151
|
Snook RR, Chapman T, Moore PJ, Wedell N, Crudgington HS. Interactions between the sexes: new perspectives on sexual selection and reproductive isolation. Evol Ecol 2007. [DOI: 10.1007/s10682-007-9215-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
152
|
Calkins JD, El-Hinn D, Swanson WJ. Adaptive evolution in an avian reproductive protein: ZP3. J Mol Evol 2007; 65:555-63. [PMID: 17909693 DOI: 10.1007/s00239-007-9034-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/31/2007] [Accepted: 08/17/2007] [Indexed: 10/22/2022]
Abstract
Proteins involved in reproduction appear to be evolving adaptively across taxa. This rapid evolution is thought to be the result of forces involved in sexual selection. One of the most often suggested of these forces is sexual conflict involving sperm competition and polyspermy avoidance. Bird species offer a unique opportunity to test this hypothesis since the avian egg coat tolerates physiological polyspermy, or the penetration of multiple sperm during fertilization, without negative effects on later development. Despite this, and the extensive amount of data gathered on sexual selection in birds, there are limited studies on the patterns of evolution of avian reproductive proteins. Here we present an analysis of the pattern of evolution of Zona Pellucida 3 (ZP3), a protein present on the avian egg coat. We found that, across several galliform and a single anseriform species, ZP3 appears to be diverging by positive adaptive evolution. In an exploratory analysis of portions of the gene in Callipepla californica we also found evidence of a selective sweep at the putative sperm binding region of the protein. In sum, ZP3 in birds, like reproductive proteins in other species, appears to be adaptively evolving. This result suggests that polyspermy avoidance is not sufficient to explain positive Darwinian selection in reproductive proteins across taxonomic groups. Clearly, the inclusion of bird species in the study of reproductive proteins across taxa promises to add greatly to the discussion of the factors driving the widespread phenomenon of adaptive evolution in reproductive proteins.
Collapse
Affiliation(s)
- Jennifer D Calkins
- Department of Genome Science, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
153
|
Mendelson TC, Imhoff VE, Venditti JJ. The accumulation of reproductive barriers during speciation: postmating barriers in two behaviorally isolated species of darters (Percidae: Etheostoma). Evolution 2007; 61:2596-606. [PMID: 17894811 DOI: 10.1111/j.1558-5646.2007.00220.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Identifying the manner in which reproductive barriers accumulate during lineage divergence is central to establishing general principles of species formation. One outstanding question is which isolating mechanisms form the first complete barrier to gene flow in a given lineage or under a particular set of conditions. To identify these initial reproductive barriers requires examining lineages in very early stages of divergence, before multiple reproductive barriers have evolved to completion. We quantified the strength of three postmating barriers in a pair of darter species and compared these estimates to each other and to the strength of behavioral isolation (BI) reported in a previous study. Results reveal no evidence of gametic incompatibility but intermediate levels of conspecific sperm precedence and hybrid inviability. As BI is nearly complete, our analysis comparing the strength of multiple reproductive barriers implicates the evolution of mate choice as central to both the origin and maintenance of these species. Further examination of ecological isolation and hybrid sterility is necessary to determine the role of these barriers in darter speciation.
Collapse
Affiliation(s)
- Tamra C Mendelson
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA.
| | | | | |
Collapse
|
154
|
|
155
|
Levitan DR, Terhorst CP, Fogarty ND. THE RISK OF POLYSPERMY IN THREE CONGENERIC SEA URCHINS AND ITS IMPLICATIONS FOR GAMETIC INCOMPATIBILITY AND REPRODUCTIVE ISOLATION. Evolution 2007; 61:2007-14. [PMID: 17683441 DOI: 10.1111/j.1558-5646.2007.00150.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Developmental failure caused by excess sperm (polyspermy) is thought to be an important mechanism driving the evolution of gamete-recognition proteins, reproductive isolation, and speciation in marine organisms. However, these theories assume that there is heritable variation in the susceptibility to polyspermy and that this variation is related to the overall affinity between sperm and eggs. These assumptions have not been critically examined. We investigated the relationship between ease of fertilization and susceptibility to polyspermy within and among three congeneric sea urchins. The results from laboratory studies indicate that, both within and among species, individuals and species that produce eggs capable of fertilization at relatively low sperm concentrations are more susceptible to polyspermy, whereas individuals and species producing eggs that require higher concentrations of sperm to be fertilized are more resistant to polyspermy. This relationship sets the stage for selection on gamete traits that depend on sperm availability and for sexual conflict that can influence the evolution of gamete-recognition proteins and eventually lead to reproductive isolation.
