151
|
Loo TW, Bartlett MC, Clarke DM. Corrector VX-809 stabilizes the first transmembrane domain of CFTR. Biochem Pharmacol 2013; 86:612-9. [DOI: 10.1016/j.bcp.2013.06.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 11/25/2022]
|
152
|
Kirby EF, Heard AS, Wang XR. Enhancing the Potency of F508del Correction: A Multi-Layer Combinational Approach to Drug Discovery for Cystic Fibrosis. JOURNAL OF PHARMACOLOGY & CLINICAL TOXICOLOGY 2013; 1:1007. [PMID: 24855632 PMCID: PMC4026356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
With better understanding of the cellular and molecular pathophysiology underlying cystic fibrosis (CF), novel drugs are being developed that specifically target the molecular defects of the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel on the plasma membrane that causes CF. Starting with cell-based high-throughput screening, small molecules have been identified that are able to fix specific molecular defects of various disease-causing CFTR mutants. With the successful development of ivacaftor, a "potentiator" that enhances CFTR chloride channel activity, new types of small-molecule compounds that "correct" the misfolding and misprocessing of the most common CF-causing mutation, F508del, are actively being sought for. Recent studies focused on the potential mechanisms of action of some of the investigational CFTR "correctors" shed new light on how the F508del mutant can be targeted in an attempt to ameliorate the clinical symptoms associated with CF. A multi-layer combinational approach has been proposed to achieve the high-potency correction necessary for significant clinical outcome. The mechanistic insights obtained from such studies will shape the future therapeutics development for the vast majority of CF patients.
Collapse
Affiliation(s)
| | | | - X Robert Wang
- Corresponding author X Robert Wang, Department of Pharmaceutical, Social and Administrative Sciences, Samford University McWhorter School of Pharmacy, 800 Lakeshore Drive, Birmingham, AL 35229, USA, Tel: 205-726-2997; FAX: 205-726-2088;
| |
Collapse
|
153
|
Wang W, El Hiani Y, Rubaiy HN, Linsdell P. Relative contribution of different transmembrane segments to the CFTR chloride channel pore. Pflugers Arch 2013; 466:477-90. [PMID: 23955087 DOI: 10.1007/s00424-013-1317-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 12/16/2022]
Abstract
The membrane-spanning part of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel comprises 12 transmembrane (TM) α-helices, arranged in 2 symmetrical groups of 6. However, those TMs that line the channel pore are not completely defined. We used patch clamp recording to compare the accessibility of cysteine-reactive reagents to cysteines introduced into different TMs. Several residues in TM11 were accessible to extracellular and/or intracellular cysteine reactive reagents; however, no reactive cysteines were identified in TMs 5 or 11. Two accessible residues in TM11 (T1115C and S1118C) were found to be more readily modified from the extracellular solution in closed channels, but more readily modified from the intracellular solution in open channels, as previously reported for T338C in TM6. However, the effects of mutagenesis at S1118 (TM11) on a range of pore functional properties were relatively minor compared to the large effects of mutagenesis at T338 (TM6). Our results suggest that the CFTR pore is lined by TM11 but not by TM5 or TM7. Comparison with previous works therefore suggests that the pore is lined by TMs 1, 6, 11, and 12, suggesting that the structure of the open channel pore is asymmetric in terms of the contributions of different TMs. Although TMs 6 and 11 appear to undergo similar conformational changes during channel opening and closing, the influence of these two TMs on the functional properties of the narrowest region of the pore is clearly unequal.
Collapse
Affiliation(s)
- Wuyang Wang
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000 Halifax, Nova Scotia, B3H 4R2, Canada
| | | | | | | |
Collapse
|
154
|
Gao X, Bai Y, Hwang TC. Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation. Biophys J 2013; 104:786-97. [PMID: 23442957 DOI: 10.1016/j.bpj.2012.12.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/27/2012] [Accepted: 12/31/2012] [Indexed: 02/06/2023] Open
Abstract
Previous cysteine scanning studies of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have identified several transmembrane segments (TMs), including TM1, 3, 6, 9, and 12, as structural components of the pore. Some of these TMs such as TM6 and 12 may also be involved in gating conformational changes. However, recent results on TM1 seem puzzling in that the observed reactive pattern was quite different from those seen with TM6 and 12. In addition, whether TM1 also plays a role in gating motions remains largely unknown. Here, we investigated CFTR's TM1 by applying methanethiosulfonate (MTS) reagents from both cytoplasmic and extracellular sides of the membrane. Our experiments identified four positive positions, E92, K95, Q98, and L102, when the negatively charged MTSES was applied from the cytoplasmic side. Intriguingly, these four residues reside in the extracellular half of TM1 in previously defined CFTR topology; we thus extended our scanning to residues located extracellularly to L102. We found that cysteines introduced into positions 106, 107, and 109 indeed react with extracellularly applied MTS probes, but not to intracellularly applied reagents. Interestingly, whole-cell A107C-CFTR currents were very sensitive to changes of bath pH as if the introduced cysteine assumes an altered pKa-like T338C in TM6. These findings lead us to propose a revised topology for CFTR's TM1 that spans at least from E92 to Y109. Additionally, side-dependent modifications of these positions indicate a narrow region (L102-I106) that prevents MTS reagents from penetrating the pore, a picture similar to what has been reported for TM6. Moreover, modifications of K95C, Q98C, and L102C exhibit strong state dependency with negligible modification when the channel is closed, suggesting a significant rearrangement of TM1 during CFTR's gating cycle. The structural implications of these findings are discussed in light of the crystal structures of ABC transporters and homology models of CFTR.
Collapse
Affiliation(s)
- Xiaolong Gao
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, USA
| | | | | |
Collapse
|
155
|
Ren HY, Grove DE, De La Rosa O, Houck SA, Sopha P, Van Goor F, Hoffman BJ, Cyr DM. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1. Mol Biol Cell 2013; 24:3016-24. [PMID: 23924900 PMCID: PMC3784376 DOI: 10.1091/mbc.e13-05-0240] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Misfolding of cystic fibrosis transmembrane conductance regulator protein (CFTR) causes the fatal lung disease cystic fibrosis. VX-809 was developed to suppress disease-related folding defects in CFTR. VX-809 suppresses folding defects in CFTR by modulating the conformation of membrane-spanning domain 1. VX-808 is thereby able to partially restore function to F508del-CFTR and other disease-related mutants. Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR.
Collapse
Affiliation(s)
- Hong Yu Ren
- Department of Cell Biology and University of North Carolina Cystic Fibrosis Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 Vertex Pharmaceuticals, San Diego, CA 92121
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Bozoky Z, Krzeminski M, Chong PA, Forman-Kay JD. Structural changes of CFTR R region upon phosphorylation: a plastic platform for intramolecular and intermolecular interactions. FEBS J 2013; 280:4407-16. [PMID: 23826884 PMCID: PMC4160016 DOI: 10.1111/febs.12422] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/24/2013] [Accepted: 07/02/2013] [Indexed: 11/29/2022]
Abstract
Chloride channel gating and trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) are regulated by phosphorylation. Intrinsically disordered segments of the protein are responsible for phospho‐regulation, particularly the regulatory (R) region that is a target for several kinases and phosphatases. The R region remains disordered following phosphorylation, with different phosphorylation states sampling various conformations. Recent studies have demonstrated the crucial role that intramolecular and intermolecular interactions of the R region play in CFTR regulation. Different partners compete for the same binding segment, with the R region containing multiple overlapping binding elements. The non‐phosphorylated R region interacts with the nucleotide binding domains and inhibits channel activity by blocking heterodimerization. Phosphorylation shifts the equilibrium such that the R region is excluded from the dimer interface, facilitating gating and processing by stimulating R region interactions with other domains and proteins. The dynamic conformational sampling and transient binding of the R region to multiple partners enables complex control of CFTR channel activity and trafficking.
Collapse
Affiliation(s)
- Zoltan Bozoky
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
157
|
Farinha CM, Matos P, Amaral MD. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi. FEBS J 2013; 280:4396-406. [PMID: 23773658 DOI: 10.1111/febs.12392] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/25/2013] [Accepted: 06/11/2013] [Indexed: 12/18/2022]
Abstract
Biogenesis of cystic fibrosis transmembrane conductance regulator (CFTR) starts with its cotranslational insertion into the membrane of the endoplasmic reticulum (ER) and core glycosylation. These initial events are followed by a complex succession of steps with the main goal of checking the overall quality of CFTR conformation in order to promote its exit from the ER through the secretory pathway. Failure to pass the various checkpoints of the ER quality control targets the most frequent disease-causing mutant protein (F508del-CFTR) for premature degradation. For wild-type CFTR that exits the ER, trafficking through the Golgi is the major site for glycan processing, although nonconventional trafficking pathways have also been described for CFTR. Once CFTR is at the cell surface, its stability is also controlled by multiple protein interactors, including Rab proteins, Rho small GTPases, and PDZ proteins. These regulate not only anterograde trafficking to the cell surface, but also endocytosis and recycling, thus achieving fine and tight modulation of CFTR plasma membrane levels. Exciting recent data have related autophagy and epithelial differentiation to the regulation of CFTR trafficking. Herein, we review the various checkpoints of the complex quality control along the secretory trafficking pathway and the associated pathways that are starting to be explored for the benefit of cystic fibrosis patients.
