151
|
Bacterial chemoreceptor dynamics correlate with activity state and are coupled over long distances. Proc Natl Acad Sci U S A 2015; 112:2455-60. [PMID: 25675479 DOI: 10.1073/pnas.1414155112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dynamics are hypothesized to play an important role in the transmission of signals across membranes by receptors. Bacterial chemoreceptors are long helical proteins that consist of a periplasmic ligand-binding domain; a transmembrane region; a cytoplasmic HAMP (histidine kinase, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases) domain; and a kinase-control module (KCM). The KCM is further composed of adaptation, hinge, and protein interaction regions (PIRs), the latter of which binds the histidine kinase CheA and adaptor CheW. Fusions of the Escherichia coli aspartate receptor KCM to HAMP domains of defined structure (H1-Tar vs. H1-2-Tar) give opposite responses in phosphotransfer and cellular assays, despite similar binding to CheA and CheW. Pulsed dipolar ESR spectroscopy (PDS) of these isolated on and off dimeric effectors reveals that, in the kinase-on state, the HAMP is more conformationally destabilized compared with the PIR, whereas in the kinase-off state, the HAMP is more compact, and the PIR samples a greater breadth of conformations. On and off HAMP states produce different conformational effects at the KCM junction, but these differences decrease through the adaptation region and into the hinge only to return with the inverted relationship in the PIR. Continuous wave-ESR of the spin-labeled proteins confirms that broader PDS distance distributions correlate with increased rates of dynamics. Conformational breadth in the adaptation region changes with charge alterations caused by modification enzymes. Activating modifications broaden the HAMP conformational ensemble but correspondingly, compact the PIR. Thus, chemoreceptors behave as coupled units, in which dynamics in regions proximal and distal to the membrane change coherently but with opposite sign.
Collapse
|
152
|
Hiremath G, Hyakutake A, Yamamoto K, Ebisawa T, Nakamura T, Nishiyama SI, Homma M, Kawagishi I. Hypoxia-induced localization of chemotaxis-related signaling proteins inVibrio cholerae. Mol Microbiol 2015; 95:780-90. [DOI: 10.1111/mmi.12887] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Geetha Hiremath
- Research Center for Micro-Nano Technology; Hosei University; Koganei Tokyo 184-8584 Japan
| | - Akihiro Hyakutake
- Division of Biological Science; Graduate School of Science; Nagoya University; Chikusa-ku Nagoya 464-8602 Japan
| | - Kentaro Yamamoto
- Department of Frontier Bioscience; Hosei University; Koganei Tokyo 184-8584 Japan
| | - Tatsuaki Ebisawa
- Department of Frontier Bioscience; Hosei University; Koganei Tokyo 184-8584 Japan
| | - Tomoyuki Nakamura
- Department of Frontier Bioscience; Hosei University; Koganei Tokyo 184-8584 Japan
| | - So-ichiro Nishiyama
- Department of Frontier Bioscience; Hosei University; Koganei Tokyo 184-8584 Japan
| | - Michio Homma
- Division of Biological Science; Graduate School of Science; Nagoya University; Chikusa-ku Nagoya 464-8602 Japan
| | - Ikuro Kawagishi
- Research Center for Micro-Nano Technology; Hosei University; Koganei Tokyo 184-8584 Japan
- Department of Frontier Bioscience; Hosei University; Koganei Tokyo 184-8584 Japan
| |
Collapse
|
153
|
Bi S, Lai L. Bacterial chemoreceptors and chemoeffectors. Cell Mol Life Sci 2015; 72:691-708. [PMID: 25374297 PMCID: PMC11113376 DOI: 10.1007/s00018-014-1770-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/05/2014] [Accepted: 10/23/2014] [Indexed: 01/11/2023]
Abstract
Bacteria use chemotaxis signaling pathways to sense environmental changes. Escherichia coli chemotaxis system represents an ideal model that illustrates fundamental principles of biological signaling processes. Chemoreceptors are crucial signaling proteins that mediate taxis toward a wide range of chemoeffectors. Recently, in deep study of the biochemical and structural features of chemoreceptors, the organization of higher-order clusters in native cells, and the signal transduction mechanisms related to the on-off signal output provides us with general insights to understand how chemotaxis performs high sensitivity, precise adaptation, signal amplification, and wide dynamic range. Along with the increasing knowledge, bacterial chemoreceptors can be engineered to sense novel chemoeffectors, which has extensive applications in therapeutics and industry. Here we mainly review recent advances in the E. coli chemotaxis system involving structure and organization of chemoreceptors, discovery, design, and characterization of chemoeffectors, and signal recognition and transduction mechanisms. Possible strategies for changing the specificity of bacterial chemoreceptors to sense novel chemoeffectors are also discussed.
Collapse
Affiliation(s)
- Shuangyu Bi
- Center for Quantitative Biology, Peking University, Beijing, 100871 China
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Luhua Lai
- Center for Quantitative Biology, Peking University, Beijing, 100871 China
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
154
|
The long-chain alkane metabolism network of Alcanivorax dieselolei. Nat Commun 2014; 5:5755. [DOI: 10.1038/ncomms6755] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 11/05/2014] [Indexed: 11/08/2022] Open
|
155
|
Haselwandter CA, Wingreen NS. The role of membrane-mediated interactions in the assembly and architecture of chemoreceptor lattices. PLoS Comput Biol 2014; 10:e1003932. [PMID: 25503274 PMCID: PMC4263354 DOI: 10.1371/journal.pcbi.1003932] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/22/2014] [Indexed: 01/04/2023] Open
Abstract
In vivo fluorescence microscopy and electron cryo-tomography have revealed that chemoreceptors self-assemble into extended honeycomb lattices of chemoreceptor trimers with a well-defined relative orientation of trimers. The signaling response of the observed chemoreceptor lattices is remarkable for its extreme sensitivity, which relies crucially on cooperative interactions among chemoreceptor trimers. In common with other membrane proteins, chemoreceptor trimers are expected to deform the surrounding lipid bilayer, inducing membrane-mediated anisotropic interactions between neighboring trimers. Here we introduce a biophysical model of bilayer-chemoreceptor interactions, which allows us to quantify the role of membrane-mediated interactions in the assembly and architecture of chemoreceptor lattices. We find that, even in the absence of direct protein-protein interactions, membrane-mediated interactions can yield assembly of chemoreceptor lattices at very dilute trimer concentrations. The model correctly predicts the observed honeycomb architecture of chemoreceptor lattices as well as the observed relative orientation of chemoreceptor trimers, suggests a series of “gateway” states for chemoreceptor lattice assembly, and provides a simple mechanism for the localization of large chemoreceptor lattices to the cell poles. Our model of bilayer-chemoreceptor interactions also helps to explain the observed dependence of chemotactic signaling on lipid bilayer properties. Finally, we consider the possibility that membrane-mediated interactions might contribute to cooperativity among neighboring chemoreceptor trimers. The chemotaxis system allows bacteria to respond to minute changes in chemical concentration, and serves as a paradigm for biological signal processing and the self-assembly of large protein lattices in living cells. The sensitivity of the chemotaxis system relies crucially on cooperative interactions among chemoreceptor trimers, which are organized into intricate honeycomb lattices. Chemoreceptors are membrane proteins and, hence, are expected to deform the surrounding lipid bilayer, leading to membrane-mediated interactions between chemoreceptor trimers. Using a biophysical model of bilayer-chemoreceptor interactions we show that the membrane-mediated interactions induced by chemoreceptor trimers provide a mechanism for the observed self-assembly of chemoreceptor lattices. We find that the directionality of membrane-mediated interactions between trimers complements protein-protein interactions in the stabilization of the observed honeycomb architecture of chemoreceptor lattices. Our results suggest that the symmetry of membrane protein complexes such as chemoreceptor trimers is reflected in the anisotropy of membrane-mediated interactions, yielding a general mechanism for the self-assembly of ordered protein lattices in cell membranes.
Collapse
Affiliation(s)
- Christoph A. Haselwandter
- Departments of Physics & Astronomy and Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (CAH); (NSW)
| | - Ned S. Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (CAH); (NSW)
| |
Collapse
|
156
|
Fu X, Himes BA, Ke D, Rice WJ, Ning J, Zhang P. Controlled bacterial lysis for electron tomography of native cell membranes. Structure 2014; 22:1875-1882. [PMID: 25456413 DOI: 10.1016/j.str.2014.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/22/2014] [Accepted: 09/27/2014] [Indexed: 11/16/2022]
Abstract
Cryo-electron tomography (cryoET) has become a powerful tool for direct visualization of 3D structures of native biological specimens at molecular resolution, but its application is limited to thin specimens (<300 nm). Recently, vitreous sectioning and cryoFIB milling technologies were developed to physically reduce the specimen thickness; however, cryoET analysis of membrane protein complexes within native cell membranes remains a great challenge. Here, we use phage ΦX174 lysis gene E to rapidly produce native, intact, bacterial cell membranes for high resolution cryoET. We characterized E gene-induced cell lysis using FIB/SEM and cryoEM and showed that the bacteria cytoplasm was largely depleted through spot lesion, producing ghosts with the cell membranes intact. We further demonstrated the utility of E-gene-induced lysis for cryoET using the bacterial chemotaxis receptor signaling complex array. The described method should have a broad application for structural and functional studies of native, intact cell membranes and membrane protein complexes.
