151
|
Zwama M, Yamasaki S, Nakashima R, Sakurai K, Nishino K, Yamaguchi A. Multiple entry pathways within the efflux transporter AcrB contribute to multidrug recognition. Nat Commun 2018; 9:124. [PMID: 29317622 PMCID: PMC5760665 DOI: 10.1038/s41467-017-02493-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 12/04/2017] [Indexed: 11/13/2022] Open
Abstract
AcrB is the major multidrug exporter in Escherichia coli. Although several substrate-entrances have been identified, the specificity of these various transport paths remains unclear. Here we present evidence for a substrate channel (channel 3) from the central cavity of the AcrB trimer, which is connected directly to the deep pocket without first passing the switch-loop and the proximal pocket . Planar aromatic cations, such as ethidium, prefer channel 3 to channels 1 and 2. The efflux through channel 3 increases by targeted mutations and is not in competition with the export of drugs such as minocycline and erythromycin through channels 1 and 2. A switch-loop mutant, in which the pathway from the proximal to the deep pocket is hindered, can export only channel 3-utilizing drugs. The usage of multiple entrances thus contributes to the recognition and transport of a wide range of drugs with different physicochemical properties. Multidrug transporters possess several drug binding sites. Here the authors describe a transport path specific for planar aromatic cations in the E. coli multi-drug transporter AcrB.
Collapse
Affiliation(s)
- Martijn Zwama
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan.,Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Seiji Yamasaki
- Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Ryosuke Nakashima
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Keisuke Sakurai
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Kunihiko Nishino
- Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Akihito Yamaguchi
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
152
|
Haynes MK, Garcia M, Peters R, Waller A, Tedesco P, Ursu O, Bologa CG, Santos RG, Pinilla C, Wu TH, Lovchik JA, Oprea TI, Sklar LA, Tegos GP. High-Throughput Flow Cytometry Screening of Multidrug Efflux Systems. Methods Mol Biol 2018; 1700:293-318. [PMID: 29177837 DOI: 10.1007/978-1-4939-7454-2_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The resistance nodulation cell division (RND) family of proteins are inner membrane transporters that associate with periplasmic adaptor proteins and outer membrane porins to affect substrate transport from the cytosol and periplasm in Gram-negative bacteria. Various structurally diverse compounds are substrates of RND transporters. Along with their notable role in antibiotic resistance, these transporters are essential for niche colonization, quorum sensing, and virulence as well as for the removal of fatty acids and bile salts. As such, RNDs are an attractive target for antimicrobial development. However, while enhancing the utility of antibiotics with an RND inhibitor is an appealing concept, only a small core of chemotypes has been identified as efflux pump inhibitors (EPIs). Thus, our key objective is the development and validation of an efflux profiling and discovery strategy for RND model systems. Here we describe a flow cytometric dye accumulation assay that uses fluorescein diacetate (FDA) to interrogate the model Gram-negative pathogens Escherichia coli, Franscisella tularensis, and Burkholderia pseudomallei. Fluorochrome retention is increased in the presence of known efflux inhibitors and in RND deletion strains. The assay can be used in a high-throughput format to evaluate efflux of dye-substrate candidates and to screen chemical libraries for novel EPIs. Triaged compounds that inhibit efflux in pathogenic strains are tested for growth inhibition and antibiotic potentiation using microdilution culture plates in a select agent Biosafety Level-3 (BSL3) environment. This combined approach demonstrates the utility of flow cytometric analysis for efflux activity and provides a useful platform in which to characterize efflux in pathogenic Gram-negative bacteria. Screening small molecule libraries for novel EPI candidates offers the potential for the discovery of new classes of antibacterial compounds.
Collapse
Affiliation(s)
- Mark K Haynes
- Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA.
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | - Matthew Garcia
- Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Ryan Peters
- Center for Infectious Disease and Immunity, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Anna Waller
- Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Pietro Tedesco
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
- Department of Chemical Sciences and School of Biotechnological Sciences, University of Naples, Naples, Italy
| | - Oleg Ursu
- Division of Translational Informatics, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Cristian G Bologa
- Division of Translational Informatics, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Radleigh G Santos
- Torrey Pines Institute for Molecular Studies, Port St Lucie, FL, USA
| | | | - Terry H Wu
- Center for Infectious Disease and Immunity, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Julie A Lovchik
- Center for Infectious Disease and Immunity, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Tudor I Oprea
- Division of Translational Informatics, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Larry A Sklar
- Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - George P Tegos
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
153
|
Tam HK, Malviya VN, Pos KM. High-Resolution Crystallographic Analysis of AcrB Using Designed Ankyrin Repeat Proteins (DARPins). Methods Mol Biol 2018; 1700:3-24. [PMID: 29177822 DOI: 10.1007/978-1-4939-7454-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
X-ray crystallography is still the most prominent technique in use to decipher the 3D structures of membrane proteins. For successful crystallization, sample quality is the most important parameter that should be addressed. In almost every case, highly pure, monodisperse, and stable protein sample is a prerequisite. Vapor diffusion is in general the method of choice for obtaining crystals. Here, we discuss a detailed protocol for overproduction and purification of the inner-membrane multidrug transporter AcrB and of DARPins, which are used for crystallization of the AcrB/DARPin complex, resulting in high-resolution diffraction and subsequent structure determination.
Collapse
Affiliation(s)
- Heng Keat Tam
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany.
| | | | - Klaas M Pos
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
154
|
Pagès JM. [Antibiotic transport and membrane permeability: new insights to fight bacterial resistance]. Biol Aujourdhui 2017; 211:149-154. [PMID: 29236663 DOI: 10.1051/jbio/2017020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 11/14/2022]
Abstract
A main challenge in medicinal chemistry is to determine the parameters modulating the in cellulo drug concentration needed for a therapeutic action. In Gram-negative antibacterial research, the concern is to evaluate the antibiotic permeation across the outer and inner membranes, that delineate the periplasm surrounding the bacterial cytoplasm. Passing through the membrane barrier to reach the inhibitory concentration inside the bacterium is the first pivotal step for antibiotics. The research and the development of new antimicrobials mostly rely on their capacity to reach critical concentrations in the vicinity of their intracellular target. Despite several decades of studies focused on antibiotic/drug activity against bacterial cells using different approaches, no consensus regarding the analysis of the kinetics and accumulation in individual bacterium and in bacterial populations is available to understand the drug translocation into living bacteria as a first step of drug action. Our TRANSLOCATION consortium supports the development of reliable and robust methods to quantify penetration and efflux processes in Gram-negative bacteria and recently we have developed a reliable and efficient method to determine the intra-bacterial concentration of fluorescent antibiotics. By using these powerful approaches, new concepts, "Resident Time Concentration Close to Target" (RTC2T) and "Structure Intracellular Concentration Activity Relationship" (SICAR), have been proposed in order to link chemical and structural aspects with the bacterial membrane and transport aspects. Using RTC2T and SICAR indexes, a new dissection of antibiotic translocation-transport can be obtained to better understand and improve the antibiotic pharmacophoric groups that are related to permeation and efflux.
Collapse
Affiliation(s)
- Jean-Marie Pagès
- UMR_MD1, Transporteurs Membranaires, Chimiorésistance et Drug Design, Faculté de Médecine et Faculté de Pharmacie, 27 boulevard Jean-Moulin, 13385 Marseille cedex 05, France
| |
Collapse
|
155
|
Wang Y, Mowla R, Ji S, Guo L, De Barros Lopes MA, Jin C, Song D, Ma S, Venter H. Design, synthesis and biological activity evaluation of novel 4-subtituted 2-naphthamide derivatives as AcrB inhibitors. Eur J Med Chem 2017; 143:699-709. [PMID: 29220791 DOI: 10.1016/j.ejmech.2017.11.102] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022]
Abstract
A novel series of 4-substituted 2-naphthamide derivatives were designed, synthesized and evaluated for their biological activity. In particular, the ability of the compounds to potentiate the action of antibiotics, to inhibit Nile Red efflux and to target AcrB specifically was investigated. The results indicated that most of the 4-substituted 2-naphthamide derivatives were able to synergize with the antibiotics tested, and inhibit Nile Red efflux by AcrB in the resistant phenotype. Subsequent exclusion of compounds with off target effects such as outer- or inner membrane permeabilization identified compounds 7c, 7g, 12c, 12i and 13g as efflux pump inhibitors (EPIs). Particularly, compounds 7c, 7g and 12i were found to be the most potent EPIs, which synergized with the two substrates tested at lower concentrations than that of parent A3, demonstrating an improvement in potency as compared to A3. Additionally, when the outer membrane of E. coli was permeabilized, compound 12c displayed a huge increase in efficacy and was able to synergize with erythromycin at a concentration that was 16 times lower than that of the parent A3. Hence we were able to design and synthesize compounds that displayed significant increase in efficacy as EPIs against AcrB.