Collapse
Affiliation(s)
- Carlos M Farinha
- Faculty of Sciences, BioFIG - Centre for Biodiversity, Functional and Integrative Genomics, University of Lisboa, Portugal
| | | | | |
Collapse
|
158
|
Sarankó H, Tordai H, Telbisz Á, Özvegy-Laczka C, Erdős G, Sarkadi B, Hegedűs T. Effects of the gout-causing Q141K polymorphism and a CFTR ΔF508 mimicking mutation on the processing and stability of the ABCG2 protein. Biochem Biophys Res Commun 2013; 437:140-5. [PMID: 23800412 DOI: 10.1016/j.bbrc.2013.06.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 12/19/2022]
Abstract
ABCG2 is an important multidrug transporter involved also in urate transport, thus its mutations can lead to the development of gout and may also alter general drug absorption, distribution and excretion. The frequent ABCG2 polymorphism, Q141K, is associated with an elevated risk of gout and has been controversially reported to reduce the plasma membrane expression and/or the transport function of the protein. In the present work we examined the stability and cellular processing of the Q141K ABCG2 variant, as well as that of the ΔF142 ABCG2, corresponding to the ΔF508 mutation in the CFTR (ABCC7) protein, causing cystic fibrosis. The processing and localization of full length ABCG2 variants were investigated in mammalian cells, followed by Western blotting and confocal microscopy, respectively. Folding and stability were examined by limited proteolysis of Sf9 insect cell membranes expressing these ABCG2 constructs. Stability of isolated nucleotide binding domains, expressed in and purified from bacteria, was studied by CD spectroscopy. We find that the Q141K variant has a mild processing defect which can be rescued by low temperature, a slightly reduced activity, and a mild folding defect, especially affecting the NBD. In contrast, the ΔF142 mutant has major processing and folding defects, and no ATPase function. We suggest that although these mutations are both localized within the NBD, based on molecular modeling their contribution to the ABCG2 structure and function is different, thus rescue strategies may be devised accordingly.
Collapse
|
159
|
|
160
|
Cheepala SB, Bao J, Nachagari D, Sun D, Wang Y, Zhong TP, Zhong T, Naren AP, Zheng J, Schuetz JD. Crucial role for phylogenetically conserved cytoplasmic loop 3 in ABCC4 protein expression. J Biol Chem 2013; 288:22207-18. [PMID: 23766510 DOI: 10.1074/jbc.m113.476218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ABC transporter ABCC4 is recognized as an ATP-dependent exporter of endogenous substances as well as an increasing variety of anionic chemotherapeutics. A loss-of-function variant of zebrafish Abcc4 was identified with a single amino acid substitution in the cytoplasmic loop T804M. Because this substituted amino acid is highly conserved among ABCC4 orthologs and is located in cytoplasmic loop 3 (CL3), we investigated the impact of this mutation on human and zebrafish Abcc4 expression. We demonstrate that zebrafish Abcc4 T804M or human ABCC4 T796M exhibit substantially reduced expression, coupled with impaired plasma membrane localization. To understand the molecular basis for the localization defect, we developed a homology model of zebrafish Abcc4. The homology model suggested that the bulky methionine substitution disrupted side-chain contacts. Molecular dynamic simulations of a fragment of human or zebrafish CL3 containing a methionine substitution indicated altered helicity coupled with reduced thermal stability. Trifluoroethanol challenge coupled with circular dichroism revealed that the methionine substitution disrupted the ability of this fragment of CL3 to readily form an α-helix. Furthermore, expression and plasma membrane localization of these mutant ABCC4/Abcc4 proteins are mostly rescued by growing cells at subphysiological temperatures. Because the cystic fibrosis transmembrane conductance regulator (ABCC7) is closely related to ABCC4, we extended this by engineering certain pathogenic CFTR-CL3 mutations, and we showed they destabilized human and zebrafish ABCC4. Altogether, our studies provide the first evidence for a conserved domain in CL3 of ABCC4 that is crucial in ensuring its proper plasma membrane localization.
Collapse
Affiliation(s)
- Satish B Cheepala
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Cui G, Freeman CS, Knotts T, Prince CZ, Kuang C, McCarty NA. Two salt bridges differentially contribute to the maintenance of cystic fibrosis transmembrane conductance regulator (CFTR) channel function. J Biol Chem 2013; 288:20758-67. [PMID: 23709221 DOI: 10.1074/jbc.m113.476226] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Previous studies have identified two salt bridges in human CFTR chloride ion channels, Arg(352)-Asp(993) and Arg(347)-Asp(924), that are required for normal channel function. In the present study, we determined how the two salt bridges cooperate to maintain the open pore architecture of CFTR. Our data suggest that Arg(347) not only interacts with Asp(924) but also interacts with Asp(993). The tripartite interaction Arg(347)-Asp(924)-Asp(993) mainly contributes to maintaining a stable s2 open subconductance state. The Arg(352)-Asp(993) salt bridge, in contrast, is involved in stabilizing both the s2 and full (f) open conductance states, with the main contribution being to the f state. The s1 subconductance state does not require either salt bridge. In confirmation of the role of Arg(352) and Asp(993), channels bearing cysteines at these sites could be latched into a full open state using the bifunctional cross-linker 1,2-ethanediyl bismethanethiosulfonate, but only when applied in the open state. Channels remained latched open even after washout of ATP. The results suggest that these interacting residues contribute differently to stabilizing the open pore in different phases of the gating cycle.
Collapse
Affiliation(s)
- Guiying Cui
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Center for Cystic Fibrosis Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
162
|
Mechanism-based corrector combination restores ΔF508-CFTR folding and function. Nat Chem Biol 2013; 9:444-54. [PMID: 23666117 DOI: 10.1038/nchembio.1253] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 04/08/2013] [Indexed: 01/12/2023]
Abstract
The most common cystic fibrosis mutation, ΔF508 in nucleotide binding domain 1 (NBD1), impairs cystic fibrosis transmembrane conductance regulator (CFTR)-coupled domain folding, plasma membrane expression, function and stability. VX-809, a promising investigational corrector of ΔF508-CFTR misprocessing, has limited clinical benefit and an incompletely understood mechanism, hampering drug development. Given the effect of second-site suppressor mutations, robust ΔF508-CFTR correction most likely requires stabilization of NBD1 energetics and the interface between membrane-spanning domains (MSDs) and NBD1, which are both established primary conformational defects. Here we elucidate the molecular targets of available correctors: class I stabilizes the NBD1-MSD1 and NBD1-MSD2 interfaces, and class II targets NBD2. Only chemical chaperones, surrogates of class III correctors, stabilize human ΔF508-NBD1. Although VX-809 can correct missense mutations primarily destabilizing the NBD1-MSD1/2 interface, functional plasma membrane expression of ΔF508-CFTR also requires compounds that counteract the NBD1 and NBD2 stability defects in cystic fibrosis bronchial epithelial cells and intestinal organoids. Thus, the combination of structure-guided correctors represents an effective approach for cystic fibrosis therapy.
Collapse
|
163
|
Sebastian A, Rishishwar L, Wang J, Bernard KF, Conley AB, McCarty NA, Jordan IK. Origin and evolution of the cystic fibrosis transmembrane regulator protein R domain. Gene 2013; 523:137-46. [PMID: 23578801 DOI: 10.1016/j.gene.2013.02.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator protein (CFTR) is a member of the ABC transporter superfamily. CFTR is distinguished from all other members of this superfamily by its status as an ion channel as well as the presence of its unique regulatory (R) domain. We investigated the origin and subsequent evolution of the R domain along the CFTR evolutionary lineage. The R domain protein coding sequence originated via the loss of a splice donor site at the 3' end of exon 14, leading to the subsequent read-through and capture of formerly intronic sequence as novel coding sequence. Inclusion of the remaining part of the R domain coding sequence in the CFTR transcript involved a lineage-specific gain of exonic sequence with no homology to protein coding sequences outside of CFTR and loss of two exons conserved among ABC family members. These events occurred at the base of the Gnathostome evolutionary lineage ~550-650 million years ago. The apparent origination of the R domain de novo from previously non-coding sequence is consistent with its lack of sequence similarity to other domains as well as its intrinsically disordered structure, which has important implications for its function. In particular, this lack of structure may provide for a dynamic and inducible regulatory activity based on transient physical interactions with more structured domains of the protein. Since its acquisition along the CFTR evolutionary lineage, the R domain has evolved more rapidly than any other CFTR domain; however, there is no evidence for positive (adaptive) selection in the evolution of the domain. The R domain does show a distinct pattern of relative evolutionary rates compared to other CFTR domains, which sheds additional light on the connection between its function and evolution. The regulatory function of the R domain is dependent upon a fairly small number of sites that are subject to phosphorylation, and these sites were fixed very early in R domain evolution and have remained largely invariant since that time. In contrast, the rest of the R domain has been free to drift in sequence space leading to a more star-like phylogeny than seen for the other CFTR domains. The case of the R domain suggests that domain acquisition via the de novo creation of coding sequence, and the novel functional utility that such an event would seemingly entail, can be one route by which neo-functionalization is favored to occur.