Collapse
Affiliation(s)
- Xiaofeng Fu
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Danxia Ke
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - William J Rice
- New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
157
|
Abstract
Bacterial chemotaxis is mediated by signaling complexes that sense chemical gradients and direct bacteria to favorable environments by controlling a histidine kinase as a function of chemoreceptor ligand occupancy. Core signaling complexes contain two trimers of transmembrane chemoreceptor dimers, each trimer binding a coupling protein CheW and a protomer of the kinase dimer. Core complexes assemble into hexagons, and these form hexagonal arrays. The notable cooperativity and amplification in bacterial chemotaxis is thought to reflect allosteric interactions in cores, hexagons, and arrays, but little is known about this presumed allostery. We investigated allostery in core complexes assembled with two chemoreceptor species, each recognizing a different ligand. Chemoreceptors were inserted in Nanodiscs, which rendered them water soluble and allowed isolation of individual complexes. Neighboring dimers in receptor trimers influenced one another's operational ligand affinity, indicating allosteric coupling. However, this coupling did not include the key function of kinase inhibition. Our data indicated that only one receptor dimer could inhibit kinase as a function of ligand occupancy. This selective allosteric coupling corresponded with previously identified structural asymmetry: only one dimer in a trimer contacts kinase and only one CheW. We suggest one of these dimers couples ligand occupancy to kinase inhibition. Additionally, we found that kinase protomers are allosterically coupled, conveying inhibition across the dimer interface. Because kinase dimers connect core complex hexagons, allosteric communication across dimer interfaces provides a pathway for receptor-generated kinase inhibition in one hexagon to spread to another, providing a crucial step for the extensive amplification characteristic of chemotactic signaling.
Collapse
|
158
|
Falke JJ, Piasta KN. Architecture and signal transduction mechanism of the bacterial chemosensory array: progress, controversies, and challenges. Curr Opin Struct Biol 2014; 29:85-94. [PMID: 25460272 DOI: 10.1016/j.sbi.2014.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/27/2014] [Accepted: 10/02/2014] [Indexed: 12/15/2022]
Abstract
Recent research has deepened our understanding of the ancient, conserved chemosensory array that detects small molecule attractants and repellents, and directs the chemotaxis of bacterial and archaeal cells towards an optimal chemical environment. Here we review advances towards a molecular description of the ultrastable lattice architecture and ultrasensitive signal transduction mechanism of the chemosensory array, as well as controversies and challenges requiring further research. Ultimately, a full molecular understanding of array structure and on-off switching will foster (i) the design of novel therapies that block pathogenic wound seeking and infection, (ii) the development of highly specific, sensitive, stable biosensors, and (iii) the elucidation of general functional principles shared by receptor patches in all branches of life.
Collapse
Affiliation(s)
- Joseph J Falke
- Department of Chemistry and Biochemistry and the Molecular Biophysics Program, University of Colorado, Boulder, CO 80309-0215, USA.
| | - Kene N Piasta
- Department of Chemistry and Biochemistry and the Molecular Biophysics Program, University of Colorado, Boulder, CO 80309-0215, USA
| |
Collapse
|
159
|
Banjade S, Rosen MK. Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife 2014; 3. [PMID: 25321392 PMCID: PMC4238058 DOI: 10.7554/elife.04123] [Citation(s) in RCA: 430] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/16/2014] [Indexed: 12/14/2022] Open
Abstract
Clustering of proteins into micrometer-sized structures at membranes is observed in many signaling pathways. Most models of clustering are specific to particular systems, and relationships between physical properties of the clusters and their molecular components are not well understood. We report biochemical reconstitution on supported lipid bilayers of protein clusters containing the adhesion receptor Nephrin and its cytoplasmic partners, Nck and N-WASP. With Nephrin attached to the bilayer, multivalent interactions enable these proteins to polymerize on the membrane surface and undergo two-dimensional phase separation, producing micrometer-sized clusters. Dynamics and thermodynamics of the clusters are modulated by the valencies and affinities of the interacting species. In the presence of the Arp2/3 complex, the clusters assemble actin filaments, suggesting that clustering of regulatory factors could promote local actin assembly at membranes. Interactions between multivalent proteins could be a general mechanism for cytoplasmic adaptor proteins to organize membrane receptors into micrometer-scale signaling zones. DOI:http://dx.doi.org/10.7554/eLife.04123.001 The membrane that surrounds a cell is made up of a mixture of lipid molecules and proteins. Membrane proteins perform a wide range of roles, including transmitting signals into, and out of, cells and helping neighboring cells to stick together. To perform these tasks, these proteins commonly need to bind to other molecules—collectively known as ligands—that are found either inside or outside the cell. Membrane proteins are able to move around within the membrane, and in many systems, ligand binding causes the membrane proteins to cluster together. Although this clustering has been seen in many different systems, no general principles that describe how clustering occurs had been found. Now, Banjade and Rosen have constructed an artificial cell membrane to investigate the clustering of a membrane protein called Nephrin, which is essential for kidneys to function correctly. When it is activated, Nephrin interacts with protein ligands called Nck and N-WASP that are found inside cells and helps filaments of a protein called actin to form. These filaments perform a number of roles including enabling cells to adhere to each other and to move. In Banjade and Rosen's artificial system, when a critical concentration of ligands was exceeded, clusters of Nephrin, Nck and N-WASP suddenly formed. This suggests that the clusters form through a physical process known as ‘phase separation’. Banjade and Rosen found that this critical concentration depends on how strongly the proteins interact and the number of sites they possess to bind each other. Within the clusters, the three proteins formed large polymer chains. The clusters were mobile and, over time, small clusters coalesced into larger clusters. Even though the clusters persisted for hours, individual proteins did not stay in a given cluster for long and instead continuously exchanged back-and-forth between the cluster and its surroundings. When actin and another protein complex that interacts with N-WASP were added to the artificial membrane system, actin filaments began to form at the protein clusters. Banjade and Rosen suggest that such clusters act as ‘signaling zones’ that coordinate the construction of the actin filaments. Regions that are also found in many other signaling proteins mediate the interactions between Nephrin, Nck and N-WASP. Banjade and Rosen therefore suggest that phase separation and protein polymer formation could explain how many different types of membrane proteins form clusters. DOI:http://dx.doi.org/10.7554/eLife.04123.002
Collapse
Affiliation(s)
- Sudeep Banjade
- Department of Biophysics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
160
|
A phenylalanine rotameric switch for signal-state control in bacterial chemoreceptors. Nat Commun 2014; 4:2881. [PMID: 24335957 DOI: 10.1038/ncomms3881] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/07/2013] [Indexed: 11/08/2022] Open
Abstract
Bacterial chemoreceptors are widely used as a model system for elucidating the molecular mechanisms of transmembrane signalling and have provided a detailed understanding of how ligand binding by the receptor modulates the activity of its associated kinase CheA. However, the mechanisms by which conformational signals move between signalling elements within a receptor dimer and how they control kinase activity remain unknown. Here, using long molecular dynamics simulations, we show that the kinase-activating cytoplasmic tip of the chemoreceptor fluctuates between two stable conformations in a signal-dependent manner. A highly conserved residue, Phe396, appears to serve as the conformational switch, because flipping of the stacked aromatic rings of an interacting F396-F396' pair in the receptor homodimer takes place concomitantly with the signal-related conformational changes. We suggest that interacting aromatic residues, which are common stabilizers of protein tertiary structure, might serve as rotameric molecular switches in other biological processes as well.
Collapse
|
161
|
Piasta KN, Falke JJ. Increasing and decreasing the ultrastability of bacterial chemotaxis core signaling complexes by modifying protein-protein contacts. Biochemistry 2014; 53:5592-600. [PMID: 25119814 PMCID: PMC4159201 DOI: 10.1021/bi500849p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The chemosensory signaling array
of bacterial chemotaxis is composed
of functional core units containing two receptor trimers of dimers,
a homodimeric CheA kinase, and two CheW adaptor proteins. In vitro reconstitutions generate individual, functional
core units and larger functional assemblies, including dimers, hexagons,
and hexagonal arrays. Such reconstituted complexes have been shown
to have both quasi-stable and ultrastable populations that decay with
lifetimes of 1–2 days and ∼3 weeks at 22 °C, respectively,
where decay results primarily from proteolysis of the bound kinase
[Erbse, A. H., and Falke, J. J. (2009) Biochemistry 48, 6975–6987; Slivka, P. F., and Falke, J. J. (2012) Biochemistry 51, 10218–10228]. In this work, we show
that the ultrastable population can be destabilized to the quasi-stable
level via the introduction of a bulky tryptophan residue at either
one of two essential protein–protein interfaces within the
core unit: the receptor–kinase contact or kinase–adaptor
interface 1. Moreover, we demonstrate that the quasi-stable population
can be made ultrastable via the introduction of a disulfide bond that
covalently stabilizes the latter interface. The resulting disulfide
at least doubles the functional lifetime of the ultrastable population,
to ≥5.9 weeks at 22 °C, by protecting the kinase from
endogenous and exogenous proteases. Together, these results indicate
that the ultrastability of reconstituted core complexes requires well-formed
contacts among the receptor, kinase, and adaptor proteins, whereas
quasi-stability arises from less perfect contacts that allow slow
proteolysis of the bound kinase. Furthermore, the results reveal that
ultrastability, and perhaps the size or order of chemosensory complexes
and arrays, can be increased by an engineered disulfide bond that
covalently cross-links a key interface. Overall, it appears that native
ultrastability has evolved to provide an optimal rather than maximal
level of kinetic durability, suggesting that altered selective pressure
could either increase or decrease the functional lifetime of core
complexes.
Collapse
Affiliation(s)
- Kene N Piasta
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado , Boulder, Colorado 80309-0596, United States
| | | |
Collapse
|
162
|
Abstract
Signaling receptors on the cell surface are mobile and have evolved to efficiently sense and process mechanical or chemical information. We pose the problem of identifying the optimal strategy for placing a collection of distributed and mobile sensors to faithfully estimate a signal that varies in space and time. The optimal strategy has to balance two opposing objectives: the need to locally assemble sensors to reduce estimation noise and the need to spread them to reduce spatial error. This results in a phase transition in the space of strategies as a function of sensor density and efficiency. We show that these optimal strategies have been arrived at multiple times in diverse cell biology contexts, including the stationary lattice architecture of receptors on the bacterial cell surface and the active clustering of cell-surface signaling receptors in metazoan cells.