Collapse
Affiliation(s)
- Yinhu Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Rumana Mowla
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5000, Australia
| | - Shengli Ji
- ReaLi Tide Biological Technology (Weihai) Co. Ltd, Weihai 264207, China
| | - Liwei Guo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Miguel A De Barros Lopes
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5000, Australia
| | - Chaobin Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Di Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China.
| | - Henrietta Venter
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
156
|
Yue Z, Chen W, Zgurskaya HI, Shen J. Constant pH Molecular Dynamics Reveals How Proton Release Drives the Conformational Transition of a Transmembrane Efflux Pump. J Chem Theory Comput 2017; 13:6405-6414. [PMID: 29117682 DOI: 10.1021/acs.jctc.7b00874] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AcrB is the inner-membrane transporter of an E. coli AcrAB-TolC tripartite efflux complex, which plays a major role in the intrinsic resistance to clinically important antibiotics. AcrB pumps a wide range of toxic substrates by utilizing the proton gradient between periplasm and cytoplasm. Crystal structures of AcrB revealed three distinct conformational states of the transport cycle, substrate access, binding, and extrusion or loose (L), tight (T), and open (O) states. However, the specific residue(s) responsible for proton binding/release and the mechanism of proton-coupled conformational cycling remain controversial. Here we use the newly developed membrane hybrid-solvent continuous constant pH molecular dynamics technique to explore the protonation states and conformational dynamics of the transmembrane domain of AcrB. Simulations show that both Asp407 and Asp408 are deprotonated in the L/T states, while only Asp408 is protonated in the O state. Remarkably, release of a proton from Asp408 in the O state results in large conformational changes, such as the lateral and vertical movement of transmembrane helices as well as the salt-bridge formation between Asp408 and Lys940 and other side chain rearrangements among essential residues. Consistent with the crystallographic differences between the O and L protomers, simulations offer dynamic details of how proton release drives the O-to-L transition in AcrB and address the controversy regarding the proton/drug stoichiometry. This work offers a significant step toward characterizing the complete cycle of proton-coupled drug transport in AcrB and further validates the membrane hybrid-solvent CpHMD technique for studies of proton-coupled transmembrane proteins which are currently poorly understood.
Collapse
Affiliation(s)
- Zhi Yue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , Baltimore, Maryland 21201, United States
| | | | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , Baltimore, Maryland 21201, United States
| |
Collapse
|
157
|
Aron Z, Opperman TJ. The hydrophobic trap-the Achilles heel of RND efflux pumps. Res Microbiol 2017; 169:393-400. [PMID: 29146106 DOI: 10.1016/j.resmic.2017.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/17/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023]
Abstract
Resistance-nodulation-division (RND) superfamily efflux pumps play a major role in multidrug resistance (MDR) of Gram-negative pathogens by extruding diverse classes of antibiotics from the cell. There has been considerable interest in developing efflux pump inhibitors (EPIs) of RND pumps as adjunctive therapies. The primary challenge in EPI discovery has been the highly hydrophobic, poly-specific substrate binding site of the target. Recent findings have identified the hydrophobic trap, a narrow phenylalanine-lined groove in the substrate-binding site, as the "Achilles heel" of the RND efflux pumps. In this review, we will examine the hydrophobic trap as an EPI target and two chemically distinct series of EPIs that bind there.
Collapse
|
158
|
Synergy between Active Efflux and Outer Membrane Diffusion Defines Rules of Antibiotic Permeation into Gram-Negative Bacteria. mBio 2017; 8:mBio.01172-17. [PMID: 29089426 PMCID: PMC5666154 DOI: 10.1128/mbio.01172-17] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gram-negative bacteria are notoriously resistant to antibiotics, but the extent of the resistance varies broadly between species. We report that in significant human pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Burkholderia spp., the differences in antibiotic resistance are largely defined by their penetration into the cell. For all tested antibiotics, the intracellular penetration was determined by a synergistic relationship between active efflux and the permeability barrier. We found that the outer membrane (OM) and efflux pumps select compounds on the basis of distinct properties and together universally protect bacteria from structurally diverse antibiotics. On the basis of their interactions with the permeability barriers, antibiotics can be divided into four clusters that occupy defined physicochemical spaces. Our results suggest that rules of intracellular penetration are intrinsic to these clusters. The identified specificities in the permeability barriers should help in the designing of successful therapeutic strategies against antibiotic-resistant pathogens.IMPORTANCE Multidrug-resistant strains of Gram-negative pathogens rapidly spread in clinics. Significant efforts worldwide are currently directed to finding the rules of permeation of antibiotics across two membrane envelopes of these bacteria. This study created the tools for analysis of and identified the major differences in antibacterial activities that distinguish the permeability barriers of P. aeruginosa, A. baumannii, Burkholderia thailandensis, and B. cepacia We conclude that synergy between active efflux and the outer membrane barrier universally protects Gram-negative bacteria from antibiotics. We also found that the diversity of antibiotics affected by active efflux and outer membrane barriers is broader than previously thought and that antibiotics cluster according to specific biological determinants such as the requirement of specific porins in the OM, targeting of the OM, or specific recognition by efflux pumps. No universal rules of antibiotic permeation into Gram-negative bacteria apparently exist. Our results suggest that antibiotic clusters are defined by specific rules of permeation and that further studies could lead to their discovery.
Collapse
|
159
|
Zwama M, Hayashi K, Sakurai K, Nakashima R, Kitagawa K, Nishino K, Yamaguchi A. Hoisting-Loop in Bacterial Multidrug Exporter AcrB Is a Highly Flexible Hinge That Enables the Large Motion of the Subdomains. Front Microbiol 2017; 8:2095. [PMID: 29118749 PMCID: PMC5661021 DOI: 10.3389/fmicb.2017.02095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/12/2017] [Indexed: 01/21/2023] Open
Abstract
The overexpression of RND-type exporters is one of the main causes of multidrug resistance (MDR) in Gram-negative pathogens. In RND transporters, such as Escherichia coli's main efflux pump AcrB, drug efflux occurs in the porter domain, while protons flow through the transmembrane domain: remote conformational coupling. At the border of a transmembrane helix (TM8) and subdomain PC2, there is a loop which makes a hoisting movement by a random-coil-to-α-helix change, and opens and closes a drug channel entrance. This loop is supposed to play a key role in the allosteric conformational coupling between the transmembrane and porter domain. Here we show the results of a series of flexibility loop-mutants of AcrB. We determined the crystal structure of a three amino acid truncated loop mutant, which is still a functional transporter, and show that the short α-helix between Cβ15 and the loop unwinds to a random coil in the access and binding monomers and in the extrusion monomer it makes a partially stretched coil-to-helix change. The loop has undergone compensatory conformational changes and still facilitates the opening and closing of the channel. In addition, more flexible mutated loops (proline mutated and significantly elongated) can still function during export. The flexibility in this region is however limited, as an even more truncated mutant (six amino acid deletion) becomes mostly inactive. We found that the hoisting-loop is a highly flexible hinge that enables the conformational energy transmission passively.
Collapse
Affiliation(s)
- Martijn Zwama
- Department of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.,Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Katsuhiko Hayashi
- Department of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.,Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Keisuke Sakurai
- Department of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Ryosuke Nakashima
- Department of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Kimie Kitagawa
- Department of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Kunihiko Nishino
- Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Akihito Yamaguchi
- Department of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
160
|
Müller RT, Travers T, Cha HJ, Phillips JL, Gnanakaran S, Pos KM. Switch Loop Flexibility Affects Substrate Transport of the AcrB Efflux Pump. J Mol Biol 2017; 429:3863-3874. [PMID: 28987732 DOI: 10.1016/j.jmb.2017.09.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/15/2017] [Accepted: 09/29/2017] [Indexed: 11/25/2022]
Abstract
The functionally important switch loop of the trimeric multidrug transporter AcrB separates the access and deep drug binding pockets in every protomer. This loop, comprising 11-amino-acid residues, has been shown to be crucial for substrate transport, as drugs have to travel past the loop to reach the deep binding pocket and from there are transported outside the cell via the connected AcrA and TolC channels. It contains four symmetrically arranged glycine residues suggesting that flexibility is a key feature for pump activity. Upon combinatorial substitution of these glycine residues to proline, functional and structural asymmetry was observed. Proline substitutions on the PC1-proximal side completely abolished transport and reduced backbone flexibility of the switch loop, which adopted a conformation restricting the pathway toward the deep binding pocket. Two phenylalanine residues located adjacent to the substitution sensitive glycine residues play a role in blocking the pathway upon rigidification of the loop, since the removal of the phenyl rings from the rigid loop restores drug transport activity.
Collapse
Affiliation(s)
- Reinke T Müller
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States; Center for Nonlinear Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Hi-Jea Cha
- Engelhard Arzneimittel GmbH & Co. KG, Herzbergstrasse 3, 61138 Niederdorfelden, Germany
| | - Joshua L Phillips
- Department of Computer Science, Middle Tennessee State University, Murfreesboro, TN 37132, United States
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Klaas M Pos
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
161
|
Jewel Y, Liu J, Dutta P. Coarse-grained simulations of conformational changes in the multidrug efflux transporter AcrB. MOLECULAR BIOSYSTEMS 2017; 13:2006-2014. [PMID: 28770910 PMCID: PMC5614849 DOI: 10.1039/c7mb00276a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The multidrug resistance (MDR) system actively pumps antibiotics out of cells causing serious health problems. During the pumping, AcrB (one of the key components of MDR) undergoes a series of large-scale and proton-motive conformational changes. Capturing the conformational changes through all-atom simulations is challenging. Here, we implement a hybrid coarse-grained force field to investigate the conformational changes of AcrB in the porter domain under different protonation states of Asp407/Asp408 in the trans-membrane domain. Our results show that protonation of Asp408 in monomer III (extrusion) stabilizes the asymmetric structure of AcrB; deprotonation of Asp408 induces clear opening of the entrance and closing of the exit leading to the transition from extrusion to access state. The structural changes in the porter domain of AcrB are strongly coupled with the proton translocation stoichiometry in the trans-membrane domain. Moreover, our simulations support the postulation that AcrB should adopt the symmetric resting state in a substrate-free situation.
