151
|
Wei Y, Ma L, Zhang L, Xu X. Noncovalent interaction-assisted drug delivery system with highly efficient uptake and release of paclitaxel for anticancer therapy. Int J Nanomedicine 2017; 12:7039-7051. [PMID: 29026300 PMCID: PMC5626417 DOI: 10.2147/ijn.s144322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
An effective drug delivery system requires efficient drug uptake and release inside cancer cells. Here, we report a novel drug delivery system, in which paclitaxel (PTX) interacts with a novel cell penetrating peptide (CPP) through noncovalent interaction designed based on molecular simulations. This CPP/PTX complex confers high efficiency in delivering PTX into cancer cells not by endocytosis but by an energy-independent pathway. Once inside cells, the noncovalent interaction between PTX and the CPP may allow fast release of PTX within cells due to the direct translocation of CPP/PTX. This drug delivery system exhibits strong capacity for inhibition of tumor growth and offers a new avenue for the development of advanced drug delivery systems for anticancer therapy.
Collapse
Affiliation(s)
- Yuping Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing
| | - Liang Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui, People's Republic of China
| | - Liang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing.,School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui, People's Republic of China
| | - Xia Xu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui, People's Republic of China
| |
Collapse
|
152
|
Identification of pyrrolopyrimidine derivative PP-13 as a novel microtubule-destabilizing agent with promising anticancer properties. Sci Rep 2017; 7:10209. [PMID: 28860487 PMCID: PMC5579042 DOI: 10.1038/s41598-017-09491-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/26/2017] [Indexed: 11/24/2022] Open
Abstract
Despite the emergence of targeted therapies and immunotherapy, chemotherapy remains the gold-standard for the treatment of most patients with solid malignancies. Spindle poisons that interfere with microtubule dynamics are commonly used in chemotherapy drug combinations. However, their troublesome side effects and the emergence of chemoresistance highlight the need for identifying alternative agents. We performed a high throughput cell-based screening and selected a pyrrolopyrimidine molecule (named PP-13). In the present study, we evaluated its anticancer properties in vitro and in vivo. We showed that PP-13 exerted cytotoxic effects on various cancer cells, including those resistant to current targeted therapies and chemotherapies. PP-13 induced a transient mitotic blockade by interfering with both mitotic spindle organization and microtubule dynamics and finally led to mitotic slippage, aneuploidy and direct apoptotic death. PP-13 was identified as a microtubule-targeting agent that binds directly to the colchicine site in β-tubulin. Interestingly, PP-13 overcame the multidrug-resistant cancer cell phenotype and significantly reduced tumour growth and metastatic invasiveness without any noticeable toxicity for the chicken embryo in vivo. Overall, PP-13 appears to be a novel synthetic microtubule inhibitor with interesting anticancer properties and could be further investigated as a potent alternative for the management of malignancies including chemoresistant ones.
Collapse
|
153
|
Nanoemulsion formulation of a novel taxoid DHA-SBT-1214 inhibits prostate cancer stem cell-induced tumor growth. Cancer Lett 2017; 406:71-80. [PMID: 28803993 DOI: 10.1016/j.canlet.2017.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 02/01/2023]
Abstract
The main aim of this study was to evaluate the therapeutic efficacy of an oil-in-water nanoemulsion formulation encapsulating DHA-SBT-1214, a novel omega-3 fatty acid conjugated taxoid prodrug, against prostate cancer stem cells. Nanoemulsions of DHA-SBT-1214 (NE-DHA-SBT-1214) were prepared and characterized. In vitro delivery efficiency and cytotoxicity of NE-DHA-SBT-1214 was compared with solution formulation in PPT2 cells. In vivo studies included analysis of comparative efficacy of NE-DHA-SBT-1214 with Abraxane® and placebo nanoemulsions as well as post-treatment alternations in clonogenic and sphere-forming capabilities of the tumor cells. Qualitative intracellular uptake studies of dye encapsulated NEs by confocal imaging showed uptake by both monolayer and spheroid cultured PPT2 cells. Treatment of PPT2 cells with NE DHA-SBT-1214 (1nM-1μM for monolayer culture of cells grown on collagen-coated dishes for 48 h) induced complete cell death, showing higher efficacy as compared to the drug solution. This nanoemulsion (10nM-10μM) also showed toxicity in 3D culture of floating spheroids. Weekly intravenous administration of the NE-DHA-SBT-1214 to NOD/SCID mice bearing subcutaneous PPT2 tumor xenografts led to dramatic suppression of tumor growth compared to Abraxane® and placebo nanoemulsion formulation. Viable cells that survived from this in vivo treatment regimen were no longer able to induce floating spheroids and holoclones, whereas control and Abraxane® treated tumor cells induced a large number of both. The results show that NE-DHA-SBT-1214 possesses significant activity against prostate CD133high/CD44+/high tumor-initiating cells both in vitro and in vivo.
Collapse
|
154
|
Lee EJ, Lim KH. Hardly water-soluble drug-loaded gelatin nanoparticles sustaining a slow release: preparation by novel single-step O/W/O emulsion accompanying solvent diffusion. Bioprocess Biosyst Eng 2017; 40:1701-1712. [PMID: 28791518 DOI: 10.1007/s00449-017-1825-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/31/2017] [Indexed: 02/02/2023]
Abstract
Paclitaxel (PTX)-loaded gelatin nanoparticles (NPs) were prepared, for the first time, by novel O/W/O emulsion with a single-step emulsion process accompanying solvent diffusion, in contrast to the conventional double-step emulsion processes. Linoleic acid was chosen among the natural fatty acids as the exterior medium for the single-step emulsion process accompanying solvent diffusion. The size mean and zeta potential of the PTX-loaded gelatin NPs in their suspension were 164.95 nm (±6.43 nm) distributed with a polydispersity of 0.074 (±0.046) and -23.85 mV (±12.66 mV), respectively. The size of the PTX-loaded gelatin NPs prepared in this study was the smallest among the reported sizes of PTX-loaded gelatin NPs, which would contribute to the enhanced permeability and retention (EPR). In addition, TEM showed that the loaded PTX was located mostly inside the gelatin NPs unlike previous investigations. Accordingly, the conceptual model of the designed PTX-loaded gelatin nanoparticle was introduced. Sustaining a slow PTX release on a day-time scale without an initial burst release into a release medium was observed along with a delay of more than 2 days (i.e., 50 h) before a bursting PTX release from 50 to 70 h despite the addition of a protein degrading enzyme. The observed PTX-loading efficiency was 54.5%. This loading efficiency was greater than that of previous study using gelatin of bloom 75-100 of Lu et al. to prepare PTX-loaded gelatin NPs using a desolvation method.
Collapse
Affiliation(s)
- E J Lee
- Department of Chemical Engineering, College of Engineering, Daegu University, Kyungsan, Kyungpook, 712-714, Korea
| | - K-H Lim
- Department of Chemical Engineering, College of Engineering, Daegu University, Kyungsan, Kyungpook, 712-714, Korea.
- Laboratory of Pharmaceutical bio-nanomaterials, Daegu University, Kyungsan, Kyungpook, 712-714, Korea.
| |
Collapse
|
155
|
Zhu D, Wu S, Hu C, Chen Z, Wang H, Fan F, Qin Y, Wang C, Sun H, Leng X, Kong D, Zhang L. Folate-targeted polymersomes loaded with both paclitaxel and doxorubicin for the combination chemotherapy of hepatocellular carcinoma. Acta Biomater 2017. [PMID: 28627436 DOI: 10.1016/j.actbio.2017.06.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Combination chemotherapy is a promising method of improving cancer treatment, but the distinct pharmacokinetics of combined drugs and non-specific drug distribution slow down the development in the clinic. In this study, folate (FA) receptor-targeted polymersomes with apparent bilayered lamellar structure were successfully developed to co-encapsulate a hydrophobic-hydrophilic chemotherapeutic drug pair (PTX and DOX) in a single vesicle for enhancing the combination chemotherapeutic effect. Hydrophobic PTX was loaded into the thick hydrophobic lamellar membrane by the self-assembly of triblock copolymer PCL8000-PEG8000-PCL8000, while hydrophilic DOX was encapsulated into the hydrophilic reservoir using a trans-membrane ammonium sulfate gradient method. In vitro release study indicated that the drugs were released from the polymersomes in a controlled and sustained manner. Cellular uptake study indicated that FA-targeted Co-PS had higher internalization efficiency in FA receptor-overexpressing BEL-7404 cells than non-targeted Co-PS. In vitro cytotoxicity assay demonstrated that FA-targeted Co-PS exhibited less cytotoxic effect than free drug cocktail, but suppressed the growth of tumor cells more efficiently than non-targeted Co-PS. Ex vivo imaging biodistribution studies revealed that FA-targeted Co-PS led to highly efficient targeting and accumulation in the BEL-7404 xenograft tumor. Furthermore, the in vivo antitumor study showed that the combination chemotherapy of polymersomes to BEL-7404 tumor via intravenous injection was superior to free drug cocktail treatment, and the FA-targeted Co-PS exhibited significantly higher tumor growth inhibition than non-targeted Co-PS group. Therefore, the newly developed FA-targeted co-delivery polymersomes hold great promise for simultaneous delivery of multiple chemotherapeutics and would have great potential in tumor-targeting and combination chemotherapy. STATEMENT OF SIGNIFICANCE Combination chemotherapy is a promising method of improving cancer treatment, but the distinct pharmacokinetics of combined drugs and non-specific drug distribution slow down the development in the clinic. In our study, novel folate-targeted co-delivery polymersomes (Co-PS) were successfully developed to encapsulate a hydrophobic-hydrophilic chemotherapeutic drug pair (paclitaxel and doxorubicin) into the different compartments of the vesicle. In vivo studies revealed that the combination chemotherapy of polymersomes to BEL-7404 xenograft tumor via intravenous injection was superior to free drug cocktail treatment, and the FA-targeted Co-PS exhibited significantly higher tumor growth inhibition than non-targeted Co-PS group. Therefore, the newly developed FA-targeted co-delivery polymersomes hold great promise for simultaneous delivery of multiple chemotherapeutics and would have great potential in tumor-targeting and combination chemotherapy.
