignancies. However, cathepsins can be either tumour promoting or tumour suppressive depending on the context, which emphasizes the importance of rigorous in vivo analyses to ascertain function. Here, we review the basic research and clinical findings that underlie the roles of cathepsins in cancer, and provide a roadmap for the rational integration of cathepsin-targeting agents into clinical treatment.
Collapse
Affiliation(s)
- Oakley C Olson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center
- Gerstner Sloan Kettering Graduate School of Biomedical Science, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center
- Department of Oncology, University of Lausanne
- Ludwig Institute for Cancer Research, University of Lausanne, CH-1066 Lausanne, Switzerland
| |
Collapse
|
176
|
Abstract
Abstract
Background:
Proteases have been shown to modulate pain signaling in the spinal cord and may contribute to the development of chronic postsurgical pain. By using peripheral inflammation in rats as a chronic pain model, the authors identified the deregulation of proteases and their inhibitors as a hallmark of chronic pain development using a genome-wide screening approach.
Methods:
A microarray analysis was performed and identified spinal cathepsin G (CTSG) as the most up-regulated gene in rats with persistent hyperalgesia after intraplantar injection of complete Freund’s adjuvant (n = 4). Further experiments were performed to elucidate the mechanisms of CTSG-induced hyperalgesia by intrathecally applying specific CTSG inhibitor (n = 10). The authors also evaluated the association between CTSG gene polymorphisms and the risk of chronic postsurgical pain in 1,152 surgical patients.
Results:
CTSG blockade reduced heat hyperalgesia, accompanied by a reduction in neutrophil infiltration and interleukin 1β levels in the dorsal horns. In the gene association study, 246 patients (21.4%) reported chronic postsurgical pain at 12-month follow-up. Patients with AA genotypes at polymorphisms rs2070697 (AA-15.3%, GA-24.1%, and GG-22.3%) or rs2236742 (AA-6.4%, GA-20.4%, and GG-22.6%) in the CTSG gene had lower risk for chronic postsurgical pain compared with wild-types. The adjusted odds ratios were 0.67 (95% CI, 0.26 to 0.99) and 0.34 (95% CI, 0.21 to 0.98), respectively.
Conclusions:
This study demonstrated that CTSG is a pronociceptive mediator in both animal model and human study. CTSG represents a new target for pain control and a potential marker to predict patients who are prone to develop chronic pain after surgery.
Collapse
|
177
|
Okine BN, Spicer C, Millns P, Bennett A, Chapman V. Systemic administration of WY-14643, a selective synthetic agonist of peroxisome proliferator activator receptor-alpha, alters spinal neuronal firing in a rodent model of neuropathic pain. Scand J Pain 2015; 9:42-48. [DOI: 10.1016/j.sjpain.2015.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/14/2015] [Indexed: 12/21/2022]
Abstract
Abstract
Background and aims
The clinical management of chronic neuropathic pain remains a global health challenge. Current treatments are either ineffective, or associated with unwanted side-effects. The development of effective, safe therapies requires the identification of novel therapeutic targets using clinically relevant animal models of neuropathic pain.
Peroxisome proliferator activated receptor alpha (PPARα), is a member of the nuclear hormone family of transcription factors, which is widely distributed in the peripheral and central nervous systems. Pharmacological studies report antinociceptive effects of PPARα agonists following systemic administration in rodent models of neuropathic pain, however the neuronal mechanisms and sites of action mediating these effects are unclear.
The aim of this study was to investigate the effects of systemic administration of the synthetic PPARα agonist, WY-14643 on mechanically-evoked responses of spinal cord dorsal horn wide dynamic range (WDR) neurones in the spinal nerve ligated (SNL) model of neuropathic pain in rats. In addition, comparative molecular analysis of mRNA coding for PPARα and PPARα protein expression in the spinal cord of sham-operated and neuropathic rats was performed.
Methods
Lumbar L5–L6 spinal nerve ligation was performed in male Sprague–Dawley rats (110–130 g) under isoflurane anaesthesia. Sham controls underwent similar surgical conditions, but without ligation of the L5–L6 spinal nerves. Hindpaw withdrawal thresholds were measured on the day of surgery -day 0, and on days- 2, 4, 7, 10 and 14 post-surgery. At day 14 extracellular single-unit recordings of spinal (WDR) dorsal horn neurons were performed in both sham and SNL neuropathic rats under anaesthesia. The effects of intraperitoneal (i.p.) administration of WY-14643 (15 and 30 mg/kg) or vehicle on evoked responses of WDR neurons to punctate mechanical stimulation of the peripheral receptive field of varying bending force (8–60 g) were recorded. In a separate cohort of SNL and sham neuropathic rats, the expression of mRNA coding for PPARα and protein expression in the ipsilateral and contralateral spinal cord was determined using quantitative real time polymerase chain reaction (qRT-PCR) and western blotting techniques respectively.
Results
WY-14643 (15 and 30mg/kg i.p.) rapidly attenuated mechanically evoked (8, 10 and 15g) responses of spinal WDR neurones in SNL, but not sham-operated rats. Molecular analysis revealed significantly increased PPARα protein, but not mRNA, expression in the ipsilateral spinal cord of SNL, compared to the contralateral side in SNL rats. There were no changes in PPARα mRNA or protein expression in the sham controls.
Conclusion
The observation that levels of PPARα protein were increased in ipsilateral spinal cord of neuropathic rats supports a contribution of spinal sites of action mediating the effects of systemic WY-14643. Our data suggests that the inhibitory effects of a PPARα agonist on spinal neuronal responses may account, at least in part, for their analgesic effects of in neuropathic pain.