Collapse
Affiliation(s)
- Aswathy Sebastian
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules. Proc Natl Acad Sci U S A 2013; 110:5223-8. [PMID: 23493553 DOI: 10.1073/pnas.1214530110] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The multidrug ATP-binding cassette, subfamily G, 2 (ABCG2) transporter was recently identified as an important human urate transporter, and a common mutation, a Gln to Lys substitution at position 141 (Q141K), was shown to cause hyperuricemia and gout. The nature of the Q141K defect, however, remains undefined. Here we explore the Q141K ABCG2 mutation using a comparative approach, contrasting it with another disease-causing mutation in an ABC transporter, the deletion of Phe-508 (ΔF508) in the cystic fibrosis transmembrane conductance regulator (CFTR). We found, much like in ΔF508 CFTR, that the Q141K mutation leads to instability in the nucleotide-binding domain (NBD), a defect that translates to significantly decreased protein expression. However, unlike the CFTR mutant, the Q141K mutation does not interfere with the nucleotide-binding domain/intracellular loop interactions. This investigation has also led to the identification of critical residues involved in the protein-protein interactions necessary for the dimerization of ABCG2: Lys-473 (K473) and Phe-142 (F142). Finally, we have demonstrated the utility of using small molecules to correct the Q141K defect in expression and function as a possible therapeutic approach for hyperuricemia and gout.
Collapse
|
165
|
Billet A, Mornon JP, Jollivet M, Lehn P, Callebaut I, Becq F. CFTR: effect of ICL2 and ICL4 amino acids in close spatial proximity on the current properties of the channel. J Cyst Fibros 2013; 12:737-45. [PMID: 23478129 DOI: 10.1016/j.jcf.2013.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/18/2013] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND CFTR is the only ABC transporter functioning as a chloride (Cl(-)) channel. We studied molecular determinants, which might distinguish CFTR from standard ABC transporters, and focused on the interface formed by the intracellular loops from the membrane spanning domains. METHODS Residues from ICL2 and ICL4 in close proximity were targeted, and their involvement in the functioning of CFTR was studied by whole cell patch clamp recording. RESULTS We identified 2 pairs of amino acids, at the extremity of the bundle formed by the four intracellular loops, whose mutation i) decreases the Cl(-) current of CFTR (couple E267-K1060) or ii) increases it with a change of the electrophysiological signature (couple S263-V1056). CONCLUSIONS These results highlight the critical role of these ICL residues in the assembly of the different domains and/or in the Cl(-) permeation pathway of CFTR.
Collapse
Affiliation(s)
- Arnaud Billet
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, Poitiers, France
| | | | | | | | | | | |
Collapse
|
166
|
Marasini C, Galeno L, Moran O. A SAXS-based ensemble model of the native and phosphorylated regulatory domain of the CFTR. Cell Mol Life Sci 2013; 70:923-33. [PMID: 23052212 PMCID: PMC11113146 DOI: 10.1007/s00018-012-1172-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/24/2012] [Accepted: 09/17/2012] [Indexed: 11/26/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, is an anion channel activated by protein kinase A phosphorylation. The regulatory domain (RD) of CFTR has multiple phosphorylation sites, and is responsible for channel activation. This domain is intrinsically disordered, rendering the structural analysis a difficult task, as high-resolution techniques are barely applicable. In this work, we obtained a biophysical characterization of the native and phosphorylated RD in solution by employing complementary structural methods. The native RD has a gyration radius of 3.25 nm, and a maximum molecular dimension of 11.4 nm, larger than expected for a globular protein of the same molecular mass. Phosphorylation causes compaction of the structure, yielding a significant reduction of the gyration radius, to 2.92 nm, and on the maximum molecular dimension to 10.2 nm. Using an ensemble optimization method, we were able to generate a low-resolution, three-dimensional model of the native and the phosphorylated RD based on small-angle X-ray scattering data. We have obtained the first experiment-based model of the CFTR regulatory domain, which will be useful to understand the molecular mechanisms of normal and pathological CFTR functioning.
Collapse
Affiliation(s)
- Carlotta Marasini
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genoa, Italy
| | - Lauretta Galeno
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genoa, Italy
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genoa, Italy
| |
Collapse
|
167
|
Chong PA, Kota P, Dokholyan NV, Forman-Kay JD. Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability. Cold Spring Harb Perspect Med 2013; 3:a009522. [PMID: 23457292 DOI: 10.1101/cshperspect.a009522] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) requires dynamic fluctuations between states in its gating cycle for proper channel function, including changes in the interactions between the nucleotide-binding domains (NBDs) and between the intracellular domain (ICD) coupling helices and NBDs. Such motions are also linked with fluctuating phosphorylation-dependent binding of CFTR's disordered regulatory (R) region to the NBDs and partners. Folding of CFTR is highly inefficient, with the marginally stable NBD1 sampling excited states or folding intermediates that are aggregation-prone. The severe CF-causing F508del mutation exacerbates the folding inefficiency of CFTR and leads to impaired channel regulation and function, partly as a result of perturbed NBD1-ICD interactions and enhanced sampling of these NBD1 excited states. Increased knowledge of the dynamics within CFTR will expand our understanding of the regulated channel gating of the protein as well as of the F508del defects in folding and function.
Collapse
Affiliation(s)
- P Andrew Chong
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
168
|
Denny RA, Gavrin LK, Saiah E. Recent developments in targeting protein misfolding diseases. Bioorg Med Chem Lett 2013; 23:1935-44. [PMID: 23454013 DOI: 10.1016/j.bmcl.2013.01.089] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
Abstract
Protein misfolding is an emerging field that crosses multiple therapeutic areas and causes many serious diseases. As the biological pathways of protein misfolding become more clearly elucidated, small molecule approaches in this arena are gaining increased attention. This manuscript will survey current small molecules from the literature that are known to modulate misfolding, stabilization or proteostasis. Specifically, the following targets and approaches will be discussed: CFTR, glucocerebrosidase, modulation of toxic oligomers, serum amyloid P (SAP) sections and HSF1 activators.
Collapse
Affiliation(s)
- Rajiah Aldrin Denny
- BioTherapeutics Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 CambridgePark Drive, Cambridge, MA 02140, USA
| | | | | |
Collapse
|
169
|
Hunt JF, Wang C, Ford RC. Cystic fibrosis transmembrane conductance regulator (ABCC7) structure. Cold Spring Harb Perspect Med 2013; 3:a009514. [PMID: 23378596 DOI: 10.1101/cshperspect.a009514] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structural studies of the cystic fibrosis transmembrane conductance regulator (CFTR) are reviewed. Like many membrane proteins, full-length CFTR has proven to be difficult to express and purify, hence much of the structural data available is for the more tractable, independently expressed soluble domains. Therefore, this chapter covers structural data for individual CFTR domains in addition to the sparser data available for the full-length protein. To set the context for these studies, we will start by reviewing structural information on model proteins from the ATP-binding cassette (ABC) transporter superfamily, to which CFTR belongs.
Collapse
Affiliation(s)
- John F Hunt
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | | | |
Collapse
|
170
|
Ramachandran S, Chakraborty A, Xu L, Mei Y, Samsó M, Dokholyan NV, Meissner G. Structural determinants of skeletal muscle ryanodine receptor gating. J Biol Chem 2013; 288:6154-65. [PMID: 23319589 DOI: 10.1074/jbc.m112.433789] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ryanodine receptor type 1 (RyR1) releases Ca(2+) from intracellular stores upon nerve impulse to trigger skeletal muscle contraction. Effector binding at the cytoplasmic domain tightly controls gating of the pore domain of RyR1 to release Ca(2+). However, the molecular mechanism that links effector binding to channel gating is unknown due to lack of structural data. Here, we used a combination of computational and electrophysiological methods and cryo-EM densities to generate structural models of the open and closed states of RyR1. Using our structural models, we identified an interface between the pore-lining helix (Tyr-4912-Glu-4948) and a linker helix (Val-4830-Val-4841) that lies parallel to the cytoplasmic membrane leaflet. To test the hypothesis that this interface controls RyR1 gating, we designed mutations in the linker helix to stabilize either the open (V4830W and T4840W) or closed (H4832W and G4834W) state and validated them using single channel experiments. To further confirm this interface, we designed mutations in the pore-lining helix to stabilize the closed state (Q4947N, Q4947T, and Q4947S), which we also validated using single channel experiments. The channel conductance and selectivity of the mutations that we designed in the linker and pore-lining helices were indistinguishable from those of WT RyR1, demonstrating our ability to modulate RyR1 gating without affecting ion permeation. Our integrated computational and experimental approach significantly advances the understanding of the structure and function of an unusually large ion channel.
Collapse
Affiliation(s)
- Srinivas Ramachandran
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
For cystic fibrosis (CF) patients most therapies focus on alleviating the disease symptoms. Yet the cellular basis of the disease has been well studied; mutations in the CF gene can impair folding, secretion, cell surface stability, and/or function of the CFTR chloride channel. Correction of these basic defects has been a challenge, but indicates that a deeper understanding of the molecular and cellular mechanism of mutations is a prerequisite for developing more efficient therapies.
