151
|
Timeless-dependent DNA replication-coupled recombination promotes Kaposi's Sarcoma-associated herpesvirus episome maintenance and terminal repeat stability. J Virol 2013; 87:3699-709. [PMID: 23325691 DOI: 10.1128/jvi.02211-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's Sarcoma-associated herpesvirus (KSHV) is maintained as a stable episome in latently infected pleural effusion lymphoma (PEL) cells. Episome maintenance is conferred by the binding of the KSHV-encoded LANA protein to the viral terminal repeats (TR). Here, we show that DNA replication in the KSHV TR is coupled with DNA recombination and mediated in part through the cellular replication fork protection factors Timeless (Tim) and Tipin. We show by two-dimensional (2D) agarose gel electrophoresis that replication forks naturally stall and form recombination-like structures at the TR during an unperturbed cell cycle. Chromatin immunoprecipitation (ChIP) assays revealed that Tim and Tipin are selectively enriched at the KSHV TR during S phase and in a LANA-dependent manner. Tim depletion inhibited LANA-dependent TR DNA replication and caused the loss of KSHV episomes from latently infected PEL cells. Tim depletion resulted in the aberrant accumulation of recombination structures and arrested MCM helicase at TR. Tim depletion did not induce the KSHV lytic cycle or apoptotic cell death. We propose that KSHV episome maintenance requires Tim-assisted replication fork protection at the viral terminal repeats and that Tim-dependent recombination-like structures form at TR to promote DNA repeat stability and viral genome maintenance.
Collapse
|
152
|
Mizuno K, Miyabe I, Schalbetter S, Carr AM, Murray JM. Recombination-restarted replication makes inverted chromosome fusions at inverted repeats. Nature 2013; 493:246-9. [PMID: 23178809 PMCID: PMC3605775 DOI: 10.1038/nature11676] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/15/2012] [Indexed: 01/24/2023]
Abstract
Impediments to DNA replication are known to induce gross chromosomal rearrangements (GCRs) and copy-number variations (CNVs). GCRs and CNVs underlie human genomic disorders and are a feature of cancer. During cancer development, environmental factors and oncogene-driven proliferation promote replication stress. Resulting GCRs and CNVs are proposed to contribute to cancer development and therapy resistance. When stress arrests replication, the replisome remains associated with the fork DNA (stalled fork) and is protected by the inter-S-phase checkpoint. Stalled forks efficiently resume when the stress is relieved. However, if the polymerases dissociate from the fork (fork collapse) or the fork structure breaks (broken fork), replication restart can proceed either by homologous recombination or microhomology-primed re-initiation. Here we ascertain the consequences of replication with a fork restarted by homologous recombination in fission yeast. We identify a new mechanism of chromosomal rearrangement through the observation that recombination-restarted forks have a considerably high propensity to execute a U-turn at small inverted repeats (up to 1 in 40 replication events). We propose that the error-prone nature of restarted forks contributes to the generation of GCRs and gene amplification in cancer, and to non-recurrent CNVs in genomic disorders.
Collapse
Affiliation(s)
- Ken’Ichi Mizuno
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex, BN1 9RQ, United Kingdom
| | - Izumi Miyabe
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex, BN1 9RQ, United Kingdom
| | - Stephanie Schalbetter
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex, BN1 9RQ, United Kingdom
| | - Antony M. Carr
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex, BN1 9RQ, United Kingdom
| | - Johanne M. Murray
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex, BN1 9RQ, United Kingdom
| |
Collapse
|
153
|
Single-stranded annealing induced by re-initiation of replication origins provides a novel and efficient mechanism for generating copy number expansion via non-allelic homologous recombination. PLoS Genet 2013; 9:e1003192. [PMID: 23300490 PMCID: PMC3536649 DOI: 10.1371/journal.pgen.1003192] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/08/2012] [Indexed: 11/24/2022] Open
Abstract
Copy number expansions such as amplifications and duplications contribute to human phenotypic variation, promote molecular diversification during evolution, and drive the initiation and/or progression of various cancers. The mechanisms underlying these copy number changes are still incompletely understood, however. We recently demonstrated that transient, limited re-replication from a single origin in Saccharomyces cerevisiae efficiently induces segmental amplification of the re-replicated region. Structural analyses of such re-replication induced gene amplifications (RRIGA) suggested that RRIGA could provide a new mechanism for generating copy number variation by non-allelic homologous recombination (NAHR). Here we elucidate this new mechanism and provide insight into why it is so efficient. We establish that sequence homology is both necessary and sufficient for repetitive elements to participate in RRIGA and show that their recombination occurs by a single-strand annealing (SSA) mechanism. We also find that re-replication forks are prone to breakage, accounting for the widespread DNA damage associated with deregulation of replication proteins. These breaks appear to stimulate NAHR between re-replicated repeat sequences flanking a re-initiating replication origin. Our results support a RRIGA model where the expansion of a re-replication bubble beyond flanking homologous sequences followed by breakage at both forks in trans provides an ideal structural context for SSA–mediated NAHR to form a head-to-tail duplication. Given the remarkable efficiency of RRIGA, we suggest it may be an unappreciated contributor to copy number expansions in both disease and evolution. Duplications and amplifications of chromosomal segments are frequently observed in eukaryotic genomes, including both normal and cancerous human genomes. These copy number variations contribute to the phenotypic variation upon which natural selection acts. For example, the amplification of genes whose excessive copy number facilitates uncontrolled cell division is often selected for during tumor development. Copy number variations can often arise when repetitive sequence elements, which are dispersed throughout eukaryotic genomes, undergo a rearrangement called non-allelic homologous recombination. Exactly how these rearrangements occur is poorly understood. Here, using budding yeast to model this class of copy number variation, we uncover a new and highly efficient mechanism by which these variations can be generated. The precipitating event is the aberrant re-initiation of DNA replication at a replication origin. Normally the hundreds to thousands of origins scattered throughout a eukaryotic genome are tightly controlled such that each is permitted to initiate only once per cell cycle. However, disruptions in these controls can allow origins to re-initiate, and we show how the resulting DNA re-replication structure can be readily converted into a tandem duplication via non-allelic homologous recombination. Hence, the re-initiation of DNA replication is a potential source of copy number variation both in disease and during evolution.
Collapse
|
154
|
Dittwald P, Gambin T, Gonzaga-Jauregui C, Carvalho CM, Lupski JR, Stankiewicz P, Gambin A. Inverted low-copy repeats and genome instability--a genome-wide analysis. Hum Mutat 2013; 34:210-20. [PMID: 22965494 PMCID: PMC3738003 DOI: 10.1002/humu.22217] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/30/2012] [Indexed: 01/12/2023]
Abstract
Inverse paralogous low-copy repeats (IP-LCRs) can cause genome instability by nonallelic homologous recombination (NAHR)-mediated balanced inversions. When disrupting a dosage-sensitive gene(s), balanced inversions can lead to abnormal phenotypes. We delineated the genome-wide distribution of IP-LCRs >1 kB in size with >95% sequence identity and mapped the genes, potentially intersected by an inversion, that overlap at least one of the IP-LCRs. Remarkably, our results show that 12.0% of the human genome is potentially susceptible to such inversions and 942 genes, 99 of which are on the X chromosome, are predicted to be disrupted secondary to such an inversion! In addition, IP-LCRs larger than 800 bp with at least 98% sequence identity (duplication/triplication facilitating IP-LCRs, DTIP-LCRs) were recently implicated in the formation of complex genomic rearrangements with a duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) structure by a replication-based mechanism involving a template switch between such inverted repeats. We identified 1,551 DTIP-LCRs that could facilitate DUP-TRP/INV-DUP formation. Remarkably, 1,445 disease-associated genes are at risk of undergoing copy-number gain as they map to genomic intervals susceptible to the formation of DUP-TRP/INV-DUP complex rearrangements. We implicate inverted LCRs as a human genome architectural feature that could potentially be responsible for genomic instability associated with many human disease traits.
Collapse
Affiliation(s)
- Piotr Dittwald
- Institute of Informatics, University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | | | - Claudia M.B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Pediatrics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Anna Gambin
- Institute of Informatics, University of Warsaw, Warsaw, Poland
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
155
|
Marotta M, Chen X, Inoshita A, Stephens R, Budd GT, Crowe JP, Lyons J, Kondratova A, Tubbs R, Tanaka H. A common copy-number breakpoint of ERBB2 amplification in breast cancer colocalizes with a complex block of segmental duplications. Breast Cancer Res 2012. [PMID: 23181561 PMCID: PMC4053137 DOI: 10.1186/bcr3362] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Segmental duplications (low-copy repeats) are the recently duplicated genomic segments in the human genome that display nearly identical (> 90%) sequences and account for about 5% of euchromatic regions. In germline, duplicated segments mediate nonallelic homologous recombination and thus cause both non-disease-causing copy-number variants and genomic disorders. To what extent duplicated segments play a role in somatic DNA rearrangements in cancer remains elusive. Duplicated segments often cluster and form genomic blocks enriched with both direct and inverted repeats (complex genomic regions). Such complex regions could be fragile and play a mechanistic role in the amplification of the ERBB2 gene in breast tumors, because repeated sequences are known to initiate gene amplification in model systems. Methods We conducted polymerase chain reaction (PCR)-based assays for primary breast tumors and analyzed publically available array-comparative genomic hybridization data to map a common copy-number breakpoint in ERBB2-amplified primary breast tumors. We further used molecular, bioinformatics, and population-genetics approaches to define duplication contents, structural variants, and haplotypes within the common breakpoint. Results We found a large (> 300-kb) block of duplicated segments that was colocalized with a common-copy number breakpoint for ERBB2 amplification. The breakpoint that potentially initiated ERBB2 amplification localized in a region 1.5 megabases (Mb) on the telomeric side of ERBB2. The region is very complex, with extensive duplications of KRTAP genes, structural variants, and, as a result, a paucity of single-nucleotide polymorphism (SNP) markers. Duplicated segments are varied in size and degree of sequence homology, indicating that duplications have occurred recurrently during genome evolution. Conclusions Amplification of the ERBB2 gene in breast tumors is potentially initiated by a complex region that has unusual genomic features and thus requires rigorous, labor-intensive investigation. The haplotypes we provide could be useful to identify the potential association between the complex region and ERBB2 amplification.