Collapse
|
163
|
Pedetta A, Parkinson JS, Studdert CA. Signalling-dependent interactions between the kinase-coupling protein CheW and chemoreceptors in living cells. Mol Microbiol 2014; 93:1144-55. [PMID: 25060668 DOI: 10.1111/mmi.12727] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2014] [Indexed: 12/19/2022]
Abstract
Chemical signals sensed on the periplasmic side of bacterial cells by transmembrane chemoreceptors are transmitted to the flagellar motors via the histidine kinase CheA, which controls the phosphorylation level of the effector protein CheY. Chemoreceptor arrays comprise remarkably stable supramolecular structures in which thousands of chemoreceptors are networked through interactions between their cytoplasmic tips, CheA, and the small coupling protein CheW. To explore the conformational changes that occur within this protein assembly during signalling, we used in vivo cross-linking methods to detect close interactions between the coupling protein CheW and the serine receptor Tsr in intact Escherichia coli cells. We identified two signal-sensitive contacts between CheW and the cytoplasmic tip of Tsr. Our results suggest that ligand binding triggers changes in the receptor that alter its signalling contacts with CheW (and/or CheA).
Collapse
Affiliation(s)
- Andrea Pedetta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | | | | |
Collapse
|
164
|
Abstract
![]()
The flagellum is one of the most
sophisticated self-assembling
molecular machines in bacteria. Powered by the proton-motive force,
the flagellum rapidly rotates in either a clockwise or counterclockwise
direction, which ultimately controls bacterial motility and behavior. Escherichia coli and Salmonella enterica have served as important model systems for extensive genetic, biochemical,
and structural analysis of the flagellum, providing unparalleled insights
into its structure, function, and gene regulation. Despite these advances,
our understanding of flagellar assembly and rotational mechanisms
remains incomplete, in part because of the limited structural information
available regarding the intact rotor–stator complex and secretion
apparatus. Cryo-electron tomography (cryo-ET) has become a valuable
imaging technique capable of visualizing the intact flagellar motor
in cells at molecular resolution. Because the resolution that can
be achieved by cryo-ET with large bacteria (such as E. coli and S. enterica) is limited, analysis of small-diameter
bacteria (including Borrelia burgdorferi and Campylobacter jejuni) can provide additional insights into
the in situ structure of the flagellar motor and
other cellular components. This review is focused on the application
of cryo-ET, in combination with genetic and biophysical approaches,
to the study of flagellar structures and its potential for improving
the understanding of rotor–stator interactions, the rotational
switching mechanism, and the secretion and assembly of flagellar components.
Collapse
Affiliation(s)
- Xiaowei Zhao
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston , Houston, Texas 77030, United States
| | | | | |
Collapse
|
165
|
Santos TMA, Lin TY, Rajendran M, Anderson SM, Weibel DB. Polar localization of Escherichia coli chemoreceptors requires an intact Tol-Pal complex. Mol Microbiol 2014; 92:985-1004. [PMID: 24720726 DOI: 10.1111/mmi.12609] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2014] [Indexed: 11/29/2022]
Abstract
Subcellular biomolecular localization is critical for the metabolic and structural properties of the cell. The functional implications of the spatiotemporal distribution of protein complexes during the bacterial cell cycle have long been acknowledged; however, the molecular mechanisms for generating and maintaining their dynamic localization in bacteria are not completely understood. Here we demonstrate that the trans-envelope Tol-Pal complex, a widely conserved component of the cell envelope of Gram-negative bacteria, is required to maintain the polar positioning of chemoreceptor clusters in Escherichia coli. Localization of the chemoreceptors was independent of phospholipid composition of the membrane and the curvature of the cell wall. Instead, our data indicate that chemoreceptors interact with components of the Tol-Pal complex and that this interaction is required to polarly localize chemoreceptor clusters. We found that disruption of the Tol-Pal complex perturbs the polar localization of chemoreceptors, alters cell motility, and affects chemotaxis. We propose that the E. coli Tol-Pal complex restricts mobility of the chemoreceptor clusters at the cell poles and may be involved in regulatory mechanisms that co-ordinate cell division and segregation of the chemosensory machinery.
Collapse
Affiliation(s)
- Thiago M A Santos
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA
| | | | | | | | | |
Collapse
|
166
|
Harapin J, Eibauer M, Medalia O. Structural analysis of supramolecular assemblies by cryo-electron tomography. Structure 2014; 21:1522-30. [PMID: 24010711 DOI: 10.1016/j.str.2013.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/29/2022]
Abstract
Structural analysis of macromolecular assemblies in their physiological environment is a challenging task that is instrumental in answering fundamental questions in cellular and molecular structural biology. The continuous development of computational and analytical tools for cryo-electron tomography (cryo-ET) enables the study of these assemblies at a resolution of a few nanometers. Through the implementation of thinning procedures, cryo-ET can now be applied to the reconstruction of macromolecular structures located inside thick regions of vitrified cells and tissues, thus becoming a central tool for structural determinations in various biological disciplines. Here, we focus on the successful in situ applications of cryo-ET to reveal structures of macromolecular complexes within eukaryotic cells.
Collapse
Affiliation(s)
- Jan Harapin
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
167
|
Briegel A, Ladinsky MS, Oikonomou C, Jones CW, Harris MJ, Fowler DJ, Chang YW, Thompson LK, Armitage JP, Jensen GJ. Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling. eLife 2014; 3:e02151. [PMID: 24668172 PMCID: PMC3964821 DOI: 10.7554/elife.02151] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Most motile bacteria sense and respond to their environment through a transmembrane chemoreceptor array whose structure and function have been well-studied, but many species also contain an additional cluster of chemoreceptors in their cytoplasm. Although the cytoplasmic cluster is essential for normal chemotaxis in some organisms, its structure and function remain unknown. Here we use electron cryotomography to image the cytoplasmic chemoreceptor cluster in Rhodobacter sphaeroides and Vibrio cholerae. We show that just like transmembrane arrays, cytoplasmic clusters contain trimers-of-receptor-dimers organized in 12-nm hexagonal arrays. In contrast to transmembrane arrays, however, cytoplasmic clusters comprise two CheA/CheW baseplates sandwiching two opposed receptor arrays. We further show that cytoplasmic fragments of normally transmembrane E. coli chemoreceptors form similar sandwiched structures in the presence of molecular crowding agents. Together these results suggest that the 12-nm hexagonal architecture is fundamentally important and that sandwiching and crowding can replace the stabilizing effect of the membrane. DOI:http://dx.doi.org/10.7554/eLife.02151.001 Many bacteria swim through water by rotating tiny hair-like structures called flagella. In E. coli, if all the flagella on the surface of a bacterium rotate in a counterclockwise fashion, then it will swim in a particular direction, but if the flagella all rotate in an clockwise fashion, then the bacterium will stop swimming and start to tumble. Bacteria use a combination of swimming and tumbling in order to move towards or away from certain chemicals. For example, a bacterium is able to move towards a source of nutrients because it is constantly evaluating its environment and will swim forward for longer periods of time when it recognizes the concentration of the nutrient is increasing. And if it senses that the nutrient concentration is decreasing, it will tumble in an effort to move in a different direction. Many bacteria, such as E. coli, rely on proteins in their cell membrane called chemoreceptors to sense specific chemicals and then send signals that tell the flagella how to rotate. These transmembrane receptors and their role in chemotaxis—that is, movement towards or away from specific chemicals in the environment—have been widely studied. However, other bacteria also have chemoreceptors in the cytoplasm inside the bacterial cell, and much less is known about these. Now, Briegel et al. have examined the cytoplasmic chemoreceptors of two unrelated bacteria, R. sphaeroides and V. cholera, and found that the cytoplasmic chemoreceptors arrange themselves in hexagonal arrays, similar to the way that transmembrane chemoreceptors are arranged. However, the cytoplasmic chemoreceptors arrange themselves in a two-layer sandwich-like structure, whereas the transmembrane chemoreceptors are arranged in just one layer. The next step is to understand how chemical binding causes these arrays to send their signals to the motor. A complete understanding of this signaling system may ultimately allow scientists to re-engineer it to draw bacteria to targets of medical or environmental interest, such as cancer cells or contaminated soils. DOI:http://dx.doi.org/10.7554/eLife.02151.002
Collapse
Affiliation(s)
- Ariane Briegel
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Briegel A, Wong ML, Hodges HL, Oikonomou CM, Piasta KN, Harris MJ, Fowler DJ, Thompson LK, Falke JJ, Kiessling LL, Jensen GJ. New insights into bacterial chemoreceptor array structure and assembly from electron cryotomography. Biochemistry 2014; 53:1575-85. [PMID: 24580139 PMCID: PMC3985956 DOI: 10.1021/bi5000614] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial chemoreceptors cluster in highly ordered, cooperative, extended arrays with a conserved architecture, but the principles that govern array assembly remain unclear. Here we show images of cellular arrays as well as selected chemoreceptor complexes reconstituted in vitro that reveal new principles of array structure and assembly. First, in every case, receptors clustered in a trimers-of-dimers configuration, suggesting this is a highly favored fundamental building block. Second, these trimers-of-receptor dimers exhibited great versatility in the kinds of contacts they formed with each other and with other components of the signaling pathway, although only one architectural type occurred in native arrays. Third, the membrane, while it likely accelerates the formation of arrays, was neither necessary nor sufficient for lattice formation. Molecular crowding substituted for the stabilizing effect of the membrane and allowed cytoplasmic receptor fragments to form sandwiched lattices that strongly resemble the cytoplasmic chemoreceptor arrays found in some bacterial species. Finally, the effective determinant of array structure seemed to be CheA and CheW, which formed a "superlattice" of alternating CheA-filled and CheA-empty rings that linked receptor trimers-of-dimer units into their native hexagonal lattice. While concomitant overexpression of receptors, CheA, and CheW yielded arrays with native spacing, the CheA occupancy was lower and less ordered, suggesting that temporal and spatial coordination of gene expression driven by a single transcription factor may be vital for full order, or that array overgrowth may trigger a disassembly process. The results described here provide new insights into the assembly intermediates and assembly mechanism of this massive macromolecular complex.