Implication
Selective activation of PPARα in the spinal cord may be therapeutically relevant for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Bright N. Okine
- School of Life Sciences , University of Nottingham Medical School , Queens Medical Centre, NG7 2UH , Nottingham , UK
- Pharmacology and Therapeutics, School of Medicine , National University of Ireland Galway , University Road , Galway , Ireland
| | - Clare Spicer
- School of Life Sciences , University of Nottingham Medical School , Queens Medical Centre, NG7 2UH , Nottingham , UK
| | - Paul Millns
- School of Life Sciences , University of Nottingham Medical School , Queens Medical Centre, NG7 2UH , Nottingham , UK
| | - Andrew Bennett
- School of Life Sciences , University of Nottingham Medical School , Queens Medical Centre, NG7 2UH , Nottingham , UK
| | - Victoria Chapman
- School of Life Sciences , University of Nottingham Medical School , Queens Medical Centre, NG7 2UH , Nottingham , UK
| |
Collapse
|
178
|
CX3CR1 Mediates Nicotine Withdrawal-Induced Hyperalgesia via Microglial P38 MAPK Signaling. Neurochem Res 2015; 40:2252-61. [PMID: 26386845 DOI: 10.1007/s11064-015-1715-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/24/2015] [Accepted: 08/31/2015] [Indexed: 12/30/2022]
Abstract
Previously, we reported that nicotine withdrawal (NT) significantly increased pain sensitivity in rats. Recent reports suggest that fractalkine is involved in the spinal cord neuron-to-microglia activation via CX3CR1 signaling. However, its contribution to NT-induced hyperalgesia and the underlying mechanisms have yet to be elucidated. In the present study, a rat model of NT was used to test the changes in CX3CR1 expression in the spinal cord. We also evaluated the effect of the CX3CR1 neutralizing antibody on spinal microglial activity, the expression of phosphorylated p38-mitogen-activated protein kinase (p-p38-MAPK) and heat-induced pain responses. We established a NT model via subcutaneous injection of pure nicotine (3 mg/kg), three times daily for 7 days. The expression of CX3CR1 was studied by Western blot and immunofluorescence staining. Following NT, the rats received daily intrathecal injections of CX3CR1 neutralizing antibody for 3 days. The change in paw withdrawal latency (PWL) was observed. The activation of microglia and the expression of p-p38-MAPK were investigated by Western blot and immunofluorescence staining. The expression of CX3CR1 was significantly increased after NT and co-localized with IBA-1. NT rats treated with CX3CR1 neutralizing antibody showed significantly increased PWL on day 4 after NT. Furthermore, the activation of microglia and the expression of p-p38-MAPK in the spinal cord were suppressed. These results indicate that microglial CX3CR1/p38MAPK pathway is critical for the development of pain hypersensitivity after NT.
Collapse
|
179
|
Verma V, Sheikh Z, Ahmed AS. Nociception and role of immune system in pain. Acta Neurol Belg 2015; 115:213-20. [PMID: 25547878 DOI: 10.1007/s13760-014-0411-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 12/14/2014] [Indexed: 01/13/2023]
Abstract
Both pain and inflammation are protective responses. However, these self-limiting conditions (with well-established negative feedback loops) become pathological if left uncontrolled. Both pain and inflammation can interact with each other in a multi-dimensional manner. These interactions are known to create an array of 'difficult to manage' pathologies. This review explains in detail the role of immune system and the related cells in peripheral sensitization and neurogenic inflammation. Various neuro-immune interactions are analyzed at peripheral, sensory and central nervous system levels. Innate immunity plays a critical role in central sensitization and in establishing acute pain as chronic condition. Moreover, inflammatory mediators also exhibit psychological effects, thus contributing towards the emotional elements associated with pain. However, there is also a considerable anti-inflammatory and analgesic role of immune system. This review also attempts to enlist various novel pharmacological approaches that exhibit their actions through modification of neuro-immune interface.
Collapse
Affiliation(s)
- Vivek Verma
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada,
| | | | | |
Collapse
|
180
|
Tsuda M, Inoue K. Neuron-microglia interaction by purinergic signaling in neuropathic pain following neurodegeneration. Neuropharmacology 2015; 104:76-81. [PMID: 26327676 DOI: 10.1016/j.neuropharm.2015.08.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/24/2015] [Indexed: 01/23/2023]
Abstract
Neuropathic pain, a chronic pain condition following nerve damage and degeneration, involves aberrant excitability in the dorsal horn of the spinal cord. A growing body of evidence has shown that the aberrant excitability might not be a consequence merely of changes in neurons, but rather of multiple alterations in glial cells, such as microglia, the immune cells of the central nervous system. Extracellular nucleotides play an important role in neuron-microglia communication through purinergic P2X and P2Y receptors expressed in microglia. Importantly, inhibiting the function or expression of these microglial molecules suppresses aberrant excitability of dorsal horn neurons and neuropathic pain, suggesting a crucial role for microglial purinergic signaling in mechanisms of neuropathic pain. Here, we describe recent advances in the understanding of neuron-microglia interactions by purinergic signaling in neuropathic pain following neurodegeneration. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
181
|
Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs. Nat Commun 2015. [PMID: 26216096 PMCID: PMC4520244 DOI: 10.1038/ncomms8864] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sensory neurons expressing Mas-related G protein coupled receptors (Mrgprs) mediate histamine-independent itch. We show that the cysteine protease cathepsin S activates MrgprC11 and evokes receptor-dependent scratching in mice. In contrast to its activation of conventional protease-activated receptors, cathepsin S mediated activation of MrgprC11 did not involve the generation of a tethered ligand. We demonstrate further that different cysteine proteases selectively activate specific mouse and human Mrgpr family members. This expansion of our understanding by which proteases interact with GPCRs redefines the concept of what constitutes a protease-activated receptor. The findings also implicate proteases as ligands to members of this orphan receptor family while providing new insights into how cysteine proteases contribute to itch.