Collapse
Affiliation(s)
- Yead Jewel
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| |
Collapse
|
162
|
Zhang XC, Liu M, Han L. Energy coupling mechanisms of AcrB-like RND transporters. BIOPHYSICS REPORTS 2017; 3:73-84. [PMID: 29238744 PMCID: PMC5719797 DOI: 10.1007/s41048-017-0042-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023] Open
Abstract
Prokaryotic AcrB-like proteins belong to a family of transporters of the RND superfamily, and as main contributing factor to multidrug resistance pose a tremendous threat to future human health. A unique feature of AcrB transporters is the presence of two separate domains responsible for carrying substrate and generating energy. Significant progress has been made in elucidating the three-dimensional structures of the homo-trimer complexes of AcrB-like transporters, and a three-step functional rotation was identified for this class of transporters. However, the detailed mechanisms for the transduction of the substrate binding signal, as well as the energy coupling processes between the functionally distinct domains remain to be established. Here, we propose a model for the interdomain communication in AcrB that explains how the substrate binding signal from the substrate-carrier domain triggers protonation in the transmembrane domain. Our model further provides a plausible mechanism that explains how protonation induces conformational changes in the substrate-carrier domain. We summarize the thermodynamic principles that govern the functional cycle of the AcrB trimer complex.
Collapse
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Min Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lei Han
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
163
|
Mowla R, Wang Y, Ma S, Venter H. Kinetic analysis of the inhibition of the drug efflux protein AcrB using surface plasmon resonance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:878-886. [PMID: 28890187 DOI: 10.1016/j.bbamem.2017.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/19/2017] [Accepted: 08/31/2017] [Indexed: 11/24/2022]
Abstract
Multidrug efflux protein complexes such as AcrAB-TolC from Escherichia coli are paramount in multidrug resistance in Gram-negative bacteria and are also implicated in other processes such as virulence and biofilm formation. Hence efflux pump inhibition, as a means to reverse antimicrobial resistance in clinically relevant pathogens, has gained increased momentum over the past two decades. Significant advances in the structural and functional analysis of AcrB have informed the selection of efflux pump inhibitors (EPIs). However, an accurate method to determine the kinetics of efflux pump inhibition was lacking. In this study we standardised and optimised surface plasmon resonance (SPR) to probe the binding kinetics of substrates and inhibitors to AcrB. The SPR method was also combined with a fluorescence drug binding method by which affinity of two fluorescent AcrB substrates were determined using the same conditions and controls as for SPR. Comparison of the results from the fluorescent assay to those of the SPR assay showed excellent correlation and provided validation for the methods and conditions used for SPR. The kinetic parameters of substrate (doxorubicin, novobiocin and minocycline) binding to AcrB were subsequently determined. Lastly, the kinetics of inhibition of AcrB were probed for two established inhibitors (phenylalanine arginyl β-naphthylamide and 1-1-naphthylmethyl-piperazine) and three novel EPIs: 4-isobutoxy-2-naphthamide (A2), 4-isopentyloxy-2-naphthamide (A3) and 4-benzyloxy-2-naphthamide (A9) have also been probed. The kinetic data obtained could be correlated with inhibitor efficacy and mechanism of action. This study is the first step in the quantitative analysis of the kinetics of inhibition of the clinically important RND-class of multidrug efflux pumps and will allow the design of improved and more potent inhibitors of drug efflux pumps. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Rumana Mowla
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, SA 5000, Australia
| | - Yinhu Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Henrietta Venter
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, SA 5000, Australia.
| |
Collapse
|
164
|
Ramaswamy VK, Vargiu AV, Malloci G, Dreier J, Ruggerone P. Molecular Rationale behind the Differential Substrate Specificity of Bacterial RND Multi-Drug Transporters. Sci Rep 2017; 7:8075. [PMID: 28808284 PMCID: PMC5556075 DOI: 10.1038/s41598-017-08747-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022] Open
Abstract
Resistance-Nodulation-cell Division (RND) transporters AcrB and AcrD of Escherichia coli expel a wide range of substrates out of the cell in conjunction with AcrA and TolC, contributing to the onset of bacterial multidrug resistance. Despite sharing an overall sequence identity of ~66% (similarity ~80%), these RND transporters feature distinct substrate specificity patterns whose underlying basis remains elusive. We performed exhaustive comparative analyses of the putative substrate binding pockets considering crystal structures, homology models and conformations extracted from multi-copy μs-long molecular dynamics simulations of both AcrB and AcrD. The impact of physicochemical and topographical properties (volume, shape, lipophilicity, electrostatic potential, hydration and distribution of multi-functional sites) within the pockets on their substrate specificities was quantitatively assessed. Differences in the lipophilic and electrostatic potentials among the pockets were identified. In particular, the deep pocket of AcrB showed the largest lipophilicity convincingly pointing out its possible role as a lipophilicity-based selectivity filter. Furthermore, we identified dynamic features (not inferable from sequence analysis or static structures) such as different flexibilities of specific protein loops that could potentially influence the substrate recognition and transport profile. Our findings can be valuable for drawing structure (dynamics)-activity relationship to be employed in drug design.
Collapse
Affiliation(s)
- Venkata Krishnan Ramaswamy
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, I-09042, Monserrato, CA, Italy
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, I-09042, Monserrato, CA, Italy
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, I-09042, Monserrato, CA, Italy
| | - Jürg Dreier
- Basilea Pharmaceutica International Ltd., Grenzacherstrasse 487, 4058, Basel, Switzerland
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, I-09042, Monserrato, CA, Italy.
| |
Collapse
|
165
|
Jamshidi S, Sutton JM, Rahman KM. Computational Study Reveals the Molecular Mechanism of the Interaction between the Efflux Inhibitor PAβN and the AdeB Transporter from Acinetobacter baumannii. ACS OMEGA 2017; 2:3002-3016. [PMID: 30023681 PMCID: PMC6044690 DOI: 10.1021/acsomega.7b00131] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/07/2017] [Indexed: 06/08/2023]
Abstract
Phenylalanine-arginine β-naphthylamide (PAβN) is a broad-spectrum efflux pump inhibitor that has shown to potentiate the activity of antibiotics in Gram-negative bacteria. AdeB is a part of the AdeABC tripartite pump that plays a pivotal role in conferring efflux-mediated resistance in Acinetobacter baumannii. To understand the molecular mechanism of efflux pump inhibition by PAβN, we investigated the interaction of PAβN with AdeB using different computational methods. We observed that PAβN does not have specific binding interactions with the proximal binding site and interacts strongly with the distal binding pocket. The Phe loop located between the proximal and distal binding pockets plays a key role in the PAβN-mediated inhibition and acts as a gate between the binding pockets. Molecular dynamics simulations suggested that PAβN behaved like a climber as we observed switching of the interaction energies between the ligand and the key Phe residues of the binding site during the course of the simulation. PAβN uses the hydrophobic microenvironment formed by Phe residues in the distal binding pocket to keep the binding monomer in the binding conformation. The simulation data suggests that this binding event should result in the inhibition of the peristaltic mechanism and prevent the exporter from extruding any other substrates leading to the inhibition of the tripartite pump.
Collapse
Affiliation(s)
- Shirin Jamshidi
- Institute
of Pharmaceutical Science, King’s
College London, London SE1 1DB, U.K.
| | - J. Mark Sutton
- National
Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K.
| | | |
Collapse
|
166
|
Shaheen A, Iqbal M, Mirza O, Rahman M. Structural Biology Meets Drug Resistance: An Overview on Multidrug Resistance Transporters. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-017-0032-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
167
|
Crystal structures of the Burkholderia multivorans hopanoid transporter HpnN. Proc Natl Acad Sci U S A 2017; 114:6557-6562. [PMID: 28584102 DOI: 10.1073/pnas.1619660114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Strains of the Burkholderia cepacia complex (Bcc) are Gram-negative opportunisitic bacteria that are capable of causing serious diseases, mainly in immunocompromised individuals. Bcc pathogens are intrinsically resistant to multiple antibiotics, including β-lactams, aminoglycosides, fluoroquinolones, and polymyxins. They are major pathogens in patients with cystic fibrosis (CF) and can cause severe necrotizing pneumonia, which is often fatal. Hopanoid biosynthesis is one of the major mechanisms involved in multiple antimicrobial resistance of Bcc pathogens. The hpnN gene of B. multivorans encodes an integral membrane protein of the HpnN family of transporters, which is responsible for shuttling hopanoids to the outer membrane. Here, we report crystal structures of B. multivorans HpnN, revealing a dimeric molecule with an overall butterfly shape. Each subunit of the transporter contains 12 transmembrane helices and two periplasmic loops that suggest a plausible pathway for substrate transport. Further analyses indicate that HpnN is capable of shuttling hopanoid virulence factors from the outer leaflet of the inner membrane to the periplasm. Taken together, our data suggest that the HpnN transporter is critical for multidrug resistance and cell wall remodeling in Burkholderia.