Collapse
Affiliation(s)
- Ariane Briegel
- Division of Biology, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Wang X, Vallurupalli P, Vu A, Lee K, Sun S, Bai WJ, Wu C, Zhou H, Shea JE, Kay LE, Dahlquist FW. The linker between the dimerization and catalytic domains of the CheA histidine kinase propagates changes in structure and dynamics that are important for enzymatic activity. Biochemistry 2014; 53:855-61. [PMID: 24444349 PMCID: PMC3985700 DOI: 10.1021/bi4012379] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/10/2014] [Indexed: 12/04/2022]
Abstract
The histidine kinase, CheA, couples environmental stimuli to changes in bacterial swimming behavior, converting a sensory signal to a chemical signal in the cytosol via autophosphorylation. The kinase activity is regulated in the platform of chemotaxis signaling complexes formed by CheW, chemoreceptors, and the regulatory domain of CheA. Our previous computational and mutational studies have revealed that two interdomain linkers play important roles in CheA's enzymatic activity. Of the two linkers, one that connects the dimerization and ATP binding domains is essential for both basal autophosphorylation and activation of the kinase. However, the mechanistic role of this linker remains unclear, given that it is far from the autophosphorylation reaction center (the ATP binding site). Here we investigate how this interdomain linker is coupled to CheA's enzymatic activity. Using modern nuclear magnetic resonance (NMR) techniques, we find that by interacting with the catalytic domain, the interdomain linker initiates long-range structural and dynamic changes directed toward the catalytic center of the autophosphorylation reaction. Subsequent biochemical assays define the functional relevance of these NMR-based observations. These findings extend our understanding of the chemotaxis signal transduction pathway.
Collapse
Affiliation(s)
- Xiqing Wang
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
| | - Pramodh Vallurupalli
- Departments
of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Anh Vu
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
| | - Kwangwoon Lee
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
| | - Sheng Sun
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
| | - Wen-Ju Bai
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
| | - Chun Wu
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
| | - Hongjun Zhou
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
| | - Joan-Emma Shea
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
| | - Lewis E. Kay
- Departments
of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Frederick W. Dahlquist
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
170
|
ParP prevents dissociation of CheA from chemotactic signaling arrays and tethers them to a polar anchor. Proc Natl Acad Sci U S A 2013; 111:E255-64. [PMID: 24379357 DOI: 10.1073/pnas.1315722111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacterial chemotaxis proteins are organized into ordered arrays. In peritrichous organisms, such as Escherichia coli, stochastic assembly processes are thought to account for the placement of chemotaxis arrays, which are nonuniformly distributed. In contrast, we previously found that chemotactic signaling arrays in polarly flagellated vibrios are uniformly polar and that array localization is dependent on the ParA-like ATPase ParC. However, the processes that enable ParC to facilitate array localization have not been described. Here, we show that a previously uncharacterized protein, ParP, interacts with ParC and that ParP is integral to array localization in Vibrio parahaemolyticus. ParC's principal contribution to chemotaxis appears to be via positioning of ParP. Once recruited to the pole by ParC, ParP sequesters arrays at this site by capturing and preventing the dissociation of chemotactic signaling protein (CheA). Notably, ParP also stabilizes chemotactic protein complexes in the absence of ParC, indicating that some of its activity is independent of this interaction partner. ParP recruits CheA via CheA's localization and inheritance domain, a region found only in polarly flagellated organisms that encode ParP, ParC, and CheA. Thus, a tripartite (ParC-ParP-CheA) interaction network enables the polar localization and sequestration of chemotaxis arrays in polarly flagellated organisms. Localization and sequestration of chemotaxis clusters adjacent to the flagella--to which the chemotactic signal is transmitted--facilitates proper chemotaxis as well as accurate inheritance of these macromolecular machines.
Collapse
|
171
|
Xue C. Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J Math Biol 2013; 70:1-44. [PMID: 24366373 DOI: 10.1007/s00285-013-0748-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 11/15/2013] [Indexed: 01/16/2023]
Abstract
Chemotaxis of single cells has been extensively studied and a great deal on intracellular signaling and cell movement is known. However, systematic methods to embed such information into continuum PDE models for cell population dynamics are still in their infancy. In this paper, we consider chemotaxis of run-and-tumble bacteria and derive continuum models that take into account of the detailed biochemistry of intracellular signaling. We analytically show that the macroscopic bacterial density can be approximated by the Patlak-Keller-Segel equation in response to signals that change slowly in space and time. We derive, for the first time, general formulas that represent the chemotactic sensitivity in terms of detailed descriptions of single-cell signaling dynamics in arbitrary space dimensions. These general formulas are useful in explaining relations of single cell behavior and population dynamics. As an example, we apply the theory to chemotaxis of bacterium Escherichia coli and show how the structure and kinetics of the intracellular signaling network determine the sensing properties of E. coli populations. Numerical comparison of the derived PDEs and the underlying cell-based models show quantitative agreements for signals that change slowly, and qualitative agreements for signals that change extremely fast. The general theory we develop here is readily applicable to chemotaxis of other run-and-tumble bacteria, or collective behavior of other individuals that move using a similar strategy.
Collapse
Affiliation(s)
- Chuan Xue
- Department of Mathematics, Ohio State University, Columbus, OH, 43210, USA,
| |
Collapse
|
172
|
Common and distinct structural features of Salmonella injectisome and flagellar basal body. Sci Rep 2013; 3:3369. [PMID: 24284544 PMCID: PMC3842551 DOI: 10.1038/srep03369] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/13/2013] [Indexed: 12/22/2022] Open
Abstract
Bacterial pathogens use an injectisome to deliver virulence proteins into eukaryotic host cells. The bacterial flagellum and injectisome export their component proteins for self-assembly. These two systems show high structural similarities and are classified as the type III secretion system, but it remains elusive how similar they are in situ because the structures of these complexes isolated from cells and visualized by electron cryomicroscopy have shown only the export channel and housing for the export apparatus. Here we report in situ structures of Salmonella injectisome and flagellum by electron cryotomography. The injectisome lacks the flagellar basal body C-ring, but a wing-like disc and a globular density corresponding to the export gate platform and ATPase hexamer ring, respectively, are stably attached through thin connectors, revealing yet unidentified common architectures of the two systems. The ATPase ring is far from the disc, suggesting that both apparatuses are observed in an export-off state.
Collapse
|
173
|
Koshy SS, Eyles SJ, Weis RM, Thompson LK. Hydrogen exchange mass spectrometry of functional membrane-bound chemotaxis receptor complexes. Biochemistry 2013; 52:8833-42. [PMID: 24274333 DOI: 10.1021/bi401261b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The transmembrane signaling mechanism of bacterial chemotaxis receptors is thought to involve changes in receptor conformation and dynamics. The receptors function in ternary complexes with two other proteins, CheA and CheW, that form extended membrane-bound arrays. Previous studies have shown that attractant binding induces a small (∼2 Å) piston displacement of one helix of the periplasmic and transmembrane domains toward the cytoplasm, but it is not clear how this signal propagates through the cytoplasmic domain to control the kinase activity of the CheA bound at the membrane-distal tip, nearly 200 Å away. The cytoplasmic domain has been shown to be highly dynamic, which raises the question of how a small piston motion could propagate through a dynamic domain to control CheA kinase activity. To address this, we have developed a method for measuring dynamics of the receptor cytoplasmic fragment (CF) in functional complexes with CheA and CheW. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) measurements of global exchange of the CF demonstrate that the CF exhibits significantly slower exchange in functional complexes than in solution. Because the exchange rates in functional complexes are comparable to those of other proteins with similar structures, the CF appears to be a well-structured protein within these complexes, which is compatible with its role in propagating a signal that appears to be a tiny conformational change in the periplasmic and transmembrane domains of the receptor. We also demonstrate the feasibility of this protocol for local exchange measurements by incorporating a pepsin digest step to produce peptides with 87% sequence coverage and only 20% back exchange. This method extends HDX-MS to membrane-bound functional complexes without detergents that may perturb the stability or structure of the system.
Collapse
Affiliation(s)
- Seena S Koshy
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §Program in Molecular and Cellular Biology, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | | | | | | |
Collapse
|
174
|
Lučič V, Rigort A, Baumeister W. Cryo-electron tomography: the challenge of doing structural biology in situ. ACTA ACUST UNITED AC 2013; 202:407-19. [PMID: 23918936 PMCID: PMC3734081 DOI: 10.1083/jcb.201304193] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electron microscopy played a key role in establishing cell biology as a discipline, by producing fundamental insights into cellular organization and ultrastructure. Many seminal discoveries were made possible by the development of new sample preparation methods and imaging modalities. Recent technical advances include sample vitrification that faithfully preserves molecular structures, three-dimensional imaging by electron tomography, and improved image-processing methods. These new techniques have enabled the extraction of high fidelity structural information and are beginning to reveal the macromolecular organization of unperturbed cellular environments.
