151
|
Glover M, Sweeny C, Davis B, O'Shaughnessy KM. A Single Amino Acid Substitution Makes WNK4 Susceptible to SB 203580 and SB 202190. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2010; 4:57-61. [PMID: 21249167 PMCID: PMC3023092 DOI: 10.2174/1874104501004010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 05/25/2010] [Accepted: 05/25/2010] [Indexed: 11/22/2022]
Abstract
Regulation of the SLC12 family of membrane transporters including NCCT involves a scaffold of interacting proteins including the STE 20 kinase SPAK and the WNK kinases, WNK 1 and WNK 4, which are mutated in the hypertensive syndrome of pseudohypoaldosteronism type 2 (PHAII). WNK4 regulates NCCT by affecting forward trafficking to the surface membrane. Studies in Xenopus using kinase dead WNK4 site mutants have produced inconsistent results with regard to the necessity of kinase function for NCCT regulation. Dynamic inhibition of WNK4 by small molecules may bring clarity to this issue however WNK4 is naturally resistant to commercial MAP kinase inhibitors owing to steric constraints prohibiting entry of small molecules to the active site. Using an approach similar to that used in p38 and ERK, we show that a single substitution in WNK4 (T261G) dramatically enhances its susceptibility to the inhibitors SB 202190 and SB 203580.
Collapse
Affiliation(s)
- Mark Glover
- Clinical Pharmacology Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
152
|
Elvira-Matelot E, Zhou XO, Farman N, Beaurain G, Henrion-Caude A, Hadchouel J, Jeunemaitre X. Regulation of WNK1 expression by miR-192 and aldosterone. J Am Soc Nephrol 2010; 21:1724-31. [PMID: 20813867 DOI: 10.1681/asn.2009111186] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
WNK1 and WNK4 encode two members of the WNK serine-threonine kinase subfamily. Greater WNK1 expression associates with higher BP. A combination of promoters, enhancers, repressors, and insulators regulate WNK1 expression, but whether microRNAs also modulate WNK1 expression is unknown. Here, computational analysis revealed the presence of a target sequence for miR-192 and miR-215 at the same site in the 3' untranslated region of the ubiquitous L- and the kidney-specific KS-WNK1. We functionally validated this target sequence by transient transfection and reporter assays. Although we observed expression of both miRs along the distal nephron, only miR-192 regulated endogenous WNK1 ex vivo. Furthermore, a potassium load, sodium depletion, and aldosterone infusion each significantly reduced miR-192 expression in the kidney. Taken together, these results suggest a miR-driven mechanism of gene regulation by aldosterone and a role for miR-192 in the regulation of sodium and potassium balance in the kidney.
Collapse
|
153
|
van Leeuwen S, Mikkers H. Long non-coding RNAs: Guardians of development. Differentiation 2010; 80:175-83. [PMID: 20705382 DOI: 10.1016/j.diff.2010.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/09/2010] [Accepted: 07/24/2010] [Indexed: 01/16/2023]
Abstract
Two decades ago, the existence of long non-coding RNAs (lncRNAs) was discovered. In the following genomics era more transcribed non-coding genomic regions were identified. These were initially regarded as transcriptional noise and did not receive a lot of attention. Emerging data on several of these long non-coding transcripts have refuted this hypothesis by demonstrating that non-coding RNAs (ncRNAs) are important for regulating transcription and cell signaling. A special subset of the lncRNAs affecting gene transcription appears to orchestrate major developmental programs. Here, we discuss the mechanisms by which lncRNAs regulate transcription, and review the evidence that links this class of lncRNAs to a role in development.
Collapse
Affiliation(s)
- Selina van Leeuwen
- Department of Molecular Cell Biology, Regenerative Medicine Program, Leiden University Medical Center, Postal zone S1P, P.O. Box 9600, 2300RC Leiden, The Netherlands
| | | |
Collapse
|
154
|
Read R, Savelieva K, Baker K, Hansen G, Vogel P. Histopathological and neurological features of Atg4b knockout mice. Vet Pathol 2010; 48:486-94. [PMID: 20634410 DOI: 10.1177/0300985810375810] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This investigation found that genetic inactivation of mouse Atg4b, 1 of the 4 mammalian homologs of the autophagy-related gene Atg4, resulted in amorphous globular bodies in the neuropil of the deep cerebellar nuclei and adjacent vestibular nuclei but nowhere else in the brain or other tissues. The spheroid-like bodies in the deep cerebellar and vestibular nuclei showed heterogeneous composition, reactivity with anti-ubiquitin antibody, and staining characteristics of proteinaceous material. Atg4b-deficient (Atg4b (-/-)) mice also showed a mild but measurable impairment of motor performance on the Rotarod. Atg4b (-/-) mice produced by breeding heterozygous parents were produced at a slightly lower than expected ratio to heterozygous and wild-type siblings but showed no other clear abnormalities in a battery of screening tests. These findings appear to be different than those reported for inactivation of other Atg4 homologs, suggesting that these homologs have tissue-specific functions beyond redundancy.
Collapse
Affiliation(s)
- R Read
- Department of Pathology, Lexicon Pharmaceuticals, The Woodlands, TX 77381, USA.
| | | | | | | | | |
Collapse
|
155
|
Morphine-mediated alteration of hypertension-related gene expression in human white blood cells and multilineage progenitor cells. J Hum Hypertens 2010; 24:713-20. [DOI: 10.1038/jhh.2010.69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
156
|
A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol 2010; 28:749-55. [PMID: 20562862 DOI: 10.1038/nbt.1644] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 05/11/2010] [Indexed: 01/11/2023]
Abstract
Large collections of knockout organisms facilitate the elucidation of gene functions. Here we used retroviral insertion or homologous recombination to disrupt 472 genes encoding secreted and membrane proteins in mice, providing a resource for studying a large fraction of this important class of drug target. The knockout mice were subjected to a systematic phenotypic screen designed to uncover alterations in embryonic development, metabolism, the immune system, the nervous system and the cardiovascular system. The majority of knockout lines exhibited altered phenotypes in at least one of these therapeutic areas. To our knowledge, a comprehensive phenotypic assessment of a large number of mouse mutants generated by a gene-specific approach has not been described previously.
Collapse
|
157
|
Heise CJ, Xu BE, Deaton SL, Cha SK, Cheng CJ, Earnest S, Sengupta S, Juang YC, Stippec S, Xu Y, Zhao Y, Huang CL, Cobb MH. Serum and glucocorticoid-induced kinase (SGK) 1 and the epithelial sodium channel are regulated by multiple with no lysine (WNK) family members. J Biol Chem 2010; 285:25161-7. [PMID: 20525693 DOI: 10.1074/jbc.m110.103432] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The four WNK (with no lysine (K)) protein kinases affect ion balance and contain an unusual protein kinase domain due to the unique placement of the active site lysine. Mutations in two WNKs cause a heritable form of ion imbalance culminating in hypertension. WNK1 activates the serum- and glucocorticoid-induced protein kinase SGK1; the mechanism is noncatalytic. SGK1 increases membrane expression of the epithelial sodium channel (ENaC) and sodium reabsorption via phosphorylation and sequestering of the E3 ubiquitin ligase neural precursor cell expressed, developmentally down-regulated 4-2 (Nedd4-2), which otherwise promotes ENaC endocytosis. Questions remain about the intrinsic abilities of WNK family members to regulate this pathway. We find that expression of the N termini of all four WNKs results in modest to strong activation of SGK1. In reconstitution experiments in the same cell line all four WNKs also increase sodium current blocked by the ENaC inhibitor amiloride. The N termini of the WNKs also have the capacity to interact with SGK1. More detailed analysis of activation by WNK4 suggests mechanisms in common with WNK1. Further evidence for the importance of WNK1 in this process comes from the ability of Nedd4-2 to bind to WNK1 and the finding that endogenous SGK1 has reduced activity if WNK1 is knocked down by small interfering RNA.
Collapse
Affiliation(s)
- Charles J Heise
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Kupinski AP, Müller-Reichert T, Eckmann CR. The Caenorhabditis elegans Ste20 kinase, GCK-3, is essential for postembryonic developmental timing and regulates meiotic chromosome segregation. Dev Biol 2010; 344:758-71. [PMID: 20595048 DOI: 10.1016/j.ydbio.2010.05.505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 11/18/2022]
Abstract
Ste20 kinases constitute a large family of serine/threonine kinases with a plethora of biological functions. Members of the GCK-VI subfamily have been identified as important regulators of osmohomeostasis across species functioning upstream of ion channels. Although the expression of the two highly similar mammalian GCK-VI kinases is eminent in a wide variety of tissues, which includes also the testis, their potential roles in development remain elusive. Caenorhabditis elegans contains a single ancestral ortholog termed GCK-3. Here, we report a comprehensive analysis of gck-3 function and demonstrate its requirement for several developmental processes independent of ion homeostasis, i.e., larval progression, vulva, and germ line formation. Consistent with a wide range of gck-3 function we find that endogenous GCK-3 is expressed ubiquitously. The serine/threonine kinase activity of GCK-3, but not its presumed C-terminal substrate interaction domain, is essential for gck-3 gene function. Although expressed in female germ cells, we find GCK-3 progressively accumulating during spermatogenesis where it promotes the first meiotic cell division and facilitates faithful chromosome segregation. In particular, we find that different levels of gck-3 activity appear to be important for various aspects of germ line development. Taken together, our findings suggest that members of the GCK-VI kinase subfamily may act as key regulators of many developmental processes and that this newly described role in meiotic progression might be conserved and an important part of sexual reproduction.