Collapse
|
182
|
Up-regulation of CX3CL1 via Nuclear Factor-κB-dependent Histone Acetylation Is Involved in Paclitaxel-induced Peripheral Neuropathy. Anesthesiology 2015; 122:1142-51. [PMID: 25494456 DOI: 10.1097/aln.0000000000000560] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Up-regulation of CX3CL1 has been revealed to be involved in the neuropathic pain induced by nerve injury. However, whether CX3CL1 participates in the paclitaxel-induced painful peripheral neuropathy remains unknown. The aim of the current study was to elucidate the involvement of transcriptional factors nuclear factor-κB (NF-κB) and its causal interaction with CX3CL1 signaling in the paclitaxel-induced painful peripheral neuropathy. METHODS Painful peripheral neuropathy induced by paclitaxel treatment was established in adult male Sprague-Dawley rats. The von Frey test were performed to evaluate neuropathic pain behavior, and real-time quantitative reverse transcription polymerase chain reaction, chromatin immunoprecipitation, Western blot, immunohistochemistry, and small interfering RNA were performed to understand the molecular mechanisms. RESULTS The application of paclitaxel induced an up-regulation of CX3CL1 expression in the spinal neurons, which is reduced significantly by NF-κB inhibitor ammonium pyrrolidinedithiocarbamate or p65 small interfering RNA. Blockade of either CX3CL1 (n = 12 each) or NF-κB (n = 12 each) signaling pathway attenuated mechanical allodynia induced by paclitaxel. Chromatin immunoprecipitation further found that paclitaxel induced an increased recruitment of nuclear factor-κB (NF-κB)p65 to the Cx3cl1 promoter region. Furthermore, an increased acetylation level of H4, but not H3, in Cx3cl1 promoter region in spinal neurons was detected after paclitaxel treatment, which was reversed by inhibition of NF-κB with ammonium pyrrolidinedithiocarbamate or p65 small interfering RNA. CONCLUSIONS These findings suggest that up-regulation of CX3CL1 via NF-κB-dependent H4 acetylation might be critical for paclitaxel-induced mechanical allodynia.
Collapse
|
183
|
Larsson A, Carlsson L, Lind AL, Gordh T, Bodolea C, Kamali-Moghaddam M, Thulin M. The body mass index (BMI) is significantly correlated with levels of cytokines and chemokines in cerebrospinal fluid. Cytokine 2015; 76:514-518. [PMID: 26188367 DOI: 10.1016/j.cyto.2015.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 12/18/2022]
Abstract
Cytokines and chemokines regulate many functions in the body including the brain. The interactions between adipose tissue and the central nervous system (CNS) are important for the regulation of energy balance. CNS function is also influenced by age. The aim of the present study was to investigate the effects of body mass index (BMI) and age on cytokine and chemokine levels in cerebrospinal fluid. Cerebrospinal fluid samples (n=89) were collected from patients undergoing routine surgical procedures. The samples were analyzed using the multiplex proximity extension assay (PEA) in which 92 different cytokines are measured simultaneously using minute sample volume. We found no significant correlations between age and cytokine levels for any of the studied markers. In contrast, at a false discovery rate of 10%, 19 markers were significantly associated with BMI (in decreasing significance: FGF-5, ADA, Beta-NGF, CD40, IL-10RB, CCL19, TGF-alpha, SIRT2, TWEAK, SCF, CSF-1, 4E-BP1, DNER, LIF-R, STAMPB, CXCL10, CXCL6, VEGF-A and CX3CL1). This study reveals a clear effect of BMI on cytokine and chemokine levels in cerebrospinal fluid.
Collapse
Affiliation(s)
- Anders Larsson
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Lena Carlsson
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Anne-Li Lind
- Department of Surgical Sciences, Anesthesiology and Intensive Care and Uppsala Berzelii Technology Center for Neurodiagnostics, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Torsten Gordh
- Department of Surgical Sciences, Anesthesiology and Intensive Care and Uppsala Berzelii Technology Center for Neurodiagnostics, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Constantin Bodolea
- Department of Anaesthesia and Intensive Care, University of Cluj Napoca, Romania
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751 08 Uppsala, Sweden
| | - Måns Thulin
- Department of Statistics, Uppsala University, SE-751 05 Uppsala, Sweden
| |
Collapse
|
184
|
Kiguchi N, Saika F, Kobayashi Y, Kishioka S. Epigenetic regulation of CC-chemokine ligand 2 in nonresolving inflammation. Biomol Concepts 2015; 5:265-73. [PMID: 25372758 DOI: 10.1515/bmc-2014-0022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/06/2014] [Indexed: 12/31/2022] Open
Abstract
Inflammation mediated by the crosstalk between leukocytes and resident tissue cells is crucial for the maintenance of homeostasis. Because chemokine ligands and receptors, which recruit a variety of leukocytes, are widely distributed among tissues, it is important to understand the mechanisms regulating inflammatory disease. Chemokines such as CC-chemokine ligand 2 (CCL2) amplify and maintain inflammation through chemokine-cytokine networks after the recruitment of circulating leukocytes. Chemokine-dependent nonresolving inflammation occurs in the peripheral and central nervous systems, and underlies several intractable diseases, including cancer and neuropathic pain. The chronic upregulation of chemokines is often mediated by epigenetic mechanisms consisting of DNA methylation, histone modification, and nucleosome positioning. In particular, histone acetylation and methylation have been shown to play important roles in the upregulation of chemokine expression. In addition to CCL2, several other chemokines strongly contribute to neuropathic pain through epigenetic induction. Consequently, targeting epigenetic changes may have therapeutic potential for nonresolving inflammatory diseases such as neuropathic pain. Further research into the epigenetics of inflammatory diseases should promote the development of novel and effective treatment strategies for intractable inflammatory diseases.