Collapse
Affiliation(s)
- Tsukasa Okiyoneda
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | | |
Collapse
|
172
|
Hwang TC, Kirk KL. The CFTR ion channel: gating, regulation, and anion permeation. Cold Spring Harb Perspect Med 2013; 3:a009498. [PMID: 23284076 DOI: 10.1101/cshperspect.a009498] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-gated anion channel with two remarkable distinctions. First, it is the only ATP-binding cassette (ABC) transporter that is known to be an ion channel--almost all others function as transport ATPases. Second, CFTR is the only ligand-gated channel that consumes its ligand (ATP) during the gating cycle--a consequence of its enzymatic activity as an ABC transporter. We discuss these special properties of CFTR in the context of its evolutionary history as an ABC transporter. Other topics include the mechanisms by which CFTR gating is regulated by phosphorylation of its unique regulatory domain and our current view of the CFTR permeation pathway (or pore). Understanding these basic operating principles of the CFTR channel is central to defining the mechanisms of action of prospective cystic fibrosis drugs and to the development of new, rational treatment strategies.
Collapse
Affiliation(s)
- Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | |
Collapse
|
173
|
Furukawa-Hagiya T, Furuta T, Chiba S, Sohma Y, Sakurai M. The power stroke driven by ATP binding in CFTR as studied by molecular dynamics simulations. J Phys Chem B 2012; 117:83-93. [PMID: 23214920 DOI: 10.1021/jp308315w] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP binding cassette (ABC) protein superfamily. Currently, it remains unclear how ATP binding causes the opening of the channel gate at the molecular level. To clarify this mechanism, we first constructed an atomic model of the inward-facing CFTR using the X-ray structures of other ABC proteins. Molecular dynamics (MD) simulations were then performed to explore the structure and dynamics of the inward-facing CFTR in a membrane environment. In the MgATP-bound state, two nucleotide-binding domains (NBDs) formed a head-to-tail type of dimer, in which the ATP molecules were sandwiched between the Walker A and signature motifs. Alternatively, one of the final MD structures in the apo state was similar to that of a "closed-apo" conformation found in the X-ray analysis of ATP-free MsbA. Principal component analysis for the MD trajectory indicated that NBD dimerization causes significant structural and dynamical changes in the transmembrane domains (TMDs), which is likely indicative of the formation of a chloride ion access path. This study suggests that the free energy gain from ATP binding acts as a driving force not only for NBD dimerization but also for NBD-TMD concerted motions.
Collapse
Affiliation(s)
- Tomoka Furukawa-Hagiya
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | | | | | | | | |
Collapse
|
174
|
Kim SJ, Skach WR. Mechanisms of CFTR Folding at the Endoplasmic Reticulum. Front Pharmacol 2012; 3:201. [PMID: 23248597 PMCID: PMC3521238 DOI: 10.3389/fphar.2012.00201] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/23/2012] [Indexed: 12/20/2022] Open
Abstract
In the past decade much has been learned about how Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) folds and misfolds as the etiologic cause of cystic fibrosis (CF). CFTR folding is complex and hierarchical, takes place in multiple cellular compartments and physical environments, and involves several large networks of folding machineries. Insertion of transmembrane (TM) segments into the endoplasmic reticulum (ER) membrane and tertiary folding of cytosolic domains begin cotranslationally as the nascent polypeptide emerges from the ribosome, whereas posttranslational folding establishes critical domain-domain contacts needed to form a physiologically stable structure. Within the membrane, N- and C-terminal TM helices are sorted into bundles that project from the cytosol to form docking sites for nucleotide binding domains, NBD1 and NBD2, which in turn form a sandwich dimer for ATP binding. While tertiary folding is required for domain assembly, proper domain assembly also reciprocally affects folding of individual domains analogous to a jig-saw puzzle wherein the structure of each interlocking piece influences its neighbors. Superimposed on this process is an elaborate proteostatic network of cellular chaperones and folding machineries that facilitate the timing and coordination of specific folding steps in and across the ER membrane. While the details of this process require further refinement, we finally have a useful framework to understand key folding defect(s) caused by ΔF508 that provides a molecular target(s) for the next generation of CFTR small molecule correctors aimed at the specific defect present in the majority of CF patients.
Collapse
Affiliation(s)
- Soo Jung Kim
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University Portland, OR, USA
| | | |
Collapse
|
175
|
Le Saux O, Martin L, Aherrahrou Z, Leftheriotis G, Váradi A, Brampton CN. The molecular and physiological roles of ABCC6: more than meets the eye. Front Genet 2012; 3:289. [PMID: 23248644 PMCID: PMC3520154 DOI: 10.3389/fgene.2012.00289] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/23/2012] [Indexed: 12/30/2022] Open
Abstract
Abnormal mineralization occurs in the context of several common conditions, including advanced age, diabetes, hypercholesterolemia, chronic renal failure, and certain genetic conditions. Metabolic, mechanical, infectious, and inflammatory injuries promote ectopic mineralization through overlapping yet distinct molecular mechanisms of initiation and progression. The ABCC6 protein is an ATP-dependent transporter primarily found in the plasma membrane of hepatocytes. ABCC6 exports unknown substrates from the liver presumably for systemic circulation. ABCC6 deficiency is the primary cause for chronic and acute forms of ectopic mineralization described in diseases such as pseudoxanthoma elasticum (PXE), β-thalassemia, and generalized arterial calcification of infancy (GACI) in humans and dystrophic cardiac calcification (DCC) in mice. These pathologies are characterized by mineralization of cardiovascular, ocular, and dermal tissues. PXE and to an extent GACI are caused by inactivating ABCC6 mutations, whereas the mineralization associated with β-thalassemia patients derives from a liver-specific change in ABCC6 expression. DCC is an acquired phenotype resulting from cardiovascular insults (ischemic injury or hyperlipidemia) and secondary to ABCC6 insufficiency. Abcc6-deficient mice develop ectopic calcifications similar to both the human PXE and mouse DCC phenotypes. The precise molecular and cellular mechanism linking deficient hepatic ABCC6 function to distal ectopic mineral deposition is not understood and has captured the attention of many research groups. Our previously published work along with that of others show that ABCC6 influences other modulators of calcification and that it plays a much greater physiological role than originally thought.
Collapse
Affiliation(s)
- Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii Honolulu, HI, USA
| | | | | | | | | | | |
Collapse
|
176
|
Ferec C, Cutting GR. Assessing the Disease-Liability of Mutations in CFTR. Cold Spring Harb Perspect Med 2012; 2:a009480. [PMID: 23209179 DOI: 10.1101/cshperspect.a009480] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over 1900 mutations have been reported in the cystic fibrosis transmembrane conductance regulator (CFTR), the gene defective in patients with cystic fibrosis. These mutations have been discovered primarily in individuals who have features consistent with the diagnosis of CF. In some cases, it has been recognized that the mutations are not causative of cystic fibrosis but are responsible for disorders with features similar to CF, and these conditions have been termed CFTR-related disorders or CFTR-RD. There are also mutations in CFTR that do not contribute to any known disease state. Distinguishing CFTR mutations according to their penetrance for an abnormal phenotype is important for clinical management, structure/function analysis of CFTR, and understanding the molecular and cellular mechanisms underlying CF.
Collapse
Affiliation(s)
- Claude Ferec
- Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale; Centre Hospitalier Universitaire (CHU), Hôpital Morvan; INSERM, U1078 Brest, France
| | | |
Collapse
|
177
|
Mahley RW, Huang Y. Small-molecule structure correctors target abnormal protein structure and function: structure corrector rescue of apolipoprotein E4-associated neuropathology. J Med Chem 2012; 55:8997-9008. [PMID: 23013167 PMCID: PMC4904786 DOI: 10.1021/jm3008618] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An attractive strategy to treat proteinopathies (diseases caused by malformed or misfolded proteins) is to restore protein function by inducing proper three-dimensional structure. We hypothesized that this approach would be effective in reversing the detrimental effects of apolipoprotein (apo) E4, the major allele that significantly increases the risk of developing Alzheimer's disease and other neurodegenerative disorders. ApoE4's detrimental effects result from its altered protein conformation ("domain interaction"), making it highly susceptible to proteolytic cleavage and the generation of neurotoxic fragments. Here, we review apoE structure and function and how apoE4 causes neurotoxicity, and describe the identification of potent small-molecule-based "structure correctors" that induce proper apoE4 folding. SAR studies identified a series of small molecules that significantly reduced apoE4's neurotoxic effects in cultured neurons and a series that reduced apoE4 fragment levels in vivo, providing proof-of-concept for our approach. Structure-corrector-based therapies could prove to be highly effective for the treatment of many protein-misfolding diseases.