Collapse
Affiliation(s)
- Dunwan Zhu
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Shengjie Wu
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Chunyan Hu
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Zhuo Chen
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Hai Wang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Fan Fan
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Yu Qin
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Chun Wang
- Department of Biomedical Engineering, University of Minnesota, 7-116 Hasselmo Hall, 312 Church Street S.E, Minneapolis, MN 55455, USA
| | - Hongfan Sun
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Xigang Leng
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Linhua Zhang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
156
|
Golfier S, Rosendahl P, Mietke A, Herbig M, Guck J, Otto O. High-throughput cell mechanical phenotyping for label-free titration assays of cytoskeletal modifications. Cytoskeleton (Hoboken) 2017; 74:283-296. [PMID: 28445605 PMCID: PMC5601209 DOI: 10.1002/cm.21369] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 01/29/2023]
Abstract
The mechanical fingerprint of cells is inherently linked to the structure of the cytoskeleton and can serve as a label‐free marker for cell homeostasis or pathologic states. How cytoskeletal composition affects the physical response of cells to external loads has been intensively studied with a spectrum of techniques, yet quantitative and statistically powerful investigations in the form of titration assays are hampered by the low throughput of most available methods. In this study, we employ real‐time deformability cytometry (RT‐DC), a novel microfluidic tool to examine the effects of biochemically modified F‐actin and microtubule stability and nuclear chromatin structure on cell deformation in a human leukemia cell line (HL60). The high throughput of our method facilitates extensive titration assays that allow for significance assessment of the observed effects and extraction of half‐maximal concentrations for most of the applied reagents. We quantitatively show that integrity of the F‐actin cortex and microtubule network dominate cell deformation on millisecond timescales probed with RT‐DC. Drug‐induced alterations in the nuclear chromatin structure were not found to consistently affect cell deformation. The sensitivity of the high‐throughput cell mechanical measurements to the cytoskeletal modifications we present in this study opens up new possibilities for label‐free dose‐response assays of cytoskeletal modifications.
Collapse
Affiliation(s)
- Stefan Golfier
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max-Planck-Institute for Physics of Complex Systems, Dresden, Germany
| | - Philipp Rosendahl
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Alexander Mietke
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max-Planck-Institute for Physics of Complex Systems, Dresden, Germany
| | - Maik Herbig
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Oliver Otto
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,ZIK HIKE, Universität Greifswald, Greifswald, Germany
| |
Collapse
|
157
|
Weiss C, Figueras E, Borbely AN, Sewald N. Cryptophycins: cytotoxic cyclodepsipeptides with potential for tumor targeting. J Pept Sci 2017; 23:514-531. [PMID: 28661555 DOI: 10.1002/psc.3015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023]
Abstract
Cryptophycins are a class of 16-membered highly cytotoxic macrocyclic depsipeptides isolated from cyanobacteria. The biological activity is based on their ability to interact with tubulin. They interfere with microtubule dynamics and prevent microtubules from forming correct mitotic spindles, which causes cell-cycle arrest and apoptosis. Their strong antiproliferative activities with 100-fold to 1000-fold potency compared with those of paclitaxel and vinblastine have been observed. Cryptophycins are highly promising drug candidates, as their biological activity is not negatively affected by P-glycoprotein, a drug efflux system commonly found in multidrug-resistant cancer cell lines and solid tumors. Cryptophycin-52 had been investigated in phase II clinical trials but failed because of its high neurotoxicity. Recently, cryptophycin conjugates with peptides and antibodies have been developed for targeted delivery in tumor therapy. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Christine Weiss
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Eduard Figueras
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Adina N Borbely
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501, Bielefeld, Germany
| |
Collapse
|
158
|
Rodvold JJ, Chiu KT, Hiramatsu N, Nussbacher JK, Galimberti V, Mahadevan NR, Willert K, Lin JH, Zanetti M. Intercellular transmission of the unfolded protein response promotes survival and drug resistance in cancer cells. Sci Signal 2017; 10:10/482/eaah7177. [PMID: 28588081 DOI: 10.1126/scisignal.aah7177] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increased protein translation in cells and various factors in the tumor microenvironment can induce endoplasmic reticulum (ER) stress, which initiates the unfolded protein response (UPR). We have previously reported that factors released from cancer cells mounting a UPR induce a de novo UPR in bone marrow-derived myeloid cells, macrophages, and dendritic cells that facilitates protumorigenic characteristics in culture and tumor growth in vivo. We investigated whether this intercellular signaling, which we have termed transmissible ER stress (TERS), also operates between cancer cells and what its functional consequences were within the tumor. We found that TERS signaling induced a UPR in recipient human prostate cancer cells that included the cell surface expression of the chaperone GRP78. TERS also activated Wnt signaling in recipient cancer cells and enhanced resistance to nutrient starvation and common chemotherapies such as the proteasome inhibitor bortezomib and the microtubule inhibitor paclitaxel. TERS-induced activation of Wnt signaling required the UPR kinase and endonuclease IRE1. However, TERS-induced enhancement of cell survival was predominantly mediated by the UPR kinase PERK and a reduction in the abundance of the transcription factor ATF4, which prevented the activation of the transcription factor CHOP and, consequently, the induction of apoptosis. When implanted in mice, TERS-primed cancer cells gave rise to faster growing tumors than did vehicle-primed cancer cells. Collectively, our data demonstrate that TERS is a mechanism of intercellular communication through which tumor cells can adapt to stressful environments.
Collapse
Affiliation(s)
- Jeffrey J Rodvold
- Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Kevin T Chiu
- Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Nobuhiko Hiramatsu
- Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Julia K Nussbacher
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Valentina Galimberti
- Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Navin R Mahadevan
- Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Karl Willert
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jonathan H Lin
- Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Maurizio Zanetti
- Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
159
|
Minacapelli A, Piraino D, Buccheri D, Cortese B. Drug-coated balloons for the treatment of in-stent restenosis in diabetic patients: A review of currently available scientific data. Catheter Cardiovasc Interv 2017; 92:E20-E27. [PMID: 28544361 DOI: 10.1002/ccd.26957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/23/2016] [Accepted: 12/30/2016] [Indexed: 11/09/2022]
Abstract
After the introduction of drug eluting stent (DES) the rate of in-stent restenosis (ISR) has decreased if compared to the BMS era; however, treatment of patients with ISR remained a major issue for the interventional cardiologist. DES has been largely used with good results also as second layer for the treatment of ISR, but the overall percentage of patients suffering from restenosis still remains high, especially in some subgroups of patients as ones with diabetes mellitus (DM). In this clinical scenario, drug coated balloon (DCB) has been gaining an important role for the treatment of ISR. In fact, it allows to release an antiproliferative drug, namely paclitaxel, without the addition of a second metallic strut, which can lead to a persistent inflammatory stimulus and further narrow the vessel. This could be an advantage in patients with an already increased systemic inflammatory burden and stiffer vessels as those with DM. Despite differences in terms of efficacy and safety between DES and DCB have already been evaluated in different clinical trials, just few of these focused on diabetic patients. The aim of this paper is to review the available data for treatment of ISR both with DES, DCB, and a comparison between these two devices, in patients affected by DM. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Davide Piraino
- Interventional cardiology, Paolo Giaccone Hospital, Palermo, Italy.,Interventional cardiology, Fatebenefratelli Hospital, Milano, Italy
| | - Dario Buccheri
- Interventional cardiology, Paolo Giaccone Hospital, Palermo, Italy.,Interventional cardiology, Fatebenefratelli Hospital, Milano, Italy.,Department of Cardiology, San Giacomo D'Altopasso Hospital, Licata (Agrigento), Italy
| | - Bernardo Cortese
- Interventional cardiology, Fatebenefratelli Hospital, Milano, Italy
| |
Collapse
|
160
|
|
161
|
Plaud C, Joshi V, Marinello M, Pastré D, Galli T, Curmi PA, Burgo A. Spastin regulates VAMP7-containing vesicles trafficking in cortical neurons. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1666-1677. [PMID: 28392418 DOI: 10.1016/j.bbadis.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/03/2023]
Abstract
Alteration of axonal transport has emerged as a common precipitating factor in several neurodegenerative disorders including Human Spastic Paraplegia (HSP). Mutations of the SPAST (SPG4) gene coding for the spastin protein account for 40% of all autosomal dominant uncomplicated HSP. By cleaving microtubules, spastin regulates several cellular processes depending on microtubule dynamics including intracellular membrane trafficking. Axonal transport is fundamental for the viability of motor neurons which often have very long axons and thus require efficient communication between the cell body and its periphery. Here we found that the anterograde velocity of VAMP7 vesicles, but not that of VAMP2, two vesicular-SNARE proteins implicated in neuronal development, is enhanced in SPG4-KO neurons. We showed that this effect is associated with a slight increase of the level of acetylated tubulin in SPG4-KO neurons and correlates with an enhanced activity of kinesin-1 motors. Interestingly, we demonstrated that an artificial increase of acetylated tubulin by drugs reproduces the effect of Spastin KO on VAMP7 axonal dynamics but also increased its retrograde velocity. Finally, we investigated the effect of microtubule targeting agents which rescue axonal swellings, on VAMP7 and microtubule dynamics. Our results suggest that microtubule stabilizing agents, such as taxol, may prevent the morphological defects observed in SPG4-KO neurons not simply by restoring the altered anterograde transport to basal levels but rather by increasing the retrograde velocity of axonal cargoes.
