151
|
Luxmi R, Garg R, Srivastava S, Sane AP. Expression of the SIN3 homologue from banana, MaSIN3, suppresses ABA responses globally during plant growth in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:69-82. [PMID: 28969804 DOI: 10.1016/j.plantsci.2017.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 08/12/2017] [Accepted: 08/26/2017] [Indexed: 06/07/2023]
Abstract
The SIN3 family of co-repressors is a family of highly conserved eukaryotic repressor proteins that regulates diverse functions in yeasts and animals but remains largely uncharacterized functionally even in plants like Arabidopsis. The sole SIN3 homologue in banana, MaSIN3, was identified as a 1408 amino acids, nuclear localized protein conserved to other SIN3s in the PAH, HID and HCR domains. Interestingly, MaSIN3 over-expression in Arabidopsis mimics a state of reduced ABA responses throughout plant development affecting growth processes such as germination, root growth, stomatal closure and water loss, flowering and senescence. The reduction in ABA responses is not due to reduced ABA levels but due to suppression of expression of several transcription factors mediating ABA responses. Transcript levels of negative regulators of germination (ABI3, ABI5, PIL5, RGL2 and RGL3) are reduced post-imbibition while those responsible for GA biosynthesis are up-regulated in transgenic MaSIN3 over-expressers. ABA-associated transcription factors are also down-regulated in response to ABA treatment. The HDAC inhibitors, SAHA and sodium butyrate, in combination with ABA differentially suppress germination in control and transgenic lines suggesting the recruitment by MaSIN3 of HDACs involved in suppression of ABA responses in different processes. The studies provide an insight into the ability of MaSIN3 to specifically affect a subset of developmental processes governed largely by ABA.
Collapse
Affiliation(s)
- Raj Luxmi
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Rafi Marg, New Delhi 110001, India
| | - Rashmi Garg
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Rafi Marg, New Delhi 110001, India
| | - Sudhakar Srivastava
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India; French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University, Beer Sheva 84105, Israel
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Rafi Marg, New Delhi 110001, India.
| |
Collapse
|
152
|
Wang C, Jiang H, Jin J, Xie Y, Chen Z, Zhang H, Lian F, Liu YC, Zhang C, Ding H, Chen S, Zhang N, Zhang Y, Jiang H, Chen K, Ye F, Yao Z, Luo C. Development of Potent Type I Protein Arginine Methyltransferase (PRMT) Inhibitors of Leukemia Cell Proliferation. J Med Chem 2017; 60:8888-8905. [PMID: 29019697 DOI: 10.1021/acs.jmedchem.7b01134] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein Arginine Methyltransferases (PRMTs) are crucial players in diverse biological processes, and dysregulation of PRMTs has been linked to various human diseases, especially cancer. Therefore, small molecules targeting PRMTs have profound impact for both academic functional studies and clinical disease treatment. Here, we report the discovery of N1-(2-((2-chlorophenyl)thio)benzyl)-N1-methylethane-1,2-diamine (28d, DCPR049_12), a highly potent inhibitor of type I PRMTs that has good selectivity against a panel of other methyltransferases. Compound 28d effectively inhibits cell proliferation in several leukemia cell lines and reduces the cellular asymmetric arginine dimethylation levels. Serving as an effective inhibitor, 28d demonstrates the mechanism of cell killing in both cell cycle arrest and apoptotic effect as well as downregulation of the pivotal mixed lineage leukemia (MLL) fusion target genes such as HOXA9 and MEIS1, which reflects the critical roles of type I PRMTs in MLL leukemia. These studies present 28d as a valuable inhibitor to investigate the role of type I PRMTs in cancer and other diseases.
Collapse
Affiliation(s)
- Chen Wang
- College of Life Sciences, Zhejiang Sci-Tech University , Hangzhou 310018, China.,Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences , 19 Yuquan Road, Beijing 100049, China
| | - Hao Jiang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences , 19 Yuquan Road, Beijing 100049, China
| | - Jia Jin
- College of Life Sciences, Zhejiang Sci-Tech University , Hangzhou 310018, China
| | - Yiqian Xie
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhifeng Chen
- School of Life Science and Technology, ShanghaiTech University , 100 Haike Road, Shanghai 201210, China
| | - Hao Zhang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Fulin Lian
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yu-Chih Liu
- Shanghai ChemPartner Co., Ltd. , #5 Building, 998, Halei Road, Shanghai 201203, China
| | - Chenhua Zhang
- Shanghai ChemPartner Co., Ltd. , #5 Building, 998, Halei Road, Shanghai 201203, China
| | - Hong Ding
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Shijie Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Naixia Zhang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yuanyuan Zhang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kaixian Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University , 100 Haike Road, Shanghai 201210, China
| | - Fei Ye
- College of Life Sciences, Zhejiang Sci-Tech University , Hangzhou 310018, China
| | - Zhiyi Yao
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology , Shanghai 210032, China
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
153
|
Histone Deacetylase Inhibitor-Induced Autophagy in Tumor Cells: Implications for p53. Int J Mol Sci 2017; 18:ijms18091883. [PMID: 30563957 PMCID: PMC5618532 DOI: 10.3390/ijms18091883] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/20/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an essential process of the eukaryotic cell allowing degradation and recycling of dysfunctional cellular components in response to either physiological or pathological changes. Inhibition of autophagy in combination with chemotherapeutic treatment has emerged as a novel approach in cancer treatment leading to cell cycle arrest, differentiation, and apoptosis. Suberoyl hydroxamic acid (SAHA) is a broad-spectrum histone deacetylase inhibitor (HDACi) suppressing family members in multiple HDAC classes. Increasing evidence indicates that SAHA and other HDACi can, in addition to mitochondria-mediated apoptosis, also promote caspase-independent autophagy. SAHA-induced mTOR inactivation as a major regulator of autophagy activating the remaining autophagic core machinery is by far the most reported pathway in several tumor models. However, the question of which upstream mechanisms regulate SAHA-induced mTOR inactivation that consequently initiate autophagy has been mainly left unexplored. To elucidate this issue, we recently initiated a study clarifying different modes of SAHA-induced cell death in two human uterine sarcoma cell lines which led to the conclusion that the tumor suppressor protein p53 could act as a molecular switch between SAHA-triggered autophagic or apoptotic cell death. In this review, we present current research evidence about HDACi-mediated apoptotic and autophagic pathways, in particular with regard to p53 and its therapeutic implications.
Collapse
|
154
|
Gamage AM, Lee KO, Gan YH. Anti-Cancer Drug HMBA Acts as an Adjuvant during Intracellular Bacterial Infections by Inducing Type I IFN through STING. THE JOURNAL OF IMMUNOLOGY 2017; 199:2491-2502. [PMID: 28827286 DOI: 10.4049/jimmunol.1602162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/26/2017] [Indexed: 01/06/2023]
Abstract
The anti-proliferative agent hexamethylene bisacetamide (HMBA) belongs to a class of hybrid bipolar compounds developed more than 30 y ago for their ability to induce terminal differentiation of transformed cells. Recently, HMBA has also been shown to trigger HIV transcription from latently infected cells, via a CDK9/HMBA inducible protein-1 dependent process. However, the effect of HMBA on the immune response has not been explored. We observed that pretreatment of human peripheral blood mononuclear cells with HMBA led to a markedly increased production of IL-12 and IFN-γ, but not of TNF-α, IL-6, and IL-8 upon subsequent infection with Burkholderia pseudomallei and Salmonella enterica HMBA treatment was also associated with better intracellular bacterial control. HMBA significantly improved IL-12p70 production from CD14+ monocytes during infection partly via the induction of type I IFN in these cells, which primed an increased transcription of the p35 subunit of IL-12p70 during infection. HMBA also increased early type I IFN transcription in human monocytic and epithelial cell lines, but this was surprisingly independent of its previously reported effects on positive transcription elongation factor b and HMBA inducible protein-1. Instead, the effect of HMBA was downstream of a calcium influx, and required the pattern recognition receptor and adaptor STING but not cGAS. Our work therefore links the STING-IRF3 axis to enhanced IL-12 production and intracellular bacterial control in primary monocytes. This raises the possibility that HMBA or related small molecules may be explored as therapeutic adjuvants to improve disease outcomes during intracellular bacterial infections.