Collapse
Affiliation(s)
- Vladan Lučič
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | |
Collapse
|
175
|
Ortega DR, Mo G, Lee K, Zhou H, Baudry J, Dahlquist FW, Zhulin IB. Conformational coupling between receptor and kinase binding sites through a conserved salt bridge in a signaling complex scaffold protein. PLoS Comput Biol 2013; 9:e1003337. [PMID: 24244143 PMCID: PMC3828127 DOI: 10.1371/journal.pcbi.1003337] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/27/2013] [Indexed: 11/25/2022] Open
Abstract
Bacterial chemotaxis is one of the best studied signal transduction pathways. CheW is a scaffold protein that mediates the association of the chemoreceptors and the CheA kinase in a ternary signaling complex. The effects of replacing conserved Arg62 of CheW with other residues suggested that the scaffold protein plays a more complex role than simply binding its partner proteins. Although R62A CheW had essentially the same affinity for chemoreceptors and CheA, cells expressing the mutant protein are impaired in chemotaxis. Using a combination of molecular dynamics simulations (MD), NMR spectroscopy, and circular dichroism (CD), we addressed the role of Arg62. Here we show that Arg62 forms a salt bridge with another highly conserved residue, Glu38. Although this interaction is unimportant for overall protein stability, it is essential to maintain the correct alignment of the chemoreceptor and kinase binding sites of CheW. Computational and experimental data suggest that the role of the salt bridge in maintaining the alignment of the two partner binding sites is fundamental to the function of the signaling complex but not to its assembly. We conclude that a key feature of CheW is to maintain the specific geometry between the two interaction sites required for its function as a scaffold. Signal transduction is a universal biological process and a common target of drug design. The chemotaxis machinery in Escherichia coli is a model signal transduction system, and the CheW protein is one of its core components. CheW is thought to work as a scaffold protein that mediates the formation of the signaling complex with the CheA histidine kinase and the chemoreceptors. A mutation targeting a highly conserved residue, Arg62, impairs chemotaxis while maintaining normal binding affinity for both partners, suggesting that CheW might play a more complex role than previously proposed. Using a series of molecular dynamics simulations, we found that the residue Arg62 can form a stable salt bridge with another highly conserved residue, Glu38. We determined that this bridge does not contribute to the overall stability of the protein. However, the bridge stabilizes the local backbone structure of CheW and stabilizes the relative position of the binding sites for the chemoreceptor and kinase. The geometry of these interactions appears to be vital for the function of the signaling complex. We validated and complemented our computational findings using NMR spectroscopy and circular dichroism analysis.
Collapse
Affiliation(s)
- Davi R. Ortega
- Joint Institute for Computational Sciences, University of Tennessee - Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Physics, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Guoya Mo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, United States of America
| | - Kwangwoon Lee
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, United States of America
| | - Hongjun Zhou
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, United States of America
| | - Jerome Baudry
- Department of Biochemistry and Cell and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- Center for Molecular Biophysics, University of Tennessee - Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Frederick W. Dahlquist
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, United States of America
| | - Igor B. Zhulin
- Joint Institute for Computational Sciences, University of Tennessee - Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
176
|
Josenhans C, Jung K, Rao CV, Wolfe AJ. A tale of two machines: a review of the BLAST meeting, Tucson, AZ, 20-24 January 2013. Mol Microbiol 2013; 91:6-25. [PMID: 24125587 DOI: 10.1111/mmi.12427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 01/06/2023]
Abstract
Since its inception, Bacterial Locomotion and Signal Transduction (BLAST) meetings have been the place to exchange and share the latest developments in the field of bacterial signal transduction and motility. At the 12th BLAST meeting, held last January in Tucson, AZ, researchers from all over the world met to report and discuss progress in diverse aspects of the field. The majority of these advances, however, came at the level of atomic level structures and their associated mechanisms. This was especially true of the biological machines that sense and respond to environmental changes.
Collapse
Affiliation(s)
- Christine Josenhans
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany
| | | | | | | |
Collapse
|
177
|
Unraveling adaptation in eukaryotic pathways: lessons from protocells. PLoS Comput Biol 2013; 9:e1003300. [PMID: 24204235 PMCID: PMC3812047 DOI: 10.1371/journal.pcbi.1003300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/08/2013] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic adaptation pathways operate within wide-ranging environmental conditions without stimulus saturation. Despite numerous differences in the adaptation mechanisms employed by bacteria and eukaryotes, all require energy consumption. Here, we present two minimal models showing that expenditure of energy by the cell is not essential for adaptation. Both models share important features with large eukaryotic cells: they employ small diffusible molecules and involve receptor subunits resembling highly conserved G-protein cascades. Analyzing the drawbacks of these models helps us understand the benefits of energy consumption, in terms of adjustability of response and adaptation times as well as separation of cell-external sensing and cell-internal signaling. Our work thus sheds new light on the evolution of adaptation mechanisms in complex systems. Adaptation is a common feature in sensory systems, well familiar to us from light and dark adaptation of our visual system. Biological cells, ranging from bacteria to complex eukaryotes, including single-cell organisms and human sensory receptors, adopt different strategies to fulfill this property. However, all of them require substantial amounts of energy to adapt. Here, we compare the different biological strategies and design two minimal models which allow adaptation without requiring energy consumption. Schemes similar to the ones we proposed in our minimal models could have been adopted by ancient protocells, that have evolved into the pathways we now know and study. Analyzing our models can thus help elucidate the advantages brought to the cells by consumption of energy, including the bypassing of hard-wired cell parameters such as diffusion constants with increased control over time scales.
Collapse
|
178
|
Natale AM, Duplantis JL, Piasta KN, Falke JJ. Structure, function, and on-off switching of a core unit contact between CheA kinase and CheW adaptor protein in the bacterial chemosensory array: A disulfide mapping and mutagenesis study. Biochemistry 2013; 52:7753-65. [PMID: 24090207 DOI: 10.1021/bi401159k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ultrasensitive, ultrastable bacterial chemosensory array of Escherichia coli and Salmonella typhimurium is representative of the large, conserved family of sensory arrays that control the cellular chemotaxis of motile bacteria and Archaea. The core framework of the membrane-bound array is a lattice assembled from three components: a transmembrane receptor, a cytoplasmic His kinase (CheA), and a cytoplasmic adaptor protein (CheW). Structural studies in the field have revealed the global architecture of the array and complexes between specific components, but much remains to be learned about the essential protein-protein interfaces that define array structure and transmit signals between components. This study has focused on the structure, function, and on-off switching of a key contact between the kinase and adaptor proteins in the working, membrane-bound array. Specifically, the study addressed interface 1 in the putative kinase-adaptor ring where subdomain 1 of the kinase regulatory domain contacts subdomain 2 of the adaptor protein. Two independent approaches, disulfide mapping and site-directed Trp and Ala mutagenesis, were employed (i) to test the structural model of interface 1 and (ii) to investigate its functional roles in both stable kinase incorporation and receptor-regulated kinase on-off switching. Studies were conducted in functional, membrane-bound arrays or in live cells. The findings reveal that crystal structures of binary and ternary complexes accurately depict the native interface in its kinase-activating on state. Furthermore, the findings indicate that at least part of the interface becomes less closely packed in its kinase-inhibiting off state. Together, the evidence shows the interface has a dual structural and signaling function that is crucial for incorporation of the stable kinase into the array, for kinase activation in the array on state, and likely for attractant-triggered kinase on-off switching. A model is presented that describes the concerted transmission of a conformational signal among the receptor, the kinase regulatory domain, and the adaptor protein. In principle, this signal could spread out into the surrounding array via the kinase-adaptor ring, employing a series of alternating frozen-dynamic transitions that transmit low-energy attractant signals long distances.
Collapse
Affiliation(s)
- Andrew M Natale
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado , Boulder, Colorado 80309-0596, United States
| | | | | | | |
Collapse
|
179
|
Sommer E, Koler M, Frank V, Sourjik V, Vaknin A. The sensory histidine kinases TorS and EvgS tend to form clusters in Escherichia coli cells. PLoS One 2013; 8:e77708. [PMID: 24147062 PMCID: PMC3795677 DOI: 10.1371/journal.pone.0077708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 09/12/2013] [Indexed: 11/20/2022] Open
Abstract
Microorganisms use multiple two-component sensory systems to detect changes in their environment and elicit physiological responses. Despite their wide spread and importance, the intracellular organization of two-component sensory proteins in bacteria remains little investigated. A notable exception is the well-studied clustering of the chemoreceptor-kinase complexes that mediate chemotaxis behaviour. However, these chemosensory complexes differ fundamentally from other systems, both structurally and functionally. Therefore, studying the organization of typical sensory kinases in bacteria is essential for understanding the general role of receptor clustering in bacterial sensory signalling. Here, by studying mYFP-tagged sensory kinases in Escherichia coli, we show that the tagged TorS and EvgS sensors have a clear tendency for self-association and clustering. These sensors clustered even when expressed at a level of a few hundred copies per cell. Moreover, the mYFP-tagged response regulator TorR showed clear TorS-dependent clustering, indicating that untagged TorS sensors also tend to form clusters. We also provide evidence for the functionality of these tagged sensors. Experiments with truncated TorS or EvgS proteins suggested that clustering of EvgS sensors depends on the cytoplasmic part of the protein, whereas clustering of TorS sensors can be potentially mediated by the periplasmic/transmembrane domain. Overall, these findings support the notion that sensor clustering plays a role in bacterial sensory signalling beyond chemotaxis.
Collapse
Affiliation(s)
- Erik Sommer
- Department of Molecular Biology, University of Heidelberg, Heidelberg, Germany
| | - Moriah Koler
- Racah Institute of Physics, the Hebrew University, Jerusalem, Israel
| | - Vered Frank
- Racah Institute of Physics, the Hebrew University, Jerusalem, Israel
| | - Victor Sourjik
- Department of Molecular Biology, University of Heidelberg, Heidelberg, Germany
- * E-mail: (AV); (VS)
| | - Ady Vaknin
- Racah Institute of Physics, the Hebrew University, Jerusalem, Israel
- * E-mail: (AV); (VS)
| |
Collapse
|
180
|
Pontius W, Sneddon MW, Emonet T. Adaptation dynamics in densely clustered chemoreceptors. PLoS Comput Biol 2013; 9:e1003230. [PMID: 24068908 PMCID: PMC3777915 DOI: 10.1371/journal.pcbi.1003230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/03/2013] [Indexed: 11/18/2022] Open
Abstract
In many sensory systems, transmembrane receptors are spatially organized in large clusters. Such arrangement may facilitate signal amplification and the integration of multiple stimuli. However, this organization likely also affects the kinetics of signaling since the cytoplasmic enzymes that modulate the activity of the receptors must localize to the cluster prior to receptor modification. Here we examine how these spatial considerations shape signaling dynamics at rest and in response to stimuli. As a model system, we use the chemotaxis pathway of Escherichia coli, a canonical system for the study of how organisms sense, respond, and adapt to environmental stimuli. In bacterial chemotaxis, adaptation is mediated by two enzymes that localize to the clustered receptors and modulate their activity through methylation-demethylation. Using a novel stochastic simulation, we show that distributive receptor methylation is necessary for successful adaptation to stimulus and also leads to large fluctuations in receptor activity in the steady state. These fluctuations arise from noise in the number of localized enzymes combined with saturated modification kinetics between the localized enzymes and the receptor substrate. An analytical model explains how saturated enzyme kinetics and large fluctuations can coexist with an adapted state robust to variation in the expression levels of the pathway constituents, a key requirement to ensure the functionality of individual cells within a population. This contrasts with the well-mixed covalent modification system studied by Goldbeter and Koshland in which mean activity becomes ultrasensitive to protein abundances when the enzymes operate at saturation. Large fluctuations in receptor activity have been quantified experimentally and may benefit the cell by enhancing its ability to explore empty environments and track shallow nutrient gradients. Here we clarify the mechanistic relationship of these large fluctuations to well-studied aspects of the chemotaxis system, precise adaptation and functional robustness.