Collapse
Affiliation(s)
- Adam P Kupinski
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | |
Collapse
|
159
|
Uchida S. Pathophysiological roles of WNK kinases in the kidney. Pflugers Arch 2010; 460:695-702. [PMID: 20490538 DOI: 10.1007/s00424-010-0848-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 05/05/2010] [Indexed: 01/11/2023]
Abstract
Since the discovery of mutations in the WNK1 and WNK4 genes in pseudohypoaldosteronism type II (PHAII), the pathophysiological role of WNK kinases in hypertension and renal ion transport has been a hot topic for investigation. Analyses from a mouse model carrying the same mutation as seen in PHAII patients, reveal a new signal cascade in the kidney that regulates NaCl and K balance in the body. WNK kinases phosphorylate and activate oxidative stress responsive kinase 1 (OSR1) and STE20-like proline and alanine-rich kinase (SPAK), and OSR1 and SPAK phosphorylate and activate the thiazide-sensitive Na-Cl cotransporter (NCC). Furthermore, this cascade is regulated by aldosterone, indicating that WNK-OSR1/SPAK-NCC cooperates with this system including the epithelial Na channel (ENaC) to conserve NaCl. With regard to K excretion, however, both systems work in opposite directions whereby PHAII and Liddle syndrome show hyperkalemia and hypokalemia, respectively. Thus, the identification of such aldosterone effecters other than ENaC, will reveal a novel regulatory mechanism of K excretion in the distal nephron, and also provides basic evidence for the therapeutic use of thiazide in various clinical situations.
Collapse
Affiliation(s)
- Shinichi Uchida
- Department of Nephrology, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
160
|
Vogel P, Hansen G, Fontenot G, Read R. Tubulin tyrosine ligase-like 1 deficiency results in chronic rhinosinusitis and abnormal development of spermatid flagella in mice. Vet Pathol 2010; 47:703-12. [PMID: 20442420 DOI: 10.1177/0300985810363485] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tubulin tyrosine ligase-like 1 (TTLL1) protein is a member of the tubulin tyrosine ligase superfamily of proteins that are involved in the posttranslational polyglutamylation of tubulin in axonemal microtubules within cilia and flagella. To investigate the physiological role of TTLL1, the authors generated mice with a gene trap mutation in the Ttll1 gene that provide confirmation in a mammalian model that polyglutamylation plays an important role in some ciliary and flagellar functions. For the first time, mice homozygous for the Ttll1 mutation exhibited accumulations of exudates in the nasal passages and sinuses, rhinosinusitis, otitis media, and male infertility. In homozygous mutant male mice, abnormal sperm morphology and function were characterized by shortened or absent flagella and immotility. Although homozygous mutant males were infertile, the females were fertile. These findings are consistent with a diagnosis of primary ciliary dyskinesia (PCD) resulting from ciliary dysfunction. They indicate that Ttll1 is essential for normal motility of respiratory cilia and the biogenesis and function of sperm flagella but that the defect does not result in the hydrocephalus or laterality defects often seen in other forms of PCD. The absence of early-onset lethal hydrocephalus in Ttll1-mutant mice may enable studies to evaluate the long-term effects of PCD in the respiratory system of mice. Although no mutations in the orthologous gene have been linked with PCD in humans, investigating the role of TTLL1 and polyglutamylation of tubulin in cilia and flagella should advance an understanding of the biogenesis and function of these organelles in mammals and have potential diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- P Vogel
- Lexicon Pharmaceuticals, Pathology Department, 8800 Technology Forest Place, The Woodlands, TX 77381-1160, USA.
| | | | | | | |
Collapse
|
161
|
Guan C, Ye C, Yang X, Gao J. A review of current large-scale mouse knockout efforts. Genesis 2010; 48:73-85. [PMID: 20095055 DOI: 10.1002/dvg.20594] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After the successful completion of the human genome project (HGP), biological research in the postgenome era urgently needs an efficient approach for functional analysis of genes. Utilization of knockout mouse models has been powerful for elucidating the function of genes as well as finding new therapeutic interventions for human diseases. Gene trapping and gene targeting are two independent techniques for making knockout mice from embryonic stem (ES) cells. Gene trapping is high-throughput, random, and sequence-tagged while gene targeting enables the knockout of specific genes. It has been about 20 years since the first gene targeting and gene trapping mice were generated. In recent years, new tools have emerged for both gene targeting and gene trapping, and organizations have been formed to knock out genes in the mouse genome using either of the two methods. The knockout mouse project (KOMP) and the international gene trap consortium (IGTC) were initiated to create convenient resources for scientific research worldwide and knock out all the mouse genes. Organizers of KOMP regard it as important as the HGP. Gene targeting methods have changed from conventional gene targeting to high-throughput conditional gene targeting. The combined advantages of trapping and targeting elements are improving the gene trapping spectrum and gene targeting efficiency. As a newly-developed insertional mutation system, transposons have some advantages over retrovirus in trapping genes. Emergence of the international knockout mouse consortium (IKMP) is the beginning of a global collaboration to systematically knock out all the genes in the mouse genome for functional genomic research.
Collapse
Affiliation(s)
- Chunmei Guan
- College of Life Science, Shandong University, Jinan 250100, Shandong, People's Republic of China
| | | | | | | |
Collapse
|
162
|
Gabbay KH, Bohren KM, Morello R, Bertin T, Liu J, Vogel P. Ascorbate synthesis pathway: dual role of ascorbate in bone homeostasis. J Biol Chem 2010; 285:19510-20. [PMID: 20410296 DOI: 10.1074/jbc.m110.110247] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Using mouse gene knock-out models, we identify aldehyde reductase (EC 1.1.1.2, Akr1a4 (GR)) and aldose reductase (EC 1.1.1.21, Akr1b3 (AR)) as the enzymes responsible for conversion of D-glucuronate to L-gulonate, a key step in the ascorbate (ASC) synthesis pathway in mice. The gene knock-out (KO) mice show that the two enzymes, GR and AR, provide approximately 85 and approximately 15% of L-gulonate, respectively. GRKO/ARKO double knock-out mice are unable to synthesize ASC (>95% ASC deficit) and develop scurvy. The GRKO mice ( approximately 85% ASC deficit) develop and grow normally when fed regular mouse chow (ASC content = 0) but suffer severe osteopenia and spontaneous fractures with stresses that increase ASC requirements, such as pregnancy or castration. Castration greatly increases osteoclast numbers and activity in GRKO mice and promotes increased bone loss as compared with wild-type controls and additionally induces proliferation of immature dysplastic osteoblasts likely because of an ASC-sensitive block(s) in early differentiation. ASC and the antioxidants pycnogenol and resveratrol block osteoclast proliferation and bone loss, but only ASC feeding restores osteoblast differentiation and prevents their dysplastic proliferation. This is the first in vivo demonstration of two independent roles for ASC as an antioxidant suppressing osteoclast activity and number as well as a cofactor promoting osteoblast differentiation. Although humans have lost the ability to synthesize ASC, our mouse models suggest the mechanisms by which suboptimal ASC availability facilitates the development of osteoporosis, which has important implications for human osteoporosis.
Collapse
Affiliation(s)
- Kenneth H Gabbay
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
163
|
Rafiqi FH, Zuber AM, Glover M, Richardson C, Fleming S, Jovanović S, Jovanović A, O'Shaughnessy KM, Alessi DR. Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol Med 2010; 2:63-75. [PMID: 20091762 PMCID: PMC3377268 DOI: 10.1002/emmm.200900058] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mutations within the with-no-K(Lys) (WNK) kinases cause Gordon's syndrome characterized by hypertension and hyperkalaemia. WNK kinases phosphorylate and activate the STE20/SPS1-related proline/alanine-rich kinase (SPAK) protein kinase, which phosphorylates and stimulates the key Na+:Cl− cotransporter (NCC) and Na+:K+:2Cl− cotransporters (NKCC2) cotransporters that control salt reabsorption in the kidney. To define the importance of this pathway in regulating blood pressure, we generated knock-in mice in which SPAK cannot be activated by WNKs. The SPAK knock-in animals are viable, but display significantly reduced blood pressure that was salt-dependent. These animals also have markedly reduced phosphorylation of NCC and NKCC2 cotransporters at the residues phosphorylated by SPAK. This was also accompanied by a reduction in the expression of NCC and NKCC2 protein without changes in messenger RNA (mRNA) levels. On a normal Na+-diet, the SPAK knock-in mice were normokalaemic, but developed mild hypokalaemia when the renin–angiotensin system was activated by a low Na+-diet. These observations establish that SPAK plays an important role in controlling blood pressure in mammals. Our results imply that SPAK inhibitors would be effective at reducing blood pressure by lowering phosphorylation as well as expression of NCC and NKCC2. See accompanying Closeup by Maria Castañeda-Bueno and Gerald Gamba (DOI 10.1002/emmm.200900059).