Collapse
Affiliation(s)
- C Plaud
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France
| | - V Joshi
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France
| | - M Marinello
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France
| | - D Pastré
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France
| | - T Galli
- Inserm URL U950, Institut Jacques Monod, France
| | - P A Curmi
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France
| | - A Burgo
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France.
| |
Collapse
|
162
|
Abstract
Convection-enhanced delivery (CED) is a promising technique that generates a pressure gradient at the tip of an infusion catheter to deliver therapeutics directly through the interstitial spaces of the central nervous system. It addresses and offers solutions to many limitations of conventional techniques, allowing for delivery past the blood-brain barrier in a targeted and safe manner that can achieve therapeutic drug concentrations. CED is a broadly applicable technique that can be used to deliver a variety of therapeutic compounds for a diversity of diseases, including malignant gliomas, Parkinson's disease, and Alzheimer's disease. While a number of technological advances have been made since its development in the early 1990s, clinical trials with CED have been largely unsuccessful, and have illuminated a number of parameters that still need to be addressed for successful clinical application. This review addresses the physical principles behind CED, limitations in the technique, as well as means to overcome these limitations, clinical trials that have been performed, and future developments.
Collapse
Affiliation(s)
- A M Mehta
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, 10032, USA
| | - A M Sonabend
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, 10032, USA
| | - J N Bruce
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
163
|
Chen YF, Chen LH, Yeh YM, Wu PY, Chen YF, Chang LY, Chang JY, Shen MR. Minoxidil is a potential neuroprotective drug for paclitaxel-induced peripheral neuropathy. Sci Rep 2017; 7:45366. [PMID: 28349969 PMCID: PMC5368986 DOI: 10.1038/srep45366] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/27/2017] [Indexed: 12/31/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of cancer treatment. No medication has been shown to be effective in the treatment of CIPN. This study aims to integrate the image-based high-content screening, mouse behavior models and mechanistic cell-based assays to discover potential neuroprotective drugs. Among screened compounds, minoxidil showed the most potent neuroprotective effect against paclitaxel, with regard to neurite outgrowth of dorsal root ganglia (DRG). Minoxidil protected mice from thermal insensitivity and alleviated mechanical allodynia in paclitaxel-treated mice. The ultrastructure and quantified G-ratio of myelin integrity of sciatic nerve tissues supported the observations in mouse behavioral tests. The mechanistic study on DRG neurons suggested that minoxidil suppressed neuroinflammation and remodeled the dysregulation of intracellular calcium homeostasis provoked by paclitaxel. Importantly, minoxidil showed a synergistic anti-tumor effect with paclitaxel both in tumor xenograft models of cervical and breast cancer. Interestingly, the quantitative assays on hair length and hair growth both exhibited that minoxidil significantly improved the hair quality after chemotherapy. Since minoxidil is a drug approved by the Food and Drug Administration (FDA), the safety and biocompatibility are well documented. The immediate next step is to launch an early-stage clinical trial intending to prevent CIPN by minoxidil.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan
| | - Li-Hsien Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Taiwan
| | - Yu-Min Yeh
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Taiwan
| | - Pei-Ying Wu
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Taiwan
| | - Yih-Fung Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lian-Yun Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Taiwan
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Meng-Ru Shen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Taiwan.,Advanced Optoelectronic Technology Center, National Cheng Kung University, Taiwan
| |
Collapse
|
164
|
Castle BT, McCubbin S, Prahl LS, Bernens JN, Sept D, Odde DJ. Mechanisms of kinetic stabilization by the drugs paclitaxel and vinblastine. Mol Biol Cell 2017; 28:1238-1257. [PMID: 28298489 PMCID: PMC5415019 DOI: 10.1091/mbc.e16-08-0567] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 12/20/2022] Open
Abstract
Chemotherapeutic agents that target microtubule dynamics promote a universal phenotype of kinetic stabilization. Integrated computational modeling and fluorescence microscopy identify the fundamental kinetic and thermodynamic mechanisms that result in kinetic stabilization, specifically by the drugs paclitaxel and vinblastine. Microtubule-targeting agents (MTAs), widely used as biological probes and chemotherapeutic drugs, bind directly to tubulin subunits and “kinetically stabilize” microtubules, suppressing the characteristic self-assembly process of dynamic instability. However, the molecular-level mechanisms of kinetic stabilization are unclear, and the fundamental thermodynamic and kinetic requirements for dynamic instability and its elimination by MTAs have yet to be defined. Here we integrate a computational model for microtubule assembly with nanometer-scale fluorescence microscopy measurements to identify the kinetic and thermodynamic basis of kinetic stabilization by the MTAs paclitaxel, an assembly promoter, and vinblastine, a disassembly promoter. We identify two distinct modes of kinetic stabilization in live cells, one that truly suppresses on-off kinetics, characteristic of vinblastine, and the other a “pseudo” kinetic stabilization, characteristic of paclitaxel, that nearly eliminates the energy difference between the GTP- and GDP-tubulin thermodynamic states. By either mechanism, the main effect of both MTAs is to effectively stabilize the microtubule against disassembly in the absence of a robust GTP cap.
Collapse
Affiliation(s)
- Brian T Castle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Seth McCubbin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Louis S Prahl
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Jordan N Bernens
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
165
|
Mechanisms of Chromosome Congression during Mitosis. BIOLOGY 2017; 6:biology6010013. [PMID: 28218637 PMCID: PMC5372006 DOI: 10.3390/biology6010013] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/07/2017] [Accepted: 01/28/2017] [Indexed: 12/13/2022]
Abstract
Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called "direct congression" pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call "peripheral congression", is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule diversity by means of tubulin post-translational modifications. This so-called "tubulin code" might work as a navigation system that selectively guides kinetochore motors with opposite polarities along specific spindle microtubule populations, ultimately leading to the congression of peripheral chromosomes. We propose an integrated model of chromosome congression in mammalian cells that depends essentially on the following parameters: (1) chromosome position relative to the spindle poles after nuclear envelope breakdown; (2) establishment of stable end-on kinetochore-microtubule attachments and bi-orientation; (3) coordination between kinetochore- and arm-associated motors; and (4) spatial signatures associated with post-translational modifications of specific spindle microtubule populations. The physiological consequences of abnormal chromosome congression, as well as the therapeutic potential of inhibiting chromosome congression are also discussed.
Collapse
|
166
|
Potapova T, Gorbsky GJ. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis. BIOLOGY 2017; 6:biology6010012. [PMID: 28208750 PMCID: PMC5372005 DOI: 10.3390/biology6010012] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/21/2022]
Abstract
Mistakes during cell division frequently generate changes in chromosome content, producing aneuploid or polyploid progeny cells. Polyploid cells may then undergo abnormal division to generate aneuploid cells. Chromosome segregation errors may also involve fragments of whole chromosomes. A major consequence of segregation defects is change in the relative dosage of products from genes located on the missegregated chromosomes. Abnormal expression of transcriptional regulators can also impact genes on the properly segregated chromosomes. The consequences of these perturbations in gene expression depend on the specific chromosomes affected and on the interplay of the aneuploid phenotype with the environment. Most often, these novel chromosome distributions are detrimental to the health and survival of the organism. However, in a changed environment, alterations in gene copy number may generate a more highly adapted phenotype. Chromosome segregation errors also have important implications in human health. They may promote drug resistance in pathogenic microorganisms. In cancer cells, they are a source for genetic and phenotypic variability that may select for populations with increased malignance and resistance to therapy. Lastly, chromosome segregation errors during gamete formation in meiosis are a primary cause of human birth defects and infertility. This review describes the consequences of mitotic and meiotic errors focusing on novel concepts and human health.
Collapse
Affiliation(s)
- Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
167
|
Progenitor Cells for Arterial Repair: Incremental Advancements towards Therapeutic Reality. Stem Cells Int 2017; 2017:8270498. [PMID: 28232850 PMCID: PMC5292398 DOI: 10.1155/2017/8270498] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/18/2016] [Indexed: 02/08/2023] Open
Abstract
Coronary revascularization remains the standard treatment for obstructive coronary artery disease and can be accomplished by either percutaneous coronary intervention (PCI) or coronary artery bypass graft surgery. Considerable advances have rendered PCI the most common form of revascularization and improved clinical outcomes. However, numerous challenges to modern PCI remain, namely, in-stent restenosis and stent thrombosis, underscoring the importance of understanding the vessel wall response to injury to identify targets for intervention. Among recent promising discoveries, endothelial progenitor cells (EPCs) have garnered considerable interest given an increasing appreciation of their role in vascular homeostasis and their ability to promote vascular repair after stent placement. Circulating EPC numbers have been inversely correlated with cardiovascular risk, while administration of EPCs in humans has demonstrated improved clinical outcomes. Despite these encouraging results, however, advancing EPCs as a therapeutic modality has been hampered by a fundamental roadblock: what constitutes an EPC? We review current definitions and sources of EPCs as well as the proposed mechanisms of EPC-mediated vascular repair. Additionally, we discuss the current state of EPCs as therapeutic agents, focusing on endogenous augmentation and transplantation.