Collapse
Affiliation(s)
- Robert W Mahley
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California 94158, United States.
| | | |
Collapse
|
178
|
Galfrè E, Galeno L, Moran O. A potentiator induces conformational changes on the recombinant CFTR nucleotide binding domains in solution. Cell Mol Life Sci 2012; 69:3701-13. [PMID: 22752155 PMCID: PMC11114511 DOI: 10.1007/s00018-012-1049-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/14/2012] [Accepted: 05/30/2012] [Indexed: 01/23/2023]
Abstract
Nucleotide binding domains (NBD1 and NBD2) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, are responsible for controlling the gating of the chloride channel and are the putative binding sites for several candidate drugs in the disease treatment. We studied the effects of the application of 2-pyrimidin-7,8-benzoflavone (PBF), a strong potentiator of the CFTR, on the properties of recombinant and equimolar NBD1/NBD2 mixture in solution. The results indicate that the potentiator induces significant conformational changes of the NBD1/NBD2 dimer in solution. The potentiator does not modify the ATP binding constant, but reduces the ATP hydrolysis activity of the NBD1/NBD2 mixture. The intrinsic fluorescence and the guanidinium denaturation measurements indicate that the potentiator induces different conformational changes on the NBD1/NBD2 mixture in the presence and absence of ATP. It was confirmed from small-angle X-ray scattering experiments that, in absence of ATP, the NBD1/NBD2 dimer was disrupted by the potentiator, but in the presence of 2 mM ATP, the two NBDs kept dimerised, and a major change in the size and the shape of the structure was observed. We propose that these conformational changes could modify the NBDs-intracellular loop interaction in a way that would facilitate the open state of the channel.
Collapse
Affiliation(s)
- Elena Galfrè
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini, 6, 16149 Genoa, Italy
| | - Lauretta Galeno
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini, 6, 16149 Genoa, Italy
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini, 6, 16149 Genoa, Italy
| |
Collapse
|
179
|
He L, Kota P, Aleksandrov AA, Cui L, Jensen T, Dokholyan NV, Riordan JR. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein. FASEB J 2012; 27:536-45. [PMID: 23104983 DOI: 10.1096/fj.12-216119] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Most cystic fibrosis is caused by the deletion of a single amino acid (F508) from CFTR and the resulting misfolding and destabilization of the protein. Compounds identified by high-throughput screening to improve ΔF508 CFTR maturation have already entered clinical trials, and it is important to understand their mechanisms of action to further improve their efficacy. Here, we showed that several of these compounds, including the investigational drug VX-809, caused a much greater increase (5- to 10-fold) in maturation at 27 than at 37°C (<2-fold), and the mature product remained short-lived (T(1/2)∼4.5 h) and thermally unstable, even though its overall conformational state was similar to wild type, as judged by resistance to proteolysis and interdomain cross-linking. Consistent with its inability to restore thermodynamic stability, VX-809 stimulated maturation 2-5-fold beyond that caused by several different stabilizing modifications of NBD1 and the NBD1/CL4 interface. The compound also promoted maturation of several disease-associated processing mutants on the CL4 side of this interface. Although these effects may reflect an interaction of VX-809 with this interface, an interpretation supported by computational docking, it also rescued maturation of mutants in other cytoplasmic loops, either by allosteric effects or via additional sites of action. In addition to revealing the capabilities and some of the limitations of this important investigational drug, these findings clearly demonstrate that ΔF508 CFTR can be completely assembled and evade cellular quality control systems, while remaining thermodynamically unstable. He, L., Kota, P., Aleksandrov, A. A., Cui, L., Jensen, T., Dokholyan, N. V., Riordan, J. R. Correctors of ΔF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein.
Collapse
Affiliation(s)
- Lihua He
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7248, USA
| | | | | | | | | | | | | |
Collapse
|
180
|
Wang G, Duan DD. Regulation of activation and processing of the cystic fibrosis transmembrane conductance regulator (CFTR) by a complex electrostatic interaction between the regulatory domain and cytoplasmic loop 3. J Biol Chem 2012; 287:40484-92. [PMID: 23060444 DOI: 10.1074/jbc.m112.360214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND NEG2 regulates CFTR gating but the mechanism is unknown. RESULTS A putative NEG2-CL3 electrostatic attraction, possibly weakened by Arg-764/Arg-766 of the R domain, prohibited CFTR activation. A charge exchange between NEG2 and CL3 caused misprocessing. CONCLUSION Electrostatic regulation of CFTR activation and processing may be asymmetric at the CL3-R interface. SIGNIFICANCE The CL3-R interface is optimally designed for multiple regulations of CFTR functions. NEG2, a short C-terminal segment (817-838) of the unique regulatory (R) domain of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, has been reported to regulate CFTR gating in response to cAMP-dependent R domain phosphorylation. The underlying mechanism, however, is unclear. Here, Lys-946 of cytoplasmic loop 3 (CL3) is proposed as counter-ion of Asp-835, Asp-836, or Glu-838 of NEG2 to prevent the channel activation by PKA. Arg-764 or Arg-766 of the Ser-768 phosphorylation site of the R domain is proposed to promote the channel activation possibly by weakening the putative CL3-NEG2 electrostatic attraction. First, not only D835A, D836A, and E838A but also K946A reduced the PKA-dependent CFTR activation. Second, both K946D and D835R/D836R/E838R mutants were activated by ATP and curcumin to a different extent. Third, R764A and R766A mutants enhanced the PKA-dependent activation. However, it is very exciting that D835R/D836R/E838R and K946D/H950D and H950R exhibited normal channel processing and activity whereas D835R/D836R/E838R/K946D/H950D was fractionally misprocessed and silent in response to forskolin. Further, D836R and E838R played a critical role in the asymmetric electrostatic regulation of CFTR processing, and Ser-768 phosphorylation may not be involved. Thus, a complex interfacial interaction among CL3, NEG2, and the Ser-768 phosphorylation site may be responsible for the asymmetric electrostatic regulation of CFTR activation and processing.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA.
| | | |
Collapse
|
181
|
Molinski S, Eckford PDW, Pasyk S, Ahmadi S, Chin S, Bear CE. Functional Rescue of F508del-CFTR Using Small Molecule Correctors. Front Pharmacol 2012; 3:160. [PMID: 23055971 PMCID: PMC3458236 DOI: 10.3389/fphar.2012.00160] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/17/2012] [Indexed: 01/21/2023] Open
Abstract
High-throughput screens for small molecules that are effective in “correcting” the functional expression of F508del-CFTR have yielded several promising hits. Two such compounds are currently in clinical trial. Despite this success, it is clear that further advances will be required in order to restore 50% or greater of wild-type CFTR function to the airways of patients harboring the F508del-CFTR protein. Progress will be enhanced by our better understanding of the molecular and cellular defects caused by the F508del mutation, present in 90% of CF patients. The goal of this chapter is to review the current understanding of defects caused by F508del in the CFTR protein and in CFTR-mediated interactions important for its biosynthesis, trafficking, channel function, and stability at the cell surface. Finally, we will discuss the gaps in our knowledge regarding the mechanism of action of existing correctors, the unmet need to discover compounds which restore proper CFTR structure and function in CF affected tissues and new strategies for therapy development.
Collapse
Affiliation(s)
- Steven Molinski
- Programme in Molecular Structure and Function, Research Institute, Hospital for Sick Children Toronto, ON, Canada ; Department of Biochemistry, University of Toronto Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
182
|
Abstract
Cystic fibrosis is a lethal genetic disease caused by lack of functional cystic fibrosis transmembrane conductance regulator (CFTR) proteins at the apical surface of secretory epithelia. CFTR is a multidomain protein, containing five domains, and its functional structure is attained in a hierarchical folding process. Most CF-causing mutations in CFTR, including the most common mutation, a deletion of phenylalanine at position 508 (ΔF508), are unable to properly fold into this functional native three dimensional structure. Currently, no high-resolution structural information about full length CFTR exists. However, insight has been gained through examining homologous ABC transporter structures, molecular modeling, and high-resolution structures of individual, isolated CFTR domains. Taken together, these studies indicate that the prevalent ΔF508 mutation disrupts two essential steps during the development of the native structure: folding of the first nucleotide binding domain (NBD1) and its later association with the fourth intracellular loop (ICL4) in the second transmembrane domain (TMD2). Therapeutics to rescue ΔF508 and other mutants in CFTR can be targeted to correct defects that occur during the complex folding process. This article reviews the structural relationships between CFTR and ABC transporters and current knowledge about how CFTR attains its structure–with a focus on how this process is altered by CF-causing mutations in a manner targetable by therapeutics.
Collapse
Affiliation(s)
- Anna E Patrick
- Department of Physiology, University of Texas Southwestern Medical Center Dallas, TX, USA
| | | |
Collapse
|
183
|
Protein biophysics explains why highly abundant proteins evolve slowly. Cell Rep 2012; 2:249-56. [PMID: 22938865 DOI: 10.1016/j.celrep.2012.06.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/03/2012] [Accepted: 06/21/2012] [Indexed: 12/26/2022] Open
Abstract
The consistent observation across all kingdoms of life that highly abundant proteins evolve slowly demonstrates that cellular abundance is a key determinant of protein evolutionary rate. However, other empirical findings, such as the broad distribution of evolutionary rates, suggest that additional variables determine the rate of protein evolution. Here, we report that under the global selection against the cytotoxic effects of misfolded proteins, folding stability (ΔG), simultaneous with abundance, is a causal variable of evolutionary rate. Using both theoretical analysis and multiscale simulations, we demonstrate that the anticorrelation between the premutation ΔG and the arising mutational effect (ΔΔG), purely biophysical in origin, is a necessary requirement for abundance-evolutionary rate covariation. Additionally, we predict and demonstrate in bacteria that the strength of abundance-evolutionary rate correlation depends on the divergence time separating reference genomes. Altogether, these results highlight the intrinsic role of protein biophysics in the emerging universal patterns of molecular evolution.