Collapse
|
164
|
Vogel P, Read R, Hansen GM, Freay LC, Zambrowicz BP, Sands AT. Situs inversus in Dpcd/Poll-/-, Nme7-/- , and Pkd1l1-/- mice. Vet Pathol 2010; 47:120-31. [PMID: 20080492 DOI: 10.1177/0300985809353553] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Situs inversus (SI) is a congenital condition characterized by left-right transposition of thoracic and visceral organs and associated vasculature. The usual asymmetrical positioning of organs is established early in development in a transient structure called the embryonic node. The 2-cilia hypothesis proposes that 2 kinds of primary cilia in the embryonic node determine left-right asymmetry: motile cilia that generate a leftward fluid flow, and immotile mechanosensory cilia that respond to the flow. Here, we describe 3 mouse SI models that provide support for the 2-cilia hypothesis. In addition to having SI, Dpcd/Poll(-/-) mice (for: deleted in a mouse model of primary ciliary dyskinesia) and Nme7(-/-) mice (for: nonmetastatic cells 7) had lesions consistent with deficient ciliary motility: Hydrocephalus, sinusitis, and male infertility developed in Dpcd/Poll(-/-) mice, whereas hydrocephalus and excessive nasal exudates were seen in Nme7(-/-) mice. In contrast, the absence of respiratory tract lesions, hydrocephalus, and male infertility in Pkd1l1(-/-) mice (for: polycystic kidney disease 1 like 1) suggested that dysfunction of motile cilia was not involved in the development of SI in this line. Moreover, the gene Pkd1l1 has considerable sequence similarity with Pkd1 (for: polycystic kidney disease 1), which encodes a protein (polycystin-1) that is essential for the mechanosensory function of immotile primary cilia in the kidney. The markedly reduced viability of Pkd1l1(-/-) mice is somewhat surprising given the absence of any detected abnormalities (other than SI) in surviving Pkd1l1(-/-) mice subjected to a comprehensive battery of phenotype-screening exams. However, the heart and great vessels of Pkd1l1(-/-) mice were not examined, and it is possible that the decreased viability of Pkd1l1(-/-) mice is due to undiagnosed cardiovascular defects associated with heterotaxy.
Collapse
Affiliation(s)
- P Vogel
- Pathology Department, Lexicon Pharmaceuticals Inc., 8800 Technology Forest Place, The Woodlands, TX 77381, USA.
| | | | | | | | | | | |
Collapse
|
165
|
Abstract
The WNK (With No K-Lysine) family of proteins is widely expressed and has been shown to promote blood pressure homeostasis through a variety of mechanisms. Members of this family have been reported to affect sodium/chloride cotransporters, sodium/potassium/chloride cotransporters, potassium/chloride cotransporters, the renal outer medullary potassium channel, and the epithelial sodium channel, directly and indirectly. Mutations in WNK1 and WNK4 were shown to cause pseudohypoaldosteronism type II, a Mendelian disorder characterized by hypertension, hyperkalemia, and acidosis. Because of the complexity of the renal system, it has been difficult to completely define the role of these kinases in kidney function. This article reviews current knowledge of the role of these proteins in ion homeostasis and volume control.
Collapse
|
166
|
Abstract
In this review, we discuss the genetic factors in both the aetiology and treatment of ischaemic stroke. We discuss candidate gene association studies, family linkage studies and the more recent whole genome association studies and whole genome expression studies. We also briefly discuss genetic testing for stroke risk and genetic analysis of treatment complications.
Collapse
Affiliation(s)
- M Matarin
- Laboratory of Neurogenetics, NIA/NIH, Bethesda, MD, USA
| | | | | | | |
Collapse
|
167
|
Abstract
Gene trapping in mouse embryonic stem (ES) cells is an efficient method for the mutagenesis of the mammalian genome. Insertion of a gene trap vector disrupts gene function, reports gene expression, and provides a convenient tag for the identification of the insertion site. The trap vector can be delivered to ES cells by electroporation of a plasmid, by retroviral infection, or by transposon-mediated insertion. Recent developments in trapping technology involve the utilization of site-specific recombination sites, which allow the induced modification of trap alleles in vitro and in vivo. Gene trapping strategies have also been successfully developed to screen for genes that are acting in specific biological pathways. In this chapter, we review different applications of gene trapping, and we provide detailed experimental protocols for gene trapping in ES cells by retroviral and transposon gene trap vectors.
Collapse
Affiliation(s)
- Roland H Friedel
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, USA
| | | |
Collapse
|
168
|
Abstract
Gene trapping is a technology originally developed for the simultaneous identification and mutation of genes by random integration in embryonic stem (ES) cells. While gene trapping was developed before efficient and high-throughput gene targeting, a significant proportion of the publically available mutant ES cell lines and mice were generated through a number of large-scale gene trapping initiatives. Moreover, elements of gene trap vectors continue to be incorporated into gene targeting vectors as a means to increase the efficiency of homologous recombination. Here, we review the current state of gene trapping technology and the applications of specific types of gene trap vector. As a component of this analysis, we consider the behavior of specific vector types both from the perspective of their application and how they can inform our annotation of the mammalian transcriptome. We consider the utility of gene trap vectors as tools for cell-based expression analysis, targeted screening in embryonic differentiation, and for use in cell lines derived from different lineages.
Collapse
Affiliation(s)
- Joshua M Brickman
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
169
|
Davies B, Kirchhoff C. Adhesion-GPCRs in the male reproductive tract. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 706:179-88. [PMID: 21618837 DOI: 10.1007/978-1-4419-7913-1_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The male reproductive tract expresses a diverse array of adhesion-GPCRs, many in a highly specific and regulated manner. Despite this specificity of expression, little is known about the function of this receptor family in male reproductive physiology. Insights into function are beginning to emerge with the increasing availability of genetically modified mice harbouring mutations in these genes. Gpr64 is the best characterised of the adhesion-GPCRs in the male reproductive system and the phenotype of Gpr64 knock-out mice implicates this receptor in the regulation of fluid absorption in the efferent ducts and proximal epididymis. This chapter summarizes recent data concerning this receptor and other family members in the male reproductive system.
Collapse
Affiliation(s)
- Ben Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, OX3 7BN, UK.
| | | |
Collapse
|
170
|
Coley W, Kehn-Hall K, Van Duyne R, Kashanchi F. Novel HIV-1 therapeutics through targeting altered host cell pathways. Expert Opin Biol Ther 2009; 9:1369-82. [PMID: 19732026 DOI: 10.1517/14712590903257781] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The emergence of drug-resistant HIV-1 strains presents a challenge for the design of new drugs. Anti-HIV compounds currently in use are the subject of advanced clinical trials using either HIV-1 reverse transcriptase, viral protease or integrase inhibitors. Recent studies show an increase in the number of HIV-1 variants resistant to anti-retroviral agents in newly infected individuals. Targeting host cell factors involved in the regulation of HIV-1 replication might be one way to combat HIV-1 resistance to the currently available anti-viral agents. A specific inhibition of HIV-1 gene expression could be expected from the development of compounds targeting host cell factors that participate in the activation of the HIV-1 LTR promoter. Here we discuss how targeting the host can be accomplished either by using small molecules to alter the function of the host's proteins such as p53 or cdk9, or by utilizing new advances in siRNA therapies to knock down essential host factors such as CCR5 and CXCR4. Finally, we will discuss how the viral protein interactomes should be used to better design therapeutics against HIV-1.
Collapse
Affiliation(s)
- William Coley
- George Washington University, School of Medicine, Department of Microbiology, Immunology and Tropical Medicine, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
171
|
Yagi YI, Abe K, Ikebukuro K, Sode K. Kinetic Mechanism and Inhibitor Characterization of WNK1 Kinase. Biochemistry 2009; 48:10255-66. [DOI: 10.1021/bi900666n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yukiko I. Yagi
- Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, Japan
| | - Koichi Abe
- Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, Japan
| | - Kazunori Ikebukuro
- Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, Japan
| | - Koji Sode
- Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, Japan
| |
Collapse
|
172
|
Tsakiridis A, Tzouanacou E, Rahman A, Colby D, Axton R, Chambers I, Wilson V, Forrester L, Brickman JM. Expression-independent gene trap vectors for random and targeted mutagenesis in embryonic stem cells. Nucleic Acids Res 2009; 37:e129. [PMID: 19692586 PMCID: PMC2770648 DOI: 10.1093/nar/gkp640] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/13/2009] [Accepted: 07/17/2009] [Indexed: 12/04/2022] Open
Abstract
Promoterless gene trap vectors have been widely used for high-efficiency gene targeting and random mutagenesis in embryonic stem (ES) cells. Unfortunately, such vectors are only effective for genes expressed in ES cells and this has prompted the development of expression-independent vectors. These polyadenylation (poly A) trap vectors employ a splice donor to capture an endogenous gene's polyadenylation sequence and provide transcript stability. However, the spectrum of mutations generated by these vectors appears largely restricted to the last intron of target loci due to nonsense-mediated mRNA decay (NMD) making them unsuitable for gene targeting applications. Here, we present novel poly A trap vectors that overcome the effect of NMD and also employ RNA instability sequences to improve splicing efficiency. The set of random insertions generated with these vectors show a significantly reduced insertional bias and the vectors can be targeted directly to a 5' intron. We also show that this relative positional independence is linked to the human beta-actin promoter and is most likely a result of its transcriptional activity in ES cells. Taken together our data indicate that these vectors are an effective tool for insertional mutagenesis that can be used for either gene trapping or gene targeting.
