151
|
Machin NA, Lee JM, Chamany K, Barnes G. Dosage suppressors of a benomyl-dependent tubulin mutant: evidence for a link between microtubule stability and cellular metabolism. Genetics 1996; 144:1363-73. [PMID: 8978026 PMCID: PMC1207690 DOI: 10.1093/genetics/144.4.1363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To identify factors important for the regulation of microtubule stability in yeast, dosage suppressors of the hyperstable microtubule phenotype of the budding yeast tub2-150 beta-tubulin mutation were isolated. Of the two suppressors reported here, one (JSN2) encodes a tRNAVal, and the other (JSN3) is an antimorphic allele of the methionine biosynthesis transcription factor Met4p. Furthermore, growth of tub2-150 mutants and suppression of tub2-150 mutants by JSN3 are sensitive to levels of methionine in the growth medium. We explore several possible explanations for these findings, including the potential involvement of the general amino acid control and the involvement of Cbflp, a component of yeast kinetochores that is also necessary for Met4p-mediated transcription.
Collapse
Affiliation(s)
- N A Machin
- Department of Molecular and Cell Biology, University of California, Berkeley, USA
| | | | | | | |
Collapse
|
152
|
Zhu S, Sobolev AY, Wek RC. Histidyl-tRNA synthetase-related sequences in GCN2 protein kinase regulate in vitro phosphorylation of eIF-2. J Biol Chem 1996; 271:24989-94. [PMID: 8798780 DOI: 10.1074/jbc.271.40.24989] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In yeast, starvation for amino acids stimulates GCN2 phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF-2). Phosphorylation of eIF-2alpha induces the translational expression of GCN4, a transcriptional activator of the general amino acid control pathway. It has been proposed that GCN2 sequences containing homology to histidyl-tRNA synthetases (HisRS) bind uncharged tRNA that accumulate during amino acid limitation and stimulate the activity of GCN2 kinase. In this report we address whether the HisRS-related sequences are required for GCN2 phosphorylation of eIF-2alpha in an in vitro assay. To measure the activity of GCN2 kinase in cellular extracts, we expressed and purified a truncated form of yeast eIF-2alpha. Phosphorylation of the recombinant eIF-2alpha substrate was dependent on both GCN2 kinase activity and the eIF-2alpha phosphorylation site, serine 51. Mutations in the HisRS-related domain of GCN2, which have been shown to block phosphorylation of eIF-2alpha in vivo and the subsequent stimulation of the general control pathway, also greatly reduced eIF-2alpha phosphorylation in the in vitro assay. These results indicate that the HisRS-related sequences are required for activation of GCN2 kinase function.
Collapse
Affiliation(s)
- S Zhu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | |
Collapse
|
153
|
Tavernarakis N, Thireos G. Genetic evidence for functional specificity of the yeast GCN2 kinase. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:613-8. [PMID: 8709969 DOI: 10.1007/bf02173652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In yeast the GCN2 kinase mediates translational control of GCN4 by phosphorylating the alpha subunit of eIF-2 in response to extracellular amino acid limitation. Although phosphorylation of eIF-2 alpha has been shown to inhibit global protein synthesis, amino acid starvation results in a specific activation effect on GCN4 mRNA translation. Under the same conditions, translation of other mRNAs appears only slightly affected. The mechanism responsible for the observed selectivity of the GCN2 kinase is not clear. Here, we present genetic evidence that suggests that locally restricted action of the GCN2 kinase facilitates GCN4-specific translational regulation.
Collapse
Affiliation(s)
- N Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | | |
Collapse
|
154
|
Qian W, Zhu S, Sobolev AY, Wek RC. Expression of vaccinia virus K3L protein in yeast inhibits eukaryotic initiation factor-2 kinase GCN2 and the general amino acid control pathway. J Biol Chem 1996; 271:13202-7. [PMID: 8662715 DOI: 10.1074/jbc.271.22.13202] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF-2) is a well characterized mechanism regulating protein synthesis. Viral and cellular proteins have been identified that regulate the activity of the eIF-2alpha kinases. The regulatory protein, K3L, from vaccinia virus is homologous to the amino terminus of eIF-2alpha and is thought to inhibit the activity of the double-stranded RNA-dependent kinase suppressing the antiviral mechanism mediated by this kinase. We investigated whether K3L can inhibit the activity of the yeast eIF-2alpha kinase GCN2. Expression of K3L protein in yeast reduced the level of eIF-2alpha phosphorylation by GCN2 and blocked the stimulation of the general amino acid control pathway in response to starvation conditions. Accompanying in vitro studies showed that recombinant K3L protein reduced GCN2 autophosphorylation and phosphorylation eIF-2alpha. In agreement with the hypothesis that K3L inhibits eIF-2alpha kinases by functioning as a pseudosubstrate, we observed that K3L directly interacted with the kinase catalytic domain of GCN2. Together, these results indicate that K3L is a specific inhibitor of eIF-2alpha kinases from mammals and yeast and suggest that the kinases contain common structural features important for recognition of their substrate eIF-2alpha.
Collapse
Affiliation(s)
- W Qian
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | | | |
Collapse
|
155
|
Langland JO, Langland LA, Browning KS, Roth DA. Phosphorylation of plant eukaryotic initiation factor-2 by the plant-encoded double-stranded RNA-dependent protein kinase, pPKR, and inhibition of protein synthesis in vitro. J Biol Chem 1996; 271:4539-44. [PMID: 8626809 DOI: 10.1074/jbc.271.8.4539] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Regulation of protein synthesis by eukaryotic initiation factor-2alpha (eIF-2alpha) phosphorylation is a highly conserved phenomenon in eukaryotes that occurs in response to various stress conditions. Protein kinases capable of phosphorylating eIF-2alpha have been characterized from mammals and yeast. However, the phenomenon of eIF2-alpha-mediated regulation of protein synthesis and the presence of an eIF-2alpha kinase has not been demonstrated in higher plants. We show that plant eIF-2alpha (peIF-2alpha) and mammalian eIF-2alpha (meIF-2alpha) are phosphorylated similarly by both the double-stranded RNA-binding kinase, pPKR, present in plant ribosome salt wash fractions and the meIF-2alpha kinase, PKR. By several criteria, phosphorylation of peIF-2alpha is directly correlated with pPKR protein and autophosphorylation levels. Significantly, pPKR is capable of specifically phosphorylating Ser51 in a synthetic eIF-2alpha peptide, a key characteristic of the eIF-2alpha kinase family. Taken together, these data support the concept that pPKR is a member of the eIF-2alpha kinase family. In addition, the inhibition of brome mosaic virus RNA in vitro translation in wheat germ lysates by the addition of double-stranded RNA, phosphorylated peIF-2alpha, meIF-2alpha, or activated human PKR suggests that plant protein synthesis may be regulated via phosphorylation of eIF-2alpha.
Collapse
Affiliation(s)
- J O Langland
- Department of Plant, Soil, and Insect Sciences, University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | | | |
Collapse
|
156
|
Laine RO, Hutson RG, Kilberg MS. Eukaryotic gene expression: metabolite control by amino acids. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 53:219-48. [PMID: 8650304 DOI: 10.1016/s0079-6603(08)60146-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Our understanding of the metabolite control in mammalian cells lags far behind that in prokaryotes. This is particularly true for amino-acid-dependent gene expression. Few proteins have been identified for which synthesis is selectively regulated by amino-acid availability, and the mechanisms for control of transcription and translation in response to changes in amino-acid availability have not yet been elucidated. The intimate relationship between amino-acid supply and the fundamental cellular process of protein synthesis makes amino-acid-dependent control of gene expression particularly important. Future studies should provide important insight into amino-acid and other nutrient signaling pathways, and their impact on cellular growth and metabolism.
Collapse
Affiliation(s)
- R O Laine
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville 32610, USA
| | | | | |
Collapse
|
157
|
Kimball SR, Mellor H, Flowers KM, Jefferson LS. Role of translation initiation factor eIF-2B in the regulation of protein synthesis in mammalian cells. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:165-96. [PMID: 8768075 DOI: 10.1016/s0079-6603(08)60363-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S R Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey 17033, USA
| | | | | | | |
Collapse
|
158
|
Abstract
A series of new crystal structures of aminoacyl-tRNA synthetases sheds light on the evolution of specificity in this ancient family of enzymes.