Collapse
Affiliation(s)
- Akshamal Mihiranga Gamage
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; and
| | - Kok-Onn Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; and
| |
Collapse
|
155
|
Down-regulation of HDAC3 inhibits growth of cholangiocarcinoma by inducing apoptosis. Oncotarget 2017; 8:99402-99413. [PMID: 29245911 PMCID: PMC5725102 DOI: 10.18632/oncotarget.19660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/21/2017] [Indexed: 12/15/2022] Open
Abstract
Class I histone deacetylases (HDACs) inhibit expression of tumor suppressor genes by removing acetyl groups from histone lysine residues, thereby increasing cancer cell survival and proliferation. We evaluated the expression of class I HDACs in cholangiocarcinoma (CCA). HDAC3 expression was specifically increased in CCA tissues and correlated with reduced patient survival. HDAC3 overexpression inhibited apoptosis and promoted CCA cell proliferation. Conversely, HDAC3 knockdown or pharmacological inhibition decreased CCA cell growth and increased caspase-dependent apoptosis. Inhibition of class I HDACs blocked HDAC3-catalyzed deacetylation and increased expression of downstream pro-apoptotic targets in vitro and in vivo. These results demonstrate for the first time that down-regulation of HDAC3 induces apoptosis in human CCA cells, indicating that inhibiting HDAC3 may be an effective therapeutic strategy for treating CCA .
Collapse
|
156
|
Synthesis and applications of benzohydroxamic acid-based histone deacetylase inhibitors. Eur J Med Chem 2017; 135:174-195. [DOI: 10.1016/j.ejmech.2017.04.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 02/08/2023]
|
157
|
McClure JJ, Inks ES, Zhang C, Peterson YK, Li J, Chundru K, Lee B, Buchanan A, Miao S, Chou CJ. Comparison of the Deacylase and Deacetylase Activity of Zinc-Dependent HDACs. ACS Chem Biol 2017; 12:1644-1655. [PMID: 28459537 DOI: 10.1021/acschembio.7b00321] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The acetylation status of lysine residues on histone proteins has long been attributed to a balance struck between the catalytic activity of histone acetyl transferases and histone deacetylases (HDAC). HDACs were identified as the sole removers of acetyl post-translational modifications (PTM) of histone lysine residues. Studies into the biological role of HDACs have also elucidated their role as removers of acetyl PTMs from lysine residues of nonhistone proteins. These findings, coupled with high-resolution mass spectrometry studies that revealed the presence of acyl-group PTMs on lysine residues of nonhistone proteins, brought forth the possibility of HDACs acting as removers of both acyl- and acetyl-based PTMs. We posited that HDACs fulfill this dual role and sought to investigate their specificity. Utilizing a fluorescence-based assay and biologically relevant acyl-substrates, the selectivities of zinc-dependent HDACs toward these acyl-based PTMs were identified. These findings were further validated using cellular models and molecular biology techniques. As a proof of principal, an HDAC3 selective inhibitor was designed using HDAC3's substrate preference. This resulting inhibitor demonstrates nanomolar activity and >30 fold selectivity toward HDAC3 compared to the other class I HDACs. This inhibitor is capable of increasing p65 acetylation, attenuating NF-κB activation, and thereby preventing downstream nitric oxide signaling. Additionally, this selective HDAC3 inhibition allows for control of HMGB-1 secretion from activated macrophages without altering the acetylation status of histones or tubulin.
Collapse
Affiliation(s)
- Jesse J. McClure
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| | - Elizabeth S. Inks
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| | - Cheng Zhang
- China Agricultural University, Department of Applied
Chemistry, Beijing, China
| | - Yuri K. Peterson
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| | - Jiaying Li
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| | - Kalyan Chundru
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| | - Bradley Lee
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
- College of Charleston, Charleston, South Carolina, United States
| | - Ashley Buchanan
- College of Charleston, Charleston, South Carolina, United States
| | - Shiqin Miao
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - C. James Chou
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| |
Collapse
|
158
|
Novel Class IIa-Selective Histone Deacetylase Inhibitors Discovered Using an in Silico Virtual Screening Approach. Sci Rep 2017; 7:3228. [PMID: 28607401 PMCID: PMC5468338 DOI: 10.1038/s41598-017-03417-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylases (HDAC) contain eighteen isoforms that can be divided into four classes. Of these isoform enzymes, class IIa (containing HDAC4, 5, 7 and 9) target unique substrates, some of which are client proteins associated with epigenetic control. Class IIa HDACs are reportedly associated with some neuronal disorders, making HDACs therapeutic targets for treating neurodegenerative diseases. Additionally, some reported HDAC inhibitors contain hydroxamate moiety that chelates with zinc ion to become the cofactor of HDAC enzymes. However, the hydroxamate functional group is shown to cause undesirable effects and has poor pharmacokinetic profile. This study used in silico virtual screening methodology to identify several nonhydroxamate compounds, obtained from National Cancer Institute database, which potentially inhibited HDAC4. Comparisons of the enzyme inhibitory activity against a panel of HDAC isoforms revealed these compounds had strong inhibitory activity against class IIa HDACs, but weak inhibitory activity against class I HDACs. Further analysis revealed that a single residue affects the cavity size between class I and class IIa HDACs, thus contributing to the selectivity of HDAC inhibitors discovered in this study. The discovery of these inhibitors presents the possibility of developing new therapeutic treatments that can circumvent the problems seen in traditional hydroxamate-based drugs.
Collapse
|
159
|
Abstract
Next-generation sequencing has revealed that more than 50% of human cancers harbour mutations in enzymes that are involved in chromatin organization. Tumour cells not only are activated by genetic and epigenetic alterations, but also routinely use epigenetic processes to ensure their escape from chemotherapy and host immune surveillance. Hence, a growing emphasis of recent drug discovery efforts has been on targeting the epigenome, including DNA methylation and histone modifications, with several new drugs being tested and some already approved by the US Food and Drug Administration (FDA). The future will see the increasing success of combining epigenetic drugs with other therapies. As epigenetic drugs target the epigenome as a whole, these true 'genomic medicines' lessen the need for precision approaches to individualized therapies.
Collapse
Affiliation(s)
- Peter A Jones
- Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Stephen Baylin
- Van Andel Research Institute, Grand Rapids, Michigan 49503, USA.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21287, USA
| |
Collapse
|
160
|
Sun JM, Cui KQ, Li ZP, Lu XR, Xu ZF, Liu QY, Huang B, Shi DS. Suberoylanilide hydroxamic acid, a novel histone deacetylase inhibitor, improves the development and acetylation level of miniature porcine handmade cloning embryos. Reprod Domest Anim 2017; 52:763-774. [DOI: 10.1111/rda.12977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/07/2017] [Indexed: 01/23/2023]
Affiliation(s)
- JM Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| | - KQ Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
| | - ZP Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| | - XR Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
| | - ZF Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| | - QY Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| | - B Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| | - DS Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; Guangxi University; Nanning Guangxi China
- Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi China
| |
Collapse
|
161
|
Lama R, Gan C, Idippily N, Bobba V, Danielpour D, Montano M, Su B. HMBA is a putative HSP70 activator stimulating HEXIM1 expression that is down-regulated by estrogen. J Steroid Biochem Mol Biol 2017; 168:91-101. [PMID: 28213333 PMCID: PMC5699885 DOI: 10.1016/j.jsbmb.2017.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/27/2022]
Abstract
Hexamethylene bis-acetamide inducible protein 1 (HEXIM1) is identified as a novel inhibitor of estrogen stimulated breast cell growth, and it suppresses estrogen receptor-α transcriptional activity. HEXIM1 protein level has been found to be downregulated by estrogens. Recently, HEXIM1 has been found to inhibit androgen receptor transcriptional activity as well. Researchers have used Hexamethylene bis-acetamide (HMBA) for decades to stimulate HEXIM1 expression, which also inhibit estrogen stimulated breast cancer cell gene activation and androgen stimulated prostate cancer gene activation. However, the direct molecular targets of HMBA that modulate the induction of HEXIM1 expression in mammalian cells have not been identified. Based on HMBA and its more potent analog 4a1, we designed molecular probes to pull down the binding proteins of these compounds. Via proteomic approach and biological assays, we demonstrate that HMBA and 4a1 are actually heat shock protein 70 (HSP70) binders. The known HSP70 activator showed similar activity as HMBA and 4a1 to induce HEXIM1 expression, suggesting that HMBA and 4a1 might be putative HSP70 activators. Molecular target identification of HMBA and 4a1 could lead to further structural optimization of the parental compound to generate more potent derivatives to stimulate HEXIM1 expression, which could be a novel approach for hormone dependent breast cancer and prostate cancer treatment.