Collapse
Affiliation(s)
- Anestis Tsakiridis
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Elena Tzouanacou
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Afifah Rahman
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Douglas Colby
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Richard Axton
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Lesley Forrester
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Joshua M. Brickman
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| |
Collapse
|
173
|
Hereditary tubular transport disorders: implications for renal handling of Ca2+ and Mg2+. Clin Sci (Lond) 2009; 118:1-18. [PMID: 19780717 DOI: 10.1042/cs20090086] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The kidney plays an important role in maintaining the systemic Ca2+ and Mg2+ balance. Thus the renal reabsorptive capacity of these cations can be amended to adapt to disturbances in plasma Ca2+ and Mg2+ concentrations. The reabsorption of Ca2+ and Mg2+ is driven by transport of other electrolytes, sometimes through selective channels and often supported by hormonal stimuli. It is, therefore, not surprising that monogenic disorders affecting such renal processes may impose a shift in, or even completely blunt, the reabsorptive capacity of these divalent cations within the kidney. Accordingly, in Dent's disease, a disorder with defective proximal tubular transport, hypercalciuria is frequently observed. Dysfunctional thick ascending limb transport in Bartter's syndrome, familial hypomagnesaemia with hypercalciuria and nephrocalcinosis, and diseases associated with Ca2+-sensing receptor defects, markedly change tubular transport of Ca2+ and Mg2+. In the distal convolutions, several proteins involved in Mg2+ transport have been identified [TRPM6 (transient receptor potential melastatin 6), proEGF (pro-epidermal growth factor) and FXYD2 (Na+/K+-ATPase gamma-subunit)]. In addition, conditions such as Gitelman's syndrome, distal renal tubular acidosis and pseudohypoaldosteronism type II, as well as a mitochondrial defect associated with hypomagnesaemia, all change the renal handling of divalent cations. These hereditary disorders have, in many cases, substantially increased our understanding of the complex transport processes in the kidney and their contribution to the regulation of overall Ca2+ and Mg2+ balance.
Collapse
|
174
|
Abstract
PURPOSE OF REVIEW This review summarizes recent advances in the understanding of the molecular physiology and regulation of the thiazide-sensitive sodium-chloride cotransporter (NCC). RECENT FINDINGS Mutations of with-no-lysine (WNK) kinases 1 and 4 result in hyperactivity of NCC and familial hyperkalemic hypertension, a genetic syndrome of hypertension. Recent studies have shown that WNK1 and WNK4 activate the STE20 family protein kinases Ste20-related proline/alanine-rich kinase and odd-skipped-related 1, resulting in phosphorylation and activation of NCC. Additionally, a mouse knock-in model for a WNK4 familial hyperkalemic hypertension mutant demonstrated increased Ste20-related proline/alanine-rich kinase/odd-skipped-related 1 and NCC phosphorylation. It is unclear how these studies fit with the data indicating that WNK4 inhibits NCC, and the familial hyperkalemic hypertension mutations of WNK4 are loss-of-function mutations. Another WNK kinase, WNK3, also regulates NCC, activating NCC and antagonizing the effect of WNK4. Extracellular signal-related kinase 1/2 mitogen-activated protein kinase activation by Ras guanyl nucleotide-releasing protein 1 is another kinase pathway that appears to be a potent regulator of NCC. Other studies have described a role for angiotensin II in pressure natriuresis via actions on NCC. Recent studies examining the hormonal regulation of NCC have implicated angiotensin II and aldosterone in regulation of the WNK4-Ste20-related proline/alanine-rich kinase-NCC pathway. SUMMARY NCC is subject to a complex regulatory network of kinases, which appear quite sensitive to alterations of the hormonal and physiologic milieu.
Collapse
Affiliation(s)
- Benjamin Ko
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
175
|
A role for galanin in human and experimental inflammatory demyelination. Proc Natl Acad Sci U S A 2009; 106:15466-71. [PMID: 19717462 DOI: 10.1073/pnas.0903360106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The neuropeptide galanin is widely expressed by many differing subsets of neurons in the nervous system. There is a marked upregulation in the levels of the peptide in a variety of nerve injury models and in the basal forebrain of humans with Alzheimer's disease. Here we demonstrate that galanin expression is specifically and markedly upregulated in microglia both in multiple sclerosis (MS) lesions and shadow plaques. Galanin expression is also upregulated in the experimental autoimmune encephalomyelitis (EAE) model of MS, although solely in oligodendrocytes. To study whether the observed increase in expression of galanin in inflammatory demyelination might modulate disease activity, we applied the EAE model to a panel of galanin transgenic lines. Over-expression of galanin in transgenic mice (Gal-OE) abolishes disease in the EAE model, whilst loss-of-function mutations in galanin or galanin receptor-2 (GalR2) increase disease severity. The pronounced effects of altered endogenous galanin or GalR2 expression on EAE disease activity may reflect a direct neuroprotective effect of the neuropeptide via activation of GalR2, similar to that previously described in a number of neuronal injury paradigms. Irrespective of the mechanism(s) by which galanin alters EAE disease activity, our findings imply that galanin/GalR2 agonists may have future therapeutic implications for MS.
Collapse
|
176
|
Boonen M, Vogel P, Platt KA, Dahms N, Kornfeld S. Mice lacking mannose 6-phosphate uncovering enzyme activity have a milder phenotype than mice deficient for N-acetylglucosamine-1-phosphotransferase activity. Mol Biol Cell 2009; 20:4381-9. [PMID: 19710420 DOI: 10.1091/mbc.e09-05-0398] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mannose 6-phosphate (Man-6-P) lysosomal targeting signal on acid hydrolases is synthesized by the sequential action of uridine 5'-diphosphate-N-acetylglucosamine: lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase) and GlcNAc-1-phosphodiester alpha-N-acetylglucosaminidase ("uncovering enzyme" or UCE). Mutations in the two genes that encode GlcNAc-1-phosphotransferase give rise to lysosomal storage diseases (mucolipidosis type II and III), whereas no pathological conditions have been associated with the loss of UCE activity. To analyze the consequences of UCE deficiency, the UCE gene was inactivated via insertional mutagenesis in mice. The UCE -/- mice were viable, grew normally and lacked detectable histologic abnormalities. However, the plasma levels of six acid hydrolases were elevated 1.6- to 5.4-fold over wild-type levels. These values underestimate the degree of hydrolase hypersecretion as these enzymes were rapidly cleared from the plasma by the mannose receptor. The secreted hydrolases contained GlcNAc-P-Man diesters, exhibited a decreased affinity for the cation-independent mannose 6-phosphate receptor and failed to bind to the cation-dependent mannose 6-phosphate receptor. These data demonstrate that UCE accounts for all the uncovering activity in the Golgi. We propose that in the absence of UCE, the weak binding of the acid hydrolases to the cation-independent mannose 6-phosphate receptor allows sufficient sorting to lysosomes to prevent the tissue abnormalities seen with GlcNAc-1-phosphotranferase deficiency.
Collapse
Affiliation(s)
- Marielle Boonen
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
177
|
Loss of the putative catalytic domain of HDAC4 leads to reduced thermal nociception and seizures while allowing normal bone development. PLoS One 2009; 4:e6612. [PMID: 19672313 PMCID: PMC2720538 DOI: 10.1371/journal.pone.0006612] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 07/06/2009] [Indexed: 12/02/2022] Open
Abstract
Histone deacetylase 4 (HDAC4) has been associated with muscle & bone development [1]–[6]. N-terminal MEF2 and RUNX2 binding domains of HDAC4 have been shown to mediate these effects in vitro. A complete gene knockout has been reported to result in premature ossification and associated defects resulting in postnatal lethality [6]. We report a viral insertion mutation that deletes the putative deacetylase domain, while preserving the N-terminal portion of the protein. Western blot and immuno-precipitation analysis confirm expression of truncated HDAC4 containing N-terminal amino acids 1-747. These mutant mice are viable, living to at least one year of age with no gross defects in muscle or bone. At 2–4 months of age no behavioral or physiological abnormalities were detected except for an increased latency to respond to a thermal nociceptive stimulus. As the mutant mice aged past 5 months, convulsions appeared, often elicited by handling. Our findings confirm the sufficiency of the N-terminal domain for muscle and bone development, while revealing other roles of HDAC4.