Collapse
|
168
|
Guo X, Ni J, Xue J, Wang X. Extract of bulbus Fritillaria cirrhosa perturbs spindle assembly checkpoint, induces mitotic aberrations and genomic instability in human colon epithelial cell line. ACTA ACUST UNITED AC 2017; 69:163-171. [PMID: 28073664 DOI: 10.1016/j.etp.2016.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/27/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Bulbus Fritillaria cirrhosa D. Don (BFC) has been used in China as a folk medicine for the treatment of cough and asthma for more than 2000 years. The antitussive and antiasthmatic effects of BFC have been reported before, nevertheless its toxicity and safety have not been documented. This study investigated the possible effects of BFC on spindle assembly checkpoint (SAC), mitotic fidelity and genomic stability in human NCM460 colon epithelial cells. METHODS Cells were treated with BFC (0, 20, 40, 80 and 160μg/ml) for 24, 48 and 72h and harvested differently according to the biomarkers observed. Mitotic aberrations were assessed by the biomarkers of chromosome misalignment (CMA), chromosome lagging (CL) and chromatin bridge (CB). Frequencies of micronuclei (MN), nucleoplasmic bridge and nuclear bud (NB) in cytokinesis-block micronucleus assay were used as indicators of genomic instability (GIN). SAC activity was determined by anaphase to metaphase ratio (AMR) and the expression of several SAC genes, including CENP-E, Mps1, Bub1, Mad-1, BubR1 and Mad-2. RESULTS Compared with the control, cells in BFC treated groups (80 and 160μg/ml) showed: 1) increased AMR (p<0.05), up-regulated expression of Mps1, Bub1 and Mad-1 (p<0.05) and down-regulated expression of CENP-E, BubR1 and Mad-2 (p<0.05); 2) increased frequencies of CMA, CL and CB (p<0.01); 3) increased incidences of MN and NB (p<0.01). CONCLUSIONS This study revealed for the first time that BFC causes mitotic aberrations and GIN in human colon epithelial cells and these effects maybe the result of SAC dysfunction.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China; School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China
| | - Jinglun Xue
- Institute of Genetics, Fudan University, Shanghai, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China.
| |
Collapse
|
169
|
Olziersky AM, Labidi-Galy SI. Clinical Development of Anti-mitotic Drugs in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:125-152. [PMID: 28600785 DOI: 10.1007/978-3-319-57127-0_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitosis is one of the most fundamental processes of life by which a mammalian cell divides into two daughter cells. Mitosis has been an attractive target for anticancer therapies since fast proliferation was identified as one of the hallmarks of cancer cells. Despite efforts into developing specific inhibitors for mitotic kinases and kinesins, very few drugs have shown the efficiency of microtubule targeting-agents in cancer cells with paclitaxel being the most successful. A deeper translational research accompanying clinical trials of anti-mitotic drugs will help in identifying potent biomarkers predictive for response. Here, we review the current knowledge of mitosis targeting agents that have been tested so far in the clinics.
Collapse
Affiliation(s)
- Anna-Maria Olziersky
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - S Intidhar Labidi-Galy
- Department of Oncology, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, Geneva, 1205, Switzerland.
| |
Collapse
|
170
|
Synchronization and Desynchronization of Cells by Interventions on the Spindle Assembly Checkpoint. Methods Mol Biol 2017; 1524:77-95. [PMID: 27815897 DOI: 10.1007/978-1-4939-6603-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Cell cycle checkpoints are surveillance mechanisms that sequentially and continuously monitor cell cycle progression thereby contributing to the preservation of genetic stability. Among them, the spindle assembly checkpoint (SAC) prevents the occurrence of abnormal divisions by halting the metaphase to anaphase transition following the detection of erroneous microtubules-kinetochore attachment(s). Most synchronization strategies are based on the activation of cell cycle checkpoints to enrich the population of cells in a specific phase of the cell cycle. Here, we develop a two-step protocol of sequential cell synchronization and desynchronization employing antimitotic SAC-inducing agents (i.e., nocodazole or paclitaxel) in combination with the depletion of the SAC kinase MPS1. We describe cytofluorometric and time-lapse videomicroscopy methods to detect cell cycle progression, including the assessment of cell cycle distribution, quantification of mitotic cell fraction, and analysis of single cell fate profile of living cells. We applied these methods to validate the synchronization-desynchronization protocol and to qualitatively and quantitatively determine the impact of SAC inactivation on the activity of antimitotic agents.
Collapse
|
171
|
Najlah M, Jain M, Wan KW, Ahmed W, Albed Alhnan M, Phoenix DA, Taylor KMG, Elhissi A. Ethanol-based proliposome delivery systems of paclitaxel for in vitro application against brain cancer cells. J Liposome Res 2016; 28:74-85. [DOI: 10.1080/08982104.2016.1259628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mohammad Najlah
- Faculty of Medical Science, Anglia Ruskin University, Chelmsford, UK,
| | - Mohit Jain
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK,
| | - Ka-Wai Wan
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK,
| | - Waqar Ahmed
- School of Medicine, University of Central Lancashire, Preston, UK,
| | - Mohamed Albed Alhnan
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK,
| | - David A. Phoenix
- Office of the Vice Chancellor, London South Bank University, London, UK,
| | | | - Abdelbary Elhissi
- Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, Doha, Qatar
| |
Collapse
|
172
|
Kreger BT, Johansen ER, Cerione RA, Antonyak MA. The Enrichment of Survivin in Exosomes from Breast Cancer Cells Treated with Paclitaxel Promotes Cell Survival and Chemoresistance. Cancers (Basel) 2016; 8:cancers8120111. [PMID: 27941677 PMCID: PMC5187509 DOI: 10.3390/cancers8120111] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/09/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
The generation and release of membrane-enclosed packets from cancer cells, called extracellular vesicles (EVs), play important roles in propagating transformed phenotypes, including promoting cell survival. EVs mediate their effects by transferring their contents, which include specific proteins and nucleic acids, to target cells. However, how the cargo and function of EVs change in response to different stimuli remains unclear. Here, we discovered that treating highly aggressive MDAMB231 breast cancer cells with paclitaxel (PTX), a chemotherapy that stabilizes microtubules, causes them to generate a specific class of EV, namely exosomes, that are highly enriched with the cell survival protein and cancer marker, Survivin. Treating MDAMB231 cells with a variety of other chemotherapeutic agents, and inhibitors that block cell growth and survival, did not have the same effect as PTX, with the exception of nocodazole, another inhibitor of microtubule dynamics. Exosomes isolated from PTX-treated MDAMB231 cells strongly promoted the survival of serum-starved and PTX-treated fibroblasts and SKBR3 breast cancer cells, an effect that was ablated when Survivin was knocked-down from these vesicles using siRNA. These findings underscore how the enrichment of a specific cargo in exosomes promotes cell survival, as well as can potentially serve as a marker of PTX resistance.
Collapse
Affiliation(s)
- Bridget T Kreger
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14850, USA.
| | - Eric R Johansen
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14850, USA.
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14850, USA.
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA.
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
173
|
Mili D, Abid K, Rjiba I, Kenani A. Effect of SP600125 on the mitotic spindle in HeLa Cells, leading to mitotic arrest, endoreduplication and apoptosis. Mol Cytogenet 2016; 9:86. [PMID: 27924151 PMCID: PMC5123282 DOI: 10.1186/s13039-016-0296-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The JNK inhibitor SP600125 strongly inhibits cell proliferation in many human cancer cells by blocking mitosis progression and inducing cell death. Despite, all this study, the mechanism by which SP600125 inhibits mitosis-related effects in human cervical cells (HeLa cells) remains unclear. In this study, we investigated the effects of SP600125 on the cell viability, cell cycle, and on the spindle assembly during mitosis in HeLa cells. METHODS To explore this approach, we used a viability test, an immunofluorescence microscopy to detect Histone phosphorylation and mitotic spindle aberrations. Apoptosis was characterised using Western Blotting. RESULTS Treatment of HeLa cells with varying concentrations of SP600125 induces significant G2/M cell cycle arrest with elevated phosphorylation of histone H3 within 48 h, and endoreduplication after 48 h. SP600125 also induces significant abnormal mitotic spindle. High concentrations of SP600125 (20 μM) induce disturbing microtubule assembly in vitro. Additionally, SP600125- induced delayed apoptosis and cell death was accompanied by significant poly ADP-ribose polymerase (PARP) cleavage and caspase-3 activation in the late phase (at 72 h). CONCLUSION Our results confirmed that SP600125 induce mitosis arrest in G2/M, endoreduplication, mitotic spindle aberrations and apoptosis.
Collapse
Affiliation(s)
- Donia Mili
- UR 12ES08 "Signalisation Cellulaire et Pathologies" Faculté de Médecine Monastir, Université de Monastir, Monastir, Tunisie
| | - Kaouthar Abid
- UR 12ES08 "Signalisation Cellulaire et Pathologies" Faculté de Médecine Monastir, Université de Monastir, Monastir, Tunisie
| | - Imed Rjiba
- UR 12ES08 "Signalisation Cellulaire et Pathologies" Faculté de Médecine Monastir, Université de Monastir, Monastir, Tunisie
| | - Abderraouf Kenani
- UR 12ES08 "Signalisation Cellulaire et Pathologies" Faculté de Médecine Monastir, Université de Monastir, Monastir, Tunisie
| |
Collapse
|
174
|
Son YH, Park CH, Choi SU. Identification of Mitotic Blockers by Phenotypic Screening of a Clinical Compound Library. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- You Hwa Son
- Bio & Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-600 Republic of Korea
| | - Chi Hoon Park
- Bio & Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-600 Republic of Korea
- Medicinal Chemistry and Pharmacology; Korea University of Science and Technology; Daejeon 305-350 Republic of Korea
| | - Sang Un Choi
- Bio & Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-600 Republic of Korea
| |
Collapse
|
175
|
Stock W, Diouf B, Crews KR, Pei D, Cheng C, Laumann K, Mandrekar SJ, Luger S, Advani A, Stone RM, Larson RA, Evans WE. An Inherited Genetic Variant in CEP72 Promoter Predisposes to Vincristine-Induced Peripheral Neuropathy in Adults With Acute Lymphoblastic Leukemia. Clin Pharmacol Ther 2016; 101:391-395. [PMID: 27618250 DOI: 10.1002/cpt.506] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 01/28/2023]
Abstract
Peripheral neuropathy is a major toxicity of vincristine, yet no strategies exist for identifying adult patients at high-risk. We used a case-control design of 48 adults receiving protocol therapy for acute lymphoblastic leukemia (ALL) who developed vincristine-induced neuropathy (NCI grade 2-4) during treatment, and 48 matched controls who did not develop grade 2-4 neuropathy. Peripheral neuropathy was prospectively graded by National Cancer Institute (NCI) criteria. CEP72 promoter genotype (rs924607) was determined using polymerase chain reaction (PCR)-based single nucleotide polymorphism (SNP) genotyping. Frequency of the CEP72 T/T genotype was higher in cases (31% vs. 10%, P = 0.0221) and the incidence of vincristine-induced neuropathy (grades 2-4) was significantly higher in patients homozygous for the CEP72 T/T genotype. 75% of the 20 patients homozygous for the CEP72 T allele developed grade 2-4 neuropathy, compared to 44% of patients with CEP72 CC or CT genotype (P = 0.0221). The CEP72 polymorphism can identify adults at increased risk of vincristine-induced peripheral neuropathy.