Collapse
|
168
|
Wang Z, Fan G, Hryc CF, Blaza JN, Serysheva II, Schmid MF, Chiu W, Luisi BF, Du D. An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. eLife 2017; 6. [PMID: 28355133 PMCID: PMC5404916 DOI: 10.7554/elife.24905] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
Bacterial efflux pumps confer multidrug resistance by transporting diverse antibiotics from the cell. In Gram-negative bacteria, some of these pumps form multi-protein assemblies that span the cell envelope. Here, we report the near-atomic resolution cryoEM structures of the Escherichia coli AcrAB-TolC multidrug efflux pump in resting and drug transport states, revealing a quaternary structural switch that allosterically couples and synchronizes initial ligand binding with channel opening. Within the transport-activated state, the channel remains open even though the pump cycles through three distinct conformations. Collectively, our data provide a dynamic mechanism for the assembly and operation of the AcrAB-TolC pump. DOI:http://dx.doi.org/10.7554/eLife.24905.001
Collapse
Affiliation(s)
- Zhao Wang
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Health Science Center at Houston Medical School, Houston, United States
| | - Corey F Hryc
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States.,Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, United States
| | - James N Blaza
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Health Science Center at Houston Medical School, Houston, United States
| | - Michael F Schmid
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Wah Chiu
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States.,Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, United States
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Dijun Du
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
169
|
The role played by drug efflux pumps in bacterial multidrug resistance. Essays Biochem 2017; 61:127-139. [DOI: 10.1042/ebc20160064] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/22/2017] [Accepted: 01/24/2017] [Indexed: 01/19/2023]
Abstract
Antimicrobial resistance is a current major challenge in chemotherapy and infection control. The ability of bacterial and eukaryotic cells to recognize and pump toxic compounds from within the cell to the environment before they reach their targets is one of the important mechanisms contributing to this phenomenon. Drug efflux pumps are membrane transport proteins that require energy to export substrates and can be selective for a specific drug or poly-specific that can export multiple structurally diverse drug compounds. These proteins can be classified into seven groups based on protein sequence homology, energy source and overall structure. Extensive studies on efflux proteins have resulted in a wealth of knowledge that has made possible in-depth understanding of the structures and mechanisms of action, substrate profiles, regulation and possible inhibition of many clinically important efflux pumps. This review focuses on describing known families of drug efflux pumps using examples that are well characterized structurally and/or biochemically.
Collapse
|
170
|
Computational modelling of efflux pumps and their inhibitors. Essays Biochem 2017; 61:141-156. [PMID: 28258237 DOI: 10.1042/ebc20160065] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistance is based on the multifarious strategies that bacteria adopt to face antibiotic therapies, making it a key public health concern of our era. Among these strategies, efflux pumps (EPs) contribute significantly to increase the levels and profiles of resistance by expelling a broad range of unrelated compounds - buying time for the organisms to develop specific resistance. In Gram-negative bacteria, many of these chromosomally encoded transporters form multicomponent 'pumps' that span both inner and outer membranes and are driven energetically by a primary or secondary transporter component.One of the strategies to reinvigorate the efficacy of antimicrobials is by joint administration with EP inhibitors (EPI), which either block the substrate binding and/or hinder any of the transport-dependent steps of the pump. In this review, we provide an overview of multidrug-resistance EPs, their inhibition strategies and the relevant findings from the various computational simulation studies reported to date with respect to deciphering the mechanism of action of inhibitors with the purpose of improving their rational design.
Collapse
|
171
|
In vitro and in silico analysis of the efficiency of tetrahydropyridines as drug efflux inhibitors in Escherichia coli. Int J Antimicrob Agents 2017; 49:308-314. [DOI: 10.1016/j.ijantimicag.2016.11.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 11/04/2016] [Accepted: 11/25/2016] [Indexed: 11/23/2022]
|
172
|
Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat Microbiol 2017; 2:17001. [PMID: 28224989 DOI: 10.1038/nmicrobiol.2017.1] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/23/2016] [Indexed: 01/26/2023]
|
173
|
Evaluation of a series of 2-napthamide derivatives as inhibitors of the drug efflux pump AcrB for the reversal of antimicrobial resistance. Bioorg Med Chem Lett 2017; 27:733-739. [DOI: 10.1016/j.bmcl.2017.01.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 11/18/2022]
|
174
|
Oswald C, Tam HK, Pos KM. Transport of lipophilic carboxylates is mediated by transmembrane helix 2 in multidrug transporter AcrB. Nat Commun 2016; 7:13819. [PMID: 27982032 PMCID: PMC5171871 DOI: 10.1038/ncomms13819] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/01/2016] [Indexed: 12/16/2022] Open
Abstract
The deployment of multidrug efflux pumps is a powerful defence mechanism for Gram-negative bacterial cells when exposed to antimicrobial agents. The major multidrug efflux transport system in Escherichia coli, AcrAB–TolC, is a tripartite system using the proton-motive force as an energy source. The polyspecific substrate-binding module AcrB uses various pathways to sequester drugs from the periplasm and outer leaflet of the inner membrane. Here we report the asymmetric AcrB structure in complex with fusidic acid at a resolution of 2.5 Å and mutational analysis of the putative fusidic acid binding site at the transmembrane domain. A groove shaped by the interface between transmembrane helix 1 (TM1) and TM2 specifically binds fusidic acid and other lipophilic carboxylated drugs. We propose that these bound drugs are actively displaced by an upward movement of TM2 towards the AcrB periplasmic porter domain in response to protonation events in the transmembrane domain.
The AcrB module of the AcrAB-TolC multidrug efflux pump sequesters drugs from the periplasm and outer leaflet of the inner membrane. Here, Oswald et al. provide evidence that lipophilic carboxylated substrates bind to a groove between transmembrane helices TM1 and TM2, for further transport by an upward movement of TM2.
Collapse
Affiliation(s)
- Christine Oswald
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany.,Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Heng-Keat Tam
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Klaas M Pos
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
175
|
Mahmood HY, Jamshidi S, Sutton JM, Rahman KM. Current Advances in Developing Inhibitors of Bacterial Multidrug Efflux Pumps. Curr Med Chem 2016; 23:1062-81. [PMID: 26947776 PMCID: PMC5425656 DOI: 10.2174/0929867323666160304150522] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/27/2016] [Accepted: 03/10/2016] [Indexed: 01/30/2023]
Abstract
Antimicrobial resistance represents a significant challenge to future healthcare provision. An acronym ESKAPEE has been derived from the names of the organisms recognised as the major threats although there are a number of other organisms, notably Neisseria gonorrhoeae, that have become equally challenging to treat in the clinic. These pathogens are characterised by the ability to rapidly develop and/or acquire resistance mechanisms in response to exposure to different antimicrobial agents. A key part of the armoury of these pathogens is a series of efflux pumps, which effectively exclude or reduce the intracellular concentration of a large number of antibiotics, making the pathogens significantly more resistant. These efflux pumps are the topic of considerable interest, both from the perspective of basic understanding of efflux pump function, and its role in drug resistance but also as targets for the development of novel adjunct therapies. The necessity to overcome antimicrobial resistance has encouraged investigations into the characterisation of resistance-modifying efflux pump inhibitors to block the mechanisms of drug extrusion, thereby restoring antibacterial susceptibility and returning existing antibiotics into the clinic. A greater understanding of drug recognition and transport by multidrug efflux pumps is needed to develop clinically useful inhibitors, given the breadth of molecules that can be effluxed by these systems. This review discusses different bacterial EPIs originating from both natural source and chemical synthesis and examines the challenges to designing successful EPIs that can be useful against multidrug resistant bacteria.
Collapse
Affiliation(s)
| | | | | | - Khondaker M Rahman
- Institute of Pharmaceutical Science, King's College London, Britannia House, London SE1 1DB, UK.
| |
Collapse
|
176
|
Song Y, Qin R, Pan X, Ouyang Q, Liu T, Zhai Z, Chen Y, Li B, Zhou H. Design of New Antibacterial Enhancers Based on AcrB's Structure and the Evaluation of Their Antibacterial Enhancement Activity. Int J Mol Sci 2016; 17:ijms17111934. [PMID: 27869748 PMCID: PMC5133929 DOI: 10.3390/ijms17111934] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 12/01/2022] Open
Abstract
Previously, artesunate (AS) and dihydroartemisinine 7 (DHA7) were found to have antibacterial enhancement activity against Escherichia coli via inhibition of the efflux pump AcrB. However, they were only effective against E. coli standard strains. This study aimed to develop effective antibacterial enhancers based on the previous work. Our results demonstrate that 86 new antibacterial enhancers were designed via 3D-SAR and molecular docking. Among them, DHA27 had the best antibacterial enhancement activity. It could potentiate the antibacterial effects of ampicillin against not only E. coli standard strain but also clinical strains, and of β-lactam antibiotics, not non-β-lactamantibiotics. DHA27 could increase the accumulation of daunomycin and nile red within E. coli ATCC 35218, but did not increase the bacterial membrane permeability. DHA27 reduced acrB’s mRNA expression of E. coli ATCC 35218 in a dose-dependent manner, and its antibacterial enhancement activity is related to the degree of acrB mRNA expression in E. coli clinical strains. The polypeptides from AcrB were obtained via molecular docking assay; the pre-incubated polypeptides could inhibit the activity of DHA27. Importantly, DHA27 had no cytotoxicity on cell proliferation. In conclusion, among newly designed antibacterial enhancers, DHA27 had favorable physical and pharmacological properties with no significant cytotoxicity at effective concentrations, and might serve as a potential efflux pump inhibitor in the future.
Collapse
Affiliation(s)
- Yi Song
- Department of Pharmacology, College of Pharmacy, The Third Military Medical University, Chongqing 400038, China.
| | - Rongxin Qin
- Department of Pharmacology, College of Pharmacy, The Third Military Medical University, Chongqing 400038, China.
| | - Xichun Pan
- Department of Pharmacology, College of Pharmacy, The Third Military Medical University, Chongqing 400038, China.