Collapse
|
178
|
Xie J, Wu T, Xu K, Huang IK, Cleaver O, Huang CL. Endothelial-specific expression of WNK1 kinase is essential for angiogenesis and heart development in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1315-27. [PMID: 19644017 DOI: 10.2353/ajpath.2009.090094] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
WNK1 [with-no-lysine (K)-1] is a ubiquitous serine/threonine kinase with a unique placement of the catalytic lysine residue. Increased WNK1 expression levels in humans causes a hypertension-hyperkalemia syndrome by altering renal Na(+) and K(+) transport. The function of WNK1 outside of the kidney remains elusive. In this study, we report that Wnk1 ablation causes cardiovascular developmental defects. The developing heart of null mutant embryos has smaller chambers and reduced myocardial trabeculation at E10.5. Yolk sac vessels in the E10.5 null mutant fail to remodel into a network of large and small vessels, and embryonic vessels show defective angiogenesis that involves both arteries and veins. The arterial marker neuropilin-1 and venous marker EphB4 are ectopically expressed in mutant veins and arteries, respectively. However, the orphan nuclear receptor COUP-TFII as well as the Notch signaling pathway, which are known to be critical for angiogenesis and artery-vein specification, are not significantly altered in Wnk1(-/-) mutants. Conditional deletion of Wnk1 in endothelial cells phenotypically copies defects caused by global Wnk1 ablation. Moreover, endothelial-specific expression of a Wnk1 transgene rescues cardiovascular developmental defects in Wnk1(-/-) mice. These findings identify a novel function of WNK1 in endothelial cells that is critical for angiogenesis and heart development, raising the possibility for a role of endothelial WNK1 in the control of blood pressure and postnatal angiogenesis and cardiac growth.
Collapse
Affiliation(s)
- Jian Xie
- Department of Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8856, USA
| | | | | | | | | | | |
Collapse
|
179
|
Ohta A, Rai T, Yui N, Chiga M, Yang SS, Lin SH, Sohara E, Sasaki S, Uchida S. Targeted disruption of the Wnk4 gene decreases phosphorylation of Na-Cl cotransporter, increases Na excretion and lowers blood pressure. Hum Mol Genet 2009; 18:3978-86. [PMID: 19633012 DOI: 10.1093/hmg/ddp344] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We recently generated Wnk4(D561A/+) knockin mice and found that a major pathogenesis of pseudohypoaldosteronism type II was the activation of the OSR1/SPAK kinase-NaCl cotransporter (NCC) phosphorylation cascade by the mutant WNK4. However, the physiological roles of wild-type WNK4 on the regulation of Na excretion and blood pressure, and whether wild-type WNK4 functions positively or negatively in this cascade, remained to be determined. In the present study, we generated WNK4 hypomorphic mice by deleting exon 7 of the Wnk4 gene. These mice did not show hypokalemia and metabolic alkalosis, but they did exhibit low blood pressure and increased Na and K excretion under low-salt diet. Phosphorylation of OSR1/SPAK and NCC was significantly reduced in the mutant mice as compared with their wild-type littermates. Protein levels of ROMK and Maxi K were not changed, but epithelial Na channel appeared to be activated as a compensatory mechanism for the reduced NCC function. Thus, wild-type WNK4 is a positive regulator for the WNK-OSR1/SPAK-NCC cascade, and WNK4 is a potential target of anti-hypertensive drugs.
Collapse
Affiliation(s)
- Akihito Ohta
- Department of Nephrology, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Newhouse S, Farrall M, Wallace C, Hoti M, Burke B, Howard P, Onipinla A, Lee K, Shaw-Hawkins S, Dobson R, Brown M, Samani NJ, Dominiczak AF, Connell JM, Lathrop GM, Kooner J, Chambers J, Elliott P, Clarke R, Collins R, Laan M, Org E, Juhanson P, Veldre G, Viigimaa M, Eyheramendy S, Cappuccio FP, Ji C, Iacone R, Strazzullo P, Kumari M, Marmot M, Brunner E, Caulfield M, Munroe PB. Polymorphisms in the WNK1 gene are associated with blood pressure variation and urinary potassium excretion. PLoS One 2009; 4:e5003. [PMID: 19347040 PMCID: PMC2661139 DOI: 10.1371/journal.pone.0005003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 02/05/2009] [Indexed: 02/07/2023] Open
Abstract
WNK1--a serine/threonine kinase involved in electrolyte homeostasis and blood pressure (BP) control--is an excellent candidate gene for essential hypertension (EH). We and others have previously reported association between WNK1 and BP variation. Using tag SNPs (tSNPs) that capture 100% of common WNK1 variation in HapMap, we aimed to replicate our findings with BP and to test for association with phenotypes relating to WNK1 function in the British Genetics of Hypertension (BRIGHT) study case-control resource (1700 hypertensive cases and 1700 normotensive controls). We found multiple variants to be associated with systolic blood pressure, SBP (7/28 tSNPs min-p = 0.0005), diastolic blood pressure, DBP (7/28 tSNPs min-p = 0.002) and 24 hour urinary potassium excretion (10/28 tSNPs min-p = 0.0004). Associations with SBP and urine potassium remained significant after correction for multiple testing (p = 0.02 and p = 0.01 respectively). The major allele (A) of rs765250, located in intron 1, demonstrated the strongest evidence for association with SBP, effect size 3.14 mmHg (95%CI:1.23-4.9), DBP 1.9 mmHg (95%CI:0.7-3.2) and hypertension, odds ratio (OR: 1.3 [95%CI: 1.0-1.7]).We genotyped this variant in six independent populations (n = 14,451) and replicated the association between rs765250 and SBP in a meta-analysis (p = 7 x 10(-3), combined with BRIGHT data-set p = 2 x 10(-4), n = 17,851). The associations of WNK1 with DBP and EH were not confirmed. Haplotype analysis revealed striking associations with hypertension and BP variation (global permutation p<10(-7)). We identified several common haplotypes to be associated with increased BP and multiple low frequency haplotypes significantly associated with lower BP (>10 mmHg reduction) and risk for hypertension (OR<0.60). Our data indicates that multiple rare and common WNK1 variants contribute to BP variation and hypertension, and provide compelling evidence to initiate further genetic and functional studies to explore the role of WNK1 in BP regulation and EH.
Collapse
Affiliation(s)
- Stephen Newhouse
- Clinical Pharmacology and Barts and the London Genome Centre, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Martin Farrall
- Department of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Chris Wallace
- Clinical Pharmacology and Barts and the London Genome Centre, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Mimoza Hoti
- Clinical Pharmacology and Barts and the London Genome Centre, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Beverley Burke
- Clinical Pharmacology and Barts and the London Genome Centre, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Philip Howard
- Clinical Pharmacology and Barts and the London Genome Centre, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Abiodun Onipinla
- Clinical Pharmacology and Barts and the London Genome Centre, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Kate Lee
- Clinical Pharmacology and Barts and the London Genome Centre, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Sue Shaw-Hawkins
- Clinical Pharmacology and Barts and the London Genome Centre, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Richard Dobson
- Clinical Pharmacology and Barts and the London Genome Centre, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Morris Brown
- Clinical Pharmacology and the Cambridge Institute of Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Anna F. Dominiczak
- BHF Glasgow Cardiovascular Research Centre, Division of Cardiovascular and Medical Sciences, University of Glasgow, Western Infirmary, Glasgow, United Kingdom
| | - John M. Connell
- BHF Glasgow Cardiovascular Research Centre, Division of Cardiovascular and Medical Sciences, University of Glasgow, Western Infirmary, Glasgow, United Kingdom
| | | | - Jaspal Kooner
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - John Chambers
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paul Elliott
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Robert Clarke
- Clinical Trial Service Unit and Epidemiological Studies Unit, University of Oxford, Oxford, United Kingdom
| | - Rory Collins
- Clinical Trial Service Unit and Epidemiological Studies Unit, University of Oxford, Oxford, United Kingdom
| | - Maris Laan
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Elin Org
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Peeter Juhanson
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Gudrun Veldre
- Department of Cardiology and Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Centre of Cardiology, North Estonia Medical Centre, Tallinn, Estonia
| | - Margus Viigimaa
- Centre of Cardiology, North Estonia Medical Centre, Tallinn, Estonia
| | - Susana Eyheramendy
- Department of Statistics, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | | | - Chen Ji
- Clinical Sciences Research Institute, Warwick Medical School, Coventry, United Kingdom
| | - Roberto Iacone
- Department of Clinical & Experimental Medicine, Federico II University of Naples Medical School, Naples, Italy
| | - Pasquale Strazzullo
- Department of Clinical & Experimental Medicine, Federico II University of Naples Medical School, Naples, Italy
| | - Meena Kumari
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Michael Marmot
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Eric Brunner
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Mark Caulfield
- Clinical Pharmacology and Barts and the London Genome Centre, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Patricia B. Munroe
- Clinical Pharmacology and Barts and the London Genome Centre, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
181
|
De-Zolt S, Altschmied J, Ruiz P, von Melchner H, Schnütgen F. Gene-trap vectors and mutagenesis. Methods Mol Biol 2009; 530:29-47. [PMID: 19266330 DOI: 10.1007/978-1-59745-471-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Gene trapping can be used to introduce insertional mutations into the genome of mouse embryonic stem cells (ESCs). The method has been adapted for high-throughput use, in an effort to inactivate all genes in the mouse genome. Gene trapping is performed with vectors that simultaneously inactivate and report the expression of the trapped gene and provide a molecular tag for its rapid identification. Gene-trap approaches have been used successfully in the past by both academic and commercial organizations to create libraries of ESC lines harboring mutations in single genes that can be used for making mice. Presently, approximately 70% of the protein-coding genes in the mouse genome have been disrupted by gene-trap insertions. Here we describe the basic methodology used to induce and characterize gene-trap mutations in ESCs.