Collapse
|
184
|
Chanoux RA, Rubenstein RC. Molecular Chaperones as Targets to Circumvent the CFTR Defect in Cystic Fibrosis. Front Pharmacol 2012; 3:137. [PMID: 22822398 PMCID: PMC3398409 DOI: 10.3389/fphar.2012.00137] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/25/2012] [Indexed: 01/07/2023] Open
Abstract
Cystic Fibrosis (CF) is the most common autosomal recessive lethal disorder among Caucasian populations. CF results from mutations and resulting dysfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a cyclic AMP-dependent chloride channel that is localized to the apical membrane in epithelial cells where it plays a key role in salt and water homeostasis. An intricate network of molecular chaperone proteins regulates CFTR’s proper maturation and trafficking to the apical membrane. Understanding and manipulation of this network may lead to therapeutics for CF in cases where mutant CFTR has aberrant trafficking.
Collapse
Affiliation(s)
- Rebecca A Chanoux
- Division of Pulmonary Medicine and Cystic Fibrosis Center, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | | |
Collapse
|
185
|
Recent advances and new perspectives in targeting CFTR for therapy of cystic fibrosis and enterotoxin-induced secretory diarrheas. Future Med Chem 2012; 4:329-45. [PMID: 22393940 DOI: 10.4155/fmc.12.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized primarily at the apical surfaces of epithelial cells lining airway, gut and exocrine glands, where it is responsible for transepithelial salt and water transport. Several human diseases are associated with an altered channel function of CFTR. Cystic fibrosis (CF) is caused by the loss or dysfunction of CFTR-channel activity resulting from the mutations on the gene; whereas enterotoxin-induced secretory diarrheas are caused by the hyperactivation of CFTR channel function. CFTR is a validated target for drug development to treat these diseases. Significant progress has been made in developing CFTR modulator therapy by means of high-throughput screening followed by hit-to-lead optimization. Several oral administrated investigational drugs are currently being evaluated in clinical trials for CF. Also importantly, new ideas and methodologies are emerging. Targeting CFTR-containing macromolecular complexes is one such novel approach.
Collapse
|
186
|
Dalton J, Kalid O, Schushan M, Ben-Tal N, Villà-Freixa J. New model of cystic fibrosis transmembrane conductance regulator proposes active channel-like conformation. J Chem Inf Model 2012; 52:1842-53. [PMID: 22747419 DOI: 10.1021/ci2005884] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an unusual ABC transporter, functioning as a chloride channel critical for fluid homeostasis in multiple organs. Disruption of CFTR function is associated with cystic fibrosis making it an attractive therapeutic target. In addition, CFTR blockers are being developed as potential antidiarrheals. CFTR drug discovery is hampered by the lack of high resolution structural data, and considerable efforts have been invested in modeling the channel structure. Although previously published CFTR models that have been made publicly available mostly agree with experimental data relating to the overall structure, they present the channel in an outward-facing conformation that does not agree with expected properties of a "channel-like" structure. Here, we make available a model of CFTR in such a "channel-like" conformation, derived by a unique modeling approach combining restrained homology modeling and ROSETTA refinement. In contrast to others, the present model is in agreement with expected channel properties such as pore shape, dimensions, solvent accessibility, and experimentally derived distances. We have used the model to explore the interaction of open channel blockers within the pore, revealing a common binding mode and ionic interaction with K95, in agreement with experimental data. The binding-site was further validated using a virtual screening enrichment experiment, suggesting the model might be suitable for drug discovery. In addition, we subjected the model to a molecular dynamics simulation, revealing previously unaddressed salt-bridge interactions that may be important for structure stability and pore-lining residues that may take part in Cl(-) conductance.
Collapse
Affiliation(s)
- James Dalton
- Computational Biochemistry and Biophysics Laboratory, Research Unit on Biomedical Informatics, IMIM Hospital del Mar and Universitat Pompeu Fabra, C/Doctor Aiguader, 88, 08003 Barcelona, Catalunya, Spain
| | | | | | | | | |
Collapse
|
187
|
Gyimesi G, Borsodi D, Sarankó H, Tordai H, Sarkadi B, Hegedűs T. ABCMdb: a database for the comparative analysis of protein mutations in ABC transporters, and a potential framework for a general application. Hum Mutat 2012; 33:1547-56. [PMID: 22693078 DOI: 10.1002/humu.22138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/29/2012] [Indexed: 11/08/2022]
Abstract
To overcome the pathological phenomena caused by altered function of ABC (ATP Binding Cassette) proteins, their mechanisms of action are extensively investigated, often involving the design of mutant constructs for experiments. Designing mutagenetic constructs, interpreting the result of mutagenetic experiments, and finding individual genetic variants require an extensive knowledge of previously published mutations. To aid the recapitulation of mutations described in the literature, we set up a database of ABC protein mutations (ABCMdb) extracted from full-text papers using an automatic mining approach. We have also developed a Web application interface to compare mutations in different ABC proteins using sequence alignments and to interactively map the mutations to 3D structural models. Currently our database contains protein mutations published for ABCB1, ABCB11, ABCC1, ABCC6, ABCC7, and the proteins of the ABCG subfamily. The database will be extended to include other members and subfamilies, and to provide information on whether or not a mutation is disease causing, represents a high-incidence polymorphism, or was generated only in vitro. The ABCMdb database should already help to compare the effects of mutations at homologous positions in different ABC proteins, and its interactive tools aim to advance the design of experiments for a wider range of proteins.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
188
|
Guerriero CJ, Brodsky JL. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol Rev 2012; 92:537-76. [PMID: 22535891 DOI: 10.1152/physrev.00027.2011] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein folding is a complex, error-prone process that often results in an irreparable protein by-product. These by-products can be recognized by cellular quality control machineries and targeted for proteasome-dependent degradation. The folding of proteins in the secretory pathway adds another layer to the protein folding "problem," as the endoplasmic reticulum maintains a unique chemical environment within the cell. In fact, a growing number of diseases are attributed to defects in secretory protein folding, and many of these by-products are targeted for a process known as endoplasmic reticulum-associated degradation (ERAD). Since its discovery, research on the mechanisms underlying the ERAD pathway has provided new insights into how ERAD contributes to human health during both normal and diseases states. Links between ERAD and disease are evidenced from the loss of protein function as a result of degradation, chronic cellular stress when ERAD fails to keep up with misfolded protein production, and the ability of some pathogens to coopt the ERAD pathway. The growing number of ERAD substrates has also illuminated the differences in the machineries used to recognize and degrade a vast array of potential clients for this pathway. Despite all that is known about ERAD, many questions remain, and new paradigms will likely emerge. Clearly, the key to successful disease treatment lies within defining the molecular details of the ERAD pathway and in understanding how this conserved pathway selects and degrades an innumerable cast of substrates.
Collapse
Affiliation(s)
- Christopher J Guerriero
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
189
|
Dynamics of a bacterial multidrug ABC transporter in the inward- and outward-facing conformations. Proc Natl Acad Sci U S A 2012; 109:10832-6. [PMID: 22711831 DOI: 10.1073/pnas.1204067109] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The study of membrane proteins remains a challenging task, and approaches to unravel their dynamics are scarce. Here, we applied hydrogen/deuterium exchange (HDX) coupled to mass spectrometry to probe the motions of a bacterial multidrug ATP-binding cassette (ABC) transporter, BmrA, in the inward-facing (resting state) and outward-facing (ATP-bound) conformations. Trypsin digestion and global or local HDX support the transition between inward- and outward-facing conformations during the catalytic cycle of BmrA. However, in the resting state, peptides from the two intracellular domains, especially ICD2, show a much faster HDX than in the closed state. This shows that these two subdomains are very flexible in this conformation. Additionally, molecular dynamics simulations suggest a large fluctuation of the Cα positions from ICD2 residues in the inward-facing conformation of a related transporter, MsbA. These results highlight the unexpected flexibility of ABC exporters in the resting state and underline the power of HDX coupled to mass spectrometry to explore conformational changes and dynamics of large membrane proteins.