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, The Third Military Medical University, Chongqing 400038, China.
| | - Tianyu Liu
- Department of Medicinal Chemistry, College of Pharmacy, The Third Military Medical University, Chongqing 400038, China.
| | - Zhaoxia Zhai
- Department of Pharmacology, College of Pharmacy, The Third Military Medical University, Chongqing 400038, China.
| | - Yingchun Chen
- Department of Medicinal Chemistry, College of Pharmacy, The Third Military Medical University, Chongqing 400038, China.
| | - Bin Li
- Department of Pharmacology, College of Pharmacy, The Third Military Medical University, Chongqing 400038, China.
| | - Hong Zhou
- Department of Pharmacology, College of Pharmacy, The Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
177
|
Kinana AD, Vargiu AV, Nikaido H. Effect of site-directed mutations in multidrug efflux pump AcrB examined by quantitative efflux assays. Biochem Biophys Res Commun 2016; 480:552-557. [PMID: 27789287 DOI: 10.1016/j.bbrc.2016.10.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The Resistance-Nodulation-Division (RND) family transporter AcrB plays a major role in the intrinsic and increased resistance of Escherichia coli to a large number of antibiotics. The distal binding pocket within this multidrug efflux transporter is very large, but the effort to define the roles of various residues facing this pocket through site-directed mutagenesis so far involved only the determination of minimal inhibitory concentrations of drugs in mutants. METHODS We measured in intact E. coli cells the kinetics of efflux of two substrates, nitrocefin (a cephalosporin) that is predicted mainly to bind to the upper, "groove" domain of the pocket, and L-alanyl-β-naphthylamide (Ala-Naph) that is likely to bind to the lower, "cave" domain, in a number of site-directed mutants of AcrB, where a hydrophobic or aromatic residue was changed into alanine. RESULTS The efflux of nitrocefin became attenuated by some mutations in the groove domain, such as I278A and F178A, but in some experiments a mutation in the cave domain, F628A produced a similar result. In some cases an increased value of KM was detected. The efflux of Ala-Naph was increased by mutations in the cave domain, such as F136A and I626A, but also by those in the groove domain (I277A, I278A, F178A). In most cases the increased Vmax values appeared to be responsible. F610A mutation had a profound effect on the efflux of both substrates, as reported earlier. CONCLUSIONS Our data show for the first time effects of various substrate-binding pocket mutations on the kinetics of efflux of two substrates by the AcrB pump. They also confirm interactions between substrates and drugs predicted by MD simulation studies, and also reveal areas that need future research.
Collapse
Affiliation(s)
- Alfred D Kinana
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, 09042, Monserrato, Italy
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| |
Collapse
|
178
|
Ababou A, Koronakis V. Structures of Gate Loop Variants of the AcrB Drug Efflux Pump Bound by Erythromycin Substrate. PLoS One 2016; 11:e0159154. [PMID: 27403665 PMCID: PMC4942123 DOI: 10.1371/journal.pone.0159154] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/28/2016] [Indexed: 11/18/2022] Open
Abstract
Gram-negative bacteria such as E. coli use tripartite efflux pumps such as AcrAB-TolC to expel antibiotics and noxious compounds. A key feature of the inner membrane transporter component, AcrB, is a short stretch of residues known as the gate/switch loop that divides the proximal and distal substrate binding pockets. Amino acid substitutions of the gate loop are known to decrease antibiotic resistance conferred by AcrB. Here we present two new AcrB gate loop variants, the first stripped of its bulky side chains, and a second in which the gate loop is removed entirely. By determining the crystal structures of the variant AcrB proteins in the presence and absence of erythromycin and assessing their ability to confer erythromycin tolerance, we demonstrate that the gate loop is important for AcrB export activity but is not required for erythromycin binding.
Collapse
Affiliation(s)
- Abdessamad Ababou
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
- * E-mail: (AA); (VK)
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
- * E-mail: (AA); (VK)
| |
Collapse
|
179
|
Foss MH, Pou S, Davidson PM, Dunaj JL, Winter RW, Pou S, Licon MH, Doh JK, Li Y, Kelly JX, Dodean RA, Koop DR, Riscoe MK, Purdy GE. Diphenylether-Modified 1,2-Diamines with Improved Drug Properties for Development against Mycobacterium tuberculosis. ACS Infect Dis 2016; 2:500-8. [PMID: 27626102 DOI: 10.1021/acsinfecdis.6b00052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New treatments for tuberculosis infection are critical to combat the emergence of multidrug- and extensively drug-resistant Mycobacterium tuberculosis (Mtb). We report the characterization of a diphenylether-modified adamantyl 1,2-diamine that we refer to as TBL-140, which has a minimal inhibitory concentration (MIC99) of 1.2 μg/mL. TBL-140 is effective against drug-resistant Mtb and nonreplicating bacteria. In addition, TBL-140 eliminates expansion of Mtb in cell culture infection assays at its MIC. To define the mechanism of action of this compound, we performed a spontaneous mutant screen and biochemical assays. We determined that TBL-140 treatment affects the proton motive force (PMF) by perturbing the transmembrane potential (ΔΨ), consistent with a target in the electron transport chain (ETC). As a result, treated bacteria have reduced intracellular ATP levels. We show that TBL-140 exhibits greater metabolic stability than SQ109, a structurally similar compound in clinical trials for treatment of MDR-TB infections. Combined, these results suggest that TBL-140 should be investigated further to assess its potential as an improved therapeutic lead against Mtb.
Collapse
Affiliation(s)
- Marie H. Foss
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Sovitj Pou
- Portland VA Medical Center, 3710 S.W. U.S. Veterans Hospital
Road, Portland, Oregon 97239, United States
| | - Patrick M. Davidson
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Jennifer L. Dunaj
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Rolf W. Winter
- Portland VA Medical Center, 3710 S.W. U.S. Veterans Hospital
Road, Portland, Oregon 97239, United States
| | - Sovijja Pou
- Portland VA Medical Center, 3710 S.W. U.S. Veterans Hospital
Road, Portland, Oregon 97239, United States
| | - Meredith H. Licon
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Julia K. Doh
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Yuexin Li
- Portland VA Medical Center, 3710 S.W. U.S. Veterans Hospital
Road, Portland, Oregon 97239, United States
| | - Jane X. Kelly
- Portland VA Medical Center, 3710 S.W. U.S. Veterans Hospital
Road, Portland, Oregon 97239, United States
| | - Rozalia A. Dodean
- Portland VA Medical Center, 3710 S.W. U.S. Veterans Hospital
Road, Portland, Oregon 97239, United States
| | - Dennis R. Koop
- Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Michael K. Riscoe
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, United States
- Portland VA Medical Center, 3710 S.W. U.S. Veterans Hospital
Road, Portland, Oregon 97239, United States
| | - Georgiana E. Purdy
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, United States
| |
Collapse
|
180
|
Evidence of a Substrate-Discriminating Entrance Channel in the Lower Porter Domain of the Multidrug Resistance Efflux Pump AcrB. Antimicrob Agents Chemother 2016; 60:4315-23. [PMID: 27161641 DOI: 10.1128/aac.00314-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/01/2016] [Indexed: 11/20/2022] Open
Abstract
Efflux pumps of the resistance nodulation cell division (RND) transporter family, such as AcrB of Escherichia coli, play an important role in the development of multidrug resistance, but the molecular basis for their substrate promiscuity is not yet completely understood. From a collection of highly clarithromycin-resistant AcrB periplasmic domain mutants derived from in vitro random mutagenesis, we identified variants with an unusually altered drug resistance pattern characterized by increased susceptibility to many drugs of lower molecular weight, including fluoroquinolones, tetracyclines, and oxazolidinones, but unchanged or increased resistance to drugs of higher molecular weight, including macrolides. Sequencing of 14 such "divergent resistance" phenotype mutants and 15 control mutants showed that this unusual phenotype was associated with mutations at residues I38 and I671 predominantly to phenylalanine and threonine, respectively, both conferring a similar susceptibility pattern. Reconstructed I38F and I671T single mutants as well as an engineered I38F I671T double mutant with proved efflux competence revealed an equivalent phenotype with enhanced or unchanged resistance to many large AcrB substrates but increased susceptibility to several lower-molecular-weight drugs known to bind within the distal binding pocket. The two isoleucines located in close vicinity to each other in the lower porter domain of AcrB beneath the bottom of the proximal binding pocket may be part of a preferential small-drug entrance pathway that is compromised by the mutations. This finding supports recent indications of distinct entrance channels used by compounds with different physicochemical properties, of which molecular size appears to play a prominent role.
Collapse
|
181
|
Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc Natl Acad Sci U S A 2016; 113:3509-14. [PMID: 26976576 DOI: 10.1073/pnas.1602472113] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Escherichia coli AcrAB-TolC efflux pump is the archetype of the resistance nodulation cell division (RND) exporters from Gram-negative bacteria. Overexpression of RND-type efflux pumps is a major factor in multidrug resistance (MDR), which makes these pumps important antibacterial drug discovery targets. We have recently developed novel pyranopyridine-based inhibitors of AcrB, which are orders of magnitude more powerful than the previously known inhibitors. However, further development of such inhibitors has been hindered by the lack of structural information for rational drug design. Although only the soluble, periplasmic part of AcrB binds and exports the ligands, the presence of the membrane-embedded domain in AcrB and its polyspecific binding behavior have made cocrystallization with drugs challenging. To overcome this obstacle, we have engineered and produced a soluble version of AcrB [AcrB periplasmic domain (AcrBper)], which is highly congruent in structure with the periplasmic part of the full-length protein, and is capable of binding substrates and potent inhibitors. Here, we describe the molecular basis for pyranopyridine-based inhibition of AcrB using a combination of cellular, X-ray crystallographic, and molecular dynamics (MD) simulations studies. The pyranopyridines bind within a phenylalanine-rich cage that branches from the deep binding pocket of AcrB, where they form extensive hydrophobic interactions. Moreover, the increasing potency of improved inhibitors correlates with the formation of a delicate protein- and water-mediated hydrogen bond network. These detailed insights provide a molecular platform for the development of novel combinational therapies using efflux pump inhibitors for combating multidrug resistant Gram-negative pathogens.