Collapse
Affiliation(s)
- S Cusack
- European Molecular Biology Laboratory, Grenoble, France
| |
Collapse
|
159
|
Hawkins AR, Lamb HK. The molecular biology of multidomain proteins. Selected examples. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:7-18. [PMID: 7556173 DOI: 10.1111/j.1432-1033.1995.tb20775.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this review is to give an overview of the contribution molecular biology can make to an understanding of the functions and interactions within multidomain proteins. The contemporary advantages ascribed to multidomain proteins include (a) the potential for metabolite channelling and the protection of unstable intermediates; (b) the potential for interactions between domains catalysing sequential steps in a metabolic pathway, thereby giving the potential for allosteric interactions; and (c) the facility to produce enzymic activities in a fixed stoichiometric ratio. The alleged advantages in (a) and (b) however apply equally well to multi-enzyme complexes; therefore, specific examples of these phenomena are examined in multidomain proteins to determine whether the proposed advantages are apparent. Some transcription-regulating proteins active in the control of metabolic pathways are composed of multiple domains and their control is exerted and modulated at the molecular level by protein-DNA, protein-protein and protein-metabolite interactions. These complex recognition events place strong constraints upon the proteins involved, requiring the recognition of and interaction with different classes of cellular metabolites and macromolecules. Specific examples of transcription-regulating proteins are examined to probe how their multidomain nature facilitates a general solution to the problem of multiple recognition events. A general unifying theme that emerges from these case studies is that a basic unitary design of modules provided by enzymes is exploited to produce multidomain proteins by a complex series of gene duplication and fusion events. Successful modules provided by enzymes are co-opted to new function by selection apparently acting upon duplicated copies of the genes encoding the enzymes. In multidomain transcription-regulating proteins, former enzyme modules can be recruited as molecular sensors that facilitate presumed allosteric interactions necessary for the molecular control of transcription.
Collapse
Affiliation(s)
- A R Hawkins
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, England
| | | |
Collapse
|
160
|
Wek SA, Zhu S, Wek RC. The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol Cell Biol 1995; 15:4497-506. [PMID: 7623840 PMCID: PMC230689 DOI: 10.1128/mcb.15.8.4497] [Citation(s) in RCA: 388] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Protein kinase GCN2 is a multidomain protein that contains a region homologous to histidyl-tRNA synthetases juxtaposed to the kinase catalytic moiety. Previous studies have shown that in response to histidine starvation, GCN2 phosphorylates eukaryotic initiation factor 2 (eIF-2), to induce the translational expression of GCN4, a transcriptional activator of genes subject to the general amino acid control. It was proposed that the synthetase-related sequences of GCN2 stimulate the activity of the kinase by interacting directly with uncharged tRNA that accumulates during amino acid limitation. In addition to histidine starvation, expression of GCN4 is also regulated by a number of other amino acid limitations. Questions that we posed in this report are whether uncharged tRNA is the most direct regulator of GCN2 and whether the function of this kinase is required to recognize each of the different amino acid starvation signals. We show that GCN2 phosphorylation of eIF-2, and the resulting general amino acid control pathway, is stimulated in response to starvation for each of several different amino acids, in addition to histidine limitation. Cells containing a defective aminoacyl-tRNA synthetase also stimulated GCN2 phosphorylation of eIF-2 in the absence of amino acid starvation, indicating that uncharged tRNA levels are the most direct regulator of GCN2 kinase. Using a Northwestern blot (RNA binding) assay, we show that uncharged tRNA can bind to the synthetase-related domain of GCN2. Mutations in the motif 2 sequence conserved among class II synthetases, including histidyl-tRNA synthetases, impair the ability of this synthetase-related domain to bind tRNA and abolish GCN2 phosphorylation of eIF-2 required to stimulate the general amino acid control response. These in vivo and in vitro experiments indicate that synthetase-related sequences regulate GCN2 kinase function by monitoring the levels of multiple uncharged tRNAs that accumulate during amino acid limitations.
Collapse
Affiliation(s)
- S A Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122, USA
| | | | | |
Collapse
|
161
|
Müller F, Krüger D, Sattlegger E, Hoffmann B, Ballario P, Kanaan M, Barthelmess IB. The cpc-2 gene of Neurospora crassa encodes a protein entirely composed of WD-repeat segments that is involved in general amino acid control and female fertility. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:162-73. [PMID: 7651339 DOI: 10.1007/bf02190797] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Phenotypic and molecular studies of the mutation U142 indicate that the cpc-2+ gene is required to activate general amino acid control under conditions of amino acid limitation in the vegetative growth phase, and for formation of protoperithecia in preparation for the sexual phase of the life cycle of Neurospora crassa. The cpc-2 gene was cloned by complementation of the cpc-2 mutation in a his-2ts bradytrophic background. Genomic and cDNA sequence analysis indicated a 1636 bp long open reading frame interrupted by four introns. The deduced 316 amino acid polypeptide reveals 70% positional identity over its full length with G-protein beta-subunit-related polypeptides found in humans, rat (RACK1), chicken, tobacco and Chlamydomonas. With the exception of RACK1 the function of these proteins is obscure. All are entirely made up of seven WD-repeats. Expression studies of cpc-2 revealed one abundant transcript in the wild type; in the mutant its level is drastically reduced. In mutant cells transformed with the complementing sequence, the transcript level, enzyme regulation and female fertility are restored. In the wild type the cpc-2 transcript is down-regulated under conditions of amino acid limitation. With cpc-2 a new element involved in general amino acid control has been identified, indicating a function for a WD-repeat protein that belongs to a class that is conserved throughout the evolution of eukaryotes.
Collapse
Affiliation(s)
- F Müller
- Institut für Angewandte Genetik, Universität Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
162
|
Flowers KM, Kimball SR, Feldhoff RC, Hinnebusch AG, Jefferson LS. Molecular cloning and characterization of cDNA encoding the alpha subunit of the rat protein synthesis initiation factor eIF-2B. Proc Natl Acad Sci U S A 1995; 92:4274-8. [PMID: 7753796 PMCID: PMC41926 DOI: 10.1073/pnas.92.10.4274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Eukaryotic initiation factor 2B (eIF-2B) is an essential component of the pathway of peptide-chain initiation in mammalian cells, yet little is known about its molecular structure and regulation. To investigate the structure, regulation, and interactions of the individual subunits of eIF-2B, we have begun to clone, characterize, and express the corresponding cDNAs. We report here the cloning and characterization of a 1510-bp cDNA encoding the alpha subunit of eIF-2B from a rat brain cDNA library. The cDNA contains an open reading frame of 918 bp encoding a polypeptide of 305 aa with a predicted molecular mass of 33.7 kDa. This cDNA recognizes a single RNA species approximately 1.6 kb in length on Northern blots of RNA from rat liver. The predicted amino acid sequence contains regions identical to the sequences of peptides derived from bovine liver eIF-2B alpha subunit. Expression of this cDNA in vitro yields a peptide which comigrates with natural eIF-2B alpha in SDS/polyacrylamide gels. The predicted amino acid sequence exhibits 42% identity to that deduced for the Saccharomyces cerevisiae GCN3 protein, the smallest subunit of yeast eIF-2B. In addition, expression of the rat cDNA in yeast functionally complements a gcn3 deletion for the inability to induce histidine biosynthetic genes under the control of GCN4. These results strongly support the hypothesis that mammalian eIF-2 alpha and GCN3 are homologues. Southern blots indicate that the eIF-2B alpha cDNA also recognizes genomic DNA fragments from several other species, suggesting significant homology between the rat eIF-2B alpha gene and that from other species.
Collapse
Affiliation(s)
- K M Flowers
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey 17033, USA
| | | | | | | | | |
Collapse
|
163
|
Melcher K, Rose M, Künzler M, Braus GH, Entian KD. Molecular analysis of the yeast SER1 gene encoding 3-phosphoserine aminotransferase: regulation by general control and serine repression. Curr Genet 1995; 27:501-8. [PMID: 7553933 DOI: 10.1007/bf00314439] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although serine and glycine are ubiquitous amino acids the genetic and biochemical regulation of their synthesis has not been studied in detail. The SER1 gene encodes 3-phosphoserine aminotransferase which catalyzes the formation of phosphoserine from 3-phosphohydroxy-pyruvate, which is obtained by oxidation of 3-phosphoglycerate, an intermediate of glycolysis. Saccharomyces cerevisiae cells provided with fermentable carbon sources mainly use this pathway (glycolytic pathway) to synthesize serine and glycine. We report the isolation of the SER1 gene by complementation and the disruption of the chromosomal locus. Sequence analysis revealed an open reading frame encoding a protein with a predicted molecular weight of 43,401 Da. A previously described mammalian progesterone-induced protein shares 47% similarity with SER1 over the entire protein, indicating a common function for both proteins. We demonstrate that SER1 transcription is regulated by the general control of amino-acid biosynthesis mediated by GCN4. Additionally, DNaseI protection experiments proved the binding of GCN4 protein to the SER1 promoter in vitro and three GCN4 recognition elements (GCREs) were identified. Furthermore, there is evidence for an additional regulation by serine end product repression.