Collapse
Affiliation(s)
- W Stock
- Section of Hematology Oncology, University of Chicago Medicine and Comprehensive Cancer Center, Chicago, Illinois, USA.,Alliance for Clinical Trials in Oncology, Chicago, Illinois, USA
| | - B Diouf
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - K R Crews
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - D Pei
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - C Cheng
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - K Laumann
- Alliance for Clinical Trials in Oncology, Chicago, Illinois, USA.,Alliance Statistics and Data Center; Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - S J Mandrekar
- Alliance for Clinical Trials in Oncology, Chicago, Illinois, USA.,Alliance Statistics and Data Center; Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - S Luger
- University of Pennsylvania, ECOG-ACRIN Cancer Research Group, Philadelphia, Pennsylvania, USA
| | - A Advani
- Cleveland Clinic, Southwest Oncology Cooperative Group, Cleveland, Ohio, USA
| | - R M Stone
- Alliance for Clinical Trials in Oncology, Chicago, Illinois, USA
| | - R A Larson
- Section of Hematology Oncology, University of Chicago Medicine and Comprehensive Cancer Center, Chicago, Illinois, USA.,Alliance for Clinical Trials in Oncology, Chicago, Illinois, USA
| | - W E Evans
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
176
|
Wang SQ, Wang C, Chang LM, Zhou KR, Wang JW, Ke Y, Yang DX, Shi HG, Wang R, Shi XL, Ma LY, Liu HM. Geridonin and paclitaxel act synergistically to inhibit the proliferation of gastric cancer cells through ROS-mediated regulation of the PTEN/PI3K/Akt pathway. Oncotarget 2016; 7:72990-73002. [PMID: 27659528 PMCID: PMC5341958 DOI: 10.18632/oncotarget.12166] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/02/2016] [Indexed: 01/05/2023] Open
Abstract
Paclitaxel, a taxane, is a cytotoxic chemotherapeutic agent that targets microtubules. It has become a front-line therapy for a broad range of malignancies, including lung, breast, gastric, esophageal, and bladder carcinomas. Although paclitaxel can inhibit tumor development and improve survival, poor solubility, myelotoxicity, allergic reactions, and drug resistance have restricted its clinical application. Paclitaxel is frequently combined with other chemotherapeutics to enhance the antitumor effects and reduce side effects. We synthesized geridonin, a derivative of oridonin, and demonstrate that geridonin and paclitaxel act synergistically to inhibit the growth of gastric cancer cells. Importantly, geridonin enhanced the antitumor effects of paclitaxel without increasing toxicity in vivo. Mechanistic analysis revealed that administration of geridonin in combination with paclitaxel up-regulated the tumor suppressor PTEN and inhibited phosphorylation of Akt and MDM2. This led to the accumulation of p53 and induced apoptosis though the mitochondrial pathway. Thus, geridonin in combination with paclitaxel is a new treatment strategy for gastric cancer.
Collapse
Affiliation(s)
- Sai-Qi Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Cong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Li-Ming Chang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Kai-Rui Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Jun-Wei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Dong-Xiao Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Hong-Ge Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Ran Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Xiao-Li Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Li-Ying Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P.R. China
| |
Collapse
|
177
|
Levrier C, Sadowski MC, Rockstroh A, Gabrielli B, Kavallaris M, Lehman M, Davis RA, Nelson CC. 6α-Acetoxyanopterine: A Novel Structure Class of Mitotic Inhibitor Disrupting Microtubule Dynamics in Prostate Cancer Cells. Mol Cancer Ther 2016; 16:3-15. [DOI: 10.1158/1535-7163.mct-16-0325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/16/2016] [Accepted: 10/11/2016] [Indexed: 11/16/2022]
|
178
|
Xu B, Jin Q, Zeng J, Yu T, Chen Y, Li S, Gong D, He L, Tan X, Yang L, He G, Wu J, Song X. Combined Tumor- and Neovascular-“Dual Targeting” Gene/Chemo-Therapy Suppresses Tumor Growth and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25753-25769. [PMID: 27615739 DOI: 10.1021/acsami.6b08603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bei Xu
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Quansheng Jin
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jun Zeng
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ting Yu
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yan Chen
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Shuangzhi Li
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Daoqiong Gong
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lili He
- College
of Pharmacy, Southwest University for Nationalities, Chengdu 610041, China
| | - Xiaoyue Tan
- Department
of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin 300071, China
| | - Li Yang
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Gu He
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jinhui Wu
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiangrong Song
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
179
|
Mlakar V, Huezo-Diaz Curtis P, Satyanarayana Uppugunduri CR, Krajinovic M, Ansari M. Pharmacogenomics in Pediatric Oncology: Review of Gene-Drug Associations for Clinical Use. Int J Mol Sci 2016; 17:ijms17091502. [PMID: 27618021 PMCID: PMC5037779 DOI: 10.3390/ijms17091502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
During the 3rd congress of the European Society of Pharmacogenomics and Personalised Therapy (ESPT) in Budapest in 2015, a preliminary meeting was held aimed at establishing a pediatric individualized treatment in oncology and hematology committees. The main purpose was to facilitate the transfer and harmonization of pharmacogenetic testing from research into clinics, to bring together basic and translational research and to educate health professionals throughout Europe. The objective of this review was to provide the attendees of the meeting as well as the larger scientific community an insight into the compiled evidence regarding current pharmacogenomics knowledge in pediatric oncology. This preliminary evaluation will help steer the committee’s work and should give the reader an idea at which stage researchers and clinicians are, in terms of personalizing medicine for children with cancer. From the evidence presented here, future recommendations to achieve this goal will also be suggested.
Collapse
Affiliation(s)
- Vid Mlakar
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| | - Patricia Huezo-Diaz Curtis
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| | | | - Maja Krajinovic
- Charles-Bruneau Cancer Center, Centre hospitalier universitaire Sainte-Justine, 4515 Rue de Rouen, Montreal, QC H1V 1H1, Canada.
- Department of Pediatrics, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4, Canada.
- Department of Pharmacology, Faculty of Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4, Canada.
| | - Marc Ansari
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
- Pediatric Department, Onco-Hematology Unit, Geneva University Hospital, Rue Willy-Donzé 6, 1205 Geneva, Switzerland.
| |
Collapse
|
180
|
Back to the tubule: microtubule dynamics in Parkinson's disease. Cell Mol Life Sci 2016; 74:409-434. [PMID: 27600680 PMCID: PMC5241350 DOI: 10.1007/s00018-016-2351-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022]
Abstract
Cytoskeletal homeostasis is essential for the development, survival and maintenance of an efficient nervous system. Microtubules are highly dynamic polymers important for neuronal growth, morphology, migration and polarity. In cooperation with several classes of binding proteins, microtubules regulate long-distance intracellular cargo trafficking along axons and dendrites. The importance of a delicate interplay between cytoskeletal components is reflected in several human neurodegenerative disorders linked to abnormal microtubule dynamics, including Parkinson’s disease (PD). Mounting evidence now suggests PD pathogenesis might be underlined by early cytoskeletal dysfunction. Advances in genetics have identified PD-associated mutations and variants in genes encoding various proteins affecting microtubule function including the microtubule-associated protein tau. In this review, we highlight the role of microtubules, their major posttranslational modifications and microtubule associated proteins in neuronal function. We then present key evidence on the contribution of microtubule dysfunction to PD. Finally, we discuss how regulation of microtubule dynamics with microtubule-targeting agents and deacetylase inhibitors represents a promising strategy for innovative therapeutic development.
Collapse
|
181
|
Abstract
Recently, endotoxin research has benefited from the cross fertilization of two fields of study. Investigation into the cellular actions of the anticancer drug, taxol, has suggested novel tools with which to investigate the signaling apparatus that mediates macrophage activation by bacterial lipopolysaccharide. 2 In turn, this research may ultimately cause a re-examination of the belief that microtubules are the singular molecular target for taxol and suggest additional potential mechanisms for the antineoplastic actions of taxoids. The aim of this chapter is to review the actions of taxol on macrophages and the evidence that taxol engages the LPS signaling apparatus. Microtubule-independent targets for taxol are proposed, as is the use of taxol as a novel tool for endotoxin research.