Collapse
Affiliation(s)
- Silke De-Zolt
- Department of Molecular Hematology, University of Frankfurt, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
182
|
Vogel P, Payne BJ, Read R, Lee WS, Gelfman CM, Kornfeld S. Comparative pathology of murine mucolipidosis types II and IIIC. Vet Pathol 2009; 46:313-24. [PMID: 19261645 PMCID: PMC2705191 DOI: 10.1354/vp.46-2-313] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
UDP-GlcNAc: lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase) is an alpha(2)beta(2)gamma(2) hexameric enzyme that catalyzes the first step in the synthesis of the mannose 6-phosphate targeting signal on lysosomal hydrolases. In humans, mutations in the gene encoding the alpha/beta subunit precursor give rise to mucolipidosis II (MLII), whereas mutations in the gene encoding the gamma subunit cause the less severe mucolipidosis IIIC (MLIIIC). In this study we describe the phenotypic, histologic, and serum lysosomal enzyme abnormalities in knockout mice lacking the gamma subunit and compare these findings to those of mice lacking the alpha/beta subunits and humans with MLII and MLIIIC. We found that both lines of mutant mice had elevated levels of serum lysosomal enzymes and cytoplasmic alterations in secretory cells of several exocrine glands; however, lesions in gamma-subunit deficient (Gnptg(-/-)) mice were milder and more restricted in distribution than in alpha/beta-subunit deficient (Gnptab(-/-)) mice. We found that onset, extent, and severity of lesions that developed in these two different knockouts correlated with measured lysosomal enzyme activity; with a more rapid, widespread, and severe storage disease phenotype developing in Gnptab(-/-) mice. In contrast to mice deficient in the alpha/beta subunits, the mice lacking the gamma subunits were of normal size, lacked cartilage defects, and did not develop retinal degeneration. The milder disease in the gamma-subunit deficient mice correlated with residual synthesis of the mannose 6-phosphate recognition marker. Of significance, neither strain of mutant mice developed cytoplasmic vacuolar inclusions in fibrocytes or mesenchymal cells (I-cells), the characteristic lesion associated with the prominent skeletal and connective tissue abnormalities in humans with MLII and MLIII. Instead, the predominant lesions in both lines of mice were found in the secretory epithelial cells of several exocrine glands, including the pancreas, and the parotid, submandibular salivary, nasal, lacrimal, bulbourethral, and gastric glands. The absence of retinal and chondrocyte lesions in Gnptg(-/-) mice might be attributed to residual beta-glucuronidase activity. We conclude that mice lacking either alpha/beta or gamma subunits displayed clinical and pathologic features that differed substantially from those reported in humans having mutations in orthologous genes.
Collapse
Affiliation(s)
- P Vogel
- Lexicon Pharmaceuticals, Pathology Department, 8800 Technology Forest Place, The Woodlands, TX 77381-1160, USA.
| | | | | | | | | | | |
Collapse
|
183
|
Hoorn EJ, van der Lubbe N, Zietse R. The renal WNK kinase pathway: a new link to hypertension. Nephrol Dial Transplant 2009; 24:1074-7. [PMID: 19182241 DOI: 10.1093/ndt/gfp013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ewout J Hoorn
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
184
|
Read R, Hansen G, Kramer J, Finch R, Li L, Vogel P. Ectonucleoside triphosphate diphosphohydrolase type 5 (Entpd5)-deficient mice develop progressive hepatopathy, hepatocellular tumors, and spermatogenic arrest. Vet Pathol 2009; 46:491-504. [PMID: 19176496 DOI: 10.1354/vp.08-vp-0201-r-am] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ectonucleoside triphosphate diphosphohydrolase type 5 (ENTPD5, also CD39L4) is a soluble enzyme that hydrolyzes purine nucleoside diphosphates. Genetic inactivation of ENTPD5 in mice (Entpd5(-/-)) resulted in 2 major histopathologic lesions: hepatopathy and aspermia. The hepatopathy was progressive and characterized by centrilobular hepatocyte hypertrophy, oval cell proliferation, bile staining of Kupffer cells, and hepatocyte degeneration with increasing incidence and severity of degenerative lesions, development of multiple foci of cellular alteration, and hepatocellular neoplasia with age. Greatly increased proliferation of hepatocytes in young adult as well as aged Entpd5(-/-) mice was demonstrated by Ki67 immunohistochemistry and 5'-bromo-3'-deoxyuridine incorporation. Of 15 Entpd5(-/-) mice between 44 and 69 weeks of age, all showed foci of cellular alteration in the liver, and at least 6 of 15 developed hepatocellular carcinoma (HCC), hepatocellular adenoma, or both. Significantly, none of these lesions were observed in 13 wild-type Entpd5(+/+) littermates. These findings, combined with the historically low incidence (about 5%) of HCC in mice up to 2 years of age with the same genetic background, strongly suggest that loss of Entpd5 promotes hepatocellular neoplasia in mice. In humans, ENTPD5 has been found to be identical to the PCPH proto-oncogene, and dysregulation of this gene has been demonstrated in some human cancers. This mouse model could contribute to the understanding of the influence of ENTPD5/PCPH on cellular proliferation and neoplasia.
Collapse
Affiliation(s)
- R Read
- Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, TX 77381, USA.
| | | | | | | | | | | |
Collapse
|
185
|
Yu Y, Zuo J. The practical use of Cre and loxP technologies in mouse auditory research. Methods Mol Biol 2009; 493:87-102. [PMID: 18839343 DOI: 10.1007/978-1-59745-523-7_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Gene manipulation, specifically in the hair cells of the inner ear during development and adulthood in mice, is crucial for understanding the physiology of hearing and the pathology of deafness in humans. Recent advances have demonstrated that gene expression can be manipulated in developing mouse hair cells in a spatially and temporally controlled manner. The Cre-loxP system has been widely used for such purposes. Many laboratories, including ours, have developed and characterized transgenic mouse lines that express or induce Cre activity specifically in inner ear hair cells. These Cre lines have been used with high efficiency to inactivate several genes such as Rb in hair cells. Here we discuss the use of these Cre lines in inner ear research with emphasis on practical issues for researchers who are not familiar with these particular techniques but are interested in using these Cre mice and floxed mice to inactivate genes of their interest specifically in inner ear hair cells. We provide detailed protocols for the use of these techniques and reagents. These considerations and protocols can be easily applied to other cell types in the inner ear and other parts of the auditory pathways. Because the NIH Knockout Mouse Project (KOMP) and the European Conditional Mouse Mutant Program (EUCOMM) have initiated plans to create conditional (floxed) knockout strains for every gene in the mouse genome and because numerous Cre-expressing mouse lines have already been created in various systems, including the nervous system, it is our hope that many hearing researchers will benefit from the detailed protocols and practical considerations described in this review.
Collapse
Affiliation(s)
- Yiling Yu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
186
|
Abstract
Determining gene function by using transgenesis in the mouse has been immensely popular amongst researchers since the introduction of the techniques in the 1980s. However, we are still a long way from knowing the function of the majority of the genes in the genome. It is becoming increasingly accepted that there needs to be a coherent programme of systematic mutation of every protein-coding gene in the mouse genome. The target is therefore to generate approximately 20,000-25,000 gene knockout mouse models. This is an ambitious aim but one which is vital to enhance our understanding of physiology, development and disease. Recently a number of programmes have been established to meet this aim. A particular feature of these large co-ordinated methods for generating genetically modified mice is that they may obviate the need for individual researchers to perform the onerous process of generating the mutant mouse of their gene of interest - in the future we may be able to order our mouse model of interest with the same ease with which we order laboratory reagents and supplies today.
Collapse
|
187
|
Vogel P, Donoviel MS, Read R, Hansen GM, Hazlewood J, Anderson SJ, Sun W, Swaffield J, Oravecz T. Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and non-lymphoid lesions. PLoS One 2009; 4:e4112. [PMID: 19119317 PMCID: PMC2606024 DOI: 10.1371/journal.pone.0004112] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/04/2008] [Indexed: 11/18/2022] Open
Abstract
Background S1PL is an aldehyde-lyase that irreversibly cleaves sphingosine 1-phosphate (S1P) in the terminal step of sphingolipid catabolism. Because S1P modulates a wide range of physiological processes, its concentration must be tightly regulated within both intracellular and extracellular environments. Methodology In order to better understand the function of S1PL in this regulatory pathway, we assessed the in vivo effects of different levels of S1PL activity using knockout (KO) and humanized mouse models. Principal Findings Our analysis showed that all S1PL-deficient genetic models in this study displayed lymphopenia, with sequestration of mature T cells in the thymus and lymph nodes. In addition to the lymphoid phenotypes, S1PL KO mice (S1PL−/−) also developed myeloid cell hyperplasia and significant lesions in the lung, heart, urinary tract, and bone, and had a markedly reduced life span. The humanized knock-in mice harboring one allele (S1PLH/−) or two alleles (S1PLH/H) of human S1PL expressed less than 10 and 20% of normal S1PL activity, respectively. This partial restoration of S1PL activity was sufficient to fully protect both humanized mouse lines from the lethal non-lymphoid lesions that developed in S1PL−/− mice, but failed to restore normal T-cell development and trafficking. Detailed analysis of T-cell compartments indicated that complete absence of S1PL affected both maturation/development and egress of mature T cells from the thymus, whereas low level S1PL activity affected T-cell egress more than differentiation. Significance These findings demonstrate that lymphocyte trafficking is particularly sensitive to variations in S1PL activity and suggest that there is a window in which partial inhibition of S1PL could produce therapeutic levels of immunosuppression without causing clinically significant S1P-related lesions in non-lymphoid target organs.