Collapse
|
156
|
Walsh E, Wang X, Lee MY, Eckert KA. Mechanism of replicative DNA polymerase delta pausing and a potential role for DNA polymerase kappa in common fragile site replication. J Mol Biol 2012; 425:232-43. [PMID: 23174185 DOI: 10.1016/j.jmb.2012.11.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/12/2012] [Accepted: 11/12/2012] [Indexed: 11/16/2022]
Abstract
Common fragile sites (CFSs) are hot spots of chromosomal breakage, and CFS breakage models involve perturbations of DNA replication. Here, we analyzed the contribution of specific repetitive DNA sequence elements within CFSs to the inhibition of DNA synthesis by replicative and specialized DNA polymerases (Pols). The efficiency of in vitro DNA synthesis was quantitated using templates corresponding to regions within FRA16D and FRA3B harboring AT-rich microsatellite and quasi-palindrome (QP) sequences. QPs were predicted to form stems of ~75-100% self-homology, separated by 3-9 bases of intervening sequences. Analysis of DNA synthesis progression by human Pol δ demonstrated significant synthesis perturbation both at [A](n) and [TA](n) repeats in a length-dependent manner and at short (<40 base pairs) QP sequences. DNA synthesis by the Y-family polymerase κ was significantly more efficient than Pol δ through both types of repetitive elements. Using DNA trap experiments, we show that Pol δ pauses within CFS sequences are sites of enzyme dissociation, and dissociation was observed in the presence of RFC-loaded PCNA. We propose that enrichment of microsatellite and QP elements at CFS regions contributes to fragility by perturbing replication through multiple mechanisms, including replicative Pol pausing and dissociation. Our finding that Pol δ dissociates at specific CFS sequences is significant, since dissociation of the replication machinery and inability to efficiently recover the replication fork can lead to fork collapse and/or formation of double-strand breaks in vivo. Our biochemical studies also extend the potential involvement of Y-family polymerases in CFS maintenance to include polymerase κ.
Collapse
Affiliation(s)
- Erin Walsh
- Cellular and Molecular Biology Graduate Program, Penn State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
157
|
Abstract
The eukaryotic cell replicates its chromosomal DNA with almost absolute fidelity in the course of every cell cycle. This accomplishment is remarkable considering that the conditions for DNA replication are rarely ideal. The replication machinery encounters a variety of obstacles on the chromosome, including damaged template DNA. In addition, a number of chromosome regions are considered to be difficult to replicate owing to DNA secondary structures and DNA binding proteins required for various transactions on the chromosome. Under these conditions, replication forks stall or break, posing grave threats to genomic integrity. How does the cell combat such stressful conditions during DNA replication? The replication fork protection complex (FPC) may help answer this question. Recent studies have demonstrated that the FPC is required for the smooth passage of replication forks at difficult-to-replicate genomic regions and plays a critical role in coordinating multiple genome maintenance processes at the replication fork.
Collapse
Affiliation(s)
- Adam R. Leman
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine; Philadelphia, PA USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine; Philadelphia, PA USA
| |
Collapse
|
158
|
Iraqui I, Chekkal Y, Jmari N, Pietrobon V, Fréon K, Costes A, Lambert SAE. Recovery of arrested replication forks by homologous recombination is error-prone. PLoS Genet 2012; 8:e1002976. [PMID: 23093942 PMCID: PMC3475662 DOI: 10.1371/journal.pgen.1002976] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/08/2012] [Indexed: 11/19/2022] Open
Abstract
Homologous recombination is a universal mechanism that allows repair of DNA and provides support for DNA replication. Homologous recombination is therefore a major pathway that suppresses non-homology-mediated genome instability. Here, we report that recovery of impeded replication forks by homologous recombination is error-prone. Using a fork-arrest-based assay in fission yeast, we demonstrate that a single collapsed fork can cause mutations and large-scale genomic changes, including deletions and translocations. Fork-arrest-induced gross chromosomal rearrangements are mediated by inappropriate ectopic recombination events at the site of collapsed forks. Inverted repeats near the site of fork collapse stimulate large-scale genomic changes up to 1,500 times over spontaneous events. We also show that the high accuracy of DNA replication during S-phase is impaired by impediments to fork progression, since fork-arrest-induced mutation is due to erroneous DNA synthesis during recovery of replication forks. The mutations caused are small insertions/duplications between short tandem repeats (micro-homology) indicative of replication slippage. Our data establish that collapsed forks, but not stalled forks, recovered by homologous recombination are prone to replication slippage. The inaccuracy of DNA synthesis does not rely on PCNA ubiquitination or trans-lesion-synthesis DNA polymerases, and it is not counteracted by mismatch repair. We propose that deletions/insertions, mediated by micro-homology, leading to copy number variations during replication stress may arise by progression of error-prone replication forks restarted by homologous recombination.
Collapse
Affiliation(s)
- Ismail Iraqui
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS, UMR3348, Centre Universitaire, Orsay, France
| | - Yasmina Chekkal
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS, UMR3348, Centre Universitaire, Orsay, France
| | - Nada Jmari
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS, UMR3348, Centre Universitaire, Orsay, France
| | - Violena Pietrobon
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS, UMR3348, Centre Universitaire, Orsay, France
| | - Karine Fréon
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS, UMR3348, Centre Universitaire, Orsay, France
| | - Audrey Costes
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS, UMR3348, Centre Universitaire, Orsay, France
| | - Sarah A. E. Lambert
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS, UMR3348, Centre Universitaire, Orsay, France
- * E-mail:
| |
Collapse
|
159
|
Liu G, Myers S, Chen X, Bissler JJ, Sinden RR, Leffak M. Replication fork stalling and checkpoint activation by a PKD1 locus mirror repeat polypurine-polypyrimidine (Pu-Py) tract. J Biol Chem 2012; 287:33412-23. [PMID: 22872635 DOI: 10.1074/jbc.m112.402503] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA sequences prone to forming noncanonical structures (hairpins, triplexes, G-quadruplexes) cause DNA replication fork stalling, activate DNA damage responses, and represent hotspots of genomic instability associated with human disease. The 88-bp asymmetric polypurine-polypyrimidine (Pu-Py) mirror repeat tract from the human polycystic kidney disease (PKD1) intron 21 forms non-B DNA secondary structures in vitro. We show that the PKD1 mirror repeat also causes orientation-dependent fork stalling during replication in vitro and in vivo. When integrated alongside the c-myc replicator at an ectopic chromosomal site in the HeLa genome, the Pu-Py mirror repeat tract elicits a polar replication fork barrier. Increased replication protein A (RPA), Rad9, and ataxia telangiectasia- and Rad3-related (ATR) checkpoint protein binding near the mirror repeat sequence suggests that the DNA damage response is activated upon replication fork stalling. Moreover, the proximal c-myc origin of replication was not required to cause orientation-dependent checkpoint activation. Cells expressing the replication fork barrier display constitutive Chk1 phosphorylation and continued growth, i.e. checkpoint adaptation. Excision of the Pu-Py mirror repeat tract abrogates the DNA damage response. Adaptation to Chk1 phosphorylation in cells expressing the replication fork barrier may allow the accumulation of mutations that would otherwise be remediated by the DNA damage response.
Collapse
Affiliation(s)
- Guoqi Liu
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA.
| | | | | | | | | | | |
Collapse
|
160
|
Leman AR, Dheekollu J, Deng Z, Lee SW, Das MM, Lieberman PM, Noguchi E. Timeless preserves telomere length by promoting efficient DNA replication through human telomeres. Cell Cycle 2012; 11:2337-47. [PMID: 22672906 PMCID: PMC3383593 DOI: 10.4161/cc.20810] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A variety of telomere protection programs are utilized to preserve telomere structure. However, the complex nature of telomere maintenance remains elusive. The Timeless protein associates with the replication fork and is thought to support efficient progression of the replication fork through natural impediments, including replication fork block sites. However, the mechanism by which Timeless regulates such genomic regions is not understood. Here, we report the role of Timeless in telomere length maintenance. We demonstrate that Timeless depletion leads to telomere shortening in human cells. This length maintenance is independent of telomerase, and Timeless depletion causes increased levels of DNA damage, leading to telomere aberrations. We also show that Timeless is associated with Shelterin components TRF1 and TRF2. Timeless depletion slows telomere replication in vitro, and Timeless-depleted cells fail to maintain TRF1-mediated accumulation of replisome components at telomeric regions. Furthermore, telomere replication undergoes a dramatic delay in Timeless-depleted cells. These results suggest that Timeless functions together with TRF1 to prevent fork collapse at telomere repeat DNA and ensure stable maintenance of telomere length and integrity.