Collapse
Affiliation(s)
- Rati Lama
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Chunfang Gan
- College of Chemistry and Material Science, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, Guangxi Teachers Education University, Nanning 530001, China
| | - Nethrie Idippily
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Viharika Bobba
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - David Danielpour
- Division of General Medical Science-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Monica Montano
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bin Su
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA.
| |
Collapse
|
162
|
Stein E, Yen K. Targeted Differentiation Therapy with Mutant IDH Inhibitors: Early Experiences and Parallels with Other Differentiation Agents. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-050216-122051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Somatic mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes have been described in multiple hematologic and solid tumors, and confer a gain of function, permitting the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG). 2-HG accumulation induces DNA and histone hypermethylation and altered gene expression, ultimately resulting in a block in cellular differentiation. Proof-of-concept preclinical work demonstrated that targeted inhibition of the mutant IDH (mIDH) enzyme is a feasible therapeutic strategy, based on the hypothesis that inhibition of the mIDH enzyme blocks 2-HG production, resulting in an appropriate methylation state and the onset of cellular differentiation. Clinical development programs for targeted inhibitors are underway, and preliminary data in patients with mIDH acute myeloid leukemia suggest that these inhibitors act as differentiation agents. Here we review the use of differentiation agents for the treatment of hematologic and solid tumors and discuss the preclinical and early clinical evidence that mIDH inhibitors mediate antitumor effects through the induction of differentiation.
Collapse
Affiliation(s)
- Eytan Stein
- Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Katharine Yen
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139
| |
Collapse
|
163
|
Bagnall NH, Hines BM, Lucke AJ, Gupta PK, Reid RC, Fairlie DP, Kotze AC. Insecticidal activities of histone deacetylase inhibitors against a dipteran parasite of sheep, Lucilia cuprina. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:51-60. [PMID: 28110187 PMCID: PMC5247571 DOI: 10.1016/j.ijpddr.2017.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 11/09/2022]
Abstract
Histone deacetylase inhibitors (HDACi) are being investigated for the control of various human parasites. Here we investigate their potential as insecticides for the control of a major ecto-parasite of sheep, the Australian sheep blowfly, Lucilia cuprina. We assessed the ability of HDACi from various chemical classes to inhibit the development of blowfly larvae in vitro, and to inhibit HDAC activity in nuclear protein extracts prepared from blowfly eggs. The HDACi prodrug romidepsin, a cyclic depsipeptide that forms a thiolate, was the most potent inhibitor of larval growth, with equivalent or greater potency than three commercial blowfly insecticides. Other HDACi with potent activity were hydroxamic acids (trichostatin, CUDC-907, AR-42), a thioester (KD5170), a disulphide (Psammaplin A), and a cyclic tetrapeptide bearing a ketone (apicidin). On the other hand, no insecticidal activity was observed for certain other hydroxamic acids, fatty acids, and the sesquiterpene lactone parthenolide. The structural diversity of the 31 hydroxamic acids examined here revealed some structural requirements for insecticidal activity; for example, among compounds with flexible linear zinc-binding extensions, greater potency was observed in the presence of branched capping groups that likely make multiple interactions with the blowfly HDAC enzymes. The insecticidal activity correlated with inhibition of HDAC activity in blowfly nuclear protein extracts, indicating that the toxicity was most likely due to inhibition of HDAC enzymes in the blowfly larvae. The inhibitor potencies against blowfly larvae are different from inhibition of human HDACs, suggesting some selectivity for human over blowfly HDACs, and a potential for developing compounds with the inverse selectivity. In summary, these novel findings support blowfly HDAC enzymes as new targets for blowfly control, and point to development of HDAC inhibitors as a promising new class of insecticides. We measured the insecticidal effects of histone deacetylase inhibitors against the sheep blowfly. Insecticidal activity correlated with inhibition of HDAC enzyme activity in nuclear extracts. Romidepsin showed equivalent or greater potency than commercial blowfly insecticides. Some insights gained into structural requirements for insecticidal HDAC inhibitors. Potential for HDAC inhibitors as insecticides.
Collapse
Affiliation(s)
- Neil H Bagnall
- CSIRO Agriculture and Food, St. Lucia, Queensland 4067, Australia
| | - Barney M Hines
- CSIRO Agriculture and Food, St. Lucia, Queensland 4067, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Praveer K Gupta
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert C Reid
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew C Kotze
- CSIRO Agriculture and Food, St. Lucia, Queensland 4067, Australia.
| |
Collapse
|
164
|
YOSHIDA M, KUDO N, KOSONO S, ITO A. Chemical and structural biology of protein lysine deacetylases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:297-321. [PMID: 28496053 PMCID: PMC5489435 DOI: 10.2183/pjab.93.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/21/2017] [Indexed: 05/27/2023]
Abstract
Histone acetylation is a reversible posttranslational modification that plays a fundamental role in regulating eukaryotic gene expression and chromatin structure/function. Key enzymes for removing acetyl groups from histones are metal (zinc)-dependent and NAD+-dependent histone deacetylases (HDACs). The molecular function of HDACs have been extensively characterized by various approaches including chemical, molecular, and structural biology, which demonstrated that HDACs regulate cell proliferation, differentiation, and metabolic homeostasis, and that their alterations are deeply involved in various human disorders including cancer. Notably, drug discovery efforts have achieved success in developing HDAC-targeting therapeutics for treatment of several cancers. However, recent advancements in proteomics technology have revealed much broader aspects of HDACs beyond gene expression control. Not only histones but also a large number of cellular proteins are subject to acetylation by histone acetyltransferases (HATs) and deacetylation by HDACs. Furthermore, some of their structures can flexibly accept and hydrolyze other acyl groups on protein lysine residues. This review mainly focuses on structural aspects of HDAC enzymatic activity regulated by interaction with substrates, co-factors, small molecule inhibitors, and activators.
Collapse
Affiliation(s)
- Minoru YOSHIDA
- RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Norio KUDO
- RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Saori KOSONO
- RIKEN Center for Sustainable Resource Science, Saitama, Japan
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Akihiro ITO
- RIKEN Center for Sustainable Resource Science, Saitama, Japan
| |
Collapse
|
165
|
Tanimoto A, Takeuchi S, Arai S, Fukuda K, Yamada T, Roca X, Ong ST, Yano S. Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism-Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer. Clin Cancer Res 2016; 23:3139-3149. [PMID: 27986747 DOI: 10.1158/1078-0432.ccr-16-2271] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 11/16/2022]
Abstract
Purpose: The BIM deletion polymorphism is associated with apoptosis resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib and erlotinib, in non-small cell lung cancer (NSCLC) harboring EGFR mutations. Here, we investigated whether the BIM deletion polymorphism contributes to resistance against osimertinib, a third-generation EGFR-TKI. In addition, we determined the efficacy of a histone deacetylase (HDAC) inhibitor, vorinostat, against this form of resistance and elucidated the underlying mechanism.Experimental Design: We used EGFR-mutated NSCLC cell lines, which were either heterozygous or homozygous for the BIM deletion polymorphism, to evaluate the effect of osimertinib in vitro and in vivo Protein expression was examined by Western blotting. Alternative splicing of BIM mRNA was analyzed by RT-PCR.Results:EGFR-mutated NSCLC cell lines with the BIM deletion polymorphism exhibited apoptosis resistance to osimertinib in a polymorphism dosage-dependent manner, and this resistance was overcome by combined use with vorinostat. Experiments with homozygous BIM deletion-positive cells revealed that vorinostat affected the alternative splicing of BIM mRNA in the deletion allele, increased the expression of active BIM protein, and thereby induced apoptosis in osimertinib-treated cells. These effects were mediated predominantly by HDAC3 inhibition. In xenograft models, combined use of vorinostat with osimertinib could regress tumors in EGFR-mutated NSCLC cells homozygous for the BIM deletion polymorphism. Moreover, this combination could induce apoptosis even when tumor cells acquired EGFR-T790M mutations.Conclusions: These findings indicate the importance of developing HDAC3-selective inhibitors, and their combined use with osimertinib, for treating EGFR-mutated lung cancers carrying the BIM deletion polymorphism. Clin Cancer Res; 23(12); 3139-49. ©2016 AACR.