Collapse
Affiliation(s)
- C.L. Manthey
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - S.N. Vogel
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
182
|
Phyllanthus emblica Fruit Extract Activates Spindle Assembly Checkpoint, Prevents Mitotic Aberrations and Genomic Instability in Human Colon Epithelial NCM460 Cells. Int J Mol Sci 2016; 17:ijms17091437. [PMID: 27598149 PMCID: PMC5037716 DOI: 10.3390/ijms17091437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/27/2022] Open
Abstract
The fruit of Phyllanthus emblica Linn. (PE) has been widely consumed as a functional food and folk medicine in Southeast Asia due to its remarkable nutritional and pharmacological effects. Previous research showed PE delays mitotic progress and increases genomic instability (GIN) in human colorectal cancer cells. This study aimed to investigate the similar effects of PE by the biomarkers related to spindle assembly checkpoint (SAC), mitotic aberrations and GIN in human NCM460 normal colon epithelial cells. Cells were treated with PE and harvested differently according to the biomarkers observed. Frequencies of micronuclei (MN), nucleoplasmic bridge (NPB) and nuclear bud (NB) in cytokinesis-block micronucleus assay were used as indicators of GIN. Mitotic aberrations were assessed by the biomarkers of chromosome misalignment, multipolar division, chromosome lagging and chromatin bridge. SAC activity was determined by anaphase-to- metaphase ratio (AMR) and the expression of core SAC gene budding uninhibited by benzimidazoles related 1 (BubR1). Compared with the control, PE-treated cells showed (1) decreased incidences of MN, NPB and NB (p < 0.01); (2) decreased frequencies of all mitotic aberration biomarkers (p < 0.01); and (3) decreased AMR (p < 0.01) and increased BubR1 expression (p < 0.001). The results revealed PE has the potential to protect human normal colon epithelial cells from mitotic and genomic damages partially by enhancing the function of SAC.
Collapse
|
183
|
Duggett NA, Griffiths LA, McKenna OE, de Santis V, Yongsanguanchai N, Mokori EB, Flatters SJL. Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience 2016; 333:13-26. [PMID: 27393249 PMCID: PMC4996646 DOI: 10.1016/j.neuroscience.2016.06.050] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/16/2016] [Accepted: 06/29/2016] [Indexed: 11/26/2022]
Abstract
ROS levels assessed in peripheral and central sensory neurons following paclitaxel. Increased ROS levels seen in non-peptidergic neurons prior to paclitaxel-induced pain. Elevated ROS levels in spinal neurons, but not microglia/astrocytes, after paclitaxel. Assayed activity of main antioxidant enzymes during paclitaxel-evoked pain timecourse. Inadequate antioxidant response suggests elevated ROS sustains paclitaxel-evoked pain.
Paclitaxel is a first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Previous preclinical studies indicate mitochondrial dysfunction and oxidative stress are associated with this disorder; however no direct assessment of reactive oxygen species (ROS) levels and antioxidant enzyme activity in sensory neurons following paclitaxel has been undertaken. As expected, repeated low doses of systemic paclitaxel in rats induced long-lasting pain behaviour with a delayed onset, akin to the clinical scenario. To elucidate the role of ROS in the development and maintenance of paclitaxel-induced painful neuropathy, we have assessed ROS and antioxidant enzyme activity levels in the nociceptive system in vivo at three key behavioural time-points; prior to pain onset (day 7), peak pain severity and pain resolution. In isolated dorsal root ganglia (DRG) neurons, ROS levels were unchanged following paclitaxel-exposure in vitro or in vivo. ROS levels were further assessed in DRG and spinal cord in vivo following intrathecal MitoTracker®RedCM-H2XRos administration in paclitaxel-/vehicle-treated rats. ROS levels were increased at day 7, specifically in non-peptidergic DRG neurons. In the spinal cord, neuronally-derived ROS was increased at day 7, yet ROS levels in microglia and astrocytes were unaltered. In DRG, CuZnSOD and glutathione peroxidase (GPx) activity were increased at day 7 and peak pain time-points, respectively. In peripheral sensory nerves, CuZnSOD activity was increased at day 7, and at peak pain, MnSOD, CuZnSOD and GPx activity were increased. Catalase activity was unaltered in DRG and saphenous nerves. These data suggest that neuronally-derived mitochondrial ROS, accompanied with an inadequate endogenous antioxidant enzyme response, are contributory factors in paclitaxel-induced painful neuropathy.
Collapse
Affiliation(s)
- Natalie A Duggett
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Lisa A Griffiths
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Olivia E McKenna
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Vittorio de Santis
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Nutcha Yongsanguanchai
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Esther B Mokori
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Sarah J L Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
184
|
Aspen Cancer Conference Fellows. Toxicol Pathol 2016. [DOI: 10.1080/01926230490882358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
185
|
Development of novel cyclic peptides as pro-apoptotic agents. Eur J Med Chem 2016; 117:301-20. [DOI: 10.1016/j.ejmech.2016.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/12/2022]
|
186
|
Muro K, Das S, Raizer JJ. Convection-Enhanced and Local Delivery of Targeted Cytotoxins in the Treatment of Malignant Gliomas. Technol Cancer Res Treat 2016; 5:201-13. [PMID: 16700617 DOI: 10.1177/153303460600500304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Despite advances in our knowledge about the genesis, molecular biology, and natural history of malignant gliomas and the use of a multi-disciplinary approach to their treatment, patients harboring this diagnosis continue to face a grim prognosis. At the time of diagnosis, patients typically undergo surgery for the establishment of a histologic diagnosis, the reduction of tumor burden, and the relief of mass effect, with the maintenance of the patient's neurological function in mind. This is followed by the administration of adjuvant therapeutics, including radiation therapy and chemotherapy. Many investigational agents with laboratory evidence of efficacy against malignant gliomas have not met their promise in the clinical setting, largely due to the barriers that they must overcome to reach the tumor at a therapeutically meaningful concentration for a durable period of time. The relevant aspects of the blood-brain barrier, blood-tumor barrier, and blood-cerebrospinal fluid barrier, as they pertain to the delivery of agents to the tumor, will be discussed along with the strategies devised to circumvent them. This discussion will be followed by a description of agents currently in preclinical and clinical development, many of which are the result of intense ongoing research into the molecular biology of gliomas.
Collapse
Affiliation(s)
- Kenji Muro
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Abbott Hall, Suite 1123, 710 N Lake Shore Drive, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
187
|
Inhibition of microtubule dynamics impedes repair of kidney ischemia/reperfusion injury and increases fibrosis. Sci Rep 2016; 6:27775. [PMID: 27270990 PMCID: PMC4897697 DOI: 10.1038/srep27775] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/23/2016] [Indexed: 11/08/2022] Open
Abstract
The microtubule cytoskeleton is composed of α-tubulin and β-tubulin heterodimers, and it serves to regulate the shape, motility, and division of a cell. Post-translational modifications including acetylation are closely associated with the functional aspects of the microtubule, involving in a number of pathological diseases. However, the role of microtubule acetylation in acute kidney injury (AKI) and progression of AKI to chronic kidney disease have yet to be understood. In this study, ischemia/reperfusion (I/R), a major cause of AKI, resulted in deacetylation of the microtubules with a decrease in α-tubulin acetyltransferase 1 (α-TAT1). Paclitaxel (taxol), an agent that stabilizes microtubules by tubulin acetylation, treatment during the recovery phase following I/R injury inhibited tubular cell proliferation, impaired renal functional recovery, and worsened fibrosis. Taxol induced α-tubulin acetylation and post-I/R cell cycle arrest. Taxol aggregated the microtubule in the cytoplasm, resulting in suppression of microtubule dynamics. Our studies have demonstrated for the first time that I/R induced deacetylation of the microtubules, and that inhibition of microtubule dynamics retarded repair of injured tubular epithelial cells leading to an acceleration of fibrosis. This suggests that microtubule dynamics plays an important role in the processes of repair and fibrosis after AKI.
Collapse
|
188
|
Holloway MP, DeNardo BD, Phornphutkul C, Nguyen K, Davis C, Jackson C, Richendrfer H, Creton R, Altura RA. An asymptomatic mutation complicating severe chemotherapy-induced peripheral neuropathy (CIPN): a case for personalised medicine and a zebrafish model of CIPN. NPJ Genom Med 2016; 1:16016. [PMID: 29263815 PMCID: PMC5685301 DOI: 10.1038/npjgenmed.2016.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022] Open
Abstract
Targeted next-generation sequencing (NGS) identified a novel loss of function mutation in GARS, a gene linked to Charcot-Marie-Tooth disease (CMT), in a paediatric acute lymphoblastic leukaemia patient with severe chemotherapy-induced peripheral neuropathy (CIPN) due to vincristine. The patient was clinically asymptomatic, and lacked a family history of neuropathy. The effect of the mutation was modelled in a zebrafish knockdown system that recapitulated the symptoms of the patient both prior to and after treatment with vincristine. Confocal microscopy of pre- and post-synaptic markers revealed that the GARS knockdown results in changes to peripheral motor neurons, acetylcholine receptors and their co-localisation in neuromuscular junctions (NMJs), whereas a sensitive and reproducible stimulus-response assay demonstrated that the changes correlating with the GARS mutation in themselves fail to produce peripheral neuropathy symptoms. However, with vincristine treatment the GARS knockdown exacerbates decreased stimulus response and NMJ lesions. We propose that there is substantial benefit in the use of a targeted NGS screen of cancer patients who are to be treated with microtubule targeting agents for deleterious mutations in CMT linked genes, and for the screening in zebrafish of reagents that might inhibit CIPN.