Collapse
Affiliation(s)
- Adam R. Leman
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine; Philadelphia, PA USA
| | | | - Zhong Deng
- The Wistar Institute; Philadelphia, PA USA
| | - Seung Woo Lee
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine; Philadelphia, PA USA
| | - Mukund M. Das
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine; Philadelphia, PA USA
| | | | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine; Philadelphia, PA USA
| |
Collapse
|
161
|
Liu G, Leffak M. Instability of (CTG)n•(CAG)n trinucleotide repeats and DNA synthesis. Cell Biosci 2012; 2:7. [PMID: 22369689 PMCID: PMC3310812 DOI: 10.1186/2045-3701-2-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/27/2012] [Indexed: 12/21/2022] Open
Abstract
Expansion of (CTG)n•(CAG)n trinucleotide repeat (TNR) microsatellite sequences is the cause of more than a dozen human neurodegenerative diseases. (CTG)n and (CAG)n repeats form imperfectly base paired hairpins that tend to expand in vivo in a length-dependent manner. Yeast, mouse and human models confirm that (CTG)n•(CAG)n instability increases with repeat number, and implicate both DNA replication and DNA damage response mechanisms in (CTG)n•(CAG)n TNR expansion and contraction. Mutation and knockdown models that abrogate the expression of individual genes might also mask more subtle, cumulative effects of multiple additional pathways on (CTG)n•(CAG)n instability in whole animals. The identification of second site genetic modifiers may help to explain the variability of (CTG)n•(CAG)n TNR instability patterns between tissues and individuals, and offer opportunities for prognosis and treatment.
Collapse
Affiliation(s)
- Guoqi Liu
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| | | |
Collapse
|
162
|
Altered replication in human cells promotes DMPK (CTG)(n) · (CAG)(n) repeat instability. Mol Cell Biol 2012; 32:1618-32. [PMID: 22354993 DOI: 10.1128/mcb.06727-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is associated with expansion of (CTG)(n) · (CAG)(n) trinucleotide repeats (TNRs) in the 3' untranslated region (UTR) of the DMPK gene. Replication origins are cis-acting elements that potentiate TNR instability; therefore, we mapped replication initiation sites and prereplication complex protein binding within the ~10-kb DMPK/SIX5 locus in non-DM1 and DM1 cells. Two origins, IS(DMPK) and IS(SIX5), flanked the (CTG)(n) · (CAG)(n) TNRs in control cells and in DM1 cells. Orc2 and Mcm4 bound near each of the replication initiation sites, but a dramatic change in (CTG)(n) · (CAG)(n) replication polarity was not correlated with TNR expansion. To test whether (CTG)(n) · (CAG)(n) TNRs are cis-acting elements of instability in human cells, model cell lines were created by integration of cassettes containing the c-myc replication origin and (CTG)(n) · (CAG)(n) TNRs in HeLa cells. Replication forks were slowed by (CTG)(n) · (CAG)(n) TNRs in a length-dependent manner independent of replication polarity, implying that expanded (CTG)(n) · (CAG)(n) TNRs lead to replication stress. Consistent with this prediction, TNR instability increased in the HeLa model cells and DM1 cells upon small interfering RNA (siRNA) knockdown of the fork stabilization protein Claspin, Timeless, or Tipin. These results suggest that aberrant DNA replication and TNR instability are linked in DM1 cells.
Collapse
|
163
|
Zhu J, Nguyen MT, Nakamura E, Yang J, Mackem S. Cre-mediated recombination can induce apoptosis in vivo by activating the p53 DNA damage-induced pathway. Genesis 2012; 50:102-11. [PMID: 21913308 PMCID: PMC3273649 DOI: 10.1002/dvg.20799] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 08/30/2011] [Accepted: 09/01/2011] [Indexed: 01/06/2023]
Abstract
Cre-mediated apoptosis has been observed in many contexts in mice expressing Cre-recombinase and can confound the analysis of genetically engineered conditional mutant or transgenic alleles. Several mechanisms have been proposed to explain this phenomenon. We find that the degree of apoptosis induced correlates roughly with the copy number of loxP sites present in the genome and that some level of increased apoptosis accompanies the presence of even only a few loxP sites, as occurs in conditional floxed alleles. Cre-induced apoptosis in this context is completely p53-dependent, suggesting that the apoptosis is stimulated by p53 activation in response to DNA damage incurred during the process of Cre-mediated recombination.
Collapse
Affiliation(s)
| | | | | | - Junming Yang
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, MD
| | - Susan Mackem
- author for correspondence: Susan Mackem, Center for Cancer Research, NCI-Frederick, Cancer & Developmental Biology Laboratory, 1050 Boyles St., Bldg 539, Rm 121A, Frederick, MD 21702
| |
Collapse
|
164
|
Guillén Y, Ruiz A. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution. BMC Genomics 2012; 13:53. [PMID: 22296923 PMCID: PMC3355041 DOI: 10.1186/1471-2164-13-53] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/01/2012] [Indexed: 01/17/2023] Open
Abstract
Background Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. Results In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. Conclusions D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution.
Collapse
Affiliation(s)
- Yolanda Guillén
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | | |
Collapse
|
165
|
Clapham KR, Yu TW, Ganesh VS, Barry B, Chan Y, Mei D, Parrini E, Funalot B, Dupuis L, Nezarati MM, du Souich C, van Karnebeek C, Guerrini R, Walsh CA. FLNA genomic rearrangements cause periventricular nodular heterotopia. Neurology 2012; 78:269-78. [PMID: 22238415 DOI: 10.1212/wnl.0b013e31824365e4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify copy number variant (CNV) causes of periventricular nodular heterotopia (PNH) in patients for whom FLNA sequencing is negative. METHODS Screening of 35 patients from 33 pedigrees on an Affymetrix 6.0 microarray led to the identification of one individual bearing a CNV that disrupted FLNA. FLNA-disrupting CNVs were also isolated in 2 other individuals by multiplex ligation probe amplification. These 3 cases were further characterized by high-resolution oligo array comparative genomic hybridization (CGH), and the precise junctional breakpoints of the rearrangements were identified by PCR amplification and sequencing. RESULTS We report 3 cases of PNH caused by nonrecurrent genomic rearrangements that disrupt one copy of FLNA. The first individual carried a 113-kb deletion that removes all but the first exon of FLNA. A second patient harbored a complex rearrangement including a deletion of the 3' end of FLNA accompanied by a partial duplication event. A third patient bore a 39-kb deletion encompassing all of FLNA and the neighboring gene EMD. High-resolution oligo array CGH of the FLNA locus suggests distinct molecular mechanisms for each of these rearrangements, and implicates nearby low copy repeats in their pathogenesis. CONCLUSIONS These results demonstrate that FLNA is prone to pathogenic rearrangements, and highlight the importance of screening for CNVs in individuals with PNH lacking FLNA point mutations.
Collapse
Affiliation(s)
- K R Clapham
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Prakash A, Borgstahl GEO. The structure and function of replication protein A in DNA replication. Subcell Biochem 2012; 62:171-96. [PMID: 22918586 DOI: 10.1007/978-94-007-4572-8_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In all organisms from bacteria and archaea to eukarya, single-stranded DNA binding proteins play an essential role in most, if not all, nuclear metabolism involving single-stranded DNA (ssDNA). Replication protein A (RPA), the major eukaryotic ssDNA binding protein, has two important roles in DNA metabolism: (1) in binding ssDNA to protect it and to keep it unfolded, and (2) in coordinating the assembly and disassembly of numerous proteins and protein complexes during processes such as DNA replication. Since its discovery as a vital player in the process of replication, RPAs roles in recombination and DNA repair quickly became evident. This chapter summarizes the current understanding of RPA's roles in replication by reviewing the available structural data, DNA-binding properties, interactions with various replication proteins, and interactions with DNA repair proteins when DNA replication is stalled.
Collapse
Affiliation(s)
- Aishwarya Prakash
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Given Medical Building, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | | |
Collapse
|
167
|
Fusco F, Paciolla M, Napolitano F, Pescatore A, D'Addario I, Bal E, Lioi MB, Smahi A, Miano MG, Ursini MV. Genomic architecture at the Incontinentia Pigmenti locus favours de novo pathological alleles through different mechanisms. Hum Mol Genet 2011; 21:1260-71. [PMID: 22121116 DOI: 10.1093/hmg/ddr556] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IKBKG/NEMO gene mutations cause an X-linked, dominant neuroectodermal disorder named Incontinentia Pigmenti (IP). Located at Xq28, IKBKG/NEMO has a unique genomic organization, as it is part of a segmental duplication or low copy repeat (LCR1-LCR2, >99% identical) containing the gene and its pseudogene copy (IKBKGP). In the opposite direction and outside LCR1, IKBKG/NEMO partially overlaps G6PD, whose mutations cause a common X-linked human enzymopathy. The two LCRs in the IKBKG/NEMO locus are able to recombine through non-allelic homologous recombination producing either a pathological recurrent exon 4-10 IKBKG/NEMO deletion (IKBKGdel) or benign small copy number variations. We here report that the local high frequency of micro/macro-homologies, tandem repeats and repeat/repetitive sequences make the IKBKG/NEMO locus susceptible to novel pathological IP alterations. Indeed, we describe the first two independent instances of inter-locus gene conversion, occurring between the two LCRs, that copies the IKBKGP pseudogene variants into the functional IKBKG/NEMO, causing the de novo occurrence of p.Glu390ArgfsX61 and the IKBKGdel mutations, respectively. Subsequently, by investigating a group of 20 molecularly unsolved IP subjects using a high-density quantitative polymerase chain reaction assay, we have identified seven unique de novo deletions varying from 4.8 to ∼115 kb in length. Each deletion removes partially or completely both IKBKG/NEMO and the overlapping G6PD, thereby uncovering the first deletions disrupting the G6PD gene which were found in patients with IP. Interestingly, the 4.8 kb deletion removes the conserved bidirectional promoterB, shared by the two overlapping IKBKG/NEMO and G6PD genes, leaving intact the alternative IKBKG/NEMO unidirectional promoterA. This promoter, although active in the keratinocytes of the basal dermal layer, is down-regulated during late differentiation. Genomic analysis at the breakpoint sites indicated that other mutational forces, such as non-homologous end joining, Alu-Alu-mediated recombination and replication-based events, might enhance the vulnerability of the IP locus to produce de novo pathological IP alleles.