Collapse
Affiliation(s)
- Azusa Tanimoto
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Sachiko Arai
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Koji Fukuda
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Tadaaki Yamada
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - S Tiong Ong
- Cancer & Stem Cell Biology Signature Research Programme, Duke-NUS Medical School, Singapore.,Department of Medical Oncology, National Cancer Centre Singapore, Singapore.,Department of Haematology, Singapore General Hospital, Singapore.,Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
166
|
Kunnimalaiyaan S, Sokolowski K, Gamblin TC, Kunnimalaiyaan M. Suberoylanilide hydroxamic Acid, a histone deacetylase inhibitor, alters multiple signaling pathways in hepatocellular carcinoma cell lines. Am J Surg 2016; 213:645-651. [PMID: 28007318 DOI: 10.1016/j.amjsurg.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/06/2016] [Accepted: 12/09/2016] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, has preclinical efficacy in hepatocellular carcinoma (HCC), despite an unclear molecular mechanism. We sought to further investigate the effects of SAHA on HCC. We hypothesize SAHA will inhibit HCC cellular proliferation through apoptosis and aid in further profiling SAHA's effect on HCC oncogenic pathways. METHODS HCC cell lines were treated with various concentrations of SAHA. Cell proliferation was determined by MTT and colonogenic assays. Cell lysates were analyzed via Western blotting for apoptotic and oncogenic pathway markers. Caspase glo-3/7 was used to assess apoptosis. RESULTS SAHA treatment demonstrated significant (<0.05) reduction in cell growth and colony formation through apoptosis and cell cycle arrest. Western analysis showed reduction in Notch, pAKT and pERK1/2 proteins. Interestingly, phosphorylated STAT3 was increased in all cell lines. CONCLUSIONS SAHA inhibits Notch, AKT, and Raf-1 pathways but not the STAT3 pathway. We believe that STAT3 may lead to cancer cell progression, reducing SAHA efficacy in HCC. Therefore, combination of SAHA and STAT or Notch inhibition may be a strategy for HCC treatment.
Collapse
Affiliation(s)
- Selvi Kunnimalaiyaan
- Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kevin Sokolowski
- Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - T Clark Gamblin
- Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Muthusamy Kunnimalaiyaan
- Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
167
|
Günther J, Petzl W, Zerbe H, Schuberth HJ, Seyfert HM. TLR ligands, but not modulators of histone modifiers, can induce the complex immune response pattern of endotoxin tolerance in mammary epithelial cells. Innate Immun 2016; 23:155-164. [PMID: 27913794 PMCID: PMC5410871 DOI: 10.1177/1753425916681076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Excessive stimulation of the TLR4 axis through LPS reduces the expression of some
cytokine genes in immune cells, while stimulating the expression of immune
defense genes during a subsequent bacterial infection. This endotoxin tolerance
(ET) is mediated via epigenetic mechanisms. Priming the udder of cows with LPS
was shown to induce ET in mammary epithelial cells (MEC), thereby protecting the
udder against reinfection for some time. Seeking alternatives to LPS priming we
tried to elicit ET by priming MEC with either lipopeptide (Pam2CSK4) via the
TLR2/6 axis or inhibitors of histone-modifying enzymes. Pre-incubation of MEC
with Pam2CSK4 enhanced baseline and induced expression of bactericidal
(β-defensin; SLPI) and membrane protecting factors
(SAA3, TGM3), while reducing the
expression of cytokine- and chemokine-encoding genes (TNF,
IL1β) after a subsequent pathogen challenge, the latter,
however, not as efficiently as after LPS priming. Pre-treating MEC with various
inhibitors of histone H3 modifiers (for demethylation, acetylation or
deacetylation) all failed to induce any of the protective factors and only
resulted in some dampening of cytokine gene expression after the re-challenge.
Hence, triggering immune functions via the TLR axis, but not through those
histone modifiers, induced the beneficial phenomenon of ET in MEC.
Collapse
Affiliation(s)
- Juliane Günther
- 1 Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Dummerstorf, Germany
| | - Wolfram Petzl
- 2 Clinic for Ruminants with Ambulance and Herd Health Services, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Holm Zerbe
- 2 Clinic for Ruminants with Ambulance and Herd Health Services, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | | | - Hans-Martin Seyfert
- 1 Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Dummerstorf, Germany
| |
Collapse
|
168
|
Losson H, Schnekenburger M, Dicato M, Diederich M. Natural Compound Histone Deacetylase Inhibitors (HDACi): Synergy with Inflammatory Signaling Pathway Modulators and Clinical Applications in Cancer. Molecules 2016; 21:molecules21111608. [PMID: 27886118 PMCID: PMC6274245 DOI: 10.3390/molecules21111608] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022] Open
Abstract
The remarkable complexity of cancer involving multiple mechanisms of action and specific organs led researchers Hanahan and Weinberg to distinguish biological capabilities acquired by cancer cells during the multistep development of human tumors to simplify its understanding. These characteristic hallmarks include the abilities to sustain proliferative signaling, evade growth suppressors, resist cell death, enable replicative immortality, induce angiogenesis, activate invasion and metastasis, avoid immune destruction, and deregulate cellular energetics. Furthermore, two important characteristics of tumor cells that facilitate the acquisition of emerging hallmarks are tumor-promoting inflammation and genome instability. To treat a multifactorial disease such as cancer, a combination treatment strategy seems to be the best approach. Here we focus on natural histone deacetylase inhibitors (HDACi), their clinical uses as well as synergies with modulators of the pro-inflammatory transcription factor signaling pathways.
Collapse
Affiliation(s)
- Hélène Losson
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, 9 Rue Edward Steichen, Luxembourg L-2540, Luxembourg.
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, 9 Rue Edward Steichen, Luxembourg L-2540, Luxembourg.
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, 9 Rue Edward Steichen, Luxembourg L-2540, Luxembourg.
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Building 29 Room 223, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
169
|
Choubey SK, Jeyaraman J. A mechanistic approach to explore novel HDAC1 inhibitor using pharmacophore modeling, 3D- QSAR analysis, molecular docking, density functional and molecular dynamics simulation study. J Mol Graph Model 2016; 70:54-69. [DOI: 10.1016/j.jmgm.2016.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
|
170
|
Aramsangtienchai P, Spiegelman NA, He B, Miller SP, Dai L, Zhao Y, Lin H. HDAC8 Catalyzes the Hydrolysis of Long Chain Fatty Acyl Lysine. ACS Chem Biol 2016; 11:2685-2692. [PMID: 27459069 DOI: 10.1021/acschembio.6b00396] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The histone deacetylase (HDAC) family regulates many biological pathways through the deacetylation of lysine residues on histone and nonhistone proteins. Mammals have 18 HDACs that are classified into four classes. Class I, II, and IV are zinc-dependent, while class III is nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacetylase or sirtuins. HDAC8, a class I HDAC family member, has been shown to have low deacetylation activity compared to other HDACs in vitro. Recent studies showed that several sirtuins, with low deacetylase activities, can actually hydrolyze other acyl lysine modifications more efficiently. Inspired by this, we tested the activity of HDAC8 using a variety of different acyl lysine peptides. Screening a panel of peptides with different acyl lysine modifications, we found that HDAC8 can catalyze the removal of acyl groups with 2-16 carbons from lysine 9 of the histone H3 peptide (H3K9). Interestingly, the catalytic efficiencies (kcat/Km) of HDAC8 on octanoyl, dodecanoyl, and myristoyl lysine are several-fold better than that on acetyl lysine. The increased catalytic efficiencies of HDAC8 on larger fatty acyl groups are due to the much lower Km values. T-cell leukemia Jurkat cells treated with a HDAC8 specific inhibitor, PCI-34051, exhibited an increase in global fatty acylation compared to control treatment. Thus, the de-fatty-acylation activity of HDAC8 is likely physiologically relevant. This is the first report of a zinc-dependent HDAC with de-fatty-acylation activity, and identification of HDAC8 de-fatty-acylation targets will help to further understand the function of HDAC8 and protein lysine fatty acylation.
Collapse
Affiliation(s)
- Pornpun Aramsangtienchai
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Nicole A. Spiegelman
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Bin He
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Seth P. Miller
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lunzhi Dai
- Ben
May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yingming Zhao
- Ben
May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Hening Lin
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Howard
Hughes Medical Institute, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
171
|
S Franco S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, Dinnyés A. In vitro models of cancer stem cells and clinical applications. BMC Cancer 2016; 16:738. [PMID: 27766946 PMCID: PMC5073996 DOI: 10.1186/s12885-016-2774-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer cells, stem cells and cancer stem cells have for a long time played a significant role in the biomedical sciences. Though cancer therapy is more effective than it was a few years ago, the truth is that still none of the current non-surgical treatments can cure cancer effectively. The reason could be due to the subpopulation called “cancer stem cells” (CSCs), being defined as those cells within a tumour that have properties of stem cells: self-renewal and the ability for differentiation into multiple cell types that occur in tumours. The phenomenon of CSCs is based on their resistance to many of the current cancer therapies, which results in tumour relapse. Although further investigation regarding CSCs is still needed, there is already evidence that these cells may play an important role in the prognosis of cancer, progression and therapeutic strategy. Therefore, long-term patient survival may depend on the elimination of CSCs. Consequently, isolation of pure CSC populations or reprogramming of cancer cells into CSCs, from cancer cell lines or primary tumours, would be a useful tool to gain an in-depth knowledge about heterogeneity and plasticity of CSC phenotypes and therefore carcinogenesis. Herein, we will discuss current CSC models, methods used to characterize CSCs, candidate markers, characteristic signalling pathways and clinical applications of CSCs. Some examples of CSC-specific treatments that are currently in early clinical phases will also be presented in this review.