Collapse
|
185
|
Shen Y, Zhang ZJ, Zhu MD, Jiang BC, Yang T, Gao YJ. Exogenous induction of HO-1 alleviates vincristine-induced neuropathic pain by reducing spinal glial activation in mice. Neurobiol Dis 2015; 79:100-10. [DOI: 10.1016/j.nbd.2015.04.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 04/15/2015] [Accepted: 04/29/2015] [Indexed: 12/21/2022] Open
|
186
|
Tsuda M. Microglia in the spinal cord and neuropathic pain. J Diabetes Investig 2015; 7:17-26. [PMID: 26813032 PMCID: PMC4718109 DOI: 10.1111/jdi.12379] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 12/13/2022] Open
Abstract
In contrast to physiological pain, pathological pain is not dependent on the presence of tissue‐damaging stimuli. One type of pathological pain – neuropathic pain – is often a consequence of nerve injury or of diseases such as diabetes. Neuropathic pain can be agonizing, can persist over long periods and is often resistant to known painkillers. A growing body of evidence shows that many pathological processes within the central nervous system are mediated by complex interactions between neurons and glial cells. In the case of painful peripheral neuropathy, spinal microglia react and undergo a series of changes that directly influence the establishment of neuropathic pain states. After nerve damage, purinergic P2X4 receptors (non‐selective cation channels activated by extracellular adenosine triphosphate) are upregulated in spinal microglia in a manner that depends on the transcription factors interferon regulatory factor 8 and 5, both of which are expressed in microglia after peripheral nerve injury. P2X4 receptor expression on the cell surface of microglia is also regulated at the post‐translational level by signaling from CC chemokine receptor chemotactic cytokine receptor 2. Furthermore, spinal microglia in response to extracellular stimuli results in signal transduction through intracellular signaling cascades, such as mitogen‐activated protein kinases, p38 and extracellular signal‐regulated protein kinase. Importantly, inhibiting the function or expression of these microglial molecules suppresses the aberrant excitability of dorsal horn neurons and neuropathic pain. These findings show that spinal microglia are a central player in mechanisms for neuropathic pain, and might be a potential target for treating the chronic pain state.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Life Innovation Graduate School of Pharmaceutical Sciences Kyushu University Fukuoka Japan
| |
Collapse
|
187
|
Lauro C, Catalano M, Trettel F, Limatola C. Fractalkine in the nervous system: neuroprotective or neurotoxic molecule? Ann N Y Acad Sci 2015; 1351:141-8. [DOI: 10.1111/nyas.12805] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Clotilde Lauro
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti; Sapienza University of Rome; Rome Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti; Sapienza University of Rome; Rome Italy
- IRCCS NeuroMed; Pozzilli Italy
| | - Flavia Trettel
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti; Sapienza University of Rome; Rome Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Istituto Pasteur Fondazione Cenci Bolognetti; Sapienza University of Rome; Rome Italy
- IRCCS NeuroMed; Pozzilli Italy
| |
Collapse
|
188
|
Nieto FR, Clark AK, Grist J, Chapman V, Malcangio M. Calcitonin gene-related peptide-expressing sensory neurons and spinal microglial reactivity contribute to pain states in collagen-induced arthritis. Arthritis Rheumatol 2015; 67:1668-77. [PMID: 25707377 PMCID: PMC4832255 DOI: 10.1002/art.39082] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/17/2015] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To evaluate the contribution of sensory neurons in ankle joints and adjacent tissue to the development of pain in collagen-induced arthritis (CIA), and to determine the relationship between pain and the appearance of clinical signs. METHODS Mechanical and heat hypersensitivity and hind paw swelling were assessed in Lewis rats before and until 18 days following collagen immunization. We examined the effect of intrathecal administration of a calcitonin gene-related peptide (CGRP) antagonist (CGRP(8-37) ) from day 11 to day 18 postimmunization on CIA-induced hypersensitivity. During CIA development, CGRP and p-ERK immunoreactivity was quantified in lumbar dorsal root ganglia in which sensory neurons innervating the ankle joint were identified by retrograde labeling with Fluoro-Gold. Microgliosis in the lumbar dorsal horn was assessed by immunohistochemistry, and release of CGRP evoked by activity of primary afferent fibers was measured using a preparation of isolated dorsal horn with dorsal roots attached. RESULTS CIA was associated with mechanical hypersensitivity that was evident before hind paw swelling and that was exacerbated with the development of swelling. Heat hyperalgesia developed along with swelling. Concomitant with the development of mechanical hypersensitivity, joint innervating neurons exhibited enhanced CGRP expression and an activated phenotype (increased p-ERK expression), and significant microgliosis became evident in the dorsal horn; these peripheral and central changes were augmented further with disease progression. CGRP release evoked by dorsal root stimulation was higher in the dorsal horn on day 18 in rats with CIA compared to control rats. Prolonged intrathecal administration of CGRP(8-37) attenuated established mechanical hypersensitivity and reduced spinal microgliosis. CONCLUSION Sensory neuron-derived CGRP sustains mechanical hypersensitivity and spinal microglial reactivity in CIA, suggesting that central mechanisms play critical roles in chronic inflammatory pain. Blockade of these central events may provide pain relief in rheumatoid arthritis patients.