Collapse
Affiliation(s)
- Francesca Fusco
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, IGB-CNR, Naples 80131, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Holkers M, de Vries AAF, Gonçalves MAFV. Nonspaced inverted DNA repeats are preferential targets for homology-directed gene repair in mammalian cells. Nucleic Acids Res 2011; 40:1984-99. [PMID: 22080552 PMCID: PMC3300023 DOI: 10.1093/nar/gkr976] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
DNA repeats constitute potential sites for the nucleation of secondary structures such as hairpins and cruciforms. Studies performed mostly in bacteria and yeast showed that these noncanonical DNA structures are breakage-prone, making them candidate targets for cellular DNA repair pathways. Possible culprits for fragility at repetitive DNA sequences include replication and transcription as well as the action of structure–specific nucleases. Despite their patent biological relevance, the parameters governing DNA repeat-associated chromosomal transactions remain ill-defined. Here, we established an episomal recombination system based on donor and acceptor complementary DNA templates to investigate the role of direct and inverted DNA repeats in homologous recombination (HR) in mammalian cells. This system allowed us also to ascertain in a stringent manner the impact of repetitive sequence replication on homology-directed gene repair. We found that nonspaced DNA repeats can, per se, engage the HR pathway of the cell and that this process is primarily dependent on their spacing and relative arrangement (i.e. parallel or antiparallel) rather than on their sequence. Indeed, our data demonstrate that contrary to direct and spaced inverted repeats, nonspaced inverted repeats are intrinsically recombinogenic motifs in mammalian cells lending experimental support to their role in genome dynamics in higher eukaryotes.
Collapse
Affiliation(s)
- Maarten Holkers
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | | | | |
Collapse
|
169
|
Carr AM, Paek AL, Weinert T. DNA replication: failures and inverted fusions. Semin Cell Dev Biol 2011; 22:866-74. [PMID: 22020070 DOI: 10.1016/j.semcdb.2011.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/12/2011] [Indexed: 11/16/2022]
Abstract
DNA replication normally follows the rules passed down from Watson and Crick: the chromosome duplicates as dictated by its antiparallel strands, base-pairing and leading and lagging strand differences. Real-life replication is more complicated, fraught with perils posed by chromosome damage for one, and by transcription of genes and by other perils that disrupt progress of the DNA replication machinery. Understanding the replication fork, including DNA structures, associated replisome and its regulators, is key to understanding how cells overcome perils and minimize error. Replication fork error leads to genome rearrangements and, potentially, cell death. Interest in the replication fork and its errors has recently gained added interest by the results of deep sequencing studies of human genomes. Several pathologies are associated with sometimes-bizarre genome rearrangements suggestive of elaborate replication fork failures. To try and understand the links between the replication fork, its failure and genome rearrangements, we discuss here phases of fork behavior (stall, collapse, restart and fork failures leading to rearrangements) and analyze two examples of instability from our own studies; one in fission yeast and the other in budding yeast.
Collapse
Affiliation(s)
- Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, Sussex, UK.
| | | | | |
Collapse
|
170
|
Anand RP, Shah KA, Niu H, Sung P, Mirkin SM, Freudenreich CH. Overcoming natural replication barriers: differential helicase requirements. Nucleic Acids Res 2011; 40:1091-105. [PMID: 21984413 PMCID: PMC3273818 DOI: 10.1093/nar/gkr836] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA sequences that form secondary structures or bind protein complexes are known barriers to replication and potential inducers of genome instability. In order to determine which helicases facilitate DNA replication across these barriers, we analyzed fork progression through them in wild-type and mutant yeast cells, using 2-dimensional gel-electrophoretic analysis of the replication intermediates. We show that the Srs2 protein facilitates replication of hairpin-forming CGG/CCG repeats and prevents chromosome fragility at the repeat, whereas it does not affect replication of G-quadruplex forming sequences or a protein-bound repeat. Srs2 helicase activity is required for hairpin unwinding and fork progression. Also, the PCNA binding domain of Srs2 is required for its in vivo role of replication through hairpins. In contrast, the absence of Sgs1 or Pif1 helicases did not inhibit replication through structural barriers, though Pif1 did facilitate replication of a telomeric protein barrier. Interestingly, replication through a protein barrier but not a DNA structure barrier was modulated by nucleotide pool levels, illuminating a different mechanism by which cells can regulate fork progression through protein-mediated stall sites. Our analyses reveal fundamental differences in the replication of DNA structural versus protein barriers, with Srs2 helicase activity exclusively required for fork progression through hairpin structures.
Collapse
Affiliation(s)
- Ranjith P Anand
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | | | | | | | | | |
Collapse
|
171
|
Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nat Genet 2011; 43:1074-81. [PMID: 21964572 PMCID: PMC3235474 DOI: 10.1038/ng.944] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/23/2011] [Indexed: 01/17/2023]
Abstract
We identified complex genomic rearrangements consisting of intermixed duplications and triplications of genomic segments at the MECP2 and PLP1 loci. These complex rearrangements were characterized by a triplicated segment embedded within a duplication in 11 unrelated subjects. Notably, only two breakpoint junctions were generated during each rearrangement formation. All the complex rearrangement products share a common genomic organization, duplication-inverted triplication-duplication (DUP-TRP/INV-DUP), in which the triplicated segment is inverted and located between directly oriented duplicated genomic segments. We provide evidence that the DUP-TRP/INV-DUP structures are mediated by inverted repeats that can be separated by >300 kb, a genomic architecture that apparently leads to susceptibility to such complex rearrangements. A similar inverted repeat-mediated mechanism may underlie structural variation in many other regions of the human genome. We propose a mechanism that involves both homology-driven events, via inverted repeats, and microhomologous or nonhomologous events.
Collapse
|
172
|
Wang J, Geesman GJ, Hostikka SL, Atallah M, Blackwell B, Lee E, Cook PJ, Pasaniuc B, Shariat G, Halperin E, Dobke M, Rosenfeld MG, Jordan IK, Lunyak VV. Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle 2011; 10:3016-30. [PMID: 21862875 PMCID: PMC3218602 DOI: 10.4161/cc.10.17.17543] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 01/01/2023] Open
Abstract
Cellular aging is linked to deficiencies in efficient repair of DNA double strand breaks and authentic genome maintenance at the chromatin level. Aging poses a significant threat to adult stem cell function by triggering persistent DNA damage and ultimately cellular senescence. Senescence is often considered to be an irreversible process. Moreover, critical genomic regions engaged in persistent DNA damage accumulation are unknown. Here we report that 65% of naturally occurring repairable DNA damage in self-renewing adult stem cells occurs within transposable elements. Upregulation of Alu retrotransposon transcription upon ex vivo aging causes nuclear cytotoxicity associated with the formation of persistent DNA damage foci and loss of efficient DNA repair in pericentric chromatin. This occurs due to a failure to recruit of condensin I and cohesin complexes. Our results demonstrate that the cytotoxicity of induced Alu repeats is functionally relevant for the human adult stem cell aging. Stable suppression of Alu transcription can reverse the senescent phenotype, reinstating the cells' self-renewing properties and increasing their plasticity by altering so-called "master" pluripotency regulators.
Collapse
Affiliation(s)
- Jianrong Wang
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Lin D, Gibson IB, Moore JM, Thornton PC, Leal SM, Hastings PJ. Global chromosomal structural instability in a subpopulation of starving Escherichia coli cells. PLoS Genet 2011; 7:e1002223. [PMID: 21901104 PMCID: PMC3161906 DOI: 10.1371/journal.pgen.1002223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/18/2011] [Indexed: 11/18/2022] Open
Abstract
Copy-number variations (CNVs) constitute very common differences between individual humans and possibly all genomes and may therefore be important fuel for evolution, yet how they form remains elusive. In starving Escherichia coli, gene amplification is induced by stress, controlled by the general stress response. Amplification has been detected only encompassing genes that confer a growth advantage when amplified. We studied the structure of stress-induced gene amplification in starving cells in the Lac assay in Escherichia coli by array comparative genomic hybridization (aCGH), with polymerase chain reaction (pcr) and DNA sequencing to establish the structures generated. About 10% of 300 amplified isolates carried other chromosomal structural change in addition to amplification. Most of these were inversions and duplications associated with the amplification event. This complexity supports a mechanism similar to that seen in human non-recurrent copy number variants. We interpret these complex events in terms of repeated template switching during DNA replication. Importantly, we found a significant occurrence (6 out of 300) of chromosomal structural changes that were apparently not involved in the amplification event. These secondary changes were absent from 240 samples derived from starved cells not carrying amplification, suggesting that amplification happens in a differentiated subpopulation of stressed cells licensed for global chromosomal structural change and genomic instability. These data imply that chromosomal structural changes occur in bursts or showers of instability that may have the potential to drive rapid evolution. Much of the difference between individual humans is in the number of copies of genes and lengths of genome. The mechanisms by which copy number variation arises are not well understood. We sought information on copy number change mechanisms by extensive use of array comparative genomic hybridization of whole genomes in bacteria selected for amplification of part of the genome. We report that about 10% of amplified isolates carried other chromosomal structural changes associated with the amplification, a result comparable to that seen in human copy number variants. Importantly, we found a significant occurrence of structural changes that were not involved in the amplification event. These were not seen in a control sample of stressed cells not carrying amplification. This establishes that chromosomal structural change happens in a subpopulation of cells apparently licensed to undergo these changes. Because the changes occur under the stress of starvation and require two of the cells' stress-response systems, we propose that licensing for cell-wide structural change in this subpopulation is a component of response to stress. This idea has implications for the mechanisms of evolution and cancer progression, suggesting that changes occur in a shower of events rather than as isolated random events.