Collapse
Affiliation(s)
- Sara S Franco
- Szent István University, Gödöllö, Hungary.,Biotalentum Ltd., Gödöllö, Hungary
| | | | - Maria S Iliou
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ali Mobasheri
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - András Dinnyés
- Szent István University, Gödöllö, Hungary. .,Biotalentum Ltd., Gödöllö, Hungary. .,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
172
|
Ghebes CA, van Lente J, Post JN, Saris DBF, Fernandes H. High-Throughput Screening Assay Identifies Small Molecules Capable of Modulating the BMP-2 and TGF-β1 Signaling Pathway. SLAS DISCOVERY 2016; 22:40-50. [PMID: 27628690 DOI: 10.1177/1087057116669346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Modulating the bone morphogenetic protein 2 (BMP-2) and transforming growth factor-β1 (TGF-β1) signaling pathways is essential during tendon/ligament (T/L) healing. Unfortunately, growth factor delivery in situ is far from trivial and, in many cases, the necessary growth factors are not approved for clinical use. Here we used a BMP-2 and a TGF-β1 reporter cell line to screen a library of 1280 Food and Drug Administration-approved small molecules and identify modulators of both signaling pathways. We identified four compounds capable of modulating BMP and TGF signaling on primary human tendon-derived cells (huTCs) and describe their effects on proliferation and differentiation of these cells.
Collapse
Affiliation(s)
- Corina-Adriana Ghebes
- 1 MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jéré van Lente
- 1 MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Janine Nicole Post
- 1 MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Daniel B F Saris
- 1 MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.,2 Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hugo Fernandes
- 1 MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.,3 Center for Neuroscience and Cell Biology (CNC), Stem Cells and Drug Screening Lab, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
173
|
Colis LC, Herzon SB. Synergistic potentiation of (-)-lomaiviticin A cytotoxicity by the ATR inhibitor VE-821. Bioorg Med Chem Lett 2016; 26:3122-3126. [PMID: 27177826 PMCID: PMC4899226 DOI: 10.1016/j.bmcl.2016.04.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 11/23/2022]
Abstract
(-)-Lomaiviticin A (1) is a cytotoxic bacterial metabolite that induces double-strand breaks in DNA. Here we show that the cytotoxicity of (-)-lomaiviticin A (1) is synergistically potentiated in the presence of VE-821 (7), an inhibitor of ataxia telangiectasia and Rad3-related protein (ATR). While 0.5nM 1 or 10μM 7 alone are non-lethal to K562 cells, co-incubation of the two leads to high levels of cell kill (81% and 94% after 24 and 48h, respectively). Mechanistic data indicate that cells treated with 1 and 7 suffer extensive DNA double-strand breaks and apoptosis. These data suggest combinations of 1 and 7 may be a valuable chemotherapeutic strategy.
Collapse
Affiliation(s)
- Laureen C Colis
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT 06520, United States; Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
174
|
Önder Ö, Sidoli S, Carroll M, Garcia BA. Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Rev Proteomics 2016; 12:499-517. [PMID: 26400466 DOI: 10.1586/14789450.2015.1084231] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chromatin biology and epigenetics are scientific fields that are rapid expanding due to their fundamental role in understanding cell development, heritable characters and progression of diseases. Histone post-translational modifications (PTMs) are major regulators of the epigenetic machinery due to their ability to modulate gene expression, DNA repair and chromosome condensation. Large-scale strategies based on mass spectrometry have been impressively improved in the last decade, so that global changes of histone PTM abundances are quantifiable with nearly routine proteomics analyses and it is now possible to determine combinatorial patterns of modifications. Presented here is an overview of the most utilized and newly developed proteomics strategies for histone PTM characterization and a number of case studies where epigenetic mechanisms have been comprehensively characterized. Moreover, a number of current epigenetic therapies are illustrated, with an emphasis on cancer.
Collapse
Affiliation(s)
- Özlem Önder
- a 1 Division of Hematology and Oncology, Philadelphia, 19104, USA.,b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simone Sidoli
- b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin Carroll
- a 1 Division of Hematology and Oncology, Philadelphia, 19104, USA
| | - Benjamin A Garcia
- b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
175
|
Hegde M, Mantelingu K, Pandey M, Pavankumar CS, Rangappa KS, Raghavan SC. Combinatorial Study of a Novel Poly (ADP-ribose) Polymerase Inhibitor and an HDAC Inhibitor, SAHA, in Leukemic Cell Lines. Target Oncol 2016; 11:655-665. [DOI: 10.1007/s11523-016-0441-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
176
|
Newbold A, Falkenberg KJ, Prince HM, Johnstone RW. How do tumor cells respond to HDAC inhibition? FEBS J 2016; 283:4032-4046. [PMID: 27112360 DOI: 10.1111/febs.13746] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/30/2016] [Accepted: 04/22/2016] [Indexed: 02/06/2023]
Abstract
It is now well recognized that mutations, deregulated expression, and aberrant recruitment of epigenetic readers, writers, and erasers are fundamentally important processes in the onset and maintenance of many human tumors. The molecular, biological, and biochemical characteristics of a particular class of epigenetic erasers, the histone deacetylases (HDACs), have been extensively studied and small-molecule HDAC inhibitors (HDACis) have now been clinically approved for the treatment of human hemopoietic malignancies. This review explores our current understanding of the biological and molecular effects on tumor cells following HDACi treatment. The predominant responses include induction of tumor cell death and inhibition of proliferation that in experimental models have been linked to therapeutic efficacy. However, tumor cell-intrinsic responses to HDACi, including modulating tumor immunogenicity have also been described and may have substantial roles in mediating the antitumor effects of HDACi. We posit that the field has failed to fully reconcile the biological consequences of exposure to HDACis with the molecular events that underpin these responses, however progress is being made. Understanding the pleiotrophic activities of HDACis on tumor cells will hopefully fast track the development of more potent and selective HDACi that may be used alone or in combination to improve patient outcomes.
Collapse
Affiliation(s)
- Andrea Newbold
- Cancer Therapeutics Program, The Peter MacCallum Cancer Centre, East Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | | | - H Miles Prince
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia.,Division of Cancer Medicine, The Peter MacCallum Cancer Centre, East Melbourne, Vic., Australia
| | - Ricky W Johnstone
- Cancer Therapeutics Program, The Peter MacCallum Cancer Centre, East Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
177
|
Bian J, Luan Y, Wang C, Zhang L. Discovery of N-hydroxy-4-(1H-indol-3-yl)butanamide as a histone deacetylase inhibitor. Drug Discov Ther 2016; 10:163-6. [PMID: 27169369 DOI: 10.5582/ddt.2016.01031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The indoles plant growth hormones have exhibited potentially antitumor activities. However, the targets of these indoles have not been clearly elucidated. By introduction of hydroxamic acid group to the structure of indolebutyric acid, the derived molecule (IBHA) exhibited potent HDAC2 (IC50 value of 0.32 ± 0.02 µM) and HDAC3 (IC50 value of 0.14 ± 0.01 µM) inhibitory activities compared with SAHA (IC50 value of 1.25 ± 0.06 µM and 0.97 ± 0.04 µM against HDAC2 and HDAC3). In the antiproliferative assays, the tested hematologic cell lines (U937 and K562) are more sensitive to IBHA than the solid tumor cell lines (MDA-MB-231 and PC-3). In the docking studies, the derived molecule (IBHA) could bind to the active site of human HDAC2 and HDAC3 by strong H-bond interactions and hydrophobic interactions. Pharmacophore mapping results revealed that properties of IBHA matches the receptor (HDAC3) based pharmacophore model.
Collapse
|
178
|
Nilsson LM, Green LC, Muralidharan SV, Demir D, Welin M, Bhadury J, Logan DT, Walse B, Nilsson JA. Cancer Differentiating Agent Hexamethylene Bisacetamide Inhibits BET Bromodomain Proteins. Cancer Res 2016; 76:2376-83. [PMID: 26941288 DOI: 10.1158/0008-5472.can-15-2721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/18/2016] [Indexed: 11/16/2022]
Abstract
Agents that trigger cell differentiation are highly efficacious in treating certain cancers, but such approaches are not generally effective in most malignancies. Compounds such as DMSO and hexamethylene bisacetamide (HMBA) have been used to induce differentiation in experimental systems, but their mechanisms of action and potential range of uses on that basis have not been developed. Here, we show that HMBA, a compound first tested in the oncology clinic over 25 years ago, acts as a selective bromodomain inhibitor. Biochemical and structural studies revealed an affinity of HMBA for the second bromodomain of BET proteins. Accordingly, both HMBA and the prototype BET inhibitor JQ1 induced differentiation of mouse erythroleukemia cells. As expected of a BET inhibitor, HMBA displaced BET proteins from chromatin, caused massive transcriptional changes, and triggered cell-cycle arrest and apoptosis in Myc-induced B-cell lymphoma cells. Furthermore, HMBA exerted anticancer effects in vivo in mouse models of Myc-driven B-cell lymphoma. This study illuminates the function of an early anticancer agent and suggests an intersection with ongoing clinical trials of BET inhibitor, with several implications for predicting patient selection and response rates to this therapy and starting points for generating BD2-selective BET inhibitors. Cancer Res; 76(8); 2376-83. ©2016 AACR.