Collapse
|
189
|
Miao GS, Liu ZH, Wei SX, Luo JG, Fu ZJ, Sun T. Lipoxin A4 attenuates radicular pain possibly by inhibiting spinal ERK, JNK and NF-κB/p65 and cytokine signals, but not p38, in a rat model of non-compressive lumbar disc herniation. Neuroscience 2015; 300:10-8. [PMID: 25943485 DOI: 10.1016/j.neuroscience.2015.04.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/08/2015] [Accepted: 04/27/2015] [Indexed: 01/12/2023]
Abstract
Inflammatory response induced by protrused nucleus pulposus (NP) has been shown to play a crucial role in the process of radicular pain. Lipoxins represent a unique class of lipid mediators that have anti-inflammatory and pro-resolving action. The present study was undertaken to investigate if intrathecal lipoxin A4 (LXA4) could alleviate mechanical allodynia in the rat models of application of NP to the L5 dorsal root ganglion (DRG). Non-compressive models of application of NP to L5 DRG were established and intrathecal catheterization for drug administration was performed in rats. Daily intrathecal injection of vehicle or LXA4 (10ng or 100ng) was performed for three successive days post-operation. Mechanical thresholds were tested and the ipsilateral lumbar (L4-L6) segment of spinal dorsal horns were removed for the determination of tumor necrosis factor-α (TNF-α), IL-1β, transforming growth factor-β1 (TGF-β1) and IL-10 expression and NF-κB/p65, extracellular signal-regulated kinase (ERK), C-Jun N-terminal kinase (JNK) and P38 expression. Application of NP to DRG in rats induced mechanical allodynia, increased the expression of pro-inflammatory factors (TNF-α and IL-1β), NF-κB/p65, the phosphorylated-ERK (p-ERK), -JNK (p-JNK) and -P38 (p-p38) and decreased the expression of anti-inflammatory cytokines (TGF-β1 and IL-10) in the ipsilateral lumbar (L4-L6) segment of spinal dorsal horns. Intrathecal injection of LXA4 alleviated the development of neuropathic pain, inhibited the upregulation of pro-inflammatory cytokines (TNF-α and IL-1β), upregulated the expression of anti-inflammatory cytokines (TGF-β1 and IL-10) and attenuated the activation of NF-κB/p65, p-ERK, p-JNK, but not p-p38, in a dose-dependent manner. In this study, we have demonstrated that LXA4 potently alleviate radicular pain in a rat model of non-compressive lumbar disc herniation. The anti-inflammatory and pro-resolution properties of LXA4 have shown a great promise for the management of radicular pain caused by intervertebral disc herniation.
Collapse
Affiliation(s)
- G-S Miao
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Z-H Liu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - S-X Wei
- Department of Anesthesiology, The Sixth People's Hospital of Jinan, Zhangqiu, Shandong, PR China
| | - J-G Luo
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Z-J Fu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - T Sun
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
190
|
Chemokine-ligands/receptors: multiplayers in traumatic spinal cord injury. Mediators Inflamm 2015; 2015:486758. [PMID: 25977600 PMCID: PMC4419224 DOI: 10.1155/2015/486758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/23/2015] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injury (SCI) results in complex posttraumatic sequelae affecting the whole neuraxis. Due to its involvement in varied neuromodulatory processes, the chemokine-ligand/receptor-network is a key element of secondary lesion cascades induced by SCI. This review will provide a synopsis of chemokine-ligand/receptor-expression along the whole neuraxis after traumatic spinal cord (sc) insults on basis of recent in vivo and in vitro findings in a SCI paradigm of thoracic force-defined impact lesions (Infinite Horizon Impactor) in adult rats. Analyses of chemokine-ligand/receptor-expression at defined time points after sc lesion of different severity grades or sham operation revealed that these inflammatory mediators are induced in distinct anatomical sc regions and in thalamic nuclei, periaqueductal grey, and hippocampal structures in the brain. Cellular and anatomical expression profiles together with colocalization/expression of neural stem/progenitor cell markers in adult sc stem cells niches or with pain-related receptors and mediators in dorsal horns, dorsal columns, and pain-processing brain areas support the notion that chemokines are involved in distinct cascades underlying clinical posttraumatic impairments and syndromes. These aspects and their implication in concepts of tailored SCI treatment are reviewed in the context of the recent literature on chemokine-ligand/receptor involvement in complex secondary lesion cascades.