Collapse
Affiliation(s)
- Dongxu Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ian B. Gibson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jessica M. Moore
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. C. Thornton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Suzanne M. Leal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
174
|
Vidgren V, Kankainen M, Londesborough J, Ruohonen L. Identification of regulatory elements in the AGT1 promoter of ale and lager strains of brewer's yeast. Yeast 2011; 28:579-94. [DOI: 10.1002/yea.1888] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 05/17/2011] [Indexed: 11/09/2022] Open
|
175
|
Abstract
Claspin is a mediator of the ATR-dependent DNA replication checkpoint in human cells and also promotes DNA replication fork progression and stability. Though Claspin has been shown to bind DNA and co-immunoprecipitate with other replication fork-associated proteins, the specific protein-protein and protein-DNA interactions that are important for Claspin function are not known. We therefore purified several domains of human Claspin and then tested for direct interactions of these fragments with several replication fork-associated proteins and with DNA. Our data show that the N terminus of Claspin binds to the replicative helicase co-factor Cdc45, the Timeless protein and a branched, replication fork-like DNA structure. In contrast, the C terminus of Claspin associates with DNA polymerase epsilon and Rad17-Replication Factor C (RFC). We conclude that multiple protein-DNA and protein-protein interactions may be important for Claspin function during DNA replication and DNA replication checkpoint signaling.
Collapse
Affiliation(s)
- Ozdemirhan Serçin
- University of North Carolina School of Medicine, Chapel Hill, NC USA
| | | |
Collapse
|
176
|
Brewer BJ, Payen C, Raghuraman MK, Dunham MJ. Origin-dependent inverted-repeat amplification: a replication-based model for generating palindromic amplicons. PLoS Genet 2011; 7:e1002016. [PMID: 21437266 PMCID: PMC3060070 DOI: 10.1371/journal.pgen.1002016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Bonita J Brewer
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA.
| | | | | | | |
Collapse
|
177
|
Chandok GS, Kapoor KK, Brick RM, Sidorova JM, Krasilnikova MM. A distinct first replication cycle of DNA introduced in mammalian cells. Nucleic Acids Res 2011; 39:2103-15. [PMID: 21062817 PMCID: PMC3064806 DOI: 10.1093/nar/gkq903] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/30/2010] [Accepted: 09/23/2010] [Indexed: 11/24/2022] Open
Abstract
Many mutation events in microsatellite DNA sequences were traced to the first embryonic divisions. It was not known what makes the first replication cycles of embryonic DNA different from subsequent replication cycles. Here we demonstrate that an unusual replication mode is involved in the first cycle of replication of DNA introduced in mammalian cells. This alternative replication starts at random positions, and occurs before the chromatin is fully assembled. It is detected in various cell lines and primary cells. The presence of single-stranded regions increases the efficiency of this alternative replication mode. The alternative replication cannot progress through the A/T-rich FRA16B fragile site, while the regular replication mode is not affected by it. A/T-rich microsatellites are associated with the majority of chromosomal breakpoints in cancer. We suggest that the alternative replication mode may be initiated at the regions with immature chromatin structure in embryonic and cancer cells resulting in increased genomic instability. This work demonstrates, for the first time, differences in the replication progression during the first and subsequent replication cycles in mammalian cells.
Collapse
Affiliation(s)
- Gurangad S. Chandok
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16801 and Department of Pathology, University of Washington, Seattle, WA 98195-7705 USA
| | - Kalvin K. Kapoor
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16801 and Department of Pathology, University of Washington, Seattle, WA 98195-7705 USA
| | - Rachel M. Brick
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16801 and Department of Pathology, University of Washington, Seattle, WA 98195-7705 USA
| | - Julia M. Sidorova
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16801 and Department of Pathology, University of Washington, Seattle, WA 98195-7705 USA
| | - Maria M. Krasilnikova
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16801 and Department of Pathology, University of Washington, Seattle, WA 98195-7705 USA
| |
Collapse
|
178
|
Valach M, Farkas Z, Fricova D, Kovac J, Brejova B, Vinar T, Pfeiffer I, Kucsera J, Tomaska L, Lang BF, Nosek J. Evolution of linear chromosomes and multipartite genomes in yeast mitochondria. Nucleic Acids Res 2011; 39:4202-19. [PMID: 21266473 PMCID: PMC3105423 DOI: 10.1093/nar/gkq1345] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial genome diversity in closely related species provides an excellent platform for investigation of chromosome architecture and its evolution by means of comparative genomics. In this study, we determined the complete mitochondrial DNA sequences of eight Candida species and analyzed their molecular architectures. Our survey revealed a puzzling variability of genome architecture, including circular- and linear-mapping and multipartite linear forms. We propose that the arrangement of large inverted repeats identified in these genomes plays a crucial role in alterations of their molecular architectures. In specific arrangements, the inverted repeats appear to function as resolution elements, allowing genome conversion among different topologies, eventually leading to genome fragmentation into multiple linear DNA molecules. We suggest that molecular transactions generating linear mitochondrial DNA molecules with defined telomeric structures may parallel the evolutionary emergence of linear chromosomes and multipartite genomes in general and may provide clues for the origin of telomeres and pathways implicated in their maintenance.
Collapse
Affiliation(s)
- Matus Valach
- Department of Biochemistry, Comenius University, Mlynska dolina CH-1, 842 15 Bratislava, Slovak republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
KIAA1018/FAN1 nuclease protects cells against genomic instability induced by interstrand cross-linking agents. Proc Natl Acad Sci U S A 2010; 107:21553-7. [PMID: 21115814 DOI: 10.1073/pnas.1011081107] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Fanconi anemia (FA) is a rare genetic disease characterized by congenital defects, bone marrow failure, chromosomal instability, and cancer susceptibility. One hallmark of cells from FA patients is hypersensitivity to interstrand cross-linking agents, such as the chemotherapeutics cisplatin and mitomycin C (MMC). We have recently characterized a FANCD2/FANCI-associated nuclease, KIAA1018/FAN1, the depletion of which sensitizes human cells to these agents. However, as the down-regulation of FAN1 in human cells was mediated by siRNA and thus only transient, we were unable to study the long-term effects of FAN1 loss on chromosomal stability. We now describe the generation of chicken DT40 B cells, in which the FAN1 locus was disrupted by gene targeting. FAN1-null cells are highly sensitive to cisplatin and MMC, but not to ionizing or UV radiation, methyl methanesulfonate, or camptothecin. The cells do not display elevated sister chromatid exchange frequencies, either sporadic or MMC-induced. Interestingly, MMC treatment causes chromosomal instability that is quantitatively, but not qualitatively, comparable to that seen in FA cells. This finding, coupled with evidence showing that DT40 cells deficient in both FAN1 and FANCC, or FAN1 and FANCJ, exhibited increased sensitivity to cisplatin compared with cells lacking only FAN1, suggests that, despite its association with FANCD2/FANCI, FAN1 in DT40 cells participates in the processing of damage induced by interstrand cross-linking-generating agents also independently of the classical FA pathway.
Collapse
|
180
|
Shibata Y, Malhotra A, Dutta A. Detection of DNA fusion junctions for BCR-ABL translocations by Anchored ChromPET. Genome Med 2010; 2:70. [PMID: 20860819 PMCID: PMC3092121 DOI: 10.1186/gm191] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/09/2010] [Accepted: 09/22/2010] [Indexed: 12/13/2022] Open
Abstract
Anchored ChromPET, a technique to capture and interrogate targeted sequences in the genome, has been developed to identify chromosomal aberrations and define breakpoints. Using this method, we could define the BCR-ABL1 translocation DNA breakpoint to a base-pair resolution in Philadelphia chromosome-positive samples. This DNA-based method is highly sensitive and can detect the fusion junction using samples from which it is hard to obtain RNA or cells where the RNA expression has been silenced.