Collapse
Affiliation(s)
- Lisa M Nilsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Cancer Center at University of Gothenburg, Gothenburg, Sweden
| | - Lydia C Green
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Cancer Center at University of Gothenburg, Gothenburg, Sweden
| | - Somsundar Veppil Muralidharan
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Cancer Center at University of Gothenburg, Gothenburg, Sweden
| | - Dağsu Demir
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Cancer Center at University of Gothenburg, Gothenburg, Sweden
| | | | - Joydeep Bhadury
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Cancer Center at University of Gothenburg, Gothenburg, Sweden
| | | | | | - Jonas A Nilsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Cancer Center at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
179
|
Reddy DN, Ballante F, Chuang T, Pirolli A, Marrocco B, Marshall GR. Design and Synthesis of Simplified Largazole Analogues as Isoform-Selective Human Lysine Deacetylase Inhibitors. J Med Chem 2016; 59:1613-33. [PMID: 26681404 DOI: 10.1021/acs.jmedchem.5b01632] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Selective inhibition of KDAC isoforms while maintaining potency remains a challenge. Using the largazole macrocyclic depsipeptide structure as a starting point for developing new KDACIs with increased selectivity, a combination of four different simplified largazole analogue (SLA) scaffolds with diverse zinc-binding groups (for a total of 60 compounds) were designed, synthesized, and evaluated against class I KDACs 1, 3, and 8, and class II KDAC6. Experimental evidence as well as molecular docking poses converged to establish the cyclic tetrapeptides (CTPs) as the primary determinant of both potency and selectivity by influencing the correct alignment of the zinc-binding group in the KDAC active site, providing a further basis for developing new KDACIs of higher isoform selectivity and potency.
Collapse
Affiliation(s)
- Damodara N Reddy
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 700 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 700 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Timothy Chuang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 700 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Adele Pirolli
- Rome Center for Molecular Design, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , P. le A. Moro 5, 00185 Roma, Italy
| | - Biagina Marrocco
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , P. le A. Moro 5, 00185 Roma, Italy
| | - Garland R Marshall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , 700 South Euclid Avenue, St. Louis, Missouri 63110, United States
| |
Collapse
|
180
|
Orally available stilbene derivatives as potent HDAC inhibitors with antiproliferative activities and antitumor effects in human tumor xenografts. Eur J Med Chem 2016; 108:274-286. [DOI: 10.1016/j.ejmech.2015.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/05/2015] [Accepted: 11/07/2015] [Indexed: 11/22/2022]
|
181
|
Li X, Li C, Sun G. Histone Acetylation and Its Modifiers in the Pathogenesis of Diabetic Nephropathy. J Diabetes Res 2016; 2016:4065382. [PMID: 27379253 PMCID: PMC4917685 DOI: 10.1155/2016/4065382] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
Diabetic nephropathy (DN) remains a leading cause of mortality worldwide despite advances in its prevention and management. A comprehensive understanding of factors contributing to DN is required to develop more effective therapeutic options. It is becoming more evident that histone acetylation (HAc), as one of the epigenetic mechanisms, is thought to be associated with the etiology of diabetic vascular complications such as diabetic retinopathy (DR), diabetic cardiomyopathy (DCM), and DN. Histone acetylases (HATs) and histone deacetylases (HDACs) are the well-known regulators of reversible acetylation in the amino-terminal domains of histone and nonhistone proteins. In DN, however, the roles of histone acetylation (HAc) and these enzymes are still controversial. Some new evidence has revealed that HATs and HDACs inhibitors are renoprotective in cellular and animal models of DN, while, on the other hand, upregulation of HAc has been implicated in the pathogenesis of DN. In this review, we focus on the recent advances on the roles of HAc and their covalent enzymes in the development and progression of DN in certain cellular processes including fibrosis, inflammation, hypertrophy, and oxidative stress and discuss how targeting these enzymes and their inhibitors can ultimately lead to the therapeutic approaches for treating DN.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chaoyuan Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guangdong Sun
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
- *Guangdong Sun:
| |
Collapse
|
182
|
Frycz BA, Murawa D, Borejsza-Wysocki M, Wichtowski M, Spychała A, Marciniak R, Murawa P, Drews M, Jagodziński PP. Transcript level of AKR1C3 is down-regulated in gastric cancer. Biochem Cell Biol 2015; 94:138-46. [PMID: 27019068 DOI: 10.1139/bcb-2015-0096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Steroid hormones have been shown to play a role in gastric carcinogenesis. Large amounts of steroid hormones are locally produced in the peripheral tissues of both genders. Type 5 of 17β-hydroxysteroid dehydrogenase, encoded by the AKR1C3 gene, plays a pivotal role in both androgen and estrogen metabolism, and its expression was found to be deregulated in different cancers. In this study we measured AKR1C3 transcript and protein levels in nontumoral and primary tumoral gastric tissues, and evaluated their association with some clinicopathological features of gastric cancer (GC). We found decreased levels of AKR1C3 transcript (p < 0.0001) and protein (p = 0.0021) in GC tissues compared with the adjacent, apparently histopathologically normal, mucosa. Lower levels of AKR1C3 transcript were observed in diffuse and intestinal types of GC, whereas AKR1C3 protein levels were decreased in tumors with multisite localization, in diffuse histological type, T3, T4, and G3 grades. We also determined the effect of the histone deacetylase inhibitor sodium butyrate (NaBu) on AKR1C3 expression in EPG 85-257 and HGC-27 GC cell lines. We found that NaBu elevates the levels of both AKR1C3 transcript and protein in the cell lines we investigated. Together, our results suggest that decreased expression of AKR1C3 may be involved in development of GC and can be restored by NaBu.
Collapse
Affiliation(s)
- Bartosz Adam Frycz
- a Department of Biochemistry and Molecular Biology, University of Medical Sciences, Poznań, Poland
| | - Dawid Murawa
- b First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, Poland.,c Regional Specialist Hospital, Research and Development Centre, Wrocław, Poland
| | - Maciej Borejsza-Wysocki
- d Department of General, Endocrinological Surgery and Gastroenterological Oncology, University of Medical Sciences, Poznań, Poland
| | - Mateusz Wichtowski
- b First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, Poland
| | - Arkadiusz Spychała
- b First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, Poland
| | - Ryszard Marciniak
- d Department of General, Endocrinological Surgery and Gastroenterological Oncology, University of Medical Sciences, Poznań, Poland
| | - Paweł Murawa
- b First Department of Surgical Oncology and General Surgery, Greater Poland Cancer Centre, Poznań, Poland
| | - Michał Drews
- d Department of General, Endocrinological Surgery and Gastroenterological Oncology, University of Medical Sciences, Poznań, Poland
| | - Paweł Piotr Jagodziński
- a Department of Biochemistry and Molecular Biology, University of Medical Sciences, Poznań, Poland
| |
Collapse
|
183
|
Liao D. Profiling technologies for the identification and characterization of small-molecule histone deacetylase inhibitors. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 18:24-8. [PMID: 26723889 DOI: 10.1016/j.ddtec.2015.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 10/07/2015] [Indexed: 01/21/2023]
Abstract
Histone deacetylases (HDACs) are promising drug targets for treating cancer, neurologic, inflammatory and metabolic diseases. Four small molecule inhibitors of HDACs have gained regulatory approval for treating lymphomas and multiple myelomas. Highly sensitive in vitro and cell-based profiling technologies have been developed to discover HDAC inhibitors (HDACi) and characterize their inhibitory potency, target-binding specificity and kinetics. In particular, proteomic profiling can define the specificity of an inhibitor at a single residue resolution. Chemoproteomic profiling can determine the potency, specificity and binding kinetics of an inhibitor on a specific HDAC complex in cell extracts. As inhibitors with new chemical scaffolds are of particular interest to improve HDAC isoform-specificity and pharmaceutical properties, effective profiling technologies will continue to have important utility. Here we briefly review recent developments of HDAC inhibitor profiling technologies and discuss distinct features of various technologies.