Collapse
|
191
|
Electroacupuncture attenuates spinal nerve ligation-induced microglial activation mediated by p38 mitogen-activated protein kinase. Chin J Integr Med 2015; 22:704-13. [DOI: 10.1007/s11655-015-2045-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Indexed: 12/30/2022]
|
192
|
|
193
|
Ben-Aderet L, Merquiol E, Fahham D, Kumar A, Reich E, Ben-Nun Y, Kandel L, Haze A, Liebergall M, Kosińska MK, Steinmeyer J, Turk B, Blum G, Dvir-Ginzberg M. Detecting cathepsin activity in human osteoarthritis via activity-based probes. Arthritis Res Ther 2015; 17:69. [PMID: 25889265 PMCID: PMC4415352 DOI: 10.1186/s13075-015-0586-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/25/2015] [Indexed: 02/07/2023] Open
Abstract
Introduction Lysosomal cathepsins have been reported to contribute to Osteoarthritis (OA) pathophysiology due to their increase in pro-inflammatory conditions. Given the causal role of cathepsins in OA, monitoring their specific activity could provide means for assessing OA severity. To this end, we herein sought to assess a cathepsin activity-based probe (ABP), GB123, in vitro and in vivo. Methods Protein levels and activity of cathepsins B and S were monitored by immunoblot analysis and GB123 labeling in cultured primary chondrocytes and conditioned media, following stimuli with tumor necrosis factor alpha (TNFα) and/or Interleukin 1 beta (IL-1β). Similarly, cathepsin activity was examined in sections of intact cartilage (IC) and degraded cartilage (DC) regions of OA. Finally, synovial fluid (SF) and serum from donors with no signs of diseases, early OA, late OA and rheumatoid arthritis (RA) patients were analyzed with GB123 to detect distinct activity levels of cathepsin B and S. Results Cathepsin activity in cell lysates, conditioned media explants and DC sections showed enhanced enzymatic activity of cathepsins B and S. Further histological analysis revealed that cathepsin activity was found higher in superficial zones of DC than in IC. Examining serum and SF revealed that cathepsin B is significantly elevated with OA severity in serum and SF, yet levels of cathepsin S are more correlated with synovitis and RA. Conclusions Based on our data, cathepsin activity monitored by ABPs correlated well with OA severity and joint inflammation, directing towards a novel etiological target for OA, which possesses significant translational potential in developing means for non-invasive detection of early signs of OA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0586-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louisa Ben-Aderet
- Laboratory of Cartilage Biology, Institute of Dental Sciences, Hebrew University of Jerusalem, PO BOX 12272, Ein Kerem Campus, Jerusalem, 9112001, Israel.
| | - Emmanuelle Merquiol
- School of Pharmacy- Institute for Drug Research, Hebrew University of Jerusalem, PO BOX 12065, Ein Kerem Campus, Jerusalem, 9112001, Israel.
| | - Duha Fahham
- School of Pharmacy- Institute for Drug Research, Hebrew University of Jerusalem, PO BOX 12065, Ein Kerem Campus, Jerusalem, 9112001, Israel.
| | - Ashok Kumar
- Laboratory of Cartilage Biology, Institute of Dental Sciences, Hebrew University of Jerusalem, PO BOX 12272, Ein Kerem Campus, Jerusalem, 9112001, Israel.
| | - Eli Reich
- Laboratory of Cartilage Biology, Institute of Dental Sciences, Hebrew University of Jerusalem, PO BOX 12272, Ein Kerem Campus, Jerusalem, 9112001, Israel.
| | - Yael Ben-Nun
- School of Pharmacy- Institute for Drug Research, Hebrew University of Jerusalem, PO BOX 12065, Ein Kerem Campus, Jerusalem, 9112001, Israel.
| | - Leonid Kandel
- Joint Replacement and Reconstructive Surgery Unit, Orthopaedic Surgery Complex, Hadassah Mount Scopus Hospital, Jerusalem, Israel.
| | - Amir Haze
- Joint Replacement and Reconstructive Surgery Unit, Orthopaedic Surgery Complex, Hadassah Mount Scopus Hospital, Jerusalem, Israel.
| | - Meir Liebergall
- Joint Replacement and Reconstructive Surgery Unit, Orthopaedic Surgery Complex, Hadassah Mount Scopus Hospital, Jerusalem, Israel.
| | - Marta K Kosińska
- Department of Orthopaedics, Laboratory for Experimental Orthopaedics, Justus-Liebig-University of Giessen, Giessen, Germany.
| | - Juergen Steinmeyer
- Department of Orthopaedics, Laboratory for Experimental Orthopaedics, Justus-Liebig-University of Giessen, Giessen, Germany.
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.
| | - Galia Blum
- School of Pharmacy- Institute for Drug Research, Hebrew University of Jerusalem, PO BOX 12065, Ein Kerem Campus, Jerusalem, 9112001, Israel.
| | - Mona Dvir-Ginzberg
- Laboratory of Cartilage Biology, Institute of Dental Sciences, Hebrew University of Jerusalem, PO BOX 12272, Ein Kerem Campus, Jerusalem, 9112001, Israel.
| |
Collapse
|
194
|
Exposure to Allergen Causes Changes in NTS Neural Activities after Intratracheal Capsaicin Application, in Endocannabinoid Levels and in the Glia Morphology of NTS. BIOMED RESEARCH INTERNATIONAL 2015; 2015:980983. [PMID: 25866824 PMCID: PMC4383154 DOI: 10.1155/2015/980983] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/25/2014] [Accepted: 10/06/2014] [Indexed: 11/17/2022]
Abstract
Allergen exposure may induce changes in the brainstem secondary neurons, with neural sensitization of the nucleus solitary tract (NTS), which in turn can be considered one of the causes of the airway hyperresponsiveness, a characteristic feature of asthma. We evaluated neurofunctional, morphological, and biochemical changes in the NTS of naive or sensitized rats. To evaluate the cell firing activity of NTS, in vivo electrophysiological experiments were performed before and after capsaicin challenge in sensitized or naive rats. Immunohistochemical studies, endocannabinoid, and palmitoylethanolamide quantification in the NTS were also performed. This study provides evidence that allergen sensitization in the NTS induced: (1) increase in the neural firing response to intratracheal capsaicin application, (2) increase of endocannabinoid anandamide and palmitoylethanolamide, a reduction of 2-arachidonoylglycerol levels in the NTS, (3) glial cell activation, and (4) prevention by a Group III metabotropic glutamate receptor activation of neural firing response to intratracheal application of capsaicin in both naïve and sensitized rats. Therefore, normalization of ovalbumin-induced NTS neural sensitization could open up the prospect of new treatments based on the recovery of specific brain nuclei function and for extensive studies on acute or long-term efficacy of selective mGlu ligand, in models of bronchial hyperreactivity.