Collapse
Affiliation(s)
- Yoshiyuki Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1300 Jefferson Pk Ave, Charlottesville, VA 22908-0733, USA
| | - Ankit Malhotra
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1300 Jefferson Pk Ave, Charlottesville, VA 22908-0733, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1300 Jefferson Pk Ave, Charlottesville, VA 22908-0733, USA
| |
Collapse
|
181
|
Strawbridge EM, Benson G, Gelfand Y, Benham CJ. The distribution of inverted repeat sequences in the Saccharomyces cerevisiae genome. Curr Genet 2010; 56:321-40. [PMID: 20446088 PMCID: PMC2908449 DOI: 10.1007/s00294-010-0302-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/05/2010] [Accepted: 04/08/2010] [Indexed: 02/06/2023]
Abstract
Although a variety of possible functions have been proposed for inverted repeat sequences (IRs), it is not known which of them might occur in vivo. We investigate this question by assessing the distributions and properties of IRs in the Saccharomyces cerevisiae (SC) genome. Using the IRFinder algorithm we detect 100,514 IRs having copy length greater than 6 bp and spacer length less than 77 bp. To assess statistical significance we also determine the IR distributions in two types of randomization of the S. cerevisiae genome. We find that the S. cerevisiae genome is significantly enriched in IRs relative to random. The S. cerevisiae IRs are significantly longer and contain fewer imperfections than those from the randomized genomes, suggesting that processes to lengthen and/or correct errors in IRs may be operative in vivo. The S. cerevisiae IRs are highly clustered in intergenic regions, while their occurrence in coding sequences is consistent with random. Clustering is stronger in the 3' flanks of genes than in their 5' flanks. However, the S. cerevisiae genome is not enriched in those IRs that would extrude cruciforms, suggesting that this is not a common event. Various explanations for these results are considered.
Collapse
Affiliation(s)
| | - Gary Benson
- Laboratory for Biocomputing and Informatics, Boston University, Boston, MA USA
| | - Yevgeniy Gelfand
- Laboratory for Biocomputing and Informatics, Boston University, Boston, MA USA
| | - Craig J. Benham
- Department of Mathematics, University of California, Davis, CA 95616 USA
| |
Collapse
|
182
|
Konkel MK, Batzer MA. A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome. Semin Cancer Biol 2010; 20:211-21. [PMID: 20307669 PMCID: PMC2925057 DOI: 10.1016/j.semcancer.2010.03.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/04/2010] [Accepted: 03/16/2010] [Indexed: 02/06/2023]
Abstract
It is now commonly agreed that the human genome is not the stable entity originally presumed. Deletions, duplications, inversions, and insertions are common, and contribute significantly to genomic structural variations (SVs). Their collective impact generates much of the inter-individual genomic diversity observed among humans. Not only do these variations change the structure of the genome; they may also have functional implications, e.g. altered gene expression. Some SVs have been identified as the cause of genetic disorders, including cancer predisposition. Cancer cells are notorious for their genomic instability, and often show genomic rearrangements at the microscopic and submicroscopic level to which transposable elements (TEs) contribute. Here, we review the role of TEs in genome instability, with particular focus on non-LTR retrotransposons. Currently, three non-LTR retrotransposon families - long interspersed element 1 (L1), SVA (short interspersed element (SINE-R), variable number of tandem repeats (VNTR), and Alu), and Alu (a SINE) elements - mobilize in the human genome, and cause genomic instability through both insertion- and post-insertion-based mutagenesis. Due to the abundance and high sequence identity of TEs, they frequently mislead the homologous recombination repair pathway into non-allelic homologous recombination, causing deletions, duplications, and inversions. While less comprehensively studied, non-LTR retrotransposon insertions and TE-mediated rearrangements are probably more common in cancer cells than in healthy tissue. This may be at least partially attributed to the commonly seen global hypomethylation as well as general epigenetic dysfunction of cancer cells. Where possible, we provide examples that impact cancer predisposition and/or development.
Collapse
Affiliation(s)
- Miriam K. Konkel
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Mark A. Batzer
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
183
|
Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 2010; 79:89-130. [PMID: 20373915 DOI: 10.1146/annurev.biochem.052308.103205] [Citation(s) in RCA: 386] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA replication is central to cell proliferation. Studies in the past six decades since the proposal of a semiconservative mode of DNA replication have confirmed the high degree of conservation of the basic machinery of DNA replication from prokaryotes to eukaryotes. However, the need for replication of a substantially longer segment of DNA in coordination with various internal and external signals in eukaryotic cells has led to more complex and versatile regulatory strategies. The replication program in higher eukaryotes is under a dynamic and plastic regulation within a single cell, or within the cell population, or during development. We review here various regulatory mechanisms that control the replication program in eukaryotes and discuss future directions in this dynamic field.
Collapse
Affiliation(s)
- Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
184
|
Zhang F, Seeman P, Liu P, Weterman MA, Gonzaga-Jauregui C, Towne CF, Batish SD, De Vriendt E, De Jonghe P, Rautenstrauss B, Krause KH, Khajavi M, Posadka J, Vandenberghe A, Palau F, Van Maldergem L, Baas F, Timmerman V, Lupski JR. Mechanisms for nonrecurrent genomic rearrangements associated with CMT1A or HNPP: rare CNVs as a cause for missing heritability. Am J Hum Genet 2010; 86:892-903. [PMID: 20493460 DOI: 10.1016/j.ajhg.2010.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 04/28/2010] [Accepted: 05/03/2010] [Indexed: 12/20/2022] Open
Abstract
Genomic rearrangements involving the peripheral myelin protein gene (PMP22) in human chromosome 17p12 are associated with neuropathy: duplications cause Charcot-Marie-Tooth disease type 1A (CMT1A), whereas deletions lead to hereditary neuropathy with liability to pressure palsies (HNPP). Our previous studies showed that >99% of these rearrangements are recurrent and mediated by nonallelic homologous recombination (NAHR). Rare copy number variations (CNVs) generated by nonrecurrent rearrangements also exist in 17p12, but their underlying mechanisms are not well understood. We investigated 21 subjects with rare CNVs associated with CMT1A or HNPP by oligonucleotide-based comparative genomic hybridization microarrays and breakpoint sequence analyses, and we identified 17 unique CNVs, including two genomic deletions, ten genomic duplications, two complex rearrangements, and three small exonic deletions. Each of these CNVs includes either the entire PMP22 gene, or exon(s) only, or ultraconserved potential regulatory sequences upstream of PMP22, further supporting the contention that PMP22 is the critical gene mediating the neuropathy phenotypes associated with 17p12 rearrangements. Breakpoint sequence analysis reveals that, different from the predominant NAHR mechanism in recurrent rearrangement, various molecular mechanisms, including nonhomologous end joining, Alu-Alu-mediated recombination, and replication-based mechanisms (e.g., FoSTeS and/or MMBIR), can generate nonrecurrent 17p12 rearrangements associated with neuropathy. We document a multitude of ways in which gene function can be altered by CNVs. Given the characteristics, including small size, structural complexity, and location outside of coding regions, of selected rare CNVs, their identification remains a challenge for genome analysis. Rare CNVs may potentially represent an important portion of "missing heritability" for human diseases.
Collapse
|
185
|
Wanrooij S, Falkenberg M. The human mitochondrial replication fork in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1378-88. [PMID: 20417176 DOI: 10.1016/j.bbabio.2010.04.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/13/2010] [Accepted: 04/15/2010] [Indexed: 11/16/2022]
Abstract
Mitochondria are organelles whose main function is to generate power by oxidative phosphorylation. Some of the essential genes required for this energy production are encoded by the mitochondrial genome, a small circular double stranded DNA molecule. Human mtDNA is replicated by a specialized machinery distinct from the nuclear replisome. Defects in the mitochondrial replication machinery can lead to loss of genetic information by deletion and/or depletion of the mtDNA, which subsequently may cause disturbed oxidative phosphorylation and neuromuscular symptoms in patients. We discuss here the different components of the mitochondrial replication machinery and their role in disease. We also review the mode of mammalian mtDNA replication.
Collapse
Affiliation(s)
- Sjoerd Wanrooij
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-40530 Gothenburg, Sweden.
| | | |
Collapse
|
186
|
Abstract
Aberrant DNA replication is a major source of the mutations and chromosome rearrangements that are associated with pathological disorders. When replication is compromised, DNA becomes more prone to breakage. Secondary structures, highly transcribed DNA sequences and damaged DNA stall replication forks, which then require checkpoint factors and specialized enzymatic activities for their stabilization and subsequent advance. These mechanisms ensure that the local DNA damage response, which enables replication fork progression and DNA repair in S phase, is coupled with cell cycle transitions. The mechanisms that operate in eukaryotic cells to promote replication fork integrity and coordinate replication with other aspects of chromosome maintenance are becoming clear.
Collapse
Affiliation(s)
- Dana Branzei
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan, Italy.
| | | |
Collapse
|
187
|
Abstract
Genome rearrangements are often associated with genome instability observed in cancer and other pathological disorders. Different types of repeat elements are common in genomes and are prone to instability. S-phase checkpoints, recombination, and telomere maintenance pathways have been implicated in suppressing chromosome rearrangements, but little is known about the molecular mechanisms and the chromosome intermediates generating such genome-wide instability. In the December 15, 2009, issue of Genes & Development, two studies by Paek and colleagues (2861-2875) and Mizuno and colleagues (pp. 2876-2886), demonstrate that nearby inverted repeats in budding and fission yeasts recombine spontaneously and frequently to form dicentric and acentric chromosomes. The recombination mechanism underlying this phenomenon does not appear to require double-strand break formation, and is likely caused by a replication mechanism involving template switching.