Collapse
Affiliation(s)
- Daiqing Liao
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, UF Health Cancer Center, UF Genetics Institute, Gainesville, FL 32610-0235, United States.
| |
Collapse
|
184
|
Howitz KT. Screening and profiling assays for HDACs and sirtuins. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 18:38-48. [PMID: 26723891 DOI: 10.1016/j.ddtec.2015.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
Epigenetic factors are enzymes or proteins that confer, remove or recognize covalent modifications to chromatin DNA or proteins. They can be divided into three broad groups, commonly referred to as the 'writers', 'erasers' and 'readers'. The HDACs and sirtuins, which remove acetyl groups from the ɛ-amino of protein lysine residues, fall into the 'eraser' category. Due to their important effects on gene expression and involvement in various disease states, these enzymes have been the subjects of many assay development efforts in recent years. Commonly used techniques include mass spectrometry, antibody-based methods and protease-coupled assays with fluorogenic peptide substrates. Recent advances include the development of synthetic substrates for the assay of various newly discovered non-acetyl deacylation activities among the sirtuins.
Collapse
Affiliation(s)
- Konrad T Howitz
- Reaction Biology Corporation, One Great Valley Parkway, Suite 2, Malvern, PA 19355, USA.
| |
Collapse
|
185
|
Novel RNA Duplex Locks HIV-1 in a Latent State via Chromatin-mediated Transcriptional Silencing. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e261. [PMID: 26506039 PMCID: PMC4881759 DOI: 10.1038/mtna.2015.31] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/17/2015] [Indexed: 11/18/2022]
Abstract
Transcriptional gene silencing (TGS) of mammalian genes can be induced by short interfering RNA (siRNA) targeting promoter regions. We previously reported potent TGS of HIV-1 by siRNA (PromA), which targets tandem NF-κB motifs within the viral 5′LTR. In this study, we screened a siRNA panel with the aim of identifying novel 5′LTR targets, to provide multiplexing potential with enhanced viral silencing and application toward developing alternate therapeutic strategies. Systematic examination identified a novel siRNA target, si143, confirmed to induce TGS as the silencing mechanism. TGS was prolonged with virus suppression >12 days, despite a limited ability to induce post- TGS. Epigenetic changes associated with silencing were suggested by partial reversal by histone deacetylase inhibitors and confirmed by chromatin immunoprecipitation analyses, which showed induction of H3K27me3 and H3K9me3, reduction in H3K9Ac, and recruitment of argonaute-1, all characteristic marks of heterochromatin and TGS. Together, these epigenetic changes mimic those associated with HIV-1 latency. Further, robust resistance to reactivation was observed in the J-Lat 9.2 cell latency model, when transduced with shPromA and/or sh143. These data support si/shRNA-mediated TGS approaches to HIV-1 and provide alternate targets to pursue a functional cure, whereby the viral reservoir is locked in latency following antiretroviral therapy cessation.
Collapse
|
186
|
Histone deacetylase inhibitors and epigenetic regulation in lymphoid malignancies. Invest New Drugs 2015; 33:1280-91. [PMID: 26423245 DOI: 10.1007/s10637-015-0290-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
A vast majority of lymphomas and leukaemias are results of translocations. These translocations produce various genetic and epigenetic changes that lead to oncogenesis. This opens an opportunity to use a relatively new class of anti-cancer agents, inhibitors of histone deacetylases (HDACi) to target lymphoid malignancies. Surprisingly, the rational basis for treatment of lymphomas with HDACi is far from clear, although some positive results have been obtained. Here we analyze the effect of histone deacetylase (HDAC) inhibitors on lymphoid malignancies.
Collapse
|
187
|
Ahmadzadeh A, Khodadi E, Shahjahani M, Bertacchini J, Vosoughi T, Saki N. The Role of HDACs as Leukemia Therapy Targets using HDI. Int J Hematol Oncol Stem Cell Res 2015; 9:203-14. [PMID: 26865932 PMCID: PMC4748691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/22/2015] [Indexed: 12/02/2022] Open
Abstract
Histone deacetylases (HDACs) are the enzymes causing deacetylation of histone and non-histone substrates. Histone deacetylase inhibitors (HDIs) are a family of drugs eliminating the effect of HDACs in malignant cells via inhibition of HDACs. Due to extensive effects upon gene expression through interference with fusion genes and transcription factors, HDACs cause proliferation and migration of malignant cells, inhibiting apoptosis in these cells via tumor suppressor genes. Over expression evaluation of HDACs in leukemias may be a new approach for diagnosis of leukemia, which can present new targets for leukemia therapy. HDIs inhibit HDACs, increase acetylation in histones, cause up- or down regulation in some genes and result in differentiation, cell cycle arrest and apoptosis induction in malignant cells via cytotoxic effects. Progress in identification of new HDIs capable of tracking several targets in the cell can result in novel achievements in treatment and increase survival in patients. In this review, we examine the role of HDACs as therapeutic targets in various types of leukemia as well as the role of HDIs in inhibition of HDACs for treatment of these malignancies.
Collapse
Affiliation(s)
- Ahmad Ahmadzadeh
- Health research institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elahe Khodadi
- Health research institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shahjahani
- Health research institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Tina Vosoughi
- Health research institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health research institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
188
|
Creation of a histone deacetylase 6 inhibitor and its biological effects [corrected]. Proc Natl Acad Sci U S A 2015; 112:12005-10. [PMID: 26371309 DOI: 10.1073/pnas.1515882112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report the development of a potent, selective histone deacetylase 6 (HDAC6) inhibitor. This HDAC6 inhibitor blocks growth of normal and transformed cells but does not induce death of normal cells. The HDAC6 inhibitor alone is as effective as paclitaxel in anticancer activity in tumor-bearing mice.
Collapse
|
189
|
Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells. Cancers (Basel) 2015; 7:1622-42. [PMID: 26295410 PMCID: PMC4586787 DOI: 10.3390/cancers7030854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 01/02/2023] Open
Abstract
The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre- and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to -independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets.
Collapse
|
190
|
Carrillo AK, Guiguemde WA, Guy RK. Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT). Bioorg Med Chem 2015; 23:5151-5. [DOI: 10.1016/j.bmc.2014.12.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/19/2014] [Accepted: 12/28/2014] [Indexed: 01/31/2023]
|
191
|
Zhou H, Jiang S, Chen J, Su SB. Suberoylanilide hydroxamic acid suppresses inflammation-induced neovascularization. Can J Physiol Pharmacol 2015; 92:879-85. [PMID: 25272091 DOI: 10.1139/cjpp-2014-0117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Histone deacetylases (HDACs) regulate gene transcription by modifying the acetylation of histone and nonhistone proteins. Deregulated expression of HDACs has been implicated in tumorigenesis and angiogenesis. In this study, we examined the effect of suberoylanilide hydroxamic acid (SAHA), a potent inhibitor of HDACs, on inflammatory corneal angiogenesis. In a mouse model of alkali-induced corneal neovascularization (CNV), topical application of SAHA to the injured corneas attenuated CNV. In addition, in vivo treatment with SAHA downregulated the expression of the pro-angiogenic factors vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor beta 1 (TGFβ1), and epidermal growth factor (EGF), but upregulated the expression of the anti-angiogenic factors thrombospondin (TSP)-1, TSP-2, and ADAMTS-1 in the injured corneas. Furthermore, SAHA inhibited the expression of pro-angiogenic factors, migration, proliferation, and tube formation by human microvascular endothelial cells (HEMC-1) in vitro. These data indicate that SAHA has therapeutic potential for CNV.
Collapse
Affiliation(s)
- Hongyan Zhou
- a The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Sun Yat-sen University, 54 S Xianlie Road, Guangzhou 510060, China
| | | | | | | |
Collapse
|
192
|
Design, synthesis and antiproliferative activities of novel benzamides derivatives as HDAC inhibitors. Eur J Med Chem 2015; 100:270-6. [DOI: 10.1016/j.ejmech.2015.05.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/23/2015] [Accepted: 05/30/2015] [Indexed: 11/19/2022]
|
193
|
Abstract
SIGNIFICANCE Epigenetic inactivation of pivotal genes involved in cell growth is a hallmark of human pathologies, in particular cancer. Histone acetylation balance obtained through opposing actions of histone deacetylases (HDACs) and histone acetyltransferases is one epigenetic mechanism controlling gene expression and is, thus, associated with disease etiology and progression. Interfering pharmacologically with HDAC activity can correct abnormalities in cell proliferation, migration, vascularization, and death. RECENT ADVANCES Histone deacetylase inhibitors (HDACi) represent a new class of cytostatic agents that interfere with the function of HDACs and are able to increase gene expression by indirectly inducing histone acetylation. Several HDACi, alone or in combination with DNA-demethylating agents, chemopreventive, or classical chemotherapeutic drugs, are currently being used in clinical trials for solid and hematological malignancies, and are, thus, promising candidates for cancer therapy. CRITICAL ISSUES (i) Non-specific (off-target) HDACi effects due to activities unassociated with HDAC inhibition. (ii) Advantages/disadvantages of non-selective or isoform-directed HDACi. (iii) Limited number of response-predictive biomarkers. (iv) Toxicity leading to dysfunction of critical biological processes. FUTURE DIRECTIONS Selective HDACi could achieve enhanced clinical utility by reducing or eliminating the serious side effects associated with current first-generation non-selective HDACi. Isoform-selective and pan-HDACi candidates might benefit from the identification of biomarkers, enabling better patient stratification and prediction of response to treatment.