Collapse
Affiliation(s)
- K Melcher
- Institute for Microbiology, University of Frankfurt, Germany
| | | | | | | | | |
Collapse
|
164
|
Sweeney ST, Freestone P, Norris V. Characterization of eukaryotic-like kinase activity in Escherichia coli using the gene-protein database. FEMS Microbiol Lett 1995; 127:133-8. [PMID: 7737475 DOI: 10.1111/j.1574-6968.1995.tb07462.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The gene-protein database was used to obtain the two-dimensional polyacrylamide gel coordinates of proteins phosphorylated in extracts of Escherichia coli including those phosphorylated by eukaryotic-like kinase activities. These suggest that the phosphoproteins correspond to, or co-migrate with, the product of an open reading frame at 1.3 min (Orf80), Enzyme 1 of the phosphoenolpyruvate-dependent phosphotransferase system (PtsI), the tRNA synthetase for histidine (HisS), and proteins involved in the response to carbon starvation and quinone treatment.
Collapse
Affiliation(s)
- S T Sweeney
- Department of Microbiology and Immunology, University of Leicester, UK
| | | | | |
Collapse
|
165
|
Velazquez L, Mogensen KE, Barbieri G, Fellous M, Uzé G, Pellegrini S. Distinct domains of the protein tyrosine kinase tyk2 required for binding of interferon-alpha/beta and for signal transduction. J Biol Chem 1995; 270:3327-34. [PMID: 7531704 DOI: 10.1074/jbc.270.7.3327] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
tyk2 belongs to the JAK family of nonreceptor protein tyrosine kinases recently found implicated in signaling through a large number of cytokine receptors. These proteins are characterized by a large amino-terminal region and two tandemly arranged kinase domains, a kinase-like and a tyrosine kinase domain. Genetic and biochemical evidence supports the requirement for tyk2 in interferon-alpha/beta binding and signaling. To study the role of the distinct domains of tyk2, constructs lacking one or both kinase domains were stably transfected in recipient cells lacking the endogenous protein. Removal of either or both kinase domains resulted in loss of the in vitro kinase activity. The mutant form truncated of the tyrosine kinase domain was found to reconstitute binding of interferon-alpha 8 and partial signaling. While no contribution of this protein toward interferon-beta binding was evident, increased signaling could be measured. The mutant form lacking both kinase domains did not exhibit any detectable activity. Altogether, these results show that a sequential deletion of domains engenders a sequential loss of function and that the different domains of tyk2 have distinct functions, all essential for full interferon-alpha and -beta binding and signaling.
Collapse
Affiliation(s)
- L Velazquez
- Institut Pasteur, INSERM U 276, Paris, France
| | | | | | | | | | | |
Collapse
|
166
|
Romano PR, Green SR, Barber GN, Mathews MB, Hinnebusch AG. Structural requirements for double-stranded RNA binding, dimerization, and activation of the human eIF-2 alpha kinase DAI in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:365-78. [PMID: 7799945 PMCID: PMC231972 DOI: 10.1128/mcb.15.1.365] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The protein kinase DAI is activated upon viral infection of mammalian cells and inhibits protein synthesis by phosphorylation of the alpha subunit of translation initiation factor 2 (eIF-2 alpha). DAI is activated in vitro by double-stranded RNAs (dsRNAs), and binding of dsRNA is dependent on two copies of a conserved sequence motif located N terminal to the kinase domain in DAI. High-level expression of DAI in Saccharomyces cerevisiae cells is lethal because of hyperphosphorylation of eIF-2 alpha; at lower levels, DAI can functionally replace the protein kinase GCN2 and stimulate translation of GCN4 mRNA. These two phenotypes were used to characterize structural requirements for DAI function in vivo, by examining the effects of amino acid substitutions at matching positions in the two dsRNA-binding motifs and of replacing one copy of the motif with the other. We found that both copies of the dsRNA-binding motif are required for high-level kinase function and that the N-terminal copy is more important than the C-terminal copy for activation of DAI in S. cerevisiae. On the basis of these findings, we conclude that the requirements for dsRNA binding in vitro and for activation of DAI kinase function in vivo closely coincide. Two mutant alleles containing deletions of the first or second binding motif functionally complemented when coexpressed in yeast cells, strongly suggesting that the active form of DAI is a dimer. In accord with this conclusion, overexpression of four catalytically inactive alleles containing different deletions in the protein kinase domain interfered with wild-type DAI produced in the same cells. Interestingly, three inactivating point mutations in the kinase domain were all recessive, suggesting that dominant interference involves the formation of defective heterodimers rather than sequestration of dsRNA activators by mutant enzymes. We suggest that large structural alterations in the kinase domain impair an interaction between the two protomers in a DAI dimer that is necessary for activation by dsRNA or for catalysis of eIF-2 alpha phosphorylation.
Collapse
Affiliation(s)
- P R Romano
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
167
|
Hann SR. Methionine deprivation regulates the translation of functionally-distinct c-Myc proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 375:107-16. [PMID: 7645422 DOI: 10.1007/978-1-4899-0949-7_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Numerous studies have demonstrated a critical role for the c-myc gene in the control of cellular growth. Alterations of the c-myc gene have been found associated with many different types of tumors in several species, including humans. The increased synthesis of one of the major forms of c-Myc protein, c-Myc 1, upon methionine deprivation provides a link between the regulation of oncogenes and the nutritional status of the cell. While deregulation or overexpression of the other major form, c-Myc 2, has been shown to cause tumorigenesis, the synthesis of c-Myc 1 protein is lost in many tumors. This suggests that the c-Myc 1 protein is necessary to keep the c-Myc 2 protein "in check" and prevent certain cells from becoming tumorigenic. Indeed, we have shown that overproduction of c-Myc 1 can inhibit cell growth. We have also shown that c-Myc 1 and 2 proteins have a differential molecular function in the regulation of transcription through a new binding site of Myc/Max heterodimers. We have also recently identified new translational forms of the c-Myc protein which we term delta-c-Myc. These proteins arise from translational initiation at downstream start sites which yield N-terminally-truncated c-Myc proteins. Since these proteins lack a significant portion of the transactivation domain of c-Myc, they behave as dominant-negative inhibitors of the full-length c-Myc 1 and 2 proteins. The synthesis of delta-c-Myc proteins is also regulated during cell growth and is repressed by methionine deprivation. Therefore, the synthesis of c-Myc 1 and delta-c-Myc proteins are reciprocally regulated by methionine availability. We have also found some tumor cell lines which synthesize high levels of the delta-c-Myc proteins. Taken together, our data suggest that c-Myc function is dependent on the levels of these different translational forms of c-Myc protein which are regulated by the nutritional status of the cell during growth. Numerous reports have demonstrated a fundamental and diverse role for the myc gene in cellular events, including proliferation, differentiation and apoptosis (Cole 1986; Spencer and Groudine 1991; Askew et al. 1991; Evan et al. 1992). This is dramatically illustrated by the frequent occurrence of a variety of tumors in many species having alterations of myc genes and the transduction of c-myc sequences by retroviruses (Spencer and Groudine 1991).4+ Eisenman 1990).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S R Hann
- Department of Cell Biology, Vanderbilt Univeristy, School of Medicine, Nashville, Tennessee 37232-2175, USA
| |
Collapse
|
168
|
Multicopy tRNA genes functionally suppress mutations in yeast eIF-2 alpha kinase GCN2: evidence for separate pathways coupling GCN4 expression to unchanged tRNA. Mol Cell Biol 1994. [PMID: 7969132 DOI: 10.1128/mcb.14.12.7920] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GCN2 is a protein kinase that stimulates translation of GCN4 mRNA in amino acid-starved cells by phosphorylating the alpha subunit of translation initiation factor 2 (eIL-2). We isolated multicopy plasmids that overcome the defective derepression of GCN4 and its target genes caused by the leaky mutation gcn2-507. One class of plasmids contained tRNA(His) genes and conferred efficient suppression only when cells were starved for histidine; these plasmids suppressed a gcn2 deletion much less efficiently than they suppressed gcn2-507. This finding indicates that the reduction in GCN4 expression caused by gcn2-507 can be overcome by elevating tRNA(His) expression under conditions in which the excess tRNA cannot be fully aminoacylated. The second class of suppressor plasmids all carried the same gene encoding a mutant form of tRNA(Val) (AAC) with an A-to-G transition at the 3' encoded nucleotide, a mutation shown previously to reduce aminoacylation of tRNA(Val) in vitro. In contrast to the wild-type tRNA(His) genes, the mutant tRNA(Val) gene efficiently suppressed a gcn2 deletion, and this suppression was independent of the phosphorylation site on eIF-2 alpha (Ser-51). Overexpression of the mutant tRNA(Val) did, however, stimulate GCN4 expression at the translational level. We propose that the multicopy mutant tRNA(Val) construct leads to an accumulation of uncharged tRNA(Val) that derepresses GCN4 translation through a pathway that does not involve GCN2 or eIF-2 alpha phosphorylation. This GCN2-independent pathway was also stimulated to a lesser extent by the multicopy tRNA(His) constructs in histidine-deprived cells. Because the mutant tRNA(Val) exacerbated the slow-growth phenotype associated with eIF-2 alpha hyperphosphorylation by an activated GCN2c kinase, we suggest that the GCN2-independent derepression mechanism involves down-regulation of eIF-2 activity.