Collapse
|
188
|
Zhao J, Bacolla A, Wang G, Vasquez KM. Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci 2010; 67:43-62. [PMID: 19727556 PMCID: PMC3017512 DOI: 10.1007/s00018-009-0131-2] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/22/2009] [Accepted: 08/11/2009] [Indexed: 11/26/2022]
Abstract
Repetitive DNA motifs are abundant in the genomes of various species and have the capacity to adopt non-canonical (i.e., non-B) DNA structures. Several non-B DNA structures, including cruciforms, slipped structures, triplexes, G-quadruplexes, and Z-DNA, have been shown to cause mutations, such as deletions, expansions, and translocations in both prokaryotes and eukaryotes. Their distributions in genomes are not random and often co-localize with sites of chromosomal breakage associated with genetic diseases. Current genome-wide sequence analyses suggest that the genomic instabilities induced by non-B DNA structure-forming sequences not only result in predisposition to disease, but also contribute to rapid evolutionary changes, particularly in genes associated with development and regulatory functions. In this review, we describe the occurrence of non-B DNA-forming sequences in various species, the classes of genes enriched in non-B DNA-forming sequences, and recent mechanistic studies on DNA structure-induced genomic instability to highlight their importance in genomes.
Collapse
Affiliation(s)
- Junhua Zhao
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| | - Albino Bacolla
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| | - Guliang Wang
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| | - Karen M. Vasquez
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| |
Collapse
|
189
|
Moralli D, Monaco ZL. Simultaneous visualization of FISH signals and bromo-deoxyuridine incorporation by formamide-free DNA denaturation. Methods Mol Biol 2010; 659:203-218. [PMID: 20809313 DOI: 10.1007/978-1-60761-789-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The replication timing of different DNA sequences in the mammalian cell nucleus is a tightly regulated system, which affects important cellular processes such as genes expression, chromatin epigenetic marking, and maintenance of chromosome structure. For this reason, it is important to study the replication properties of specific sequences, to determine for example, if the replication timing varies in different tissues, or in the presence of specific reagents, such as hormones, or other biologically active molecules. In this chapter, we present a technique, which allows identification of specific DNA sequences by fluorescence in situ hybridization (FISH) and simultaneously analyses the incorporation of a thymidine analogue, 5-bromo-2-deoxyuridine (BrdU), to mark DNA replication. First, tissue culture cells are synchronized at the beginning of the S-phase. BrdU is then added, either at specific time-points during S-phase or during the whole of the cell cycle. After harvesting the cells, the chromosomal DNA is hybridized to FISH probes that identify specific DNA sequences; this is performed without the teratogen formamide normally used in FISH. Finally, the cell preparations are analysed with an epifluorescence microscope to determine if the sequence of interest incorporates BrdU and in which point of the S-phase.
Collapse
Affiliation(s)
- Daniela Moralli
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
190
|
Paek AL, Kaochar S, Jones H, Elezaby A, Shanks L, Weinert T. Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast. Genes Dev 2009; 23:2861-75. [PMID: 20008936 DOI: 10.1101/gad.1862709] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Large-scale changes (gross chromosomal rearrangements [GCRs]) are common in genomes, and are often associated with pathological disorders. We report here that a specific pair of nearby inverted repeats in budding yeast fuse to form a dicentric chromosome intermediate, which then rearranges to form a translocation and other GCRs. We next show that fusion of nearby inverted repeats is general; we found that many nearby inverted repeats that are present in the yeast genome also fuse, as does a pair of synthetically constructed inverted repeats. Fusion occurs between inverted repeats that are separated by several kilobases of DNA and share >20 base pairs of homology. Finally, we show that fusion of inverted repeats, surprisingly, does not require genes involved in double-strand break (DSB) repair or genes involved in other repeat recombination events. We therefore propose that fusion may occur by a DSB-independent, DNA replication-based mechanism (which we term "faulty template switching"). Fusion of nearby inverted repeats to form dicentrics may be a major cause of instability in yeast and in other organisms.
Collapse
Affiliation(s)
- Andrew L Paek
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
191
|
Delprat A, Negre B, Puig M, Ruiz A. The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination. PLoS One 2009; 4:e7883. [PMID: 19936241 PMCID: PMC2775673 DOI: 10.1371/journal.pone.0007883] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 10/01/2009] [Indexed: 11/25/2022] Open
Abstract
Background Transposable elements (TEs) are responsible for the generation of chromosomal inversions in several groups of organisms. However, in Drosophila and other Dipterans, where inversions are abundant both as intraspecific polymorphisms and interspecific fixed differences, the evidence for a role of TEs is scarce. Previous work revealed that the transposon Galileo was involved in the generation of two polymorphic inversions of Drosophila buzzatii. Methodology/Principal Findings To assess the impact of TEs in Drosophila chromosomal evolution and shed light on the mechanism involved, we isolated and sequenced the two breakpoints of another widespread polymorphic inversion from D. buzzatii, 2z3. In the non inverted chromosome, the 2z3 distal breakpoint was located between genes CG2046 and CG10326 whereas the proximal breakpoint lies between two novel genes that we have named Dlh and Mdp. In the inverted chromosome, the analysis of the breakpoint sequences revealed relatively large insertions (2,870-bp and 4,786-bp long) including two copies of the transposon Galileo (subfamily Newton), one at each breakpoint, plus several other TEs. The two Galileo copies: (i) are inserted in opposite orientation; (ii) present exchanged target site duplications; and (iii) are both chimeric. Conclusions/Significance Our observations provide the best evidence gathered so far for the role of TEs in the generation of Drosophila inversions. In addition, they show unequivocally that ectopic recombination is the causative mechanism. The fact that the three polymorphic D. buzzatii inversions investigated so far were generated by the same transposon family is remarkable and is conceivably due to Galileo's unusual structure and current (or recent) transpositional activity.
Collapse
Affiliation(s)
- Alejandra Delprat
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | | | | | | |
Collapse
|
192
|
Kurahashi H, Inagaki H, Kato T, Hosoba E, Kogo H, Ohye T, Tsutsumi M, Bolor H, Tong M, Emanuel BS. Impaired DNA replication prompts deletions within palindromic sequences, but does not induce translocations in human cells. Hum Mol Genet 2009; 18:3397-406. [PMID: 19520744 PMCID: PMC2729664 DOI: 10.1093/hmg/ddp279] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 06/09/2009] [Indexed: 11/12/2022] Open
Abstract
Palindromic regions are unstable and susceptible to deletion in prokaryotes and eukaryotes possibly due to stalled or slow replication. In the human genome, they also appear to become partially or completely deleted, while two palindromic AT-rich repeats (PATRR) contribute to known recurrent constitutional translocations. To explore the mechanism that causes the development of palindrome instabilities in humans, we compared the incidence of de novo translocations and deletions at PATRRs in human cells. Using a highly sensitive PCR assay that can detect single molecules, de novo deletions were detected neither in human somatic cells nor in sperm. However, deletions were detected at low frequency in cultured cell lines. Inhibition of DNA replication by administration of siRNA against the DNA polymerase alpha 1 (POLA1) gene or introduction of POLA inhibitors increased the frequency. This is in contrast to PATRR-mediated translocations that were never detected in similar conditions but were observed frequently in human sperm samples. Further deletions were found to take place during both leading- and lagging-strand synthesis. Our data suggest that stalled or slow replication induces deletions within PATRRs, but that other mechanisms might contribute to PATRR-mediated recurrent translocations in humans.
Collapse
Affiliation(s)
- Hiroki Kurahashi
- Division of Molecular Genetics, Fujita Health University, Toyoake, Aichi, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Di Rienzi SC, Collingwood D, Raghuraman MK, Brewer BJ. Fragile genomic sites are associated with origins of replication. Genome Biol Evol 2009; 1:350-63. [PMID: 20333204 PMCID: PMC2817429 DOI: 10.1093/gbe/evp034] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2009] [Indexed: 01/03/2023] Open
Abstract
Genome rearrangements are mediators of evolution and disease. Such rearrangements are frequently bounded by transfer RNAs (tRNAs), transposable elements, and other repeated elements, suggesting a functional role for these elements in creating or repairing breakpoints. Though not well explored, there is evidence that origins of replication also colocalize with breakpoints. To investigate a potential correlation between breakpoints and origins, we analyzed evolutionary breakpoints defined between Saccharomyces cerevisiae and Kluyveromyces waltii and S. cerevisiae and a hypothetical ancestor of both yeasts, as well as breakpoints reported in the experimental literature. We find that origins correlate strongly with both evolutionary breakpoints and those described in the literature. Specifically, we find that origins firing earlier in S phase are more strongly correlated with breakpoints than are later-firing origins. Despite origins being located in genomic regions also bearing tRNAs and Ty elements, the correlation we observe between origins and breakpoints appears to be independent of these genomic features. This study lays the groundwork for understanding the mechanisms by which origins of replication may impact genome architecture and disease.
Collapse
|
194
|
Schuermann D, Fritsch O, Lucht JM, Hohn B. Replication stress leads to genome instabilities in Arabidopsis DNA polymerase delta mutants. THE PLANT CELL 2009; 21:2700-14. [PMID: 19789281 PMCID: PMC2768921 DOI: 10.1105/tpc.109.069682] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/25/2009] [Accepted: 09/09/2009] [Indexed: 05/19/2023]
Abstract
Impeded DNA replication or a deficiency of its control may critically threaten the genetic information of cells, possibly resulting in genome alterations, such as gross chromosomal translocations, microsatellite instabilities, or increased rates of homologous recombination (HR). We examined an Arabidopsis thaliana line derived from a forward genetic screen, which exhibits an elevated frequency of somatic HR. These HR events originate from replication stress in endoreduplicating cells caused by reduced expression of the gene coding for the catalytic subunit of the DNA polymerase delta (POLdelta1). The analysis of recombination types induced by diverse alleles of poldelta1 and by replication inhibitors allows the conclusion that two not mutually exclusive mechanisms lead to the generation of recombinogenic breaks at replication forks. In plants with weak poldelta1 alleles, we observe genome instabilities predominantly at sites with inverted repeats, suggesting the formation and processing of aberrant secondary DNA structures as a result of the accumulation of unreplicated DNA. Stalled and collapsed replication forks account for the more drastic enhancement of HR in plants with strong poldelta1 mutant alleles. Our data suggest that efficient progression of DNA replication, foremost on the lagging strand, relies on the physiological level of the polymerase delta complex and that even a minor disturbance of the replication process critically threatens genomic integrity of Arabidopsis cells.