Collapse
Affiliation(s)
- Michael P Holloway
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Bradley D DeNardo
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Chanika Phornphutkul
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Rhode Island Hospital and Brown University, Providence, RI, USA
| | - Kevin Nguyen
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Colby Davis
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Cynthia Jackson
- Departments of Pathology and Clinical Molecular Biology, Rhode Island Hospital and Brown University School of Medicine, Providence, RI, USA
| | - Holly Richendrfer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Rachel A Altura
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital and The Warren Alpert Medical School at Brown University, Providence, RI, USA
| |
Collapse
|
189
|
Chan A, Singh AJ, Northcote PT, Miller JH. Peloruside A, a microtubule-stabilizing agent, induces aneuploidy in ovarian cancer cells. Invest New Drugs 2016; 34:424-38. [PMID: 27155614 DOI: 10.1007/s10637-016-0355-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/27/2016] [Indexed: 11/29/2022]
Abstract
To ensure proper chromosome segregation, mitosis is tightly regulated by the spindle assembly checkpoint (SAC). Low concentrations of microtubule-stabilizing agents can induce aneuploid populations of cells in the absence of G2/M block, suggesting pertubation of the spindle checkpoint. We investigated the effects of peloruside A, a microtubule-stabilizing agent, on expression levels of several key cell cycle proteins, MAD2, BUBR1, p55CDC and cyclin B1. Synchronized 1A9 ovarian carcinoma cells were allowed to progress through the cell cycle in the presence or absence of peloruside A. Co-immunoprecipitation and Western blotting were used to probe the cell cycle kinetics of MAD2 and BUBR1 dissociation from p55CDC. Using confocal microscopy, we investigated whether premature dissociation of MAD2 and BUBR1 at low (40 nM) but not high (100 nM) concentrations of peloruside A was caused by defects in the attachment of chromosomes to the mitotic spindle. An increased frequency of polar chromosomes was observed at low concentrations of peloruside A, suggesting that an increased frequency of pseudo-metaphase cells, which are not detected by the spindle assembly checkpoint, may be underlying the induction of aneuploidy.
Collapse
Affiliation(s)
- Ariane Chan
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.,Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.,Volpara Solutions Limited, Level 12, 86 Victoria Street, Wellington, 6011, New Zealand
| | - A Jonathan Singh
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.,School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.,Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute - Frederick, Frederick, MD, 21702, USA
| | - Peter T Northcote
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.,School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - John H Miller
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand. .,Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.
| |
Collapse
|
190
|
Apice G, Pizzolorusso A, Di Maio M, Grignani G, Gebbia V, Buonadonna A, De Chiara A, Fazioli F, De Palma G, Galizia D, Arcara C, Mozzillo N, Perrone F. Confirmed Activity and Tolerability of Weekly Paclitaxel in the Treatment of Advanced Angiosarcoma. Sarcoma 2016; 2016:6862090. [PMID: 27019606 PMCID: PMC4785388 DOI: 10.1155/2016/6862090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/28/2016] [Indexed: 12/28/2022] Open
Abstract
Background. In several prospective and retrospective studies, weekly paclitaxel showed promising activity in patients with angiosarcoma. Patients and Methods. Our study was originally designed as a prospective, phase II multicenter trial for patients younger than 75, with ECOG performance status 0-2, affected by locally advanced or metastatic angiosarcoma. Patients received paclitaxel 80 mg/m(2) intravenously, at days 1, 8, and 15 every 4 weeks, until disease progression or unacceptable toxicity. Primary endpoint was objective response. Results. Eight patients were enrolled but, due to very slow accrual, the trial was prematurely stopped and further 10 patients were retrospectively included in the analysis. Out of 17 evaluable patients, 6 patients obtained an objective response (5 partial, 1 complete), with an objective response rate of 35% (95% confidence interval 17%-59%). Of note, five responses were obtained in pretreated patients. In the paper, details of overall survival, progression-free survival, and tolerability are reported. Conclusions. In this small series of patients with locally advanced or metastatic angiosarcoma, weekly paclitaxel was confirmed to be well tolerated and active even in pretreated patients.
Collapse
Affiliation(s)
- Gaetano Apice
- Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Antonio Pizzolorusso
- Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Massimo Di Maio
- Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Giovanni Grignani
- Institute for Cancer Research and Treatment, Strada Provinciale, km 3.95, Candiolo, 10060 Turin, Italy
| | - Vittorio Gebbia
- Medical Oncology Unit, La Maddalena Hospital, Via San Lorenzo Colli 312/d, 90146 Palermo, Italy
| | - Angela Buonadonna
- Departments of Radiation Oncology and Medical Oncology, CRO, National Cancer Institute, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Annarosaria De Chiara
- Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Flavio Fazioli
- Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Giampaolo De Palma
- Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Danilo Galizia
- Institute for Cancer Research and Treatment, Strada Provinciale, km 3.95, Candiolo, 10060 Turin, Italy
| | - Carlo Arcara
- Medical Oncology Unit, La Maddalena Hospital, Via San Lorenzo Colli 312/d, 90146 Palermo, Italy
| | - Nicola Mozzillo
- Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| | - Francesco Perrone
- Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Napoli, Italy
| |
Collapse
|
191
|
Affiliation(s)
- Falguni Pati
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory KTH – Royal Institute of Technology Stockholm Schweden
| | - Jesper Gantelius
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory KTH – Royal Institute of Technology Stockholm Schweden
| | - Helene Andersson Svahn
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory KTH – Royal Institute of Technology Stockholm Schweden
| |
Collapse
|
192
|
Pati F, Gantelius J, Svahn HA. 3D Bioprinting of Tissue/Organ Models. Angew Chem Int Ed Engl 2016; 55:4650-65. [PMID: 26895542 DOI: 10.1002/anie.201505062] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 12/17/2022]
Abstract
In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models.
Collapse
Affiliation(s)
- Falguni Pati
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Jesper Gantelius
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Helene Andersson Svahn
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
193
|
Klimaszewska-Wisniewska A, Halas-Wisniewska M, Tadrowski T, Gagat M, Grzanka D, Grzanka A. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells. Cancer Cell Int 2016; 16:10. [PMID: 26884726 PMCID: PMC4754822 DOI: 10.1186/s12935-016-0288-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/06/2016] [Indexed: 01/22/2023] Open
Abstract
Background
The use of the dietary polyphenols as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention of scientists and clinicians as a plausible approach for overcoming the limitations of chemotherapy (e.g. drug resistance and cytotoxicity). The aim of this study was to investigate whether a naturally occurring diet-based flavonoid, fisetin, at physiologically attainable concentrations, could act synergistically with clinically achievable doses of paclitaxel to produce growth inhibitory and/or pro-death effects on A549 non-small cell lung cancer cells, and if it does, what mechanisms might be involved. Methods The drug–drug interactions were analyzed based on the combination index method of Chou and Talalay and the data from MTT assays. To provide some insights into the mechanism underlying the synergistic action of fisetin and paclitaxel, selected morphological, biochemical and molecular parameters were examined, including the morphology of cell nuclei and mitotic spindles, the pattern of LC3-II immunostaining, the formation of autophagic vacuoles at the electron and fluorescence microscopic level, the disruption of cell membrane asymmetry/integrity, cell cycle progression and the expression level of LC3-II, Bax, Bcl-2 and caspase-3 mRNA. Results Here, we reported the first experimental evidence for the existence of synergism between fisetin and paclitaxel in the in vitro model of non-small cell lung cancer. This synergism was, at least partially, ascribed to the induction of mitotic catastrophe. The switch from the cytoprotective autophagy to the autophagic cell death was also implicated in the mechanism of the synergistic action of fisetin and paclitaxel in the A549 cells. In addition, we revealed that the synergism between fisetin and paclitaxel was cell line-specific as well as that fisetin synergizes with arsenic trioxide, but not with mitoxantrone and methotrexate in the A549 cells. Conclusions Our results provide rationale for further testing of fisetin in the combination with paclitaxel or arsenic trioxide to obtain detailed insights into the mechanism of their synergistic action as well as to evaluate their toxicity towards normal cells in an animal model in vivo. We conclude that this study is potentially interesting for the development of novel chemotherapeutic approach to non-small cell lung cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12935-016-0288-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Klimaszewska-Wisniewska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Halas-Wisniewska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Tadeusz Tadrowski
- Department and Clinic of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department and Clinic of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
194
|
Dictyoceratidan poisons: Defined mark on microtubule-tubulin dynamics. Life Sci 2016; 148:229-40. [PMID: 26874035 DOI: 10.1016/j.lfs.2016.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Abstract
Tubulin/microtubule assembly and disassembly is characterized as one of the chief processes during cell growth and division. Hence drugs those perturb these process are considered to be effective in killing fast multiplying cancer cells. There is a collection of natural compounds which disturb microtubule/tubulin dis/assemblage and there have been a lot of efforts concerted in the marine realm too, to surveying such killer molecules. Close to half the natural compounds shooting out from marine invertebrates are generally with no traceable definite mechanisms of action though may be tough anti-cancerous hits at nanogram levels, hence fatefully those discoveries conclude therein without a capacity of translation from laboratory to pharmacy. Astoundingly at least 50% of natural compounds which have definite mechanisms of action causing disorders in tubulin/microtubule kinetics have an isolation history from sponges belonging to the Phylum: Porifera. Poriferans have always been a wonder worker to treat cancers with a choice of, yet precise targets on cancerous tissues. There is a specific order: Dictyoceratida within this Phylum which has contributed to yielding at least 50% of effective compounds possessing this unique mechanism of action mentioned above. However, not much notice is driven to Dictyoceratidans alongside the order: Demospongiae thus dictating the need to know its select microtubule/tubulin irritants since the unearthing of avarol in the year 1974 till date. Hence this review selectively pinpoints all the compounds, noteworthy derivatives and analogs stemming from order: Dictyoceratida focusing on the past, present and future.