Collapse
Affiliation(s)
- William Pontius
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Michael W. Sneddon
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Thierry Emonet
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
181
|
Cashman DJ, Ortega DR, Zhulin IB, Baudry J. Homology modeling of the CheW coupling protein of the chemotaxis signaling complex. PLoS One 2013; 8:e70705. [PMID: 23950985 PMCID: PMC3737408 DOI: 10.1371/journal.pone.0070705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/21/2013] [Indexed: 11/23/2022] Open
Abstract
Homology models of the E. coli and T. maritima chemotaxis protein CheW were constructed to assess the quality of structural predictions and their applicability in chemotaxis research: i) a model of E. coli CheW was constructed using the T. maritima CheW NMR structure as a template, and ii) a model of T. maritima CheW was constructed using the E. coli CheW NMR structure as a template. The conformational space accessible to the homology models and to the NMR structures was investigated using molecular dynamics and Monte Carlo simulations. The results show that even though static homology models of CheW may be partially structurally different from their corresponding experimentally determined structures, the conformational space they can access through their dynamic variations can be similar, for specific regions of the protein, to that of the experimental NMR structures. When CheW homology models are allowed to explore their local accessible conformational space, modeling can provide a rational path to predicting CheW interactions with the MCP and CheA proteins of the chemotaxis complex. Homology models of CheW (and potentially, of other chemotaxis proteins) should be seen as snapshots of an otherwise larger ensemble of accessible conformational space.
Collapse
Affiliation(s)
- Derek J. Cashman
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- UT/ORNL Center for Molecular Biophysics, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Davi R. Ortega
- Department of Physics, University of Tennessee, Knoxville, Tennessee, United States of America
- Joint Institute for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Igor B. Zhulin
- Joint Institute for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jerome Baudry
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- UT/ORNL Center for Molecular Biophysics, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
182
|
Briegel A, Ames P, Gumbart JC, Oikonomou CM, Parkinson JS, Jensen GJ. The mobility of two kinase domains in the Escherichia coli chemoreceptor array varies with signalling state. Mol Microbiol 2013; 89:831-41. [PMID: 23802570 DOI: 10.1111/mmi.12309] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2013] [Indexed: 11/30/2022]
Abstract
Motile bacteria sense their physical and chemical environment through highly cooperative, ordered arrays of chemoreceptors. These signalling complexes phosphorylate a response regulator which in turn governs flagellar motor reversals, driving cells towards favourable environments. The structural changes that translate chemoeffector binding into the appropriate kinase output are not known. Here, we apply high-resolution electron cryotomography to visualize mutant chemoreceptor signalling arrays in well-defined kinase activity states. The arrays were well ordered in all signalling states, with no discernible differences in receptor conformation at 2-3 nm resolution. Differences were observed, however, in a keel-like density that we identify here as CheA kinase domains P1 and P2, the phosphorylation site domain and the binding domain for response regulator target proteins. Mutant receptor arrays with high kinase activities all exhibited small keels and high proteolysis susceptibility, indicative of mobile P1 and P2 domains. In contrast, arrays in kinase-off signalling states exhibited a range of keel sizes. These findings confirm that chemoreceptor arrays do not undergo large structural changes during signalling, and suggest instead that kinase activity is modulated at least in part by changes in the mobility of key domains.
Collapse
Affiliation(s)
- Ariane Briegel
- California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, 91125, USA
| | | | | | | | | | | |
Collapse
|
183
|
Li X, Fleetwood AD, Bayas C, Bilwes AM, Ortega DR, Falke JJ, Zhulin IB, Crane BR. The 3.2 Å resolution structure of a receptor: CheA:CheW signaling complex defines overlapping binding sites and key residue interactions within bacterial chemosensory arrays. Biochemistry 2013; 52:3852-65. [PMID: 23668907 PMCID: PMC3694592 DOI: 10.1021/bi400383e] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial chemosensory arrays are composed of extended networks of chemoreceptors (also known as methyl-accepting chemotaxis proteins, MCPs), the histidine kinase CheA, and the adaptor protein CheW. Models of these arrays have been developed from cryoelectron microscopy, crystal structures of binary and ternary complexes, NMR spectroscopy, mutational, data and biochemical studies. A new 3.2 Å resolution crystal structure of a Thermotoga maritima MCP protein interaction region in complex with the CheA kinase-regulatory module (P4-P5) and adaptor protein CheW provides sufficient detail to define residue contacts at the interfaces formed among the three proteins. As in a previous 4.5 Å resolution structure, CheA-P5 and CheW interact through conserved hydrophobic surfaces at the ends of their β-barrels to form pseudo 6-fold symmetric rings in which the two proteins alternate around the circumference. The interface between P5 subdomain 1 and CheW subdomain 2 was anticipated from previous studies, whereas the related interface between CheW subdomain 1 and P5 subdomain 2 has only been observed in these ring assemblies. The receptor forms an unexpected structure in that the helical hairpin tip of each subunit has "unzipped" into a continuous α-helix; four such helices associate into a bundle, and the tetramers bridge adjacent P5-CheW rings in the lattice through interactions with both P5 and CheW. P5 and CheW each bind a receptor helix with a groove of conserved hydrophobic residues between subdomains 1 and 2. P5 binds the receptor helix N-terminal to the tip region (lower site), whereas CheW binds the same helix with inverted polarity near the bundle end (upper site). Sequence comparisons among different evolutionary classes of chemotaxis proteins show that the binding partners undergo correlated changes at key residue positions that involve the lower site. Such evolutionary analyses argue that both CheW and P5 bind to the receptor tip at overlapping positions. Computational genomics further reveal that two distinct CheW proteins in Thermotogae utilize the analogous recognition motifs to couple different receptor classes to the same CheA kinase. Important residues for function previously identified by mutagenesis, chemical modification and biophysical approaches also map to these same interfaces. Thus, although the native CheW-receptor interaction is not observed in the present crystal structure, the bioinformatics and previous data predict key features of this interface. The companion study of the P5-receptor interface in native arrays (accompanying paper Piasta et al. (2013) Biochemistry, DOI: 10.1021/bi400385c) shows that, despite the non-native receptor fold in the present crystal structure, the local helix-in-groove contacts of the crystallographic P5-receptor interaction are present in native arrays and are essential for receptor regulation of kinase activity.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Aaron D. Fleetwood
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 United States and Department of Microbiology, University of Tennessee, Knoxville TN 37996 United States
| | - Camille Bayas
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Alexandrine M. Bilwes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Davi R. Ortega
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 United States and Department of Microbiology, University of Tennessee, Knoxville TN 37996 United States
| | | | - Igor B. Zhulin
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 United States and Department of Microbiology, University of Tennessee, Knoxville TN 37996 United States,To whom correspondence should be addressed , Tel (607) 254-8634 (B.R.C); (I.B.Z), Tel (865) 201-1860
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States,To whom correspondence should be addressed , Tel (607) 254-8634 (B.R.C); (I.B.Z), Tel (865) 201-1860
| |
Collapse
|
184
|
Piasta KN, Ulliman CJ, Slivka PF, Crane BR, Falke JJ. Defining a key receptor-CheA kinase contact and elucidating its function in the membrane-bound bacterial chemosensory array: a disulfide mapping and TAM-IDS Study. Biochemistry 2013; 52:3866-80. [PMID: 23668882 DOI: 10.1021/bi400385c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The three core components of the ubiquitous bacterial chemosensory array - the transmembrane chemoreceptor, the histidine kinase CheA, and the adaptor protein CheW - assemble to form a membrane-bound, hexagonal lattice in which receptor transmembrane signals regulate kinase activity. Both the regulatory domain of the kinase and the adaptor protein bind to overlapping sites on the cytoplasmic tip of the receptor (termed the protein interaction region). Notably, the kinase regulatory domain and the adaptor protein share the same fold constructed of two SH3-like domains. The present study focuses on the structural interface between the receptor and the kinase regulatory domain. Two models have been proposed for this interface: Model 1 is based on the crystal structure of a homologous Thermotoga complex between a receptor fragment and the CheW adaptor protein. This model has been used in current models of chemosensory array architecture to build the receptor-CheA kinase interface. Model 2 is based on a newly determined crystal structure of a homologous Thermotoga complex between a receptor fragment and the CheA kinase regulatory domain. Both models present unique strengths and weaknesses, and current evidence is unable to resolve which model best describes contacts in the native chemosensory arrays of Escherichia coli, Salmonella typhimurium, and other bacteria. Here we employ disulfide mapping and tryptophan and alanine mutation to identify docking sites (TAM-IDS) to test Models 1 and 2 in well-characterized membrane-bound arrays formed from E. coli and S. typhimurium components. The results reveal that the native array interface between the receptor protein interaction region and the kinase regulatory domain is accurately described by Model 2, but not by Model 1. In addition, the results show that the interface possesses both a structural function that contributes to stable CheA kinase binding in the array and a regulatory function central to transmission of the activation signal from receptor to CheA kinase. On-off switching alters the disulfide formation rates of specific Cys pairs at the interface, but not most Cys pairs, indicating that signaling perturbs localized regions of the interface. The findings suggest a simple model for the rearrangement of the interface triggered by the attractant signal and for longer range transmission of the signal in the chemosensory array.