Collapse
|
169
|
Affiliation(s)
- J M Thevelein
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit te Leuven, Heverlee, Flanders, Belgium
| |
Collapse
|
170
|
Vazquez de Aldana CR, Wek RC, Segundo PS, Truesdell AG, Hinnebusch AG. Multicopy tRNA genes functionally suppress mutations in yeast eIF-2 alpha kinase GCN2: evidence for separate pathways coupling GCN4 expression to unchanged tRNA. Mol Cell Biol 1994; 14:7920-32. [PMID: 7969132 PMCID: PMC359331 DOI: 10.1128/mcb.14.12.7920-7932.1994] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
GCN2 is a protein kinase that stimulates translation of GCN4 mRNA in amino acid-starved cells by phosphorylating the alpha subunit of translation initiation factor 2 (eIL-2). We isolated multicopy plasmids that overcome the defective derepression of GCN4 and its target genes caused by the leaky mutation gcn2-507. One class of plasmids contained tRNA(His) genes and conferred efficient suppression only when cells were starved for histidine; these plasmids suppressed a gcn2 deletion much less efficiently than they suppressed gcn2-507. This finding indicates that the reduction in GCN4 expression caused by gcn2-507 can be overcome by elevating tRNA(His) expression under conditions in which the excess tRNA cannot be fully aminoacylated. The second class of suppressor plasmids all carried the same gene encoding a mutant form of tRNA(Val) (AAC) with an A-to-G transition at the 3' encoded nucleotide, a mutation shown previously to reduce aminoacylation of tRNA(Val) in vitro. In contrast to the wild-type tRNA(His) genes, the mutant tRNA(Val) gene efficiently suppressed a gcn2 deletion, and this suppression was independent of the phosphorylation site on eIF-2 alpha (Ser-51). Overexpression of the mutant tRNA(Val) did, however, stimulate GCN4 expression at the translational level. We propose that the multicopy mutant tRNA(Val) construct leads to an accumulation of uncharged tRNA(Val) that derepresses GCN4 translation through a pathway that does not involve GCN2 or eIF-2 alpha phosphorylation. This GCN2-independent pathway was also stimulated to a lesser extent by the multicopy tRNA(His) constructs in histidine-deprived cells. Because the mutant tRNA(Val) exacerbated the slow-growth phenotype associated with eIF-2 alpha hyperphosphorylation by an activated GCN2c kinase, we suggest that the GCN2-independent derepression mechanism involves down-regulation of eIF-2 activity.
Collapse
Affiliation(s)
- C R Vazquez de Aldana
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
171
|
Casein kinase II mediates multiple phosphorylation of Saccharomyces cerevisiae eIF-2 alpha (encoded by SUI2), which is required for optimal eIF-2 function in S. cerevisiae. Mol Cell Biol 1994. [PMID: 8035796 DOI: 10.1128/mcb.14.8.5139] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have demonstrated that the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha), encoded by the SUI2 gene in the yeast Saccharomyces cerevisiae, is phosphorylated at Ser-51 by the GCN2 kinase in response to general amino acid control. Here we describe that yeast eIF-2 alpha is a constitutively phosphorylated protein species that is multiply phosphorylated by a GCN2-independent mechanism. 32Pi labeling and isoelectric focusing analysis of a SUI2+ delta gcn2 strain identifies eIF-2 alpha as radiolabeled and a single isoelectric protein species. Treatment of SUI2+ delta gcn2 strain extracts with phosphatase results in the identification of three additional isoelectric forms of eIF-2 alpha that correspond to the stepwise removal of three phosphates from the protein. Mutational analysis of SUI2 coupled with biochemical analysis of eIF-2 alpha maps the sites to the carboxyl region of SUI2 that correspond to Ser residues at amino acid positions 292, 294, and 301 that compose consensus casein kinase II sequences. 32Pi labeling or isoelectric focusing analysis of eIF-2 alpha from conditional casein kinase II mutants indicated that phosphorylation of eIF-2 alpha is abolished or dephosphorylated forms of eIF-2 alpha are detected when these strains are grown at the restrictive growth conditions. Furthermore, yeast casein kinase II phosphorylates recombinant wild-type eIF-2 alpha protein in vitro but does not phosphorylate recombinant eIF-2 alpha that contains Ser-to-Ala mutations at all three consensus casein kinase II sequences. These data strongly support the conclusion that casein kinase II directly phosphorylates eIF-2 alpha at one or all of these Ser amino acids in vivo. Although substitution of SUI2 genes mutated at these sites for the wild-type gene have no obvious effect on cell growth, one test that we have used appears to demonstrate that the inability to phosphorylate these sites has a physiological consequence on eIF-2 function in S. cerevisiae. Haploid strains constructed to contain Ser-to-Ala mutations at the consensus casein kinase II sequences in SUI2 in combination with a mutated allele of either the GCN2, GCN3, or GCD7 gene have synthetic growth defects. These genetic data appear to indicate that the modifications that we describe at the carboxyl end of the eIF-2 alpha protein are required for optimal eIF-2 function in S. cerevisiae.
Collapse
|
172
|
Feng L, Yoon H, Donahue TF. Casein kinase II mediates multiple phosphorylation of Saccharomyces cerevisiae eIF-2 alpha (encoded by SUI2), which is required for optimal eIF-2 function in S. cerevisiae. Mol Cell Biol 1994; 14:5139-53. [PMID: 8035796 PMCID: PMC359033 DOI: 10.1128/mcb.14.8.5139-5153.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previous studies have demonstrated that the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha), encoded by the SUI2 gene in the yeast Saccharomyces cerevisiae, is phosphorylated at Ser-51 by the GCN2 kinase in response to general amino acid control. Here we describe that yeast eIF-2 alpha is a constitutively phosphorylated protein species that is multiply phosphorylated by a GCN2-independent mechanism. 32Pi labeling and isoelectric focusing analysis of a SUI2+ delta gcn2 strain identifies eIF-2 alpha as radiolabeled and a single isoelectric protein species. Treatment of SUI2+ delta gcn2 strain extracts with phosphatase results in the identification of three additional isoelectric forms of eIF-2 alpha that correspond to the stepwise removal of three phosphates from the protein. Mutational analysis of SUI2 coupled with biochemical analysis of eIF-2 alpha maps the sites to the carboxyl region of SUI2 that correspond to Ser residues at amino acid positions 292, 294, and 301 that compose consensus casein kinase II sequences. 32Pi labeling or isoelectric focusing analysis of eIF-2 alpha from conditional casein kinase II mutants indicated that phosphorylation of eIF-2 alpha is abolished or dephosphorylated forms of eIF-2 alpha are detected when these strains are grown at the restrictive growth conditions. Furthermore, yeast casein kinase II phosphorylates recombinant wild-type eIF-2 alpha protein in vitro but does not phosphorylate recombinant eIF-2 alpha that contains Ser-to-Ala mutations at all three consensus casein kinase II sequences. These data strongly support the conclusion that casein kinase II directly phosphorylates eIF-2 alpha at one or all of these Ser amino acids in vivo. Although substitution of SUI2 genes mutated at these sites for the wild-type gene have no obvious effect on cell growth, one test that we have used appears to demonstrate that the inability to phosphorylate these sites has a physiological consequence on eIF-2 function in S. cerevisiae. Haploid strains constructed to contain Ser-to-Ala mutations at the consensus casein kinase II sequences in SUI2 in combination with a mutated allele of either the GCN2, GCN3, or GCD7 gene have synthetic growth defects. These genetic data appear to indicate that the modifications that we describe at the carboxyl end of the eIF-2 alpha protein are required for optimal eIF-2 function in S. cerevisiae.
Collapse
Affiliation(s)
- L Feng
- Department of Biology, Indiana University, Bloomington 47405
| | | | | |
Collapse
|
173
|
Mellor H, Flowers K, Kimball S, Jefferson L. Cloning and characterization of cDNA encoding rat hemin-sensitive initiation factor-2 alpha (eIF-2 alpha) kinase. Evidence for multitissue expression. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34044-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
174
|
Pantopoulos K, Johansson HE, Hentze MW. The role of the 5' untranslated region of eukaryotic messenger RNAs in translation and its investigation using antisense technologies. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 48:181-238. [PMID: 7938549 PMCID: PMC7133200 DOI: 10.1016/s0079-6603(08)60856-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This chapter discusses the recent advances in the field of translational control and the possibility of applying the powerful antisense technology to investigate some of the unanswered questions, especially those pertaining to the role of the 5’untranslated region ( UTR) on translation initiation. Translational regulation is predominantly exerted during the initiation phase that is considered to be the rate-limiting step. Two types of translational regulation can be distinguished: global, in which the initiation rate of (nearly) all cellular messenger RNA (mRNA) is controlled and selective, in which the translation rate of specific mRNAs varies in response to the biological stimuli. In most cases of global regulation, control is exerted via the phosphorylation state of certain initiation factors, whereas only a few examples of selective regulation have been characterized well enough to define the underlying molecular events. Interestingly, cis-acting regulatory sequences, affecting translation initiation, have been found not only in the 5’UTRs of selectively regulated mRNAs, but also in the 3’UTRs. Thus, in addition to the protein encoding open reading frames, both the 5’ and 3’UTRs of mRNAs must be considered for their effect on translation.