Collapse
|
182
|
Zuo Z, Weng J, Wang W. Insights into the Inhibitory Mechanism of D13-9001 to the Multidrug Transporter AcrB through Molecular Dynamics Simulations. J Phys Chem B 2016; 120:2145-54. [PMID: 26900716 DOI: 10.1021/acs.jpcb.5b11942] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The resistance-nodulation-cell division transporter AcrB is responsible for energy transduction and substrate recognition in the tripartite AcrAB-TolC efflux system in Escherichia coli. Despite a broad substrate specificity, only a few compounds have been cocrystallized with AcrB inside the distal binding pocket (DBP), including doxorubicin (DOX) and D13-9001. D13-9001 is a promising efflux pump inhibitor that potentiates the efficacy of a wide variety of antibiotics. To understand its inhibition effect under the framework of functional rotating mechanism, we performed targeted and steered molecular dynamics simulations to compare the binding and extrusion processes of this inhibitor and the substrate DOX in AcrB. The results demonstrate that, with respect to DOX, the interaction of D13-9001 with the hydrophobic trap results in delayed disassociation from the DBP. Notably, the detachment of D13-9001 is tightly correlated with the side-chain reorientation of Phe628 and large-scale displacement of Tyr327. Furthermore, the inhibitor induces much more significant conformational changes at the exit gate than DOX does, thereby causing higher energy cost for extrusion and contributing to the inhibitory effect in addition to the tight binding at DBP.
Collapse
Affiliation(s)
- Zhicheng Zuo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University , Shanghai 200433, People's Republic of China
| | - Jingwei Weng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University , Shanghai 200433, People's Republic of China
| | - Wenning Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University , Shanghai 200433, People's Republic of China
| |
Collapse
|
183
|
Ortega-Guerrero A, Espinosa-Duran JM, Velasco-Medina J. TRPV1 channel as a target for cancer therapy using CNT-based drug delivery systems. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:423-33. [PMID: 26872481 DOI: 10.1007/s00249-016-1111-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/28/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Abstract
Carbon nanotubes are being considered for the design of drug delivery systems (DDSs) due to their capacity to internalize molecules and control their release. However, for cellular uptake of drugs, this approach requires an active translocation pathway or a channel to transport the drug into the cell. To address this issue, it is suggested to use TRPV1 ion channels as a potential target for drug release by nano-DDSs since these channels are overexpressed in cancer cells and allow the permeation of large cationic molecules. Considering these facts, this work presents three studies using molecular dynamics simulations of a human TRPV1 (hTRPV1) channel built here. The purpose of these simulations is to study the interaction between a single-wall carbon nanotube (SWCNT) and hTRPV1, and the diffusion of doxorubicin (DOX) across hTRPV1 and across a POPC lipid membrane. The first study shows an attractive potential between the SWCNT surface and hTRPV1, tilting the adsorbed SWCNT. The second study shows low diffusion probability of DOX across the open hTRPV1 due to a high free energy barrier. Although, the potential energy between DOX and hTRPV1 reveals an attractive interaction while DOX is inside hTRPV1. These results suggest that if the channel is dilated, then DOX diffusion could occur. The third study shows a lower free energy barrier for DOX across the lipid membrane than for DOX across hTRPV1. Taking into account the results obtained, it is feasible to design novel nano-DDSs based on SWCNTs to accomplish controlled drug release into cells using as translocation pathway, the hTRPV1 ion channel.
Collapse
Affiliation(s)
- Andres Ortega-Guerrero
- School of Electrical and Electronics Engineering, Bionanoelectronics Research Group, Universidad del Valle, Cali, Colombia
| | - John M Espinosa-Duran
- Department of Chemistry, Center for Theoretical and Computational Nanoscience, Indiana University, Bloomington, IN, USA
| | - Jaime Velasco-Medina
- School of Electrical and Electronics Engineering, Bionanoelectronics Research Group, Universidad del Valle, Cali, Colombia.
| |
Collapse
|
184
|
Daury L, Orange F, Taveau JC, Verchère A, Monlezun L, Gounou C, Marreddy RKR, Picard M, Broutin I, Pos KM, Lambert O. Tripartite assembly of RND multidrug efflux pumps. Nat Commun 2016; 7:10731. [PMID: 26867482 PMCID: PMC4754349 DOI: 10.1038/ncomms10731] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/15/2016] [Indexed: 12/18/2022] Open
Abstract
Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB–OprM and Escherichia coli AcrAB–TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA–MexB–TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components. Tripartite efflux systems consist of inner membrane, outer membrane and periplasmic components. Here, Daury et al. reconstitute native versions of RND transporters in nanodiscs and present projection structures emphasizing the role of the periplasmic adaptor in linking the inner and outer membrane proteins.
Collapse
Affiliation(s)
- Laetitia Daury
- Université de Bordeaux, CBMN UMR 5248, Bordeaux INP, IECB, Pessac F-33600, France.,CNRS, CBMN UMR 5248, Pessac F-33600, France
| | - François Orange
- Université de Bordeaux, CBMN UMR 5248, Bordeaux INP, IECB, Pessac F-33600, France.,CNRS, CBMN UMR 5248, Pessac F-33600, France
| | - Jean-Christophe Taveau
- Université de Bordeaux, CBMN UMR 5248, Bordeaux INP, IECB, Pessac F-33600, France.,CNRS, CBMN UMR 5248, Pessac F-33600, France
| | - Alice Verchère
- Laboratoire de Cristallographie et RMN Biologiques, UMR 8015, CNRS, Université Paris Descartes, Faculté de Pharmacie, 4 Avenue de l'Observatoire, Paris 75006, France
| | - Laura Monlezun
- Laboratoire de Cristallographie et RMN Biologiques, UMR 8015, CNRS, Université Paris Descartes, Faculté de Pharmacie, 4 Avenue de l'Observatoire, Paris 75006, France
| | - Céline Gounou
- Université de Bordeaux, CBMN UMR 5248, Bordeaux INP, IECB, Pessac F-33600, France.,CNRS, CBMN UMR 5248, Pessac F-33600, France
| | - Ravi K R Marreddy
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Martin Picard
- Laboratoire de Cristallographie et RMN Biologiques, UMR 8015, CNRS, Université Paris Descartes, Faculté de Pharmacie, 4 Avenue de l'Observatoire, Paris 75006, France
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques, UMR 8015, CNRS, Université Paris Descartes, Faculté de Pharmacie, 4 Avenue de l'Observatoire, Paris 75006, France
| | - Klaas M Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Olivier Lambert
- Université de Bordeaux, CBMN UMR 5248, Bordeaux INP, IECB, Pessac F-33600, France.,CNRS, CBMN UMR 5248, Pessac F-33600, France
| |
Collapse
|
185
|
Gunio D, Froehlig J, Pappas K, Ferguson U, Wade H. Solution-Binding and Molecular Docking Approaches Combine to Provide an Expanded View of Multidrug Recognition in the MDR Gene Regulator BmrR. J Chem Inf Model 2016; 56:377-89. [DOI: 10.1021/acs.jcim.5b00704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Drew Gunio
- Department
of Biophysics
and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - John Froehlig
- Department
of Biophysics
and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Katerina Pappas
- Department
of Biophysics
and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Uneeke Ferguson
- Department
of Biophysics
and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Herschel Wade
- Department
of Biophysics
and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
186
|
An overview of bacterial efflux pumps and computational approaches to study efflux pump inhibitors. Future Med Chem 2016; 8:195-210. [DOI: 10.4155/fmc.15.173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Micro-organisms express a wide range of transmembrane pumps known as multidrug efflux pumps that improve the micro-organism's ability to survive in severe environments and contribute to resistance against antibiotic and antimicrobial agents. There is significant interest in developing efflux inhibitors as an adjunct to treatment with current and next generation of antibiotics. A greater understanding of drug recognition and transport by multidrug efflux pumps is needed to develop clinically useful inhibitors, given the breadth of molecules that can be effluxed by these systems. We summarize some structural and functional data that could provide insights into the inhibition of transport mechanisms of these intricate molecular nanomachines with a focus on the advances in computational approaches.
Collapse
|
187
|
Mousa JJ, Bruner SD. Structural and mechanistic diversity of multidrug transporters. Nat Prod Rep 2016; 33:1255-1267. [DOI: 10.1039/c6np00006a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The review article surveys recent structural and mechanistic advances in the field of multi-drug and natural product transporters.
Collapse
|
188
|
Dmitriev OY, Lutsenko S, Muyldermans S. Nanobodies as Probes for Protein Dynamics in Vitro and in Cells. J Biol Chem 2015; 291:3767-75. [PMID: 26677230 DOI: 10.1074/jbc.r115.679811] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nanobodies are the recombinant antigen-recognizing domains of the minimalistic heavy chain-only antibodies produced by camels and llamas. Nanobodies can be easily generated, effectively optimized, and variously derivatized with standard molecular biology protocols. These properties have triggered the recent explosion in the nanobody use in basic and clinical research. This review focuses on the emerging use of nanobodies for understanding and monitoring protein dynamics on the scales ranging from isolated protein domains to live cells, from nanoseconds to hours. The small size and high solubility make nanobodies uniquely suited for studying protein dynamics by NMR. The ability to produce conformation-sensitive nanobodies in cells enables studies that link structural dynamics of a target protein to its cellular behavior. The link between in vitro and in-cell dynamics, afforded by nanobodies, brings the analysis of such important events as receptor signaling, membrane protein trafficking, and protein interactions to the next level of resolution.