Collapse
|
195
|
Clark AK, Gruber-Schoffnegger D, Drdla-Schutting R, Gerhold KJ, Malcangio M, Sandkühler J. Selective activation of microglia facilitates synaptic strength. J Neurosci 2015; 35:4552-70. [PMID: 25788673 PMCID: PMC4363384 DOI: 10.1523/jneurosci.2061-14.2015] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/13/2015] [Accepted: 01/22/2015] [Indexed: 12/26/2022] Open
Abstract
Synaptic plasticity is thought to be initiated by neurons only, with the prevailing view assigning glial cells mere specify supportive functions for synaptic transmission and plasticity. We now demonstrate that glial cells can control synaptic strength independent of neuronal activity. Here we show that selective activation of microglia in the rat is sufficient to rapidly facilitate synaptic strength between primary afferent C-fibers and lamina I neurons, the first synaptic relay in the nociceptive pathway. Specifically, the activation of the CX3CR1 receptor by fractalkine induces the release of interleukin-1β from microglia, which modulates NMDA signaling in postsynaptic neurons, leading to the release of an eicosanoid messenger, which ultimately enhances presynaptic neurotransmitter release. In contrast to the conventional view, this form of plasticity does not require enhanced neuronal activity to trigger the events leading to synaptic facilitation. Augmentation of synaptic strength in nociceptive pathways represents a cellular model of pain amplification. The present data thus suggest that, under chronic pain states, CX3CR1-mediated activation of microglia drives the facilitation of excitatory synaptic transmission in the dorsal horn, which contributes to pain hypersensitivity in chronic pain states.
Collapse
Affiliation(s)
- Anna K Clark
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria, and Wolfson Centre for Age Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Doris Gruber-Schoffnegger
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria, and
| | - Ruth Drdla-Schutting
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria, and
| | - Katharina J Gerhold
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria, and
| | - Marzia Malcangio
- Wolfson Centre for Age Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria, and
| |
Collapse
|
196
|
Bian C, Zhao ZQ, Zhang YQ, Lü N. Involvement of CX3CL1/CX3CR1 signaling in spinal long term potentiation. PLoS One 2015; 10:e0118842. [PMID: 25768734 PMCID: PMC4358970 DOI: 10.1371/journal.pone.0118842] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/14/2015] [Indexed: 12/30/2022] Open
Abstract
The long-term potentiation (LTP) of spinal C-fiber-evoked field potentials is considered as a fundamental mechanism of central sensitization in the spinal cord. Accumulating evidence has showed the contribution of spinal microglia to spinal LTP and pathological pain. As a key signaling of neurons-microglia interactions, the involvement of CX3CL1/CX3CR1 signaling in pathological pain has also been investigated extensively. The present study examined whether CX3CL1/CX3CR1 signaling plays a role in spinal LTP. The results showed that 10-trains tetanic stimulation (100 Hz, 2s) of the sciatic nerve (TSS) produced a significant LTP of C-fiber-evoked field potentials lasting for over 3 h in the rat spinal dorsal horn. Blockade of CX3CL1/CX3CR1 signaling with an anti-CX3CR1 neutralizing antibody (CX3CR1 AB) markedly suppressed TSS-induced LTP. Exogenous CX3CL1 significantly potentiated 3-trains TSS-induced LTP in rats. Consistently, spinal LTP of C-fiber-evoked field potentials was also induced by TSS (100 Hz, 1s, 4 trains) in all C57BL/6 wild type (WT) mice. However, in CX3CR1-/- mice, TSS failed to induce LTP and behavioral hypersensitivity, confirming an essential role of CX3CR1 in spinal LTP induction. Furthermore, blockade of IL-18 or IL-23, the potential downstream factors of CX3CL1/CX3CR1 signaling, with IL-18 BP or anti-IL-23 neutralizing antibody (IL-23 AB), obviously suppressed spinal LTP in rats. These results suggest that CX3CL1/CX3CR1 signaling is involved in LTP of C-fiber-evoked field potentials in the rodent spinal dorsal horn.
Collapse
Affiliation(s)
- Chao Bian
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhi-Qi Zhao
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yu-Qiu Zhang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
- * E-mail: (NL); (YQZ)
| | - Ning Lü
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
- * E-mail: (NL); (YQZ)
| |
Collapse
|
197
|
|
198
|
Old EA, Clark AK, Malcangio M. The role of glia in the spinal cord in neuropathic and inflammatory pain. Handb Exp Pharmacol 2015; 227:145-170. [PMID: 25846618 DOI: 10.1007/978-3-662-46450-2_8] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chronic pain, both inflammatory and neuropathic, is a debilitating condition in which the pain experience persists after the painful stimulus has resolved. The efficacy of current treatment strategies using opioids, NSAIDS and anticonvulsants is limited by the extensive side effects observed in patients, underlining the necessity for novel therapeutic targets. Preclinical models of chronic pain have recently provided evidence for a critical role played by glial cells in the mechanisms underlying the chronicity of pain, both at the site of damage in the periphery and in the dorsal horn of the spinal cord. Here microglia and astrocytes respond to the increased input from the periphery and change morphology, increase in number and release pro-nociceptive mediators such as ATP, cytokines and chemokines. These gliotransmitters can sensitise neurons by activation of their cognate receptors thereby contributing to central sensitization which is fundamental for the generation of allodynia, hyperalgesia and spontaneous pain.