Collapse
Key Words
- alas, 5-aminolevulinate synthase
- bfgf, basic fibroblast growth factor
- bip, immunoglobulin-binding protein
- cat, chloramphenicol acetyltransferase
- dai, double-stranded rna-activated inhibitor
- ealas, erythroid-specific form of alas
- frp, ferritin repressor protein
- gcd, general control derepressible
- gcn, general control nonderepressible
- gef, guanine-nucleotide exchange factor
- grp, glucose-regulated protein
- hgh, human growth hormone
- icam, intracellular adhesion molecule
- ire, iron-responsive element
- ire-bp, iron-responsive element-binding protein
- ires, internal ribosomal entry site
- irf, iron regulatory factor
- irp, iron regulatory protein
- la, lupus erythematosus antigen
- lap, liver-enriched activating protein
- lip, liver-enriched inhibitory protein
- mep, methyl phosphonate
- pa, phosphoramidate
- pdgf, platelet-derived growth factor
- pest, phosphotriester
- pll, poly(1-lysine)
- po, phosphodiester
- ps, phosphorothioate
- ps2, phosphorodithioate
- ssl, suppressor of stem-loop
- tce, translational control element
- tgf, transforming growth factor
Collapse
Affiliation(s)
- K Pantopoulos
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
175
|
Hinnebusch AG. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2. Mol Microbiol 1993; 10:215-23. [PMID: 7934812 DOI: 10.1111/j.1365-2958.1993.tb01947.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) is one of the best-characterized mechanisms for down-regulating total protein synthesis in mammalian cells in response to various stress conditions. Recent work indicates that regulation of the GCN4 gene of Saccharomyces cerevisiae by amino acid availability represents a gene-specific case of translational control by phosphorylation of eIF-2 alpha. Four short open reading frames in the leader of GCN4 mRNA (uORFs) restrict the flow of scanning ribosomes from the cap site to the GCN4 initiation codon. When amino acids are abundant, ribosomes translate the first uORF and reinitiate at one of the remaining uORFs in the leader, after which they dissociate from the mRNA. Under conditions of amino acid starvation, many ribosomes which have translated uORF1 fail to reinitiate at uORFs 2-4 and utilize the GCN4 start codon instead. Failure to reinitiate at uORFs 2-4 in starved cells results from a reduction in the GTP-bound form of eIF-2 that delivers charged initiator tRNA(iMet) to the ribosome. When the levels of eIF-2.GTP.Met-tRNA(iMet) ternary complexes are low, many ribosomes will not rebind this critical initiation factor following translation of uORF1 until after scanning past uORF4, but before reaching GCN4. Phosphorylation of eIF-2 by the protein kinase GCN2 decreases the concentration of eIF-2.GTP.Met-tRNA(iMet) complexes by inhibiting the guanine nucleotide exchange factor for eIF-2, which is the same mechanism utilized in mammalian cells to inhibit total protein synthesis by phosphorylation of eIF-2.
Collapse
Affiliation(s)
- A G Hinnebusch
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
176
|
Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2. Mol Cell Biol 1993. [PMID: 8336737 DOI: 10.1128/mcb.13.8.5099] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional activator protein GCN4 is responsible for increased transcription of more than 30 different amino acid biosynthetic genes in response to starvation for a single amino acid. This induction depends on increased expression of GCN4 at the translational level. We show that starvation for purines also stimulates GCN4 translation by the same mechanism that operates in amino acid-starved cells, being dependent on short upstream open reading frames in the GCN4 mRNA leader, the phosphorylation site in the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha), the protein kinase GCN2, and translational activators of GCN4 encoded by GCN1 and GCN3. Biochemical experiments show that eIF-2 alpha is phosphorylated in response to purine starvation and that this reaction is completely dependent on GCN2. As expected, derepression of GCN4 in purine-starved cells leads to a substantial increase in HIS4 expression, one of the targets of GCN4 transcriptional activation. gcn mutants that are defective for derepression of amino acid biosynthetic enzymes also exhibit sensitivity to inhibitors of purine biosynthesis, suggesting that derepression of GCN4 is required for maximal expression of one or more purine biosynthetic genes under conditions of purine limitation. Analysis of mRNAs produced from the ADE4, ADE5,7, ADE8, and ADE1 genes indicates that GCN4 stimulates the expression of these genes under conditions of histidine starvation, and it appeared that ADE8 mRNA was also derepressed by GCN4 in purine-starved cells. Our results indicate that the general control response is more global than was previously imagined in terms of the type of nutrient starvation that elicits derepression of GCN4 as well as the range of target genes that depend on GCN4 for transcriptional activation.
Collapse
|
177
|
Rolfes RJ, Hinnebusch AG. Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2. Mol Cell Biol 1993; 13:5099-111. [PMID: 8336737 PMCID: PMC360163 DOI: 10.1128/mcb.13.8.5099-5111.1993] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The transcriptional activator protein GCN4 is responsible for increased transcription of more than 30 different amino acid biosynthetic genes in response to starvation for a single amino acid. This induction depends on increased expression of GCN4 at the translational level. We show that starvation for purines also stimulates GCN4 translation by the same mechanism that operates in amino acid-starved cells, being dependent on short upstream open reading frames in the GCN4 mRNA leader, the phosphorylation site in the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha), the protein kinase GCN2, and translational activators of GCN4 encoded by GCN1 and GCN3. Biochemical experiments show that eIF-2 alpha is phosphorylated in response to purine starvation and that this reaction is completely dependent on GCN2. As expected, derepression of GCN4 in purine-starved cells leads to a substantial increase in HIS4 expression, one of the targets of GCN4 transcriptional activation. gcn mutants that are defective for derepression of amino acid biosynthetic enzymes also exhibit sensitivity to inhibitors of purine biosynthesis, suggesting that derepression of GCN4 is required for maximal expression of one or more purine biosynthetic genes under conditions of purine limitation. Analysis of mRNAs produced from the ADE4, ADE5,7, ADE8, and ADE1 genes indicates that GCN4 stimulates the expression of these genes under conditions of histidine starvation, and it appeared that ADE8 mRNA was also derepressed by GCN4 in purine-starved cells. Our results indicate that the general control response is more global than was previously imagined in terms of the type of nutrient starvation that elicits derepression of GCN4 as well as the range of target genes that depend on GCN4 for transcriptional activation.
Collapse
Affiliation(s)
- R J Rolfes
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | |
Collapse
|
178
|
GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2. Mol Cell Biol 1993. [PMID: 8497269 DOI: 10.1128/mcb.13.6.3541] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha) by the protein kinase GCN2 mediates increased translation of the transcriptional activator GCN4 in amino acid-starved yeast cells. We show that this key phosphorylation event and the attendant translational induction of GCN4 are dependent on the product of a previously uncharacterized gene, GCN1. Inactivation of GCN1 did not affect the level of eIF-2 alpha phosphorylation when mammalian eIF-2 alpha kinases were expressed in yeast cells in place of GCN2, arguing against an involvement of GCN1 in dephosphorylation of eIF-2 alpha. In addition, while GCN1 is required in vivo for phosphorylation of eIF-2 alpha by GCN2, cell extracts from gcn1 delta strains contained wild-type levels of GCN2 eIF-2 alpha-kinase activity. On the basis of these results, we propose that GCN1 is not needed for GCN2 kinase activity per se but is required for in vivo activation of GCN2 in response to the starvation signal, uncharged tRNA. GCN1 encodes a protein of 297 kDa with an 88-kDa region that is highly similar in sequence to translation elongation factor 3 identified in several fungal species. This sequence similarity raises the possibility that GCN1 interacts with ribosomes or tRNA molecules and functions in conjunction with GCN2 in monitoring uncharged tRNA levels during the process of translation elongation.
Collapse
|
179
|
Werner-Washburne M, Braun E, Johnston GC, Singer RA. Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 1993; 57:383-401. [PMID: 8393130 PMCID: PMC372915 DOI: 10.1128/mr.57.2.383-401.1993] [Citation(s) in RCA: 330] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Growth and proliferation of microorganisms such as the yeast Saccharomyces cerevisiae are controlled in part by the availability of nutrients. When proliferating yeast cells exhaust available nutrients, they enter a stationary phase characterized by cell cycle arrest and specific physiological, biochemical, and morphological changes. These changes include thickening of the cell wall, accumulation of reserve carbohydrates, and acquisition of thermotolerance. Recent characterization of mutant cells that are conditionally defective only for the resumption of proliferation from stationary phase provides evidence that stationary phase is a unique developmental state. Strains with mutations affecting entry into and survival during stationary phase have also been isolated, and the mutations have been shown to affect at least seven different cellular processes: (i) signal transduction, (ii) protein synthesis, (iii) protein N-terminal acetylation, (iv) protein turnover, (v) protein secretion, (vi) membrane biosynthesis, and (vii) cell polarity. The exact nature of the relationship between these processes and survival during stationary phase remains to be elucidated. We propose that cell cycle arrest coordinated with the ability to remain viable in the absence of additional nutrients provides a good operational definition of starvation-induced stationary phase.