Collapse
Affiliation(s)
- Oleg Y Dmitriev
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada,
| | - Svetlana Lutsenko
- the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Serge Muyldermans
- the Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| |
Collapse
|
189
|
AcrB-AcrA Fusion Proteins That Act as Multidrug Efflux Transporters. J Bacteriol 2015; 198:332-42. [PMID: 26527645 DOI: 10.1128/jb.00587-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The AcrAB-TolC system in Escherichia coli is an intrinsic RND-type multidrug efflux transporter that functions as a tripartite complex of the inner membrane transporter AcrB, the outer membrane channel TolC, and the adaptor protein AcrA. Although the crystal structures of each component of this system have been elucidated, the crystal structure of the whole complex has not been solved. The available crystal structures have shown that AcrB and TolC function as trimers, but the number of AcrA molecules in the complex is now under debate. Disulfide chemical cross-linking experiments have indicated that the stoichiometry of AcrB-AcrA-TolC is 1:1:1; on the other hand, recent cryo-electron microscopy images of AcrAB-TolC suggested a 1:2:1 stoichiometry. In this study, we constructed 1:1-fixed AcrB-AcrA fusion proteins using various linkers. Surprisingly, all the 1:1-fixed linker proteins showed drug export activity under both acrAB-deficient conditions and acrAB acrEF double-pump-knockout conditions regardless of the lengths of the linkers. Finally, we optimized a shorter linker lacking the conformational freedom imparted by the AcrB C terminus. These results suggest that a complex with equal amounts of AcrA and AcrB is sufficient for drug export function. IMPORTANCE The structure and stoichiometry of the RND-type multidrug exporter AcrB-AcrA-TolC complex are still under debate. Recently, electron microscopic images of the AcrB-AcrA-TolC complex have been reported, suggesting a 1:2:1 stoichiometry. However, we report here that the AcrB-AcrA 1:1 fusion protein is active for drug export under acrAB-deficient conditions and also under acrAB acrEF double-deficient conditions, which eliminate the aid of free AcrA and its close homolog AcrE, indicating that the AcrB-AcrA 1:1 stoichiometry is enough for drug export function. In addition, the AcrB-AcrA fusion protein can function without the aid of free AcrA. We believe that these results are very important for considering the structure and mechanism of AcrAB-TolC-mediated multidrug export.
Collapse
|
190
|
Stepwise substrate translocation mechanism revealed by free energy calculations of doxorubicin in the multidrug transporter AcrB. Sci Rep 2015; 5:13905. [PMID: 26365278 PMCID: PMC4595977 DOI: 10.1038/srep13905] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/10/2015] [Indexed: 01/05/2023] Open
Abstract
AcrB is the inner membrane transporter of the tripartite multidrug efflux pump AcrAB-TolC in E. coli, which poses a major obstacle to the treatment of bacterial infections. X-ray structures have identified two types of substrate-binding pockets in the porter domains of AcrB trimer: the proximal binding pocket (PBP) and the distal binding pocket (DBP), and suggest a functional rotating mechanism in which each protomer cycles consecutively through three distinct conformational states (access, binding and extrusion). However, the details of substrate binding and translocation between the binding pockets remain elusive. In this work, we performed atomic simulations to obtain the free energy profile of the translocation of an antibiotic drug doxorubicin (DOX) inside AcrB. Our simulation indicates that DOX binds at the PBP and DBP with comparable affinities in the binding state protomer, and overcomes a 3 kcal/mol energy barrier to transit between them. Obvious conformational changes including closing of the PC1/PC2 cleft and shrinking of the DBP were observed upon DOX binding in the PBP, resulting in an intermediate state between the access and binding states. Taken together, the simulation results reveal a detailed stepwise substrate binding and translocation process in the framework of functional rotating mechanism.
Collapse
|
191
|
Delmar JA, Su CC, Yu EW. Heavy metal transport by the CusCFBA efflux system. Protein Sci 2015; 24:1720-36. [PMID: 26258953 DOI: 10.1002/pro.2764] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/03/2015] [Indexed: 01/11/2023]
Abstract
It is widely accepted that the increased use of antibiotics has resulted in bacteria with developed resistance to such treatments. These organisms are capable of forming multi-protein structures that bridge both the inner and outer membrane to expel diverse toxic compounds directly from the cell. Proteins of the resistance nodulation cell division (RND) superfamily typically assemble as tripartite efflux pumps, composed of an inner membrane transporter, a periplasmic membrane fusion protein, and an outer membrane factor channel protein. These machines are the most powerful antimicrobial efflux machinery available to bacteria. In Escherichia coli, the CusCFBA complex is the only known RND transporter with a specificity for heavy metals, detoxifying both Cu(+) and Ag(+) ions. In this review, we discuss the known structural information for the CusCFBA proteins, with an emphasis on their assembly, interaction, and the relationship between structure and function.
Collapse
Affiliation(s)
- Jared A Delmar
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011
| | - Chih-Chia Su
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011
| | - Edward W Yu
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011
- Department of Chemistry, Iowa State University, Ames, Iowa, 50011
| |
Collapse
|
192
|
Du D, van Veen HW, Murakami S, Pos KM, Luisi BF. Structure, mechanism and cooperation of bacterial multidrug transporters. Curr Opin Struct Biol 2015; 33:76-91. [PMID: 26282926 DOI: 10.1016/j.sbi.2015.07.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/29/2015] [Accepted: 07/24/2015] [Indexed: 12/13/2022]
Abstract
Cells from all domains of life encode energy-dependent trans-membrane transporters that can expel harmful substances including clinically applied therapeutic agents. As a collective body, these transporters perform as a super-system that confers tolerance to an enormous range of harmful compounds and consequently aid survival in hazardous environments. In the Gram-negative bacteria, some of these transporters serve as energy-transducing components of tripartite assemblies that actively efflux drugs and other harmful compounds, as well as deliver virulence agents across the entire cell envelope. We draw together recent structural and functional data to present the current models for the transport mechanisms for the main classes of multi-drug transporters and their higher-order assemblies.
Collapse
Affiliation(s)
- Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Hendrik W van Veen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Satoshi Murakami
- Division of Structure and Function of Biomolecules, Department of Life Science, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Klaas M Pos
- Institute of Biochemistry, Goethe Universität Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
193
|
Reversal of the Drug Binding Pocket Defects of the AcrB Multidrug Efflux Pump Protein of Escherichia coli. J Bacteriol 2015; 197:3255-64. [PMID: 26240069 DOI: 10.1128/jb.00547-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/28/2015] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The AcrB protein of Escherichia coli, together with TolC and AcrA, forms a contiguous envelope conduit for the capture and extrusion of diverse antibiotics and cellular metabolites. In this study, we sought to expand our knowledge of AcrB by conducting genetic and functional analyses. We began with an AcrB mutant bearing an F610A substitution in the drug binding pocket and obtained second-site substitutions that overcame the antibiotic hypersusceptibility phenotype conferred by the F610A mutation. Five of the seven unique single amino acid substitutions--Y49S, V127A, V127G, D153E, and G288C--mapped in the periplasmic porter domain of AcrB, with the D153E and G288C mutations mapping near and at the distal drug binding pocket, respectively. The other two substitutions--F453C and L486W--were mapped to transmembrane (TM) helices 5 and 6, respectively. The nitrocefin efflux kinetics data suggested that all periplasmic suppressors significantly restored nitrocefin binding affinity impaired by the F610A mutation. Surprisingly, despite increasing MICs of tested antibiotics and the efflux of N-phenyl-1-naphthylamine, the TM suppressors did not improve the nitrocefin efflux kinetics. These data suggest that the periplasmic substitutions act by influencing drug binding affinities for the distal binding pocket, whereas the TM substitutions may indirectly affect the conformational dynamics of the drug binding domain. IMPORTANCE The AcrB protein and its homologues confer multidrug resistance in many important human bacterial pathogens. A greater understanding of how these efflux pump proteins function will lead to the development of effective inhibitors against them. The research presented in this paper investigates drug binding pocket mutants of AcrB through the isolation and characterization of intragenic suppressor mutations that overcome the drug susceptibility phenotype of mutations affecting the drug binding pocket. The data reveal a remarkable structure-function plasticity of the AcrB protein pertaining to its drug efflux activity.
Collapse
|
194
|
Mukhopadhyay A. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol 2015; 23:498-508. [DOI: 10.1016/j.tim.2015.04.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 02/06/2023]
|
195
|
Translocation of Non-Canonical Polypeptides into Cells Using Protective Antigen. Sci Rep 2015; 5:11944. [PMID: 26178180 PMCID: PMC4503955 DOI: 10.1038/srep11944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/09/2015] [Indexed: 11/09/2022] Open
Abstract
A variety of pathogenic bacteria infect host eukaryotic cells using protein toxins, which enter the cytosol and exert their cytotoxic effects. Anthrax lethal toxin, for example, utilizes the membrane-spanning translocase, protective antigen (PA) pore, to deliver the protein toxin lethal factor (LF) from the endosome into the cytosol of cells. Previous work has investigated the delivery of natural peptides and enzymatic domains appended to the C-terminus of the PA-binding domain of lethal factor (LFN) into the cytosol via PA pore. Here, we move beyond natural amino acids and systematically investigate the translocation of polypeptide cargo containing non-canonical amino acids and functionalities through PA pore. Our results indicate translocation is not perturbed with alterations to the peptide backbone or side-chain. Moreover, despite their structural complexity, we found that the small molecule drugs, doxorubicin and monomethyl auristatin F (MMAF) translocated efficiently through PA pore. However, we found cyclic peptides and the small molecule drug docetaxel abrogated translocation due to their large size and structural rigidity. For cargos that reached the cytosol, we demonstrated that each remained intact after translocation. These studies show PA is capable of translocating non-canonical cargo provided it is in a conformational state conducive for passage through the narrow pore.