Collapse
Affiliation(s)
- Elizabeth Amy Old
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | | | |
Collapse
|
199
|
Dominguez CA, Carlström KE, Zhang XM, Al Nimer F, Lindblom RPF, Ortlieb Guerreiro-Cacais A, Piehl F. Variability in C-type lectin receptors regulates neuropathic pain-like behavior after peripheral nerve injury. Mol Pain 2014; 10:78. [PMID: 25492810 PMCID: PMC4271486 DOI: 10.1186/1744-8069-10-78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/19/2014] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Neuropathic pain is believed to be influenced in part by inflammatory processes. In this study we examined the effect of variability in the C-type lectin gene cluster (Aplec) on the development of neuropathic pain-like behavior after ligation of the L5 spinal nerve in the inbred DA and the congenic Aplec strains, which carries seven C-type lectin genes originating from the PVG strain. RESULTS While both strains displayed neuropathic pain behavior early after injury, the Aplec strain remained sensitive throughout the whole study period. Analyses of several mRNA transcripts revealed that the expression of Interleukin-1β, Substance P and Cathepsin S were more up-regulated in the dorsal part of the spinal cord of Aplec rats compared to DA, indicating a stronger inflammatory response. This notion was supported by flow cytometric analysis revealing increased infiltration of activated macrophages into the spinal cord. In addition, macrophages from the Aplec strain stimulated in vitro displayed higher expression of inflammatory cytokines compared to DA cells. Finally, we bred a recombinant congenic strain (R11R6) comprising only four of the seven Aplec genes, which displayed similar clinical and immune phenotypes as the Aplec strain. CONCLUSION We here for the first time demonstrate that C-type lectins, a family of innate immune receptors with largely unknown functions in the nervous system, are involved in regulation of inflammation and development of neuropathic pain behavior after nerve injury. Further experimental and clinical studies are needed to dissect the underlying mechanisms more in detail as well as any possible relevance for human conditions.
Collapse
Affiliation(s)
- Cecilia A Dominguez
- Department of Clinical Neuroscience, Neuroimmunology Unit, CMM L8:05, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
200
|
Zhao P, Lieu T, Barlow N, Metcalf M, Veldhuis NA, Jensen DD, Kocan M, Sostegni S, Haerteis S, Baraznenok V, Henderson I, Lindström E, Guerrero-Alba R, Valdez-Morales EE, Liedtke W, McIntyre P, Vanner SJ, Korbmacher C, Bunnett NW. Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J Biol Chem 2014; 289:27215-27234. [PMID: 25118282 DOI: 10.1074/jbc.m114.599712] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine proteases such as trypsin and mast cell tryptase cleave protease-activated receptor-2 (PAR2) at R(36)↓S(37) and reveal a tethered ligand that excites nociceptors, causing neurogenic inflammation and pain. Whether proteases that cleave PAR2 at distinct sites are biased agonists that also induce inflammation and pain is unexplored. Cathepsin S (Cat-S) is a lysosomal cysteine protease of antigen-presenting cells that is secreted during inflammation and which retains activity at extracellular pH. We observed that Cat-S cleaved PAR2 at E(56)↓T(57), which removed the canonical tethered ligand and prevented trypsin activation. In HEK and KNRK cell lines and in nociceptive neurons of mouse dorsal root ganglia, Cat-S and a decapeptide mimicking the Cat-S-revealed tethered ligand-stimulated PAR2 coupling to Gαs and formation of cAMP. In contrast to trypsin, Cat-S did not mobilize intracellular Ca(2+), activate ERK1/2, recruit β-arrestins, or induce PAR2 endocytosis. Cat-S caused PAR2-dependent activation of transient receptor potential vanilloid 4 (TRPV4) in Xenopus laevis oocytes, HEK cells and nociceptive neurons, and stimulated neuronal hyperexcitability by adenylyl cyclase and protein kinase A-dependent mechanisms. Intraplantar injection of Cat-S caused inflammation and hyperalgesia in mice that was attenuated by PAR2 or TRPV4 deletion and adenylyl cyclase inhibition. Cat-S and PAR2 antagonists suppressed formalin-induced inflammation and pain, which implicates endogenous Cat-S and PAR2 in inflammatory pain. Our results identify Cat-S as a biased agonist of PAR2 that causes PAR2- and TRPV4-dependent inflammation and pain. They expand the role of PAR2 as a mediator of protease-driven inflammatory pain.
Collapse
Affiliation(s)
- Peishen Zhao
- Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia
| | - Nicholas Barlow
- Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia
| | - Matthew Metcalf
- Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia
| | | | - Dane D Jensen
- Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia
| | - Martina Kocan
- Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia
| | - Silvia Sostegni
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Silke Haerteis
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | | | | | - Raquel Guerrero-Alba
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario N7L 3N6, Canada
| | - Eduardo E Valdez-Morales
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario N7L 3N6, Canada
| | - Wolfgang Liedtke
- Division of Neurology, Department of Medicine, Duke University, Durham, North Carolina 27710
| | - Peter McIntyre
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora 3083, Australia
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario N7L 3N6, Canada
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia,; Department of Pharmacology, University of Melbourne, Melbourne 3010, Australia, and; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville 3052, Australia.
| |
Collapse
|