Collapse
|
180
|
Marton MJ, Crouch D, Hinnebusch AG. GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2. Mol Cell Biol 1993; 13:3541-56. [PMID: 8497269 PMCID: PMC359824 DOI: 10.1128/mcb.13.6.3541-3556.1993] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha) by the protein kinase GCN2 mediates increased translation of the transcriptional activator GCN4 in amino acid-starved yeast cells. We show that this key phosphorylation event and the attendant translational induction of GCN4 are dependent on the product of a previously uncharacterized gene, GCN1. Inactivation of GCN1 did not affect the level of eIF-2 alpha phosphorylation when mammalian eIF-2 alpha kinases were expressed in yeast cells in place of GCN2, arguing against an involvement of GCN1 in dephosphorylation of eIF-2 alpha. In addition, while GCN1 is required in vivo for phosphorylation of eIF-2 alpha by GCN2, cell extracts from gcn1 delta strains contained wild-type levels of GCN2 eIF-2 alpha-kinase activity. On the basis of these results, we propose that GCN1 is not needed for GCN2 kinase activity per se but is required for in vivo activation of GCN2 in response to the starvation signal, uncharged tRNA. GCN1 encodes a protein of 297 kDa with an 88-kDa region that is highly similar in sequence to translation elongation factor 3 identified in several fungal species. This sequence similarity raises the possibility that GCN1 interacts with ribosomes or tRNA molecules and functions in conjunction with GCN2 in monitoring uncharged tRNA levels during the process of translation elongation.
Collapse
Affiliation(s)
- M J Marton
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | |
Collapse
|
181
|
Dorow DS, Devereux L, Dietzsch E, De Kretser T. Identification of a new family of human epithelial protein kinases containing two leucine/isoleucine-zipper domains. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:701-10. [PMID: 8477742 DOI: 10.1111/j.1432-1033.1993.tb17810.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using the polymerase chain reaction to study mRNA expressed in human epithelial tumor cells, a member of a new family of protein kinases was identified. The catalytic domain of this kinase has amino-acid-sequence similarity to both the Tyr-specific and the Ser/Thr-specific kinase classes. Clones representing two members of this new family have been isolated from a human colonic epithelial cDNA library and sequenced. The predicted amino-acid sequences of these clones reveal that, in addition to the unusual nature of their kinase catalytic domains, they contain two Leu/Ile-zipper motifs and a basic sequence, near their C-termini. As they possess domains associated with proteins from two distinct functional groups, these kinases have been named mixed-lineage kinases (MLK) 1 and 2. mRNA from MLK1 has been found to be expressed in epithelial tumor cell lines of colonic, breast and esophageal origin. The MLK1 gene has been mapped to human chromosome 14q24.3-31.
Collapse
Affiliation(s)
- D S Dorow
- Peter MacCallum Cancer Institute, Melbourne, Australia
| | | | | | | |
Collapse
|
182
|
The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)52994-x] [Citation(s) in RCA: 297] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
183
|
Mutations activating the yeast eIF-2 alpha kinase GCN2: isolation of alleles altering the domain related to histidyl-tRNA synthetases. Mol Cell Biol 1992. [PMID: 1448107 DOI: 10.1128/mcb.12.12.5801] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein kinase GCN2 stimulates expression of the yeast transcriptional activator GCN4 at the translational level by phosphorylating the alpha subunit of translation initiation factor 2 (eIF-2 alpha) in amino acid-starved cells. Phosphorylation of eIF-2 alpha reduces its activity, allowing ribosomes to bypass short open reading frames present in the GCN4 mRNA leader and initiate translation at the GCN4 start codon. We describe here 17 dominant GCN2 mutations that lead to derepression of GCN4 expression in the absence of amino acid starvation. Seven of these GCN2c alleles map in the protein kinase moiety, and two in this group alter the presumed ATP-binding domain, suggesting that ATP binding is a regulated aspect of GCN2 function. Six GCN2c alleles map in a region related to histidyl-tRNA synthetases, and two in this group alter a sequence motif conserved among class II aminoacyl-tRNA synthetases that directly interacts with the acceptor stem of tRNA. These results support the idea that GCN2 kinase function is activated under starvation conditions by binding uncharged tRNA to the domain related to histidyl-tRNA synthetase. The remaining GCN2c alleles map at the extreme C terminus, a domain required for ribosome association of the protein. Representative mutations in each domain were shown to depend on the phosphorylation site in eIF-2 alpha for their effects on GCN4 expression and to increase the level of eIF-2 alpha phosphorylation in the absence of amino acid starvation. Synthetic GCN2c double mutations show greater derepression of GCN4 expression than the parental single mutations, and they have a slow-growth phenotype that we attribute to inhibition of general translation initiation. The phenotypes of the GCN2c alleles are dependent on GCN1 and GCN3, indicating that these two positive regulators of GCN4 expression mediate the inhibitory effects on translation initiation associated with activation of the yeast eIF-2 alpha kinase GCN2.
Collapse
|
184
|
Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2 alpha kinase GCN2. Mol Cell Biol 1992. [PMID: 1333044 DOI: 10.1128/mcb.12.12.5700] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GCN2 is a protein kinase in Saccharomyces cerevisiae that is required for increased expression of the transcriptional activator GCN4 in amino acid-starved cells. GCN2 stimulates GCN4 synthesis at the translational level by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2). We identified a truncated form of the GLC7 gene, encoding the catalytic subunit of a type 1 protein phosphatase, by its ability to restore derepression of GCN4 expression in a strain containing the partially defective gcn2-507 allele. Genetic analysis suggests that the truncated GLC7 allele has a dominant negative phenotype, reducing the level of native type 1 protein phosphatase activity in the cell. The truncated form of GLC7 does not suppress the regulatory defect associated with a gcn2 deletion or a mutation in the phosphorylation site of eIF-2 alpha (Ser-51). In addition, the presence of multiple copies of wild-type GLC7 impairs the derepression of GCN4 that occurs in response to amino acid starvation or dominant-activating mutations in GCN2. These findings suggest that the phosphatase activity of GLC7 acts in opposition to the kinase activity of GCN2 in modulating the level of eIF-2 alpha phosphorylation and the translational efficiency of GCN4 mRNA. This conclusion is supported by biochemical studies showing that the truncated GLC7 allele increases the level of eIF-2 alpha phosphorylation in the gcn2-507 mutant to a level approaching that seen in wild-type cells under starvation conditions. The truncated GLC7 allele also leads to reduced glycogen accumulation, indicating that this protein phosphatase is involved in regulating diverse metabolic pathways in yeast cells.
Collapse
|
185
|
Ramirez M, Wek RC, Vazquez de Aldana CR, Jackson BM, Freeman B, Hinnebusch AG. Mutations activating the yeast eIF-2 alpha kinase GCN2: isolation of alleles altering the domain related to histidyl-tRNA synthetases. Mol Cell Biol 1992; 12:5801-15. [PMID: 1448107 PMCID: PMC360520 DOI: 10.1128/mcb.12.12.5801-5815.1992] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The protein kinase GCN2 stimulates expression of the yeast transcriptional activator GCN4 at the translational level by phosphorylating the alpha subunit of translation initiation factor 2 (eIF-2 alpha) in amino acid-starved cells. Phosphorylation of eIF-2 alpha reduces its activity, allowing ribosomes to bypass short open reading frames present in the GCN4 mRNA leader and initiate translation at the GCN4 start codon. We describe here 17 dominant GCN2 mutations that lead to derepression of GCN4 expression in the absence of amino acid starvation. Seven of these GCN2c alleles map in the protein kinase moiety, and two in this group alter the presumed ATP-binding domain, suggesting that ATP binding is a regulated aspect of GCN2 function. Six GCN2c alleles map in a region related to histidyl-tRNA synthetases, and two in this group alter a sequence motif conserved among class II aminoacyl-tRNA synthetases that directly interacts with the acceptor stem of tRNA. These results support the idea that GCN2 kinase function is activated under starvation conditions by binding uncharged tRNA to the domain related to histidyl-tRNA synthetase. The remaining GCN2c alleles map at the extreme C terminus, a domain required for ribosome association of the protein. Representative mutations in each domain were shown to depend on the phosphorylation site in eIF-2 alpha for their effects on GCN4 expression and to increase the level of eIF-2 alpha phosphorylation in the absence of amino acid starvation. Synthetic GCN2c double mutations show greater derepression of GCN4 expression than the parental single mutations, and they have a slow-growth phenotype that we attribute to inhibition of general translation initiation. The phenotypes of the GCN2c alleles are dependent on GCN1 and GCN3, indicating that these two positive regulators of GCN4 expression mediate the inhibitory effects on translation initiation associated with activation of the yeast eIF-2 alpha kinase GCN2.