Collapse
|
195
|
Lebok P, Öztürk M, Heilenkötter U, Jaenicke F, Müller V, Paluchowski P, Geist S, Wilke C, Burandt E, Lebeau A, Wilczak W, Krech T, Simon R, Sauter G, Quaas A. High levels of class III β-tubulin expression are associated with aggressive tumor features in breast cancer. Oncol Lett 2016; 11:1987-1994. [PMID: 26998111 PMCID: PMC4774425 DOI: 10.3892/ol.2016.4206] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
Overexpression of class III β-tubulin (TUBB3), a factor that confers dynamic properties to microtubules, is a candidate biomarker for resistance to microtubule-targeting chemotherapeutics in breast and other types of solid cancer. Discrepant results from previous studies, with respect to the association of TUBB3 expression levels with breast cancer phenotype and patient prognosis, prompted the present study to investigate TUBB3 expression in a large cohort of breast cancer cases, with available clinical follow-up data. A preexisting breast cancer prognosis tissue microarray, containing a single 0.6 mm tissue core from each of 2,197 individual patients with breast cancer, was analyzed for TUBB3 expression by immunohistochemistry. The results of the present study revealed that TUBB3 expression was less frequent in lobular breast cancer cases (34%), compared with that of cancer cases of alternative histologies, including breast cancer of no special type (60%; P<0.0001). High TUBB3 positivity was associated with high tumor grade (P<0.0001), negativity for estrogen (P<0.0001) and progesterone receptors (P<0.004), as well as the presence of human epidermal growth factor 2 amplification (P<0.0001) and a triple-negative phenotype (P<0.0001). TUBB3 overexpression was additionally associated with reduced patient survival if all breast cancer cases of any histology were jointly analyzed (P=0.0088); however this link was not evident in the subset of breast cancer cases of no special type, or in a multivariate analysis including the established prognostic factors of tumor stage, grade and nodal stage. In conclusion, the present study demonstrated that TUBB3 overexpression was associated with adverse features of breast cancer, and that TUBB3 may possess a distinct role in lobular breast cancer cases, compared with alternative histological subtypes. The results of the present study do not support a clinically relevant role for TUBB3 as a prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg - Eppendorf, D-20246 Hamburg, Germany
| | - Melike Öztürk
- Institute of Pathology, University Medical Center Hamburg - Eppendorf, D-20246 Hamburg, Germany
| | - Uwe Heilenkötter
- Department of Gynecology, Hospital Itzehoe, D-25524 Itzehoe, Germany
| | - Fritz Jaenicke
- Department of Gynecology, University Medical Center Hamburg - Eppendorf, D-20246 Hamburg, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg - Eppendorf, D-20246 Hamburg, Germany
| | - Peter Paluchowski
- Department of Gynecology, Hospital Pinneberg, D-25421 Pinneberg, Germany
| | - Stefan Geist
- Department of Gynecology, Hospital Pinneberg, D-25421 Pinneberg, Germany
| | - Christian Wilke
- Department of Gynecology, Hospital Elmshorn, D-25337 Elmshorn, Germany
| | - Eicke Burandt
- Institute of Pathology, University Medical Center Hamburg - Eppendorf, D-20246 Hamburg, Germany
| | - Annette Lebeau
- Institute of Pathology, University Medical Center Hamburg - Eppendorf, D-20246 Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg - Eppendorf, D-20246 Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg - Eppendorf, D-20246 Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg - Eppendorf, D-20246 Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg - Eppendorf, D-20246 Hamburg, Germany
| | - Alexander Quaas
- Institute of Pathology, University Medical Center Hamburg - Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
196
|
Guo Y, Niu B, Song Q, Zhao Y, Bao Y, Tan S, Si L, Zhang Z. RGD-decorated redox-responsived-α-tocopherol polyethylene glycol succinate–poly(lactide) nanoparticles for targeted drug delivery. J Mater Chem B 2016; 4:2338-2350. [DOI: 10.1039/c6tb00055j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel kind of copolymer, TPGS-SS-PLA, was successfully synthesized and applied in targeted drug delivery.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Pharmacy
- Liyuan Hospital
- Tongji Medical School
- Huazhong University of Science and Technology
- Wuhan 430030
| | - Boning Niu
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Qingle Song
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Yongdan Zhao
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Yuling Bao
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Songwei Tan
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Luqin Si
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
| | - Zhiping Zhang
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- P. R. China
- Hubei Engineering Research Center for NDDS
| |
Collapse
|
197
|
Castration Resistant Prostate Cancer: Role of Chemotherapy. Prostate Cancer 2016. [DOI: 10.1016/b978-0-12-800077-9.00054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
198
|
Giladi M, Schneiderman RS, Voloshin T, Porat Y, Munster M, Blat R, Sherbo S, Bomzon Z, Urman N, Itzhaki A, Cahal S, Shteingauz A, Chaudhry A, Kirson ED, Weinberg U, Palti Y. Mitotic Spindle Disruption by Alternating Electric Fields Leads to Improper Chromosome Segregation and Mitotic Catastrophe in Cancer Cells. Sci Rep 2015; 5:18046. [PMID: 26658786 PMCID: PMC4676010 DOI: 10.1038/srep18046] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/11/2015] [Indexed: 12/19/2022] Open
Abstract
Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields. TTFields are a unique anti-mitotic treatment modality delivered in a continuous, noninvasive manner to the region of a tumor. It was previously postulated that by exerting directional forces on highly polar intracellular elements during mitosis, TTFields could disrupt the normal assembly of spindle microtubules. However there is limited evidence directly linking TTFields to an effect on microtubules. Here we report that TTFields decrease the ratio between polymerized and total tubulin, and prevent proper mitotic spindle assembly. The aberrant mitotic events induced by TTFields lead to abnormal chromosome segregation, cellular multinucleation, and caspase dependent apoptosis of daughter cells. The effect of TTFields on cell viability and clonogenic survival substantially depends upon the cell division rate. We show that by extending the duration of exposure to TTFields, slowly dividing cells can be affected to a similar extent as rapidly dividing cells.
Collapse
Affiliation(s)
- Moshe Giladi
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | | | - Tali Voloshin
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Yaara Porat
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Mijal Munster
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Roni Blat
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Shay Sherbo
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Zeev Bomzon
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Noa Urman
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Aviran Itzhaki
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Shay Cahal
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Anna Shteingauz
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Aafia Chaudhry
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Eilon D Kirson
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Uri Weinberg
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Yoram Palti
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| |
Collapse
|
199
|
ZHANG L, ZHOU JP, YAO J. Improved anti-tumor activity and safety profile of a paclitaxel-loaded glycyrrhetinic acid-graft-hyaluronic acid conjugate as a synergistically targeted drug delivery system. Chin J Nat Med 2015; 13:915-24. [DOI: 10.1016/s1875-5364(15)30097-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 11/27/2022]
|
200
|
Huang ZL, Cao X, Luo RZ, Chen YF, Zhu LC, Wen Z. Analysis of ERCC1, BRCA1, RRM1 and TUBB3 as predictors of prognosis in patients with non-small cell lung cancer who received cisplatin-based adjuvant chemotherapy: A prospective study. Oncol Lett 2015; 11:299-305. [PMID: 26870207 DOI: 10.3892/ol.2015.3894] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 05/08/2015] [Indexed: 12/15/2022] Open
Abstract
Although adjuvant platinum-based chemotherapy has been demonstrated to improve survival in patients with completely resected non-small cell lung cancer (NSCLC), individualized approaches to therapy are urgently required to improve the treatment efficacy and reduce unnecessary toxicity. It was hypothesized in the present study that the protein levels of excision repair cross-complementation group 1 (ERCC1), breast cancer 1 (BRCA1), ribonucleotide reductase M1 (RRM1) and class III β-tubulin (TUBB3) may influence the therapeutic effect of adjuvant cisplatin-based chemotherapy. The expression of ERCC1, BRCA1, RRM1 and TUBB3 in tissues obtained from 84 patients with NSCLC was analyzed in the present non-interventional study by immunohistochemistry prior to adjuvant chemotherapy. All patients received adjuvant cisplatin-based chemotherapy. The primary endpoint in the present study was disease free survival (DFS). Out of the 84 tumors, the expression of ERCC1, BRCA1, RRM1 and TUBB3 was identified in 46 (55%), 11 (13%), 73 (87%) and 76 (90%) tissues, respectively. A beneficial response to adjuvant cisplatin-based chemotherapy in DFS was associated with the absence of the expression of ERCC1 [hazard ratio (HR), 2.166; 95% confidence interval (CI), 1.049-4.474; P=0.037] and BRCA1 (HR, 2.419; 95% CI, 1.127-5.193; P=0.023), but not with the expression status of RRM1 (HR, 0.568; 95% CI, 0.234-1.379; P=0.212) or TUBB3 (HR, 1.874; 95% CI, 0.448-7.842; P=0.39). In addition, patients lacking the expression of ERCC1 and BRCA1 benefited more from adjuvant cisplatin-based chemotherapy compared with patients that expressed either ERCC1 or BRCA1 (HR, 3.102; 95% CI, 1.343-7.163; P=0.008). The expression of ERCC1 and BRCA1 was significantly associated with the DFS time in patients with NSCLC treated with adjuvant cisplatin-based chemotherapy, respectively. The combination of the ERCC1 and BRCA1 expression levels may be a promising prognostic prediction for adjuvant cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Zhi-Liang Huang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China; Xiamen Medical Center, Zhongshan Hospital, Fudan University, Xiamen, Fujian 361015, P.R. China
| | - Xun Cao
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China; Department of Critical Care Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Ruo-Zhen Luo
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - You-Fang Chen
- Graceland Medical Centre, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510623, P.R. China
| | - Lin-Chun Zhu
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Zhesheng Wen
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|