Collapse
Affiliation(s)
- Peter Vogel
- Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
The double-histone-acetyltransferase complex ATAC is essential for mammalian development. Mol Cell Biol 2008; 29:1176-88. [PMID: 19103755 DOI: 10.1128/mcb.01599-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acetylation of the histone tails, catalyzed by histone acetyltransferases (HATs), is a well-studied process that contributes to transcriptionally active chromatin states. Here we report the characterization of a novel mammalian HAT complex, which contains the two acetyltransferases GCN5 and ATAC2 as well as other proteins linked to chromatin metabolism. This multisubunit complex has a similar but distinct subunit composition to that of the Drosophila ADA2A-containing complex (ATAC). Recombinant ATAC2 has a weak HAT activity directed to histone H4. Moreover, depletion of ATAC2 results in the disassembly of the complex, indicating that ATAC2 not only carries out an enzymatic function but also plays an architectural role in the stability of mammalian ATAC. By targeted disruption of the Atac2 locus in mice, we demonstrate for the first time the essential role of the ATAC complex in mammalian development, histone acetylation, cell cycle progression, and prevention of apoptosis during embryogenesis.
Collapse
|
189
|
|
190
|
Mason SS, Baker KB, Davis KW, Pogorelov VM, Malbari MM, Ritter R, Wray SP, Gerhardt B, Lanthorn TH, Savelieva KV. Differential sensitivity to SSRI and tricyclic antidepressants in juvenile and adult mice of three strains. Eur J Pharmacol 2008; 602:306-15. [PMID: 19038246 DOI: 10.1016/j.ejphar.2008.11.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/28/2008] [Accepted: 11/01/2008] [Indexed: 10/21/2022]
Abstract
Clinical studies have shown differential efficacy of several antidepressants in children and adolescents compared to adults, yet few animal studies have sought to characterize this phenomenon. We compared effects of fluoxetine and imipramine in two common behavioral assays that hold high predictive validity for antidepressant activity, tail suspension and forced swim test, using juvenile (5 weeks) and adult (12 weeks) mice from 3 strains. C57BL/6J-Tyr(c-Brd) (C57), hybrid C57BL/6J-Tyr(c-Brd)x129S5/SvEvBrd (F2), and Balb/cAnNTac (Balb/C) mice were tested in forced swim test and tail suspension after i.p. dosing with either fluoxetine or imipramine. Brain tissues were analyzed to evaluate levels of VMAT2, a possible modulator of age-dependent sensitivity to antidepressants. Imipramine had more consistent antidepressant effect across age groups and strains. Imipramine increased struggle in mice of both ages. Fluoxetine did not have an effect on immobility in Balb/C of both ages in tail suspension. Fluoxetine also did not increase forced swim struggle behavior in juvenile mice of all strains, but was effective in increasing struggle in adults. Juvenile mice had higher immobility and lower struggle than adults in forced swim, and juveniles also had higher immobility in tail suspension test for Balb/C and C57. In addition, VMAT2 levels were increased in juveniles. These results confirm that standard antidepressants produce effects in both juveniles and adults but age-related differences were evident in both tests. Further examination of these effects is needed to determine whether it may be related to age-dependent difference in the clinical response to antidepressants of these classes.
Collapse
Affiliation(s)
- Sara S Mason
- Department of Neuroscience, Lexicon Pharmaceuticals, Inc, The Woodlands, TX 77381, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Delaloy C, Elvira-Matelot E, Clemessy M, Zhou XO, Imbert-Teboul M, Houot AM, Jeunemaitre X, Hadchouel J. Deletion of WNK1 first intron results in misregulation of both isoforms in renal and extrarenal tissues. Hypertension 2008; 52:1149-54. [PMID: 18955660 DOI: 10.1161/hypertensionaha.108.120899] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Large deletions in intron 1 of the with-no-lysine kinase type 1 (WNK1) gene cause familial hyperkalemic hypertension. Alternative promoters generate functionally different isoforms: long ubiquitous isoforms (L-WNK1) and a kidney-specific isoform (KS-WNK1) lacking kinase activity. It remains unclear whether the disease-causing mutations selectively modify the synthesis of 1 or both types of isoforms. Using a transgenic mouse model, we found that intron 1 deletion resulted in the overexpression of L- and KS-WNK1 in the distal convoluted tubule and ubiquitous ectopic KS-WNK1 expression. Phylogenetic and functional analysis of the minimal 22-kb intron 1 deletion identified 1 repressor and 1 insulator, potentially preventing interactions between the regulatory elements of L-WNK1 and KS-WNK1. These results provide the first insight into the molecular mechanisms of WNK1-induced familial hyperkalemic hypertension.
Collapse
Affiliation(s)
- Céline Delaloy
- Faculté de Médecine, Université Paris Descartes Paris V, Collège de France, INSERM Unit 772, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Richardson C, Alessi DR. The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. J Cell Sci 2008; 121:3293-304. [PMID: 18843116 DOI: 10.1242/jcs.029223] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025] Open
Abstract
It has recently been shown that the WNK [with-no-K(Lys)] kinases (WNK1, WNK2, WNK3 and WNK4) have vital roles in the control of salt homeostasis and blood pressure. This Commentary focuses on recent findings that have uncovered the backbone of a novel signal-transduction network that is controlled by WNK kinases. Under hyperosmotic or hypotonic low-Cl- conditions, WNK isoforms are activated, and subsequently phosphorylate and activate the related protein kinases SPAK and OSR1. SPAK and OSR1 phosphorylate and activate ion co-transporters that include NCC, NKCC1 and NKCC2, which are targets for the commonly used blood-pressure-lowering thiazide-diuretic and loop-diuretic drugs. The finding that mutations in WNK1, WNK4, NCC and NKCC2 cause inherited blood-pressure syndromes in humans highlights the importance of these enzymes. We argue that these new findings indicate that SPAK and OSR1 are promising drug targets for the treatment of hypertension, because inhibiting these enzymes would reduce NCC and NKCC2 activity and thereby suppress renal salt re-absorption. We also discuss unresolved and controversial questions in this field of research.
Collapse
Affiliation(s)
- Ciaran Richardson
- MRC Protein Phosphorylation Unit, Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| | | |
Collapse
|
193
|
Brommage R, Desai U, Revelli JP, Donoviel DB, Fontenot GK, Dacosta CM, Smith DD, Kirkpatrick LL, Coker KJ, Donoviel MS, Eberhart DE, Holt KH, Kelly MR, Paradee WJ, Philips AV, Platt KA, Suwanichkul A, Hansen GM, Sands AT, Zambrowicz BP, Powell DR. High-throughput screening of mouse knockout lines identifies true lean and obese phenotypes. Obesity (Silver Spring) 2008; 16:2362-7. [PMID: 18719666 DOI: 10.1038/oby.2008.361] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We developed a high-throughput approach to knockout (KO) and phenotype mouse orthologs of the 5,000 potential drug targets in the human genome. As part of the phenotypic screen, dual-energy X-ray absorptiometry (DXA) technology estimates body-fat stores in eight KO and four wild-type (WT) littermate chow-fed mice from each line. Normalized % body fat (nBF) (mean KO % body fat/mean WT littermate % body fat) values from the first 2322 lines with viable KO mice at 14 weeks of age showed a normal distribution. We chose to determine how well this screen identifies body-fat phenotypes by selecting 13 of these 2322 KO lines to serve as benchmarks based on their published lean or obese phenotype on a chow diet. The nBF values for the eight benchmark KO lines with a lean phenotype were > or =1 s.d. below the mean for seven (perilipin, SCD1, CB1, MCH1R, PTP1B, GPAT1, PIP5K2B) but close to the mean for NPY Y4R. The nBF values for the five benchmark KO lines with an obese phenotype were >2 s.d. above the mean for four (MC4R, MC3R, BRS3, translin) but close to the mean for 5HT2cR. This screen also identifies novel body-fat phenotypes as exemplified by the obese kinase suppressor of ras 2 (KSR2) KO mice. These body-fat phenotypes were confirmed upon studying additional cohorts of mice for KSR2 and all 13 benchmark KO lines. This simple and cost-effective screen appears capable of identifying genes with a role in regulating mammalian body fat.