Collapse
Affiliation(s)
- M Ramirez
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
186
|
Wek RC, Cannon JF, Dever TE, Hinnebusch AG. Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2 alpha kinase GCN2. Mol Cell Biol 1992; 12:5700-10. [PMID: 1333044 PMCID: PMC360510 DOI: 10.1128/mcb.12.12.5700-5710.1992] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
GCN2 is a protein kinase in Saccharomyces cerevisiae that is required for increased expression of the transcriptional activator GCN4 in amino acid-starved cells. GCN2 stimulates GCN4 synthesis at the translational level by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2). We identified a truncated form of the GLC7 gene, encoding the catalytic subunit of a type 1 protein phosphatase, by its ability to restore derepression of GCN4 expression in a strain containing the partially defective gcn2-507 allele. Genetic analysis suggests that the truncated GLC7 allele has a dominant negative phenotype, reducing the level of native type 1 protein phosphatase activity in the cell. The truncated form of GLC7 does not suppress the regulatory defect associated with a gcn2 deletion or a mutation in the phosphorylation site of eIF-2 alpha (Ser-51). In addition, the presence of multiple copies of wild-type GLC7 impairs the derepression of GCN4 that occurs in response to amino acid starvation or dominant-activating mutations in GCN2. These findings suggest that the phosphatase activity of GLC7 acts in opposition to the kinase activity of GCN2 in modulating the level of eIF-2 alpha phosphorylation and the translational efficiency of GCN4 mRNA. This conclusion is supported by biochemical studies showing that the truncated GLC7 allele increases the level of eIF-2 alpha phosphorylation in the gcn2-507 mutant to a level approaching that seen in wild-type cells under starvation conditions. The truncated GLC7 allele also leads to reduced glycogen accumulation, indicating that this protein phosphatase is involved in regulating diverse metabolic pathways in yeast cells.
Collapse
Affiliation(s)
- R C Wek
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
187
|
Abstract
The combination of genetic, molecular and biochemical approaches have made the yeast Saccharomyces cerevisiae a convenient organism to study translation. The sequence similarity of translation factors from yeast and other organisms suggests a high degree of conservation in the translational machineries. This view is also strengthened by a functional analogy of some proteins implicated in translation. Beautiful genetic experiments have confirmed existing models and added new insights in the mechanism of translation. This review summarizes recent experiments using yeast as a model system for the analysis of this complex process.
Collapse
Affiliation(s)
- P Linder
- Department of Microbiology, Biozentrum, Basel, Switzerland
| |
Collapse
|
188
|
Hann SR, Sloan-Brown K, Spotts GD. Translational activation of the non-AUG-initiated c-myc 1 protein at high cell densities due to methionine deprivation. Genes Dev 1992; 6:1229-40. [PMID: 1628829 DOI: 10.1101/gad.6.7.1229] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
c-myc belongs to a small, yet growing, group of eukaryotic mRNAs that initiate translation inefficiently from a non-AUG codon upstream from a more efficient AUG codon. We have examined the translational regulation of non-AUG-initiated c-myc 1 and AUG-initiated c-myc 2 protein synthesis in avian and mouse cells during proliferation. As lymphoid, erythroid, and embryo fibroblast cells approached high densities in culture, there was a sustained 5- to 10-fold induction in the synthesis of c-myc 1 protein to levels greater than or equal to c-myc 2 protein synthesis. Treatment with conditioned/depleted media from high-density cells was able to reproduce this activation in low-density cells within 5 hr. Additional studies with the conditioned/depleted media revealed that amino acid availability, specifically methionine deprivation, was responsible for this unique translational control. Our results describe a specific and dramatic regulation of dual translational initiation. Furthermore, these results represent a novel translational activation of a specific gene in higher eukaryotes in response to nutrient deprivation.
Collapse
Affiliation(s)
- S R Hann
- Department of Cell Biology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-2175
| | | | | |
Collapse
|
189
|
Abstract
This review presents a description of the numerous eukaryotic protein synthesis factors and their apparent sequential utilization in the processes of initiation, elongation, and termination. Additionally, the rare use of reinitiation and internal initiation is discussed, although little is known biochemically about these processes. Subsequently, control of translation is addressed in two different settings. The first is the global control of translation, which is effected by protein phosphorylation. The second is a series of specific mRNAs for which there is a direct and unique regulation of the synthesis of the gene product under study. Other examples of translational control are cited but not discussed, because the general mechanism for the regulation is unknown. Finally, as is often seen in an active area of investigation, there are several observations that cannot be readily accommodated by the general model presented in the first part of the review. Alternate explanations and various lines of experimentation are proposed to resolve these apparent contradictions.
Collapse
Affiliation(s)
- W C Merrick
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
190
|
Chong KL, Feng L, Schappert K, Meurs E, Donahue TF, Friesen JD, Hovanessian AG, Williams BR. Human p68 kinase exhibits growth suppression in yeast and homology to the translational regulator GCN2. EMBO J 1992; 11:1553-62. [PMID: 1348691 PMCID: PMC556604 DOI: 10.1002/j.1460-2075.1992.tb05200.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human p68 kinase is an interferon-regulated enzyme that inhibits protein synthesis when activated by double-stranded RNA. We show here that when expressed in Saccharomyces cerevisiae, the p68 kinase produced a growth suppressing phenotype resulting from an inhibition of polypeptide chain initiation consistent with functional protein kinase activity. This slow growth phenotype was reverted in yeast by two different mechanisms: expression of the p68 kinase N-terminus, shown to bind double-stranded RNA in vitro and expression of a mutant form of the alpha-subunit of yeast initiation factor 2, altered at a single phosphorylatable site. These results provide the first direct in vivo evidence that the p68 kinase interacts with the alpha-subunit of eukaryotic initiation factor 2. Sequence similarity with a yeast translational regulator, GCN2, further suggests that this enzyme may be a functional homolog in higher eukaryotes, where its normal function is to regulate protein synthesis through initiation factor 2 phosphorylation.
Collapse
Affiliation(s)
- K L Chong
- Research Institute, Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Uesono Y, Tokai M, Tanaka K, Tohe A. Negative regulators of the PHO system of Saccharomyces cerevisiae: characterization of PHO80 and PHO85. MOLECULAR & GENERAL GENETICS : MGG 1992; 231:426-32. [PMID: 1538698 DOI: 10.1007/bf00292712] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Both PHO80 and PHO85 genes are required to establish the repressed state of the PHO system of Saccharomyces cerevisiae. S1 nuclease protection analysis of the PHO85 transcript revealed that the PHO85 gene contains an intron at the 6th codon of the gene. Each of the fusion proteins, LacZ-Pho80 and LacZ-Pho85, was produced into Escherichia coli and used as an antigen to raise antibodies in a rabbit. Using the affinity-purified antibodies in Western blotting experiments, the PHO85 protein was detected as a 36 kDa and the PHO80 protein as a 34 kDa protein. The PHO80 protein was detected only in extracts prepared from an overproducing strain. The immunoprecipitate containing the PHO85 protein showed protein kinase activity suggesting that PHO85 is a protein kinase gene, which is consistent with the observation that the deduced amino acid sequence of the PHO85 protein resembles that of some protein kinases. The PHO80 protein was found to be phosphorylated in the presence of PHO85 protein.
Collapse
Affiliation(s)
- Y Uesono
- Department of Biology, Faculty of Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
192
|
Hinchman SK, Henikoff S, Schuster SM. A relationship between asparagine synthetase A and aspartyl tRNA synthetase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48471-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
193
|
Affiliation(s)
- C G Proud
- Department of Biochemistry, School of Medical Sciences, University of Bristol, England
| |
Collapse
|
194
|
Mountain HA, Byström AS, Larsen JT, Korch C. Four major transcriptional responses in the methionine/threonine biosynthetic pathway of Saccharomyces cerevisiae. Yeast 1991; 7:781-803. [PMID: 1789001 DOI: 10.1002/yea.320070804] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genes encoding enzymes in the threonine/methionine biosynthetic pathway were cloned and used to investigate their transcriptional response to signals known to affect gene expression on the basis of enzyme specific-activities. Four major responses were evident: strong repression by methionine of MET3, MET5 and MET14, as previously described for MET3, MET2 and MET25; weak repression by methionine of MET6; weak stimulation by methionine but no response to threonine was seen for THR1, HOM2 and HOM3; no response to any of the signals tested, for HOM6 and MES1. In a BOR3 mutant, THR1, HOM2 and HOM3 mRNA levels were increased slightly. The stimulation of transcription by methionine for HOM2, HOM3 and THR1 is mediated by the GCN4 gene product and hence these genes are under the general amino acid control. In addition to the strong repression by methionine, MET5 is also regulated by the general control.