Collapse
Affiliation(s)
- Kene N Piasta
- Department of Chemistry and Biochemistry and the Molecular Biophysics Program, University of Colorado , Boulder, Colorado 80309-0215, United States
| | | | | | | | | |
Collapse
|
185
|
The challenge of determining handedness in electron tomography and the use of DNA origami gold nanoparticle helices as molecular standards. J Struct Biol 2013; 183:95-8. [PMID: 23639902 DOI: 10.1016/j.jsb.2013.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 11/24/2022]
Abstract
The apparent handedness of an EM-tomography reconstruction depends on a number of conventions and can be confused in many ways. As the number of different hardware and software combinations being used for electron tomography continue to climb, and the reconstructions being produced reach higher and higher resolutions, the need to verify the hand of the results has increased. Here we enumerate various steps in a typical tomography experiment that affect handedness and show that DNA origami gold nanoparticle helices can be used as convenient and fail-safe handedness standards.
Collapse
|
186
|
Othmer HG, Xin X, Xue C. Excitation and adaptation in bacteria-a model signal transduction system that controls taxis and spatial pattern formation. Int J Mol Sci 2013; 14:9205-48. [PMID: 23624608 PMCID: PMC3676780 DOI: 10.3390/ijms14059205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 11/16/2022] Open
Abstract
The machinery for transduction of chemotactic stimuli in the bacterium E. coli is one of the most completely characterized signal transduction systems, and because of its relative simplicity, quantitative analysis of this system is possible. Here we discuss models which reproduce many of the important behaviors of the system. The important characteristics of the signal transduction system are excitation and adaptation, and the latter implies that the transduction system can function as a "derivative sensor" with respect to the ligand concentration in that the DC component of a signal is ultimately ignored if it is not too large. This temporal sensing mechanism provides the bacterium with a memory of its passage through spatially- or temporally-varying signal fields, and adaptation is essential for successful chemotaxis. We also discuss some of the spatial patterns observed in populations and indicate how cell-level behavior can be embedded in population-level descriptions.
Collapse
Affiliation(s)
- Hans G. Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +612-624-8325; Fax: +612-626-2017
| | - Xiangrong Xin
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA; E-Mail:
| | - Chuan Xue
- Department of Mathematics, Ohio State University, Columbus, OH 43210, USA; E-Mail:
| |
Collapse
|
187
|
Frank V, Vaknin A. Prolonged stimuli alter the bacterial chemosensory clusters. Mol Microbiol 2013; 88:634-44. [PMID: 23551504 DOI: 10.1111/mmi.12215] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2013] [Indexed: 11/27/2022]
Abstract
The clustering of membrane-bound receptors plays an essential role in various biological systems. A notable model system for studying this phenomenon is the bacterial chemosensory cluster that allows motile bacteria to navigate along chemical gradients in their environment. While the basic structure of these chemosensory clusters is becoming clear, their dynamic nature and operation are not yet understood. By measuring the fluorescence polarization of tagged receptor clusters in live Escherichia coli cells, we provide evidence for stimulus-induced dynamics in these sensory clusters. We find that when a stimulus is applied, the packing of the receptors slowly decreases and that the process reverses when the stimulus is removed. Consistent with these physical changes we find that the effective cooperativity of the kinase response slowly evolves in the presence of a stimulus. Time-lapse fluorescence imaging indicates that, despite these changes, the receptor clusters do not generally dissociate upon ligand binding. These data reveal stimulus-dependent plasticity in chemoreceptor clusters.
Collapse
Affiliation(s)
- Vered Frank
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel
| | | |
Collapse
|
188
|
Abstract
Elevated intracellular levels of the bacterial second messenger c-di-GMP are known to suppress motility and promote sessility. Bacterial chemotaxis guides motile cells in gradients of attractants and repellents over broad concentration ranges, thus allowing bacteria to quickly adapt to changes in their surroundings. Here, we describe a chemotaxis receptor that enhances, as opposed to suppresses, motility in response to temporary increases in intracellular c-di-GMP. Azospirillum brasilense’s preferred metabolism is adapted to microaerophily, and these motile cells quickly navigate to zones of low oxygen concentration by aerotaxis. We observed that changes in oxygen concentration result in rapid changes in intracellular c-di-GMP levels. The aerotaxis and chemotaxis receptor, Tlp1, binds c-di-GMP via its C-terminal PilZ domain and promotes persistent motility by increasing swimming velocity and decreasing swimming reversal frequency, which helps A. brasilense reach low-oxygen zones. If c-di-GMP levels remain high for extended periods, A. brasilense forms nonmotile clumps or biofilms on abiotic surfaces. These results suggest that association of increased c-di-GMP levels with sessility is correct on a long-term scale, while in the short-term c-di-GMP may actually promote, as opposed to suppress, motility. Our data suggest that sensing c-di-GMP by Tlp1 functions similar to methylation-based adaptation. Numerous chemotaxis receptors contain C-terminal PilZ domains or other sensory domains, suggesting that intracellular c-di-GMP as well as additional stimuli can be used to modulate adaptation of bacterial chemotaxis receptors. To adapt and compete under changing conditions, bacteria must not only detect and respond to various environmental cues but also be able to remain sensitive to further changes in the environmental conditions. In bacterial chemotaxis, chemosensory sensitivity is typically brought about by changes in the methylation status of chemotaxis receptors capable of modulating the ability of motile cells to navigate in gradients of various physicochemical cues. Here, we show that the ubiquitous second messenger c-di-GMP functions to modulate chemosensory sensitivity of a bacterial chemotaxis receptor in the alphaproteobacterium Azospirillum brasilense. Binding of c-di-GMP to the chemotaxis receptor promotes motility under conditions of elevated intracellular c-di-GMP levels. Our results revealed that the role of c-di-GMP as a sessile signal is overly simplistic. We also show that adaptation by sensing an intracellular metabolic cue, via PilZ or other domains, is likely widespread among bacterial chemotaxis receptors.
Collapse
|
189
|
Briggs JAG. Structural biology in situ--the potential of subtomogram averaging. Curr Opin Struct Biol 2013; 23:261-7. [PMID: 23466038 DOI: 10.1016/j.sbi.2013.02.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 12/27/2022]
Abstract
Cryo-electron tomography provides low-resolution 3D views of cells, organelles, or viruses. Macromolecular complexes present in multiple copies can be subsequently identified within the 3D reconstruction (the tomogram), computationally extracted, and averaged to obtain higher resolution 3D structures, as well as a map of their spatial distribution. This method, called subtomogram averaging or subvolume averaging, allows structures of macromolecular complexes to be resolved in situ. Recent applications have provided in situ structural data at resolutions of 2-4 nm on samples including polysomes, nuclear pores, vesicle coats, and viral surface proteins. Here I describe the method and discuss limitations, advances and recent applications. I speculate how the method will solve more structures at higher resolution, allowing in situ structural biology.
Collapse
Affiliation(s)
- John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
190
|
Tu Y. Quantitative modeling of bacterial chemotaxis: signal amplification and accurate adaptation. Annu Rev Biophys 2013; 42:337-59. [PMID: 23451887 DOI: 10.1146/annurev-biophys-083012-130358] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We review the recent developments in understanding the bacterial chemotaxis signaling pathway by using quantitative modeling methods. The models developed are based on structural information of the signaling complex and the dynamics of the underlying biochemical network. We focus on two important functions of the bacterial chemotaxis signaling pathway: signal amplification and adaptation. We describe in detail the structure and the dynamics of the mathematical models and how they compare with existing experiments, emphasizing the predictability of the models. Finally, we outline future directions for developing the modeling approach to better understand the bacterial chemosensory system.
Collapse
Affiliation(s)
- Yuhai Tu
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA.
| |
Collapse
|
191
|
The propagation of allosteric states in large multiprotein complexes. J Mol Biol 2012; 425:1410-4. [PMID: 23274139 DOI: 10.1016/j.jmb.2012.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/11/2012] [Accepted: 12/16/2012] [Indexed: 11/21/2022]
Abstract
A statistical view of allostery leads to a more nuanced and physically realistic picture of protein cooperativity. If the conformational state of one protein molecule in a multiprotein complex influences the probability of a particular conformation in a neighbouring protein, then changes can propagate. Given suitable parameters, linear or two-dimensional arrays of allosteric subunits will then behave similar to an Ising model, exhibiting hypersharp responses to external conditions. Predictions based on this concept find good quantitative agreement in a number of experimental systems including switching of the bacterial flagellar motor, amplification of ligand signals in the Escherichia coli chemotaxis receptors, and termination of calcium sparks in cardiac muscle. A similar mechanism could potentially provide a universal mechanism of integration within living cells.