Collapse
Affiliation(s)
- Rosaria Benedetti
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy
| | - Mariarosaria Conte
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy
| | - Lucia Altucci
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy .,2 Istituto di Genetica e Biofisica "Adriano Buzzati-Traverso," Napoli, Italy
| |
Collapse
|
194
|
Bier D, Thiel P, Briels J, Ottmann C. Stabilization of Protein-Protein Interactions in chemical biology and drug discovery. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:10-9. [PMID: 26093250 DOI: 10.1016/j.pbiomolbio.2015.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023]
Abstract
More than 300,000 Protein-Protein Interactions (PPIs) can be found in human cells. This number is significantly larger than the number of single proteins, which are the classical targets for pharmacological intervention. Hence, specific and potent modulation of PPIs by small, drug-like molecules would tremendously enlarge the "druggable genome" enabling novel ways of drug discovery for essentially every human disease. This strategy is especially promising in diseases with difficult targets like intrinsically disordered proteins or transcription factors, for example neurodegeneration or metabolic diseases. Whereas the potential of PPI modulation has been recognized in terms of the development of inhibitors that disrupt or prevent a binary protein complex, the opposite (or complementary) strategy to stabilize PPIs has not yet been realized in a systematic manner. This fact is rather surprising given the number of impressive natural product examples that confer their activity by stabilizing specific PPIs. In addition, in recent years more and more examples of synthetic molecules are being published that work as PPI stabilizers, despite the fact that in the majority they initially have not been designed as such. Here, we describe examples from both the natural products as well as the synthetic molecules advocating for a stronger consideration of the PPI stabilization approach in chemical biology and drug discovery.
Collapse
Affiliation(s)
- David Bier
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands; Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117 Essen, Germany
| | - Philipp Thiel
- Applied Bioinformatics, Center for Bioinformatics, and Dept. of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Jeroen Briels
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands; Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117 Essen, Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands; Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117 Essen, Germany.
| |
Collapse
|
195
|
Kelly WK, Marks P, Richon VM. CCR 20th Anniversary Commentary: Vorinostat—Gateway to Epigenetic Therapy. Clin Cancer Res 2015; 21:2198-200. [DOI: 10.1158/1078-0432.ccr-14-2556] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
196
|
HDAC Family Members Intertwined in the Regulation of Autophagy: A Druggable Vulnerability in Aggressive Tumor Entities. Cells 2015; 4:135-68. [PMID: 25915736 PMCID: PMC4493453 DOI: 10.3390/cells4020135] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 12/21/2022] Open
Abstract
The exploitation of autophagy by some cancer entities to support survival and dodge death has been well-described. Though its role as a constitutive process is important in normal, healthy cells, in the milieu of malignantly transformed and highly proliferative cells, autophagy is critical for escaping metabolic and genetic stressors. In recent years, the importance of histone deacetylases (HDACs) in cancer biology has been heavily investigated, and the enzyme family has been shown to play a role in autophagy, too. HDAC inhibitors (HDACi) are being integrated into cancer therapy and clinical trials are ongoing. The effect of HDACi on autophagy and, conversely, the effect of autophagy on HDACi efficacy are currently under investigation. With the development of HDACi that are able to selectively target individual HDAC isozymes, there is great potential for specific therapy that has more well-defined effects on cancer biology and also minimizes toxicity. Here, the role of autophagy in the context of cancer and the interplay of this process with HDACs will be summarized. Identification of key HDAC isozymes involved in autophagy and the ability to target specific isozymes yields the potential to cripple and ultimately eliminate malignant cells depending on autophagy as a survival mechanism.
Collapse
|
197
|
An efficient synthesis of SK-658 and its analogs as potent histone deacetylase inhibitors. Bioorg Chem 2015; 59:145-50. [DOI: 10.1016/j.bioorg.2015.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/03/2015] [Accepted: 02/08/2015] [Indexed: 11/18/2022]
|
198
|
Sborov D, Chen JL. Targeted therapy in sarcomas other than GIST tumors. J Surg Oncol 2015; 111:632-40. [PMID: 25330750 PMCID: PMC4436975 DOI: 10.1002/jso.23802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/13/2014] [Indexed: 01/01/2023]
Abstract
Non-GIST soft tissue sarcomas are a heterogeneous grouping of mesenchymal tumors that comprise less than 1% of adult malignancies. Treatment continues to be based on cytotoxic chemotherapy regimens. However, characterization of the molecular pathway deregulations that drive these tumors has led to the emergence of more customized treatment options. In this review, we focus on the multitude of molecular inhibitors targeting angiogenesis and cell cycle pathways being tested in clinical trials.
Collapse
Affiliation(s)
- Douglas Sborov
- Hematology and Oncology Fellow, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - James L Chen
- Assistant Professor, Departments of Biomedical Informatics and Internal Medicine (Division of Medical Oncology), The Ohio State University, Columbus, OH, USA
| |
Collapse
|
199
|
Ourailidou ME, Dockerty P, Witte M, Poelarends GJ, Dekker FJ. Metabolic alkene labeling and in vitro detection of histone acylation via the aqueous oxidative Heck reaction. Org Biomol Chem 2015; 13:3648-53. [PMID: 25672493 PMCID: PMC4871226 DOI: 10.1039/c4ob02502d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The detection of protein lysine acylations remains a challenge due to lack of specific antibodies for acylations with various chain lengths. This problem can be addressed by metabolic labeling techniques using carboxylates with reactive functionalities. Subsequent chemoselective reactions with a complementary moiety connected to a detection tag enable the visualization and quantification of the protein lysine acylome. In this study, we present EDTA-Pd(II) as a novel catalyst for the oxidative Heck reaction on protein-bound alkenes, which allows employment of fully aqueous reaction conditions. We used this reaction to monitor histone lysine acylation in vitro after metabolic incorporation of olefinic carboxylates as chemical reporters.
Collapse
Affiliation(s)
- Maria E Ourailidou
- Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
200
|
Mielcarek M, Zielonka D, Carnemolla A, Marcinkowski JT, Guidez F. HDAC4 as a potential therapeutic target in neurodegenerative diseases: a summary of recent achievements. Front Cell Neurosci 2015; 9:42. [PMID: 25759639 PMCID: PMC4338808 DOI: 10.3389/fncel.2015.00042] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/28/2015] [Indexed: 12/13/2022] Open
Abstract
For the past decade protein acetylation has been shown to be a crucial post-transcriptional modification involved in the regulation of protein functions. Histone acetyltransferases (HATs) mediate acetylation of histones which results in the nucleosomal relaxation associated with gene expression. The reverse reaction, histone deacetylation, is mediated by histone deacetylases (HDACs) leading to chromatin condensation followed by transcriptional repression. HDACs are divided into distinct classes: I, IIa, IIb, III, and IV, on the basis of size and sequence homology, as well as formation of distinct repressor complexes. Implications of HDACs in many diseases, such as cancer, heart failure, and neurodegeneration, have identified these molecules as unique and attractive therapeutic targets. The emergence of HDAC4 among the members of class IIa family as a major player in synaptic plasticity raises important questions about its functions in the brain. The characterization of HDAC4 specific substrates and molecular partners in the brain will not only provide a better understanding of HDAC4 biological functions but also might help to develop new therapeutic strategies to target numerous malignancies. In this review we highlight and summarize recent achievements in understanding the biological role of HDAC4 in neurodegenerative processes.
Collapse
Affiliation(s)
- Michal Mielcarek
- Department of Medical and Molecular Genetics, King's College London London, UK
| | - Daniel Zielonka
- Department of Social Medicine, Poznan University of Medical Sciences Poznan, Poland
| | - Alisia Carnemolla
- Department of Medical and Molecular Genetics, King's College London London, UK
| | - Jerzy T Marcinkowski
- Department of Social Medicine, Poznan University of Medical Sciences Poznan, Poland
| | - Fabien Guidez
- INSERM UMRS 1131, Université Paris Diderot, Institut Universitaire d'hématologie (IUH), Hôpital Saint-Louis Paris, France
| |
Collapse
|