Collapse
Affiliation(s)
- H A Mountain
- Department of Microbiology, University of Umeå, Sweden
| | | | | | | |
Collapse
|
195
|
|
196
|
Chen JJ, Throop MS, Gehrke L, Kuo I, Pal JK, Brodsky M, London IM. Cloning of the cDNA of the heme-regulated eukaryotic initiation factor 2 alpha (eIF-2 alpha) kinase of rabbit reticulocytes: homology to yeast GCN2 protein kinase and human double-stranded-RNA-dependent eIF-2 alpha kinase. Proc Natl Acad Sci U S A 1991; 88:7729-33. [PMID: 1679235 PMCID: PMC52376 DOI: 10.1073/pnas.88.17.7729] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have cloned the cDNA of the heme-regulated eIF-2 alpha kinase (HRI) of rabbit reticulocytes. In vitro translation of mRNA transcribed from the HRI cDNA yields a 90-kDa polypeptide that exhibits eIF-2 alpha kinase activity and is recognized by a monoclonal antibody directed against authentic HRI. The open reading frame sequence of the HRI cDNA contains all 11 catalytic domains of protein kinases with consensus sequences of protein-serine/threonine kinases in conserved catalytic domains VI and VIII. The HRI cDNA also contains an insert of approximately 140 amino acids between catalytic domains V and VI. The HRI cDNA coding sequence has extensive homology to GCN2 protein kinase of Saccharomyces cerevisiae and to human double-stranded-RNA-dependent eIF-2 alpha kinase. This observation suggests that GCN2 protein kinase may be an eIF-2 alpha kinase in yeast. In addition, HRI has an unusually high degree of homology to three protein kinases (NimA, Wee1, and CDC2) that are involved in the regulation of the cell cycle.
Collapse
Affiliation(s)
- J J Chen
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge
| | | | | | | | | | | | | |
Collapse
|
197
|
Braus GH. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol Rev 1991; 55:349-70. [PMID: 1943992 PMCID: PMC372824 DOI: 10.1128/mr.55.3.349-370.1991] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review focuses on the gene-enzyme relationships and the regulation of different levels of the aromatic amino acid biosynthetic pathway in a simple eukaryotic system, the unicellular yeast Saccharomyces cerevisiae. Most reactions of this branched pathway are common to all organisms which are able to synthesize tryptophan, phenylalanine, and tyrosine. The current knowledge about the two main control mechanisms of the yeast aromatic amino acid biosynthesis is reviewed. (i) At the transcriptional level, most structural genes are regulated by the transcriptional activator GCN4, the regulator of the general amino acid control network, which couples transcriptional derepression to amino acid starvation of numerous structural genes in multiple amino acid biosynthetic pathways. (ii) At the enzyme level, the carbon flow is controlled mainly by modulating the enzyme activities at the first step of the pathway and at the branch points by feedback action of the three aromatic amino acid end products. Implications of these findings for the relationship of S. cerevisiae to prokaryotic as well as to higher eukaryotic organisms and for general regulatory mechanisms occurring in a living cell such as initiation of transcription, enzyme regulation, and the regulation of a metabolic branch point are discussed.
Collapse
Affiliation(s)
- G H Braus
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule Zürich, CH-8092, Switzerland
| |
Collapse
|
198
|
Abstract
GCN4 is a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae whose expression is regulated by amino-acid availability at the translational level. GCD1 and GCD2 are negative regulators required for the repression of GCN4 translation under nonstarvation conditions that is mediated by upstream open reading frames (uORFs) in the leader of GCN4 mRNA. GCD factors are thought to be antagonized by the positive regulators GCN1, GCN2 and GCN3 in amino acid-starved cells to allow for increased GCN4 protein synthesis. Previous genetic studies suggested that GCD1, GCD2, and GCN3 have closely related functions in the regulation of GCN4 expression that involve translation initiation factor 2 (eIF-2). In agreement with these predictions, we show that GCD1, GCD2, and GCN3 are integral components of a high-molecular-weight complex of approximately 600,000 Da. The three proteins copurified through several biochemical fractionation steps and could be coimmunoprecipitated by using antibodies against GCD1 or GCD2. Interestingly, a portion of the eIF-2 present in cell extracts also cofractionated and coimmunoprecipitated with these regulatory proteins but was dissociated from the GCD1/GCD2/GCN3 complex by 0.5 M KCl. Incubation of a temperature-sensitive gcdl-101 mutant at the restrictive temperature led to a rapid reduction in the average size and quantity of polysomes, plus an accumulation of inactive 80S ribosomal couples; in addition, excess amounts of eIF-2 alpha, GCD1, GCD2, and GCN3 were found comigrating with free 40S ribosomal subunits. These results suggest that GCD1 is required for an essential function involving eIF-2 at a late step in the translation initiation cycle. We propose that lowering the function of this high-molecular-weight complex, or of eIF-2 itself, in amino acid-starved cells leads to reduced ribosomal recognition of the uORFs and increased translation initiation at the GCN4 start codon. Our results provide new insights into how general initiation factors can be regulated to affect gene-specific translational control.
Collapse
|
199
|
Ribosome association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae. Mol Cell Biol 1991. [PMID: 2038314 DOI: 10.1128/mcb.11.6.3027] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GCN4 gene of the yeast Saccharomyces cerevisiae encodes a transcriptional activator of amino acid biosynthetic genes that is regulated at the translational level according to the availability of amino acids. GCN2 is a protein kinase required for increased translation of GCN4 mRNA in amino acid-starved cells. Centrifugation of cell extracts in sucrose gradients indicated that GCN2 comigrates with ribosomal subunits and polysomes. The fraction of GCN2 cosedimenting with polysomes was reduced under conditions in which polysomes were dissociated, suggesting that GCN2 is physically bound to these structures. When the association of 40S and 60S subunits was prevented by omitting Mg2+ from the gradient, almost all of the GCN2 comigrated with 60S ribosomal subunits, and it remained bound to these particles during gel electrophoresis under nondenaturing conditions. GCN2 could be dissociated from 60S subunits by 0.5 M KCl, suggesting that it is loosely associated with ribosomes rather than being an integral ribosomal protein. Accumulation of GCN2 on free 43S-48S particles and 60S subunits occurred during polysome runoff in vitro and under conditions of reduced growth rate in vivo. These observations, plus the fact that GCN2 shows preferential association with free ribosomal subunits during exponential growth, suggest that GCN2 interacts with ribosomes during the translation initiation cycle. The extreme carboxyl-terminal segment of GCN2 is essential for its interaction with ribosomes. These sequences are also required for the ability of GCN2 to stimulate GCN4 translation in vivo, leading us to propose that ribosome association by GCN2 is important for its access to substrates in the translational machinery or for detecting uncharged tRNA in amino acid-starved cells.
Collapse
|
200
|
Ramirez M, Wek RC, Hinnebusch AG. Ribosome association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae. Mol Cell Biol 1991; 11:3027-36. [PMID: 2038314 PMCID: PMC360137 DOI: 10.1128/mcb.11.6.3027-3036.1991] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The GCN4 gene of the yeast Saccharomyces cerevisiae encodes a transcriptional activator of amino acid biosynthetic genes that is regulated at the translational level according to the availability of amino acids. GCN2 is a protein kinase required for increased translation of GCN4 mRNA in amino acid-starved cells. Centrifugation of cell extracts in sucrose gradients indicated that GCN2 comigrates with ribosomal subunits and polysomes. The fraction of GCN2 cosedimenting with polysomes was reduced under conditions in which polysomes were dissociated, suggesting that GCN2 is physically bound to these structures. When the association of 40S and 60S subunits was prevented by omitting Mg2+ from the gradient, almost all of the GCN2 comigrated with 60S ribosomal subunits, and it remained bound to these particles during gel electrophoresis under nondenaturing conditions. GCN2 could be dissociated from 60S subunits by 0.5 M KCl, suggesting that it is loosely associated with ribosomes rather than being an integral ribosomal protein. Accumulation of GCN2 on free 43S-48S particles and 60S subunits occurred during polysome runoff in vitro and under conditions of reduced growth rate in vivo. These observations, plus the fact that GCN2 shows preferential association with free ribosomal subunits during exponential growth, suggest that GCN2 interacts with ribosomes during the translation initiation cycle. The extreme carboxyl-terminal segment of GCN2 is essential for its interaction with ribosomes. These sequences are also required for the ability of GCN2 to stimulate GCN4 translation in vivo, leading us to propose that ribosome association by GCN2 is important for its access to substrates in the translational machinery or for detecting uncharged tRNA in amino acid-starved cells.
Collapse
Affiliation(s)
- M Ramirez
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | |
Collapse
|