Collapse
|
192
|
Slivka PF, Falke JJ. Isolated bacterial chemosensory array possesses quasi- and ultrastable components: functional links between array stability, cooperativity, and order. Biochemistry 2012. [PMID: 23186266 DOI: 10.1021/bi301287h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bacteria utilize a large multiprotein chemosensory array to sense attractants and repellents in their environment. The array is a hexagonal lattice formed from three core proteins: a transmembrane receptor, the His kinase CheA, and the adaptor protein CheW. The resulting, highly networked array architecture yields several advantages including strong positive cooperativity in the attractant response and rapid signal transduction through the preformed, integrated signaling circuit. Moreover, when isolated from cells or reconstituted in isolated bacterial membranes, the array possesses extreme kinetic stability termed ultrastability (Erbse and Falke (2009) Biochemistry 48:6975-87) and is the most long-lived multiprotein enzyme complex described to date. The isolated array retains kinase activity, attractant regulation, and its bound core proteins for days or more at 22 °C. The present work quantitates this ultrastability and investigates its origin. The results demonstrate that arrays consist of two major components: (i) a quasi-stable component with a lifetime of 1-2 days that decays due to slow proteolysis of CheA kinase in the lattice and (ii) a truly ultrastable component with a lifetime of ~20 days that is substantially more protected from proteolysis. Following proteolysis of the quasi-stable component the apparent positive cooperativity of the array increases, arguing the quasi-stable component is not as cooperative as the ultrastable component. Introduction of structural defects into the array by coupling a bulky probe to a subset of receptors reveals that modification of only 2% of the receptor population is sufficient to abolish ultrastability, supporting the hypothesis that the ultrastable component requires a high level of array spatial order. Overall, the findings are consistent with a model in which the quasi- and ultrastable components arise from distinct regions of the array, such that the ultrastable regions possess more extensive, better-ordered, multivalent interconnectivities between core components, thereby yielding extraordinary stability and cooperativity. Furthermore, the findings indicate that the chemosensory array is a promising platform for the development of ultrastable biosensors.
Collapse
Affiliation(s)
- Peter F Slivka
- Department of Chemistry and Biochemistry and the Molecular Biophysics Program, University of Colorado, Boulder, CO 80309-0215, USA
| | | |
Collapse
|
193
|
|
194
|
Agulleiro JI, Fernández JJ. Evaluation of a multicore-optimized implementation for tomographic reconstruction. PLoS One 2012; 7:e48261. [PMID: 23139768 PMCID: PMC3491071 DOI: 10.1371/journal.pone.0048261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022] Open
Abstract
Tomography allows elucidation of the three-dimensional structure of an object from a set of projection images. In life sciences, electron microscope tomography is providing invaluable information about the cell structure at a resolution of a few nanometres. Here, large images are required to combine wide fields of view with high resolution requirements. The computational complexity of the algorithms along with the large image size then turns tomographic reconstruction into a computationally demanding problem. Traditionally, high-performance computing techniques have been applied to cope with such demands on supercomputers, distributed systems and computer clusters. In the last few years, the trend has turned towards graphics processing units (GPUs). Here we present a detailed description and a thorough evaluation of an alternative approach that relies on exploitation of the power available in modern multicore computers. The combination of single-core code optimization, vector processing, multithreading and efficient disk I/O operations succeeds in providing fast tomographic reconstructions on standard computers. The approach turns out to be competitive with the fastest GPU-based solutions thus far.
Collapse
Affiliation(s)
| | - José Jesús Fernández
- National Centre for Biotechnology, National Research Council (CNB-CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
195
|
Amin DN, Hazelbauer GL. Influence of membrane lipid composition on a transmembrane bacterial chemoreceptor. J Biol Chem 2012; 287:41697-705. [PMID: 23071117 DOI: 10.1074/jbc.m112.415588] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most bacterial chemoreceptors are transmembrane proteins. Although less than 10% of a transmembrane chemoreceptor is embedded in lipid, separation from the natural membrane environment by detergent solubilization eliminates most receptor activities, presumably because receptor structure is perturbed. Reincorporation into a lipid bilayer can restore these activities and thus functionally native structure. However, the extent to which specific lipid features are important for effective restoration is unknown. Thus we investigated effects of membrane lipid composition on chemoreceptor Tar from Escherichia coli using Nanodiscs, small (∼10-nm) plugs of lipid bilayer rendered water-soluble by an annulus of "membrane scaffold protein." Disc-enclosed bilayers can be made with different lipids or lipid combinations. Nanodiscs carrying an inserted receptor dimer have high protein-to-lipid ratios approximating native membranes and in this way mimic the natural chemoreceptor environment. To identify features important for functionally native receptor structure, we made Nanodiscs using natural and synthetic lipids, assaying extents and rates of adaptational modification. The proportion of functionally native Tar was highest in bilayers closest in composition to E. coli cytoplasmic membrane. Some other lipid compositions resulted in a significant proportion of functionally native receptor, but simply surrounding the chemoreceptor transmembrane segment with a lipid bilayer was not sufficient. Membranes effective in supporting functionally native Tar contained as the majority lipid phosphatidylethanolamine or a related zwitterionic lipid plus a rather specific proportion of anionic lipids, as well as unsaturated fatty acids. Thus the chemoreceptor is strongly influenced by its lipid environment and is tuned to its natural one.
Collapse
Affiliation(s)
- Divya N Amin
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
196
|
Fernandez JJ. Computational methods for electron tomography. Micron 2012; 43:1010-30. [DOI: 10.1016/j.micron.2012.05.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 01/13/2023]
|
197
|
Wang X, Wu C, Vu A, Shea JE, Dahlquist FW. Computational and experimental analyses reveal the essential roles of interdomain linkers in the biological function of chemotaxis histidine kinase CheA. J Am Chem Soc 2012; 134:16107-10. [PMID: 22992224 DOI: 10.1021/ja3056694] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A two-component signal transduction pathway underlies the phenomenon of bacterial chemotaxis that allows bacteria to modulate their swimming behavior in response to environmental stimuli. The dimeric five-domain histidine kinase, CheA, plays a central role in the pathway, converting sensory signals to a chemical signal via trans-autophosphorylation between the P1 and P4 domains. This autophosphorylation is regulated via the networked interactions among the P5 domain of CheA, CheW, and chemoreceptors. Despite a wealth of structural information about these components and their interactions, the key question of how the kinase activity of the catalytic P4 domain is regulated by the signal received from the regulatory P5 domain remains poorly understood. We performed replica exchange molecular dynamics simulations on the CheA kinase core and found that while individual domains maintained their structural fold, these domains exhibited a variety of interdomain orientations due to two interdomain linkers. A partially populated conformation that adopts an interdomain arrangement is suitable for building a functional ternary complex. An allosteric network derived from this structural model implies critical roles for two linkers in CheA's activity. The biochemical and biological functions of these linkers were assigned via a series of biochemical and genetic assays that show the P4-P5 linker controls the activation of CheA and the P3-P4 linker controls both the basal autophosphorylation activity and the activation of CheA. These results reveal the functional dependence between the two linkers and the essential role of the linkers in passing signal information from one domain to another.
Collapse
Affiliation(s)
- Xiqing Wang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
198
|
Herrera Seitz MK, Soto D, Studdert CA. A chemoreceptor from Pseudomonas putida forms active signalling complexes in Escherichia coli. Microbiology (Reading) 2012; 158:2283-2292. [DOI: 10.1099/mic.0.059899-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- M. Karina Herrera Seitz
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Débora Soto
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Claudia A. Studdert
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
199
|
Sferdean FC, Weis RM, Thompson LK. Ligand affinity and kinase activity are independent of bacterial chemotaxis receptor concentration: insight into signaling mechanisms. Biochemistry 2012; 51:6920-31. [PMID: 22870954 DOI: 10.1021/bi3007466] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Binding of attractant to bacterial chemotaxis receptors initiates a transmembrane signal that inhibits the kinase CheA bound ~300 Å distant at the other end of the receptor. Chemoreceptors form large clusters in many bacterial species, and the extent of clustering has been reported to vary with signaling state. To test whether ligand binding regulates kinase activity by modulating a clustering equilibrium, we measured the effects of two-dimensional receptor concentration on kinase activity in proteoliposomes containing the purified Escherichia coli serine receptor reconstituted into vesicles over a range of lipid:protein molar ratios. The IC(50) of kinase inhibition was unchanged despite a 10-fold change in receptor concentration. Such a change in concentration would have produced a measurable shift in the IC(50) if receptor clustering were involved in kinase regulation, based on a simple model in which the receptor oligomerization and ligand binding equilibria are coupled. These results indicate that the primary signal, ligand control of kinase activity, does not involve a change in receptor oligomerization state. In combination with previous work on cytoplasmic fragments assembled on vesicle surfaces [Besschetnova, T. Y., et al. (2008) Proc. Natl. Acad. Sci. U.S.A.105, 12289-12294], this suggests that binding of ligand to chemotaxis receptors inhibits the kinase by inducing a conformational change that expands the membrane area occupied by the receptor cytoplasmic domain, without changing the number of associated receptors in the signaling complex.
Collapse
Affiliation(s)
- Fe C Sferdean
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
200
|
Zhang K, Liu J, Tu Y, Xu H, Charon NW, Li C. Two CheW coupling proteins are essential in a chemosensory pathway of Borrelia burgdorferi. Mol Microbiol 2012; 85:782-94. [PMID: 22780444 DOI: 10.1111/j.1365-2958.2012.08139.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the model organism Escherichia coli, the coupling protein CheW, which bridges the chemoreceptors and histidine kinase CheA, is essential for chemotaxis. Unlike the situation in E. coli, Borrelia burgdorferi, the causative agent of Lyme disease, has three cheW homologues (cheW(1) , cheW(2) and cheW(3) ). Here, a comprehensive approach is utilized to investigate the roles of the three cheWs in chemotaxis of B. burgdorferi. First, genetic studies indicated that both the cheW(1) and cheW(3) genes are essential for chemotaxis, as the mutants had altered swimming behaviours and were non-chemotactic. Second, immunofluorescence and cryo-electron tomography studies suggested that both CheW(1) and CheW(3) are involved in the assembly of chemoreceptor arrays at the cell poles. In contrast to cheW(1) and cheW(3) , cheW(2) is dispensable for chemotaxis and assembly of the chemoreceptor arrays. Finally, immunoprecipitation studies demonstrated that the three CheWs interact with different CheAs: CheW(1) and CheW(3) interact with CheA(2) whereas CheW(2) binds to CheA(1) . Collectively, our results indicate that CheW(1) and CheW(3) are incorporated into one chemosensory pathway that is essential for B. burgdorferi chemotaxis. Although many bacteria have more than one homologue of CheW, to our knowledge, this report provides the first experimental evidence that two CheW proteins coexist in one chemosensory pathway and that both are essential for chemotaxis.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Oral Biology, the State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|