Collapse
|
190
|
Liu X, O'Donnell N, Landstrom A, Skach WR, Dawson DC. Thermal instability of ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) channel function: protection by single suppressor mutations and inhibiting channel activity. Biochemistry 2012; 51:5113-24. [PMID: 22680785 DOI: 10.1021/bi300018e] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Deletion of Phe508 from cystic fibrosis transmembrane conductance regulator (CFTR) results in a temperature-sensitive folding defect that impairs protein maturation and chloride channel function. Both of these adverse effects, however, can be mitigated to varying extents by second-site suppressor mutations. To better understand the impact of second-site mutations on channel function, we compared the thermal sensitivity of CFTR channels in Xenopus oocytes. CFTR-mediated conductance of oocytes expressing wt or ΔF508 CFTR was stable at 22 °C and increased at 28 °C, a temperature permissive for ΔF508 CFTR expression in mammalian cells. At 37 °C, however, CFTR-mediated conductance was further enhanced, whereas that due to ΔF508 CFTR channels decreased rapidly toward background, a phenomenon referred to here as "thermal inactivation." Thermal inactivation of ΔF508 was mitigated by each of five suppressor mutations, I539T, R553M, G550E, R555K, and R1070W, but each exerted unique effects on the severity of, and recovery from, thermal inactivation. Another mutation, K1250A, known to increase open probability (P(o)) of ΔF508 CFTR channels, exacerbated thermal inactivation. Application of potentiators known to increase P(o) of ΔF508 CFTR channels at room temperature failed to protect channels from inactivation at 37 °C and one, PG-01, actually exacerbated thermal inactivation. Unstimulated ΔF508CFTR channels or those inhibited by CFTR(inh)-172 were partially protected from thermal inactivation, suggesting a possible inverse relationship between thermal stability and gating transitions. Thermal stability of channel function and temperature-sensitive maturation of the mutant protein appear to reflect related, but distinct facets of the ΔF508 CFTR conformational defect, both of which must be addressed by effective therapeutic modalities.
Collapse
Affiliation(s)
- Xuehong Liu
- Departments of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | | | |
Collapse
|
191
|
Corradi V, Singh G, Tieleman DP. The human transporter associated with antigen processing: molecular models to describe peptide binding competent states. J Biol Chem 2012; 287:28099-111. [PMID: 22700967 PMCID: PMC3431710 DOI: 10.1074/jbc.m112.381251] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human transporter associated with antigen processing (TAP) is a member of the ATP binding cassette (ABC) transporter superfamily. TAP plays an essential role in the antigen presentation pathway by translocating cytosolic peptides derived from proteasomal degradation into the endoplasmic reticulum lumen. Here, the peptides are loaded into major histocompatibility class I molecules to be in turn exposed at the cell surface for recognition by T-cells. TAP is a heterodimer formed by the association of two half-transporters, TAP1 and TAP2, with a typical ABC transporter core that consists of two nucleotide binding domains and two transmembrane domains. Despite the availability of biological data, a full understanding of the mechanism of action of TAP is limited by the absence of experimental structures of the full-length transporter. Here, we present homology models of TAP built on the crystal structures of P-glycoprotein, ABCB10, and Sav1866. The models represent the transporter in inward- and outward-facing conformations that could represent initial and final states of the transport cycle, respectively. We described conserved regions in the endoplasmic reticulum-facing loops with a role in the opening and closing of the cavity. We also identified conserved π-stacking interactions in the cytosolic part of the transmembrane domains that could explain the experimental data available for TAP1-Phe-265. Electrostatic potential calculations gave structural insights into the role of residues involved in peptide binding, such as TAP1-Val-288, TAP2-Cys-213, TAP2-Met-218. Moreover, these calculations identified additional residues potentially involved in peptide binding, in turn verified with replica exchange simulations performed on a peptide bound to the inward-facing models.
Collapse
Affiliation(s)
- Valentina Corradi
- Department of Biological Sciences and Institute for Biocomplexity and Informatics, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
192
|
Abstract
The transporter associated with antigen processing (TAP) is a prototype of an asymmetric ATP-binding cassette (ABC) transporter, which uses ATP binding and hydrolysis to translocate peptides from the cytosol to the lumen of the endoplasmic reticulum (ER). Here, we review molecular details of peptide binding and ATP binding and hydrolysis as well as the resulting allosteric cross-talk between the nucleotide-binding domains and the transmembrane domains that drive translocation of the solute across the ER membrane. We also discuss the general molecular architecture of ABC transporters and demonstrate the importance of structural and functional studies for a better understanding of the role of the noncanonical site of asymmetric ABC transporters. Several aspects of peptide binding and specificity illustrate details of peptide translocation by TAP. Furthermore, this ABC transporter forms the central part of the major histocompatibility complex class I (MHC I) peptide-loading machinery. Hence, TAP is confronted with a number of viral factors, which prevent antigen translocation and MHC I loading in virally infected cells. We review how these viral factors have been used as molecular tools to decipher mechanistic aspects of solute translocation and discuss how they can help in the structural analysis of TAP.
Collapse
Affiliation(s)
- Andreas Hinz
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/M., Germany
| | | |
Collapse
|
193
|
Cystic fibrosis: insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem 2012; 45:1132-44. [PMID: 22698459 DOI: 10.1016/j.clinbiochem.2012.05.034] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/15/2012] [Accepted: 05/28/2012] [Indexed: 12/14/2022]
Abstract
Cystic fibrosis is the most common life-threatening recessively inherited disease in Caucasians. Due to early provision of care in specialized reference centers and more comprehensive care, survival has improved over time. Despite great advances in supportive care and in our understanding of its pathophysiology, there is still no cure for the disease. Therapeutic strategies aimed at rescuing the abnormal protein are either being sought after or under investigation. This review highlights salient insights into pathophysiology and candidate molecules suitable for CFTR pharmacotherapy. Clinical trials using Ataluren, VX-809 and ivacaftor have provided encouraging data. Preclinical data with inhibitors of phosphodiesterase type 5, such as sildenafil and analogs, have highlighted their potential for CFTR pharmacotherapy. Because sildenafil and analogs are in clinical use for other clinical applications, research on this class of drugs might speed up the development of new therapies for CF.
Collapse
|
194
|
Coppinger JA, Hutt DM, Razvi A, Koulov AV, Pankow S, Yates JR, Balch WE. A chaperone trap contributes to the onset of cystic fibrosis. PLoS One 2012; 7:e37682. [PMID: 22701530 PMCID: PMC3365120 DOI: 10.1371/journal.pone.0037682] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 04/26/2012] [Indexed: 12/29/2022] Open
Abstract
Protein folding is the primary role of proteostasis network (PN) where chaperone interactions with client proteins determine the success or failure of the folding reaction in the cell. We now address how the Phe508 deletion in the NBD1 domain of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein responsible for cystic fibrosis (CF) impacts the binding of CFTR with cellular chaperones. We applied single ion reaction monitoring mass spectrometry (SRM-MS) to quantitatively characterize the stoichiometry of the heat shock proteins (Hsps) in CFTR folding intermediates in vivo and mapped the sites of interaction of the NBD1 domain of CFTR with Hsp90 in vitro. Unlike folding of WT-CFTR, we now demonstrate the presence of ΔF508-CFTR in a stalled folding intermediate in stoichiometric association with the core Hsps 40, 70 and 90, referred to as a ‘chaperone trap’. Culturing cells at 30 C resulted in correction of ΔF508-CFTR trafficking and function, restoring the sub-stoichiometric association of core Hsps observed for WT-CFTR. These results support the interpretation that ΔF508-CFTR is restricted to a chaperone-bound folding intermediate, a state that may contribute to its loss of trafficking and increased targeting for degradation. We propose that stalled folding intermediates could define a critical proteostasis pathway branch-point(s) responsible for the loss of function in misfolding diseases as observed in CF.
Collapse
Affiliation(s)
- Judith A Coppinger
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | | | | | | | | | | | | |
Collapse
|
195
|
Aleksandrov AA, Kota P, Cui L, Jensen T, Alekseev AE, Reyes S, He L, Gentzsch M, Aleksandrov LA, Dokholyan NV, Riordan JR. Allosteric modulation balances thermodynamic stability and restores function of ΔF508 CFTR. J Mol Biol 2012; 419:41-60. [PMID: 22406676 PMCID: PMC3891843 DOI: 10.1016/j.jmb.2012.03.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/29/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
Most cystic fibrosis is caused by a deletion of a single residue (F508) in CFTR (cystic fibrosis transmembrane conductance regulator) that disrupts the folding and biosynthetic maturation of the ion channel protein. Progress towards understanding the underlying mechanisms and overcoming the defect remains incomplete. Here, we show that the thermal instability of human ΔF508 CFTR channel activity evident in both cell-attached membrane patches and planar phospholipid bilayers is not observed in corresponding mutant CFTRs of several non-mammalian species. These more stable orthologs are distinguished from their mammalian counterparts by the substitution of proline residues at several key dynamic locations in first N-terminal nucleotide-binding domain (NBD1), including the structurally diverse region, the γ-phosphate switch loop, and the regulatory insertion. Molecular dynamics analyses revealed that addition of the prolines could reduce flexibility at these locations and increase the temperatures of unfolding transitions of ΔF508 NBD1 to that of the wild type. Introduction of these prolines experimentally into full-length human ΔF508 CFTR together with the already recognized I539T suppressor mutation, also in the structurally diverse region, restored channel function and thermodynamic stability as well as its trafficking to and lifetime at the cell surface. Thus, while cellular manipulations that circumvent its culling by quality control systems leave ΔF508 CFTR dysfunctional at physiological temperature, restoration of the delicate balance between the dynamic protein's inherent stability and channel activity returns a near-normal state.