Collapse
|
196
|
Dreier J, Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol 2015; 6:660. [PMID: 26217310 PMCID: PMC4495556 DOI: 10.3389/fmicb.2015.00660] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/16/2015] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa infections are becoming increasingly difficult to treat due to intrinsic antibiotic resistance and the propensity of this pathogen to accumulate diverse resistance mechanisms. Hyperexpression of efflux pumps of the Resistance-Nodulation-Cell Division (RND)-type multidrug efflux pumps (e.g., MexAB-OprM), chromosomally encoded by mexAB-oprM, mexCD-oprJ, mexEF-oprN, and mexXY (-oprA) is often detected in clinical isolates and contributes to worrying multi-drug resistance phenotypes. Not all antibiotics are affected to the same extent by the aforementioned RND efflux pumps. The impact of efflux on antibiotic activity varies not only between different classes of antibiotics but also between members of the same family of antibiotics. Subtle differences in physicochemical features of compound-pump and compound-solvent interactions largely determine how compounds are affected by efflux activity. The combination of different high-resolution techniques helps to gain insight into the functioning of these molecular machineries. This review discusses substrate recognition patterns based on experimental evidence and computer simulations with a focus on MexB, the pump subunit of the main RND transporter in P. aeruginosa.
Collapse
Affiliation(s)
- Jürg Dreier
- Basilea Pharmaceutica International Ltd.,Basel, Switzerland
| | - Paolo Ruggerone
- Dipartimento di Fisica, Università di Cagliari – Cittadella UniversitariaMonserrato, Italy
| |
Collapse
|
197
|
Opperman TJ, Nguyen ST. Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol 2015; 6:421. [PMID: 25999939 PMCID: PMC4419859 DOI: 10.3389/fmicb.2015.00421] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/21/2015] [Indexed: 12/25/2022] Open
Abstract
Multidrug resistance (MDR) in Gram-negative pathogens, such as the Enterobacteriaceae and Pseudomonas aeruginosa, poses a significant threat to our ability to effectively treat infections caused by these organisms. A major component in the development of the MDR phenotype in Gram-negative bacteria is overexpression of Resistance-Nodulation-Division (RND)-type efflux pumps, which actively pump antibacterial agents and biocides from the periplasm to the outside of the cell. Consequently, bacterial efflux pumps are an important target for developing novel antibacterial treatments. Potent efflux pump inhibitors (EPIs) could be used as adjunctive therapies that would increase the potency of existing antibiotics and decrease the emergence of MDR bacteria. Several potent inhibitors of RND-type efflux pump have been reported in the literature, and at least three of these EPI series were optimized in a pre-clinical development program. However, none of these compounds have been tested in the clinic. One of the major hurdles to the development of EPIs has been the lack of biochemical, computational, and structural methods that could be used to guide rational drug design. Here, we review recent reports that have advanced our understanding of the mechanism of action of several potent EPIs against RND-type pumps.
Collapse
|
198
|
Venter H, Mowla R, Ohene-Agyei T, Ma S. RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol 2015; 6:377. [PMID: 25972857 PMCID: PMC4412071 DOI: 10.3389/fmicb.2015.00377] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/12/2015] [Indexed: 11/13/2022] Open
Abstract
Drug efflux protein complexes confer multidrug resistance on bacteria by transporting a wide spectrum of structurally diverse antibiotics. Moreover, organisms can only acquire resistance in the presence of an active efflux pump. The substrate range of drug efflux pumps is not limited to antibiotics, but it also includes toxins, dyes, detergents, lipids, and molecules involved in quorum sensing; hence efflux pumps are also associated with virulence and biofilm formation. Inhibitors of efflux pumps are therefore attractive compounds to reverse multidrug resistance and to prevent the development of resistance in clinically relevant bacterial pathogens. Recent successes on the structure determination and functional analysis of the AcrB and MexB components of the AcrAB-TolC and MexAB-OprM drug efflux systems as well as the structure of the fully assembled, functional triparted AcrAB-TolC complex significantly contributed to our understanding of the mechanism of substrate transport and the options for inhibition of efflux. These data, combined with the well-developed methodologies for measuring efflux pump inhibition, could allow the rational design, and subsequent experimental verification of potential efflux pump inhibitors (EPIs). In this review we will explore how the available biochemical and structural information can be translated into the discovery and development of new compounds that could reverse drug resistance in Gram-negative pathogens. The current literature on EPIs will also be analyzed and the reasons why no compounds have yet progressed into clinical use will be explored.
Collapse
Affiliation(s)
- Henrietta Venter
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, SA, Australia
| | - Rumana Mowla
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, SA, Australia
| | | | - Shutao Ma
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University Jinan, China
| |
Collapse
|
199
|
Yamaguchi A, Nakashima R, Sakurai K. Structural basis of RND-type multidrug exporters. Front Microbiol 2015; 6:327. [PMID: 25941524 PMCID: PMC4403515 DOI: 10.3389/fmicb.2015.00327] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/01/2015] [Indexed: 12/29/2022] Open
Abstract
Bacterial multidrug exporters are intrinsic membrane transporters that act as cellular self-defense mechanism. The most notable characteristics of multidrug exporters is that they export a wide range of drugs and toxic compounds. The overexpression of these exporters causes multidrug resistance. Multidrug-resistant pathogens have become a serious problem in modern chemotherapy. Over the past decade, investigations into the structure of bacterial multidrug exporters have revealed the multidrug recognition and export mechanisms. In this review, we primarily discuss RND-type multidrug exporters particularly AcrAB-TolC, major drug exporter in Gram-negative bacteria. RND-type drug exporters are tripartite complexes comprising a cell membrane transporter, an outer membrane channel and an adaptor protein. Cell membrane transporters and outer membrane channels are homo-trimers; however, there is no consensus on the number of adaptor proteins in these tripartite complexes. The three monomers of a cell membrane transporter have varying conformations (access, binding, and extrusion) during transport. Drugs are exported following an ordered conformational change in these three monomers, through a functional rotation mechanism coupled with the proton relay cycle in ion pairs, which is driven by proton translocation. Multidrug recognition is based on a multisite drug-binding mechanism, in which two voluminous multidrug-binding pockets in cell membrane exporters recognize a wide range of substrates as a result of permutations at numerous binding sites that are specific for the partial structures of substrate molecules. The voluminous multidrug-binding pocket may have numerous binding sites even for a single substrate, suggesting that substrates may move between binding sites during transport, an idea named as multisite-drug-oscillation hypothesis. This hypothesis is consistent with the apparently broad substrate specificity of cell membrane exporters and their highly efficient ejection of drugs from the cell. Substrates are transported through dual multidrug-binding pockets via the peristaltic motion of the substrate translocation channel. Although there are no clinically available inhibitors of bacterial multidrug exporters, efforts to develop inhibitors based on structural information are underway.
Collapse
Affiliation(s)
- Akihito Yamaguchi
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University Ibaraki, Japan
| | - Ryosuke Nakashima
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University Ibaraki, Japan
| | - Keisuke Sakurai
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University Ibaraki, Japan
| |
Collapse
|
200
|
Wang B, Weng J, Wang W. Substrate binding accelerates the conformational transitions and substrate dissociation in multidrug efflux transporter AcrB. Front Microbiol 2015; 6:302. [PMID: 25918513 PMCID: PMC4394701 DOI: 10.3389/fmicb.2015.00302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/27/2015] [Indexed: 11/25/2022] Open
Abstract
The tripartite efflux pump assembly AcrAB-TolC is the major multidrug resistance transporter in E. coli. The inner membrane transporter AcrB is a homotrimer, energized by the proton movement down the transmembrane electrochemical gradient. The asymmetric crystal structures of AcrB with three monomers in distinct conformational states [access (A), binding (B) and extrusion (E)] support a functional rotating mechanism, in which each monomer of AcrB cycles among the three states in a concerted way. However, the relationship between the conformational changes during functional rotation and drug translocation has not been totally understood. Here, we explored the conformational changes of the AcrB homotrimer during the ABE to BEA transition in different substrate-binding states using targeted MD simulations. It was found that the dissociation of substrate from the distal binding pocket of B monomer is closely related to the concerted conformational changes in the translocation pathway, especially the side chain reorientation of Phe628 and Tyr327. A second substrate binding at the proximal binding pocket of A monomer evidently accelerates the conformational transitions as well as substrate dissociation in B monomer. The acceleration effect of the multi-substrate binding mode provides a molecular explanation for the positive cooperativity observed in the kinetic studies of substrate efflux and deepens our understanding of the functional rotating mechanism of AcrB.
Collapse
Affiliation(s)
- Beibei Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University Shanghai, China
| | - Jingwei Weng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University Shanghai, China
| | - Wenning Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University Shanghai, China ; Institutes of Biomedical Sciences, Fudan University Shanghai, China
| |
Collapse
|