Collapse
|
194
|
Shekarabi M, Girard N, Rivière JB, Dion P, Houle M, Toulouse A, Lafrenière RG, Vercauteren F, Hince P, Laganiere J, Rochefort D, Faivre L, Samuels M, Rouleau GA. Mutations in the nervous system--specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II. J Clin Invest 2008; 118:2496-505. [PMID: 18521183 DOI: 10.1172/jci34088] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 04/16/2008] [Indexed: 12/17/2022] Open
Abstract
Hereditary sensory and autonomic neuropathy type II (HSANII) is an early-onset autosomal recessive disorder characterized by loss of perception to pain, touch, and heat due to a loss of peripheral sensory nerves. Mutations in hereditary sensory neuropathy type II (HSN2), a single-exon ORF originally identified in affected families in Quebec and Newfoundland, Canada, were found to cause HSANII. We report here that HSN2 is a nervous system-specific exon of the with-no-lysine(K)-1 (WNK1) gene. WNK1 mutations have previously been reported to cause pseudohypoaldosteronism type II but have not been studied in the nervous system. Given the high degree of conservation of WNK1 between mice and humans, we characterized the structure and expression patterns of this isoform in mice. Immunodetections indicated that this Wnk1/Hsn2 isoform was expressed in sensory components of the peripheral nervous system and CNS associated with relaying sensory and nociceptive signals, including satellite cells, Schwann cells, and sensory neurons. We also demonstrate that the novel protein product of Wnk1/Hsn2 was more abundant in sensory neurons than motor neurons. The characteristics of WNK1/HSN2 point to a possible role for this gene in the peripheral sensory perception deficits characterizing HSANII.
Collapse
Affiliation(s)
- Masoud Shekarabi
- Centre of Excellence in Neuromics, University of Montreal, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Schnütgen F, Hansen J, De-Zolt S, Horn C, Lutz M, Floss T, Wurst W, Noppinger PR, von Melchner H. Enhanced gene trapping in mouse embryonic stem cells. Nucleic Acids Res 2008; 36:e133. [PMID: 18812397 PMCID: PMC2582619 DOI: 10.1093/nar/gkn603] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene trapping is used to introduce insertional mutations into genes of mouse embryonic stem cells (ESCs). It is performed with gene trap vectors that simultaneously mutate and report the expression of the endogenous gene at the site of insertion and provide a DNA tag for rapid identification of the disrupted gene. Gene traps have been employed worldwide to assemble libraries of mouse ESC lines harboring mutations in single genes, which can be used to make mutant mice. However, most of the employed gene trap vectors require gene expression for reporting a gene trap event and therefore genes that are poorly expressed may be under-represented in the existing libraries. To address this problem, we have developed a novel class of gene trap vectors that can induce gene expression at insertion sites, thereby bypassing the problem of intrinsic poor expression. We show here that the insertion of the osteopontin enhancer into several conventional gene trap vectors significantly increases the gene trapping efficiency in high-throughput screens and facilitates the recovery of poorly expressed genes.
Collapse
Affiliation(s)
- Frank Schnütgen
- Department of Molecular Hematology, University of Frankfurt Medical School, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Hansen GM, Markesich DC, Burnett MB, Zhu Q, Dionne KM, Richter LJ, Finnell RH, Sands AT, Zambrowicz BP, Abuin A. Large-scale gene trapping in C57BL/6N mouse embryonic stem cells. Genome Res 2008; 18:1670-9. [PMID: 18799693 DOI: 10.1101/gr.078352.108] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report the construction and analysis of a mouse gene trap mutant resource created in the C57BL/6N genetic background containing more than 350,000 sequence-tagged embryonic stem (ES) cell clones. We also demonstrate the ability of these ES cell clones to contribute to the germline and produce knockout mice. Each mutant clone is identified by a genomic sequence tag representing the exact insertion location, allowing accurate prediction of mutagenicity and enabling direct genotyping of mutant alleles. Mutations have been identified in more than 10,000 genes and show a bias toward the first intron. The trapped ES cell lines, which can be requested from the Texas A&M Institute for Genomic Medicine, are readily available to the scientific community.
Collapse
Affiliation(s)
- Gwenn M Hansen
- Lexicon Pharmaceuticals Incorporated, The Woodlands, Texas 77381, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Vogel P, Read RW, Vance RB, Platt KA, Troughton K, Rice DS. Ocular albinism and hypopigmentation defects in Slc24a5-/- mice. Vet Pathol 2008; 45:264-79. [PMID: 18424845 DOI: 10.1354/vp.45-2-264] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As part of a high-throughput mutagenesis and phenotyping process designed to discover novel drug targets, we generated and characterized mice with a targeted mutation in Slc24a5, a gene encoding a putative cation exchanger. Upon macroscopic examination, Slc24a5-/- mice were viable, fertile, and indistinguishable by coat color from their heterozygous and wild-type litter mates. Ophthalmoscopic examination revealed diffuse retinal hypopigmentation, and a histologic examination of the eye confirmed the presence of moderate-to-marked hypopigmentation of the retinal pigmented epithelium (RPE), ciliary body, and iris pigment epithelium (IPE). Hypopigmentation was most severe in the anterior layer cells of the IPE, where melanosomes were smaller, paler, and more indistinct than those of the anterior stroma and posterior IPE. The pigment granules of the posterior IPE appeared to be nearly as dark as those in stromal melanocytes; however, both cell layers were thinner and paler than corresponding layers in wild-type mice. Ultrastructural analysis of the RPE, IPE, and ciliary body pigmented cells confirmed that mutation of Slc24a5 results in marked hypopigmentation of melanosomes in optic cup-derived pigmented neuroepithelium in the eyes. Milder reductions in melanosome size and pigmentation were noted in neural crest-derived melanocytes. The severe hypopigmentation of neuroepithelium-derived cells in the eyes resulted in a novel form of ocular albinism in Slc24a5-/- mice. Our findings suggest that SLC24A5 may be a candidate gene for some forms of ocular albinism and for the BEY1/EYCL2 locus previously associated with central brown eye color in humans.
Collapse
Affiliation(s)
- P Vogel
- Lexicon Pharmaceuticals Inc., 8800 Technology Forest Place, The Woodlands, TX 77381-1160, USA.
| | | | | | | | | | | |
Collapse
|
198
|
San-Cristobal P, de los Heros P, Ponce-Coria J, Moreno E, Gamba G. WNK kinases, renal ion transport and hypertension. Am J Nephrol 2008; 28:860-70. [PMID: 18547946 DOI: 10.1159/000139639] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 03/31/2008] [Indexed: 12/20/2022]
Abstract
Two members of a recently discovered family of protein kinases are the cause of an inherited disease known as pseudohypoaldosteronism type II (PHAII). These patients exhibit arterial hypertension together with hyperkalemia and metabolic acidosis. This is a mirror image of Gitelman disease that is due to inactivating mutations of the SLC12A3 gene that encodes the thiazide-sensitive Na(+):Cl(-) cotransporter. The uncovered genes causing PHAII encode for serine/threonine kinases known as WNK1 and WNK4. Physiological and biochemical studies have revealed that WNK1 and WNK4 modulate the activity of several transport pathways of the aldosterone-sensitive distal nephron, thus increasing our understanding of how diverse renal ion transport proteins are coordinated to regulate normal blood pressure levels. Observations discussed in the present work place WNK1 and WNK4 as genes involved in the genesis of essential hypertension and as potential targets for the development of antihypertensive drugs.
Collapse
Affiliation(s)
- Pedro San-Cristobal
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | | | | | | | | |
Collapse
|
199
|
Abstract
Mutations in the serine-threonine kinases WNK1 and WNK4 cause a Mendelian disease featuring hypertension and hyperkalemia. In vitro and in vivo studies have revealed that these proteins are molecular switches that have discrete functional states that impart different effects on downstream ion channels, transporters, and the paracellular pathway. These effects enable the distal nephron to allow either maximal NaCl reabsorption or maximal K+ secretion in response to hypovolemia or hyperkalemia, respectively. The related kinase WNK3 has reciprocal actions on the primary mediators of cellular Cl(-) influx and efflux, effects that can serve to regulate cell volume during growth and in response to osmotic stress as well as to modulate neuronal responses to GABA. These findings define a versatile new family of kinases that coordinate the activities of diverse ion transport pathways to achieve and maintain fluid and electrolyte homeostasis.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
200
|
Yang CL, Zhu X, Ellison DH. The thiazide-sensitive Na-Cl cotransporter is regulated by a WNK kinase signaling complex. J Clin Invest 2008; 117:3403-11. [PMID: 17975670 DOI: 10.1172/jci32033] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 08/03/2007] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of essential hypertension remains unknown, but thiazide diuretics are frequently recommended as first-line treatment. Recently, familial hyperkalemic hypertension (FHHt) was shown to result from activation of the thiazide-sensitive Na-Cl cotransporter (NCC) by mutations in WNK4, although the mechanism for this effect remains unknown. WNK kinases are unique members of the human kinome, intimately involved in maintaining electrolyte balance across cell membranes and epithelia. Previous work showed that WNK1, WNK4, and a kidney-specific isoform of WNK1 interact to regulate NCC activity, suggesting that WNK kinases form a signaling complex. Here, we report that WNK3, another member of the WNK kinase family expressed by distal tubule cells, interacts with WNK4 and WNK1 to regulate NCC in both human kidney cells and Xenopus oocytes, further supporting the WNK signaling complex hypothesis. We demonstrate that physiological regulation of NCC in oocytes results from antagonism between WNK3 and WNK4 and that FHHt-causing WNK4 mutations exert a dominant-negative effect on wild-type (WT) WNK4 to mimic a state of WNK3 excess. The results provide a mechanistic explanation for the divergent effects of WT and FHHt-mutant WNK4 on NCC activity, and for the dominant nature of FHHt in humans and genetically modified mice.
Collapse
Affiliation(s)
- Chao-Ling Yang
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | |
Collapse
|