Collapse
Affiliation(s)
- Andrei A. Aleksandrov
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Cystic Fibrosis Treatment and Research Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pradeep Kota
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Molecular and Cellular Biophysics Program, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Liying Cui
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Cystic Fibrosis Treatment and Research Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tim Jensen
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Cystic Fibrosis Treatment and Research Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexey E. Alekseev
- Department of Medicine, Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Santiago Reyes
- Department of Medicine, Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Lihua He
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Cystic Fibrosis Treatment and Research Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martina Gentzsch
- Department of Cell and Development Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Cystic Fibrosis Treatment and Research Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luba A. Aleksandrov
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Cystic Fibrosis Treatment and Research Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Molecular and Cellular Biophysics Program, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - John R. Riordan
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
- Cystic Fibrosis Treatment and Research Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
196
|
Masica DL, Sosnay PR, Cutting GR, Karchin R. Phenotype-optimized sequence ensembles substantially improve prediction of disease-causing mutation in cystic fibrosis. Hum Mutat 2012; 33:1267-74. [PMID: 22573477 DOI: 10.1002/humu.22110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 04/12/2012] [Indexed: 12/20/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) mutation is associated with a phenotypic spectrum that includes cystic fibrosis (CF). The disease liability of some common CFTR mutations is known, but rare mutations are seen in too few patients to categorize unequivocally, making genetic diagnosis difficult. Computational methods can predict the impact of mutation, but prediction specificity is often below that required for clinical utility. Here, we present a novel supervised learning approach for predicting CF from CFTR missense mutation. The algorithm begins by constructing custom multiple sequence alignments called phenotype-optimized sequence ensembles (POSEs). POSEs are constructed iteratively, by selecting sequences that optimize predictive performance on a training set of CFTR mutations of known clinical significance. Next, we predict CF disease liability from a different set of CFTR mutations (test-set mutations). This approach achieves improved prediction performance relative to popular methods recently assessed using the same test-set mutations. Of clinical significance, our method achieves 94% prediction specificity. Because databases such as HGMD and locus-specific mutation databases are growing rapidly, methods that automatically tailor their predictions for a specific phenotype may be of immediate utility. If the performance achieved here generalizes to other systems, the approach could be an excellent tool to help establish genetic diagnoses.
Collapse
Affiliation(s)
- David L Masica
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
197
|
Holleran JP, Glover ML, Peters KW, Bertrand CA, Watkins SC, Jarvik JW, Frizzell RA. Pharmacological rescue of the mutant cystic fibrosis transmembrane conductance regulator (CFTR) detected by use of a novel fluorescence platform. Mol Med 2012; 18:685-96. [PMID: 22396015 DOI: 10.2119/molmed.2012.00001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/28/2012] [Indexed: 12/25/2022] Open
Abstract
Numerous human diseases arise because of defects in protein folding, leading to their degradation in the endoplasmic reticulum. Among them is cystic fibrosis (CF), caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR ), an epithelial anion channel. The most common mutation, F508del, disrupts CFTR folding, which blocks its trafficking to the plasma membrane. We developed a fluorescence detection platform using fluorogen-activating proteins (FAPs) to directly detect FAP-CFTR trafficking to the cell surface using a cell-impermeant probe. By using this approach, we determined the efficacy of new corrector compounds, both alone and in combination, to rescue F508del-CFTR to the plasma membrane. Combinations of correctors produced additive or synergistic effects, improving the density of mutant CFTR at the cell surface up to ninefold over a single-compound treatment. The results correlated closely with assays of stimulated anion transport performed in polarized human bronchial epithelia that endogenously express F508del-CFTR. These findings indicate that the FAP-tagged constructs faithfully report mutant CFTR correction activity and that this approach should be useful as a screening assay in diseases that impair protein trafficking to the cell surface.
Collapse
Affiliation(s)
- John P Holleran
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | | | | | | | | | | | | |
Collapse
|
198
|
Gulyás-Kovács A. Integrated analysis of residue coevolution and protein structure in ABC transporters. PLoS One 2012; 7:e36546. [PMID: 22590562 PMCID: PMC3348156 DOI: 10.1371/journal.pone.0036546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/06/2012] [Indexed: 12/22/2022] Open
Abstract
Intraprotein side chain contacts can couple the evolutionary process of amino acid substitution at one position to that at another. This coupling, known as residue coevolution, may vary in strength. Conserved contacts thus not only define 3-dimensional protein structure, but also indicate which residue-residue interactions are crucial to a protein's function. Therefore, prediction of strongly coevolving residue-pairs helps clarify molecular mechanisms underlying function. Previously, various coevolution detectors have been employed separately to predict these pairs purely from multiple sequence alignments, while disregarding available structural information. This study introduces an integrative framework that improves the accuracy of such predictions, relative to previous approaches, by combining multiple coevolution detectors and incorporating structural contact information. This framework is applied to the ABC-B and ABC-C transporter families, which include the drug exporter P-glycoprotein involved in multidrug resistance of cancer cells, as well as the CFTR chloride channel linked to cystic fibrosis disease. The predicted coevolving pairs are further analyzed based on conformational changes inferred from outward- and inward-facing transporter structures. The analysis suggests that some pairs coevolved to directly regulate conformational changes of the alternating-access transport mechanism, while others to stabilize rigid-body-like components of the protein structure. Moreover, some identified pairs correspond to residues previously implicated in cystic fibrosis.
Collapse
Affiliation(s)
- Attila Gulyás-Kovács
- Laboratory of Cardiac/Membrane Physiology, Rockefeller University, New York, New York, United States of America.
| |
Collapse
|
199
|
El Hiani Y, Linsdell P. Role of the juxtamembrane region of cytoplasmic loop 3 in the gating and conductance of the cystic fibrosis transmembrane conductance regulator chloride channel. Biochemistry 2012; 51:3971-81. [PMID: 22545782 PMCID: PMC3381012 DOI: 10.1021/bi300065z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Opening and closing of the cystic fibrosis transmembrane conductance regulator chloride channel are controlled by interactions of ATP with its cytoplasmic nucleotide binding domains (NBDs). The NBDs are connected to the transmembrane pore via four cytoplasmic loops. These loops have been suggested to play roles both in channel gating and in forming a cytoplasmic extension of the channel pore. To investigate the structure and function of one of these cytoplasmic loops, we have used patch clamp recording to investigate the accessibility of cytoplasmically applied cysteine-reactive reagents to cysteines introduced into loop 3. We find that methanethiosulfonate (MTS) reagents modify cysteines introduced at 14 of 16 sites studied in the juxtamembrane region of loop 3, in all cases leading to inhibition of channel function. In most cases, both the functional effects of modification and the rate of modification were similar for negatively and positively charged MTS reagents. Single-channel recordings indicated that, at all sites, inhibition was the result of an MTS reagent-induced decrease in channel open probability; in no case was the Cl(-) conductance of open channels altered by modification. These results indicate that loop 3 is readily accessible to the cytoplasm and support the involvement of this region in the control of channel gating. However, our results do not support the hypothesis that this region is close enough to the Cl(-) permeation pathway to exert any influence on permeating Cl(-) ions. We propose that either the cytoplasmic pore is very wide or cytoplasmic Cl(-) ions use other routes to access the transmembrane pore.
Collapse
Affiliation(s)
- Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University , Halifax, Nova Scotia B3H 4R2, Canada
| | | |
Collapse
|
200
|
Norimatsu Y, Ivetac A, Alexander C, Kirkham J, O’Donnell N, Dawson DC, Sansom MS. Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore. Biochemistry 2012; 51:2199-212. [PMID: 22352759 PMCID: PMC3316148 DOI: 10.1021/bi201888a] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We developed molecular models for the cystic fibrosis transmembrane conductance regulator chloride channel based on the prokaryotic ABC transporter, Sav1866. Here we analyze predicted pore geometry and side-chain orientations for TM3, TM6, TM9, and TM12, with particular attention being paid to the location of the rate-limiting barrier for anion conduction. Side-chain orientations assayed by cysteine scanning were found to be from 77 to 90% in accord with model predictions. The predicted geometry of the anion conduction path was defined by a space-filling model of the pore and confirmed by visualizing the distribution of water molecules from a molecular dynamics simulation. The pore shape is that of an asymmetric hourglass, comprising a shallow outward-facing vestibule that tapers rapidly toward a narrow "bottleneck" linking the outer vestibule to a large inner cavity extending toward the cytoplasmic extent of the lipid bilayer. The junction between the outer vestibule and the bottleneck features an outward-facing rim marked by T338 in TM6 and I1131 in TM12, consistent with the observation that cysteines at both of these locations reacted with both channel-permeant and channel-impermeant, thiol-directed reagents. Conversely, cysteines substituted for S341 in TM6 or T1134 in TM12, predicted by the model to lie below the rim of the bottleneck, were found to react exclusively with channel-permeant reagents applied from the extracellular side. The predicted dimensions of the bottleneck are consistent with the demonstrated permeation of Cl(-), pseudohalide anions, water, and urea.
Collapse
Affiliation(s)
- Yohei Norimatsu
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| | - Anthony Ivetac
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| | - Christopher Alexander
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| | - John Kirkham
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| | - Nicolette O’Donnell
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| | - David C. Dawson
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| | - Mark S.P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| |
Collapse
|