Collapse
Affiliation(s)
- David Schuermann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | | | | | |
Collapse
|
195
|
Isolation of deletion alleles by G4 DNA-induced mutagenesis. Nat Methods 2009; 6:655-7. [PMID: 19684597 DOI: 10.1038/nmeth.1362] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 06/22/2009] [Indexed: 12/12/2022]
Abstract
Metazoan genomes contain thousands of sequence tracts that match the guanine-quadruplex (G4) DNA signature G(3)N(x)G(3)N(x)G(3)N(x)G(3), a motif that is intrinsically mutagenic, probably because it can form secondary structures during DNA replication. Here we show how and to what extent this feature can be used to generate deletion alleles of many Caenorhabditis elegans genes.
Collapse
|
196
|
Stabilization of dicentric translocations through secondary rearrangements mediated by multiple mechanisms in S. cerevisiae. PLoS One 2009; 4:e6389. [PMID: 19636429 PMCID: PMC2712687 DOI: 10.1371/journal.pone.0006389] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/25/2009] [Indexed: 02/05/2023] Open
Abstract
Background The gross chromosomal rearrangements (GCRs) observed in S. cerevisiae mutants with increased rates of accumulating GCRs include predicted dicentric GCRs such as translocations, chromosome fusions and isoduplications. These GCRs resemble the genome rearrangements found as mutations underlying inherited diseases as well as in the karyotypes of many cancers exhibiting ongoing genome instability Methodology/Principal Findings The structures of predicted dicentric GCRs were analyzed using multiple strategies including array-comparative genomic hybridization, pulse field gel electrophoresis, PCR amplification of predicted breakpoints and sequencing. The dicentric GCRs were found to be unstable and to have undergone secondary rearrangements to produce stable monocentric GCRs. The types of secondary rearrangements observed included: non-homologous end joining (NHEJ)-dependent intramolecular deletion of centromeres; chromosome breakage followed by NHEJ-mediated circularization or broken-end fusion to another chromosome telomere; and homologous recombination (HR)-dependent non-reciprocal translocations apparently mediated by break-induced replication. A number of these GCRs appeared to have undergone multiple bridge-fusion-breakage cycles. We also observed examples of chromosomes with extensive ongoing end decay in mec1 tlc1 mutants, suggesting that Mec1 protects chromosome ends from degradation and contributes to telomere maintenance by HR. Conclusions/Significance HR between repeated sequences resulting in secondary rearrangements was the most prevalent pathway for resolution of dicentric GCRs regardless of the structure of the initial dicentric GCR, although at least three other resolution mechanisms were observed. The resolution of dicentric GCRs to stable rearranged chromosomes could in part account for the complex karyotypes seen in some cancers.
Collapse
|
197
|
Chromosome aberrations resulting from double-strand DNA breaks at a naturally occurring yeast fragile site composed of inverted ty elements are independent of Mre11p and Sae2p. Genetics 2009; 183:423-39, 1SI-26SI. [PMID: 19635935 DOI: 10.1534/genetics.109.106385] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic instability at palindromes and spaced inverted repeats (IRs) leads to chromosome rearrangements. Perfect palindromes and IRs with short spacers can extrude as cruciforms or fold into hairpins on the lagging strand during replication. Cruciform resolution produces double-strand breaks (DSBs) with hairpin-capped ends, and Mre11p and Sae2p are required to cleave the hairpin tips to facilitate homologous recombination. Fragile site 2 (FS2) is a naturally occurring IR in Saccharomyces cerevisiae composed of a pair of Ty1 elements separated by approximately 280 bp. Our results suggest that FS2 forms a hairpin, rather than a cruciform, during replication in cells with low levels of DNA polymerase. Cleavage of this hairpin results in a recombinogenic DSB. We show that DSB formation at FS2 does not require Mre11p, Sae2p, Rad1p, Slx4p, Pso2p, Exo1p, Mus81p, Yen1p, or Rad27p. Also, repair of DSBs by homologous recombination is efficient in mre11 and sae2 mutants. Homologous recombination is impaired at FS2 in rad52 mutants and most aberrations reflect either joining of two broken chromosomes in a "half crossover" or telomere capping of the break. In support of hairpin formation precipitating DSBs at FS2, two telomere-capped deletions had a breakpoint near the center of the IR. In summary, Mre11p and Sae2p are not required for DSB formation at FS2 or the subsequent repair of these DSBs.
Collapse
|
198
|
Harada S, Uchida M, Shimizu N. Episomal high copy number maintenance of hairpin-capped DNA bearing a replication initiation region in human cells. J Biol Chem 2009; 284:24320-7. [PMID: 19617622 DOI: 10.1074/jbc.m109.008128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We previously found that a plasmid bearing a replication initiation region efficiently initiates gene amplification in mammalian cells and that it generates extrachromosomal double minutes and/or chromosomal homogeneously staining regions. During analysis of the underlying mechanism, we serendipitously found that hairpin-capped linear DNA was stably maintained as numerous extrachromosomal tiny episomes for more than a few months in a human cancer cell line. Generation of such episomes depended on the presence of the replication initiation region in the original plasmid. Despite extrachromosomal maintenance, episomal gene expression was epigenetically suppressed. The Southern blot analysis of the DNA of cloned cells revealed that the region around the hairpin end was diversified between the clones. Furthermore, the bisulfite-modified PCR and the sequencing analyses revealed that the palindrome sequence that derived from the original hairpin end or its end-resected structure were well preserved during clonal long term growth. From these data, we propose a model that explains the formation and maintenance of these episomes, in which replication of the hairpin-capped DNA and cruciform formation and its resolution play central roles. Our findings may be relevant for the dissection of mammalian replicator sequences.
Collapse
Affiliation(s)
- Seiyu Harada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima 739-8521, Japan
| | | | | |
Collapse
|
199
|
Shishkin AA, Voineagu I, Matera R, Cherng N, Chernet BT, Krasilnikova MM, Narayanan V, Lobachev KS, Mirkin SM. Large-scale expansions of Friedreich's ataxia GAA repeats in yeast. Mol Cell 2009; 35:82-92. [PMID: 19595718 PMCID: PMC2722067 DOI: 10.1016/j.molcel.2009.06.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 01/07/2009] [Accepted: 06/18/2009] [Indexed: 12/12/2022]
Abstract
Large-scale expansions of DNA repeats are implicated in numerous hereditary disorders in humans. We describe a yeast experimental system to analyze large-scale expansions of triplet GAA repeats responsible for the human disease Friedreich's ataxia. When GAA repeats were placed into an intron of the chimeric URA3 gene, their expansions caused gene inactivation, which was detected on the selective media. We found that the rates of expansions of GAA repeats increased exponentially with their lengths. These rates were only mildly dependent on the repeat's orientation within the replicon, whereas the repeat-mediated replication fork stalling was exquisitely orientation dependent. Expansion rates were significantly elevated upon inactivation of the replication fork stabilizers, Tof1 and Csm3, but decreased in the knockouts of postreplication DNA repair proteins, Rad6 and Rad5, and the DNA helicase Sgs1. We propose a model for large-scale repeat expansions based on template switching during replication fork progression through repetitive DNA.
Collapse
Affiliation(s)
| | - Irina Voineagu
- Department of Biology, Tufts University, Medford, MA 02155
| | - Robert Matera
- Department of Biology, Tufts University, Medford, MA 02155
| | - Nicole Cherng
- Department of Biology, Tufts University, Medford, MA 02155
| | | | - Maria M. Krasilnikova
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802
| | - Vidhya Narayanan
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | |
Collapse
|
200
|
Zhang F, Carvalho CMB, Lupski JR. Complex human chromosomal and genomic rearrangements. Trends Genet 2009; 25:298-307. [PMID: 19560228 DOI: 10.1016/j.tig.2009.05.005] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/14/2009] [Accepted: 05/19/2009] [Indexed: 01/08/2023]
Abstract
Copy number variation (CNV) is a major source of genetic variation among humans. In addition to existing as benign polymorphisms, CNVs can also convey clinical phenotypes, including genomic disorders, sporadic diseases and complex human traits. CNV results from genomic rearrangements that can represent simple deletion or duplication of a genomic segment, or be more complex. Complex chromosomal rearrangements (CCRs) have been known for some time but their mechanisms have remained elusive. Recent technology advances and high-resolution human genome analyses have revealed that complex genomic rearrangements can account for a large fraction of non-recurrent rearrangements at a given locus. Various mechanisms, most of which are DNA-replication-based, for example fork stalling and template switching (FoSTeS) and microhomology-mediated break-induced replication (MMBIR), have been proposed for generating such complex genomic rearrangements and are probably responsible for CCR.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, and Texas Children's Hospital, Houston, TX 77030, USA
| | | | | |
Collapse
|