Collapse
Affiliation(s)
- Don R Levitan
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-1100, USA.
| | | | | |
Collapse
|
156
|
Whiteman EA, Gage MJG. No barriers to fertilization between sympatric colour morphs in the marine species flock Hypoplectrus (Serranidae). J Zool (1987) 2007. [DOI: 10.1111/j.1469-7998.2006.00270.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
157
|
Levitan DR, Fukami H, Jara J, Kline D, McGovern TM, McGhee KE, Swanson CA, Knowlton N. MECHANISMS OF REPRODUCTIVE ISOLATION AMONG SYMPATRIC BROADCAST-SPAWNING CORALS OF THE MONTASTRAEA ANNULARIS SPECIES COMPLEX. Evolution 2007. [DOI: 10.1111/j.0014-3820.2004.tb01647.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
158
|
Aagaard JE, Yi X, MacCoss MJ, Swanson WJ. Rapidly evolving zona pellucida domain proteins are a major component of the vitelline envelope of abalone eggs. Proc Natl Acad Sci U S A 2006; 103:17302-7. [PMID: 17085584 PMCID: PMC1859926 DOI: 10.1073/pnas.0603125103] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins harboring a zona pellucida (ZP) domain are prominent components of vertebrate egg coats. Although less well characterized, the egg coat of the non-vertebrate marine gastropod abalone (Haliotis spp.) is also known to contain a ZP domain protein, raising the possibility of a common molecular basis of metazoan egg coat structures. Egg coat proteins from vertebrate as well as non-vertebrate taxa have been shown to evolve under positive selection. Studied most extensively in the abalone system, coevolution between adaptively diverging egg coat and sperm proteins may contribute to the rapid development of reproductive isolation. Thus, identifying the pattern of evolution among egg coat proteins is important in understanding the role these genes may play in the speciation process. The purpose of the present study is to characterize the constituent proteins of the egg coat [vitelline envelope (VE)] of abalone eggs and to provide preliminary evidence regarding how selection has acted on VE proteins during abalone evolution. A proteomic approach is used to match tandem mass spectra of peptides from purified VE proteins with abalone ovary EST sequences, identifying 9 of 10 ZP domain proteins as components of the VE. Maximum likelihood models of codon evolution suggest positive selection has acted among a subset of amino acids for 6 of these genes. This work provides further evidence of the prominence of ZP proteins as constituents of the egg coat, as well as the prominent role of positive selection in diversification of these reproductive proteins.
Collapse
Affiliation(s)
- Jan E Aagaard
- Department of Genome Sciences, University of Washington, Box 357730, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
159
|
Gasper J, Swanson WJ. Molecular population genetics of the gene encoding the human fertilization protein zonadhesin reveals rapid adaptive evolution. Am J Hum Genet 2006; 79:820-30. [PMID: 17033959 PMCID: PMC1698559 DOI: 10.1086/508473] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 08/10/2006] [Indexed: 02/04/2023] Open
Abstract
A hallmark of positive selection (adaptive evolution) in protein-coding regions is a d(N)/d(S) ratio >1, where d(N) is the number of nonsynonymous substitutions/nonsynonymous sites and d(S) is the number of synonymous substitutions/synonymous sites. Zonadhesin is a male reproductive protein localized on the sperm head, comprising many domains known to be involved in cell-cell interaction or cell adhesion. Previous studies have shown that VWD domains (homologous to the D domains of the von Willebrand factor) are involved directly in binding to the female zona pellucida (ZP) in a species-specific manner. In this study, we sequenced 47 coding exons in 12 primate species and, by using maximum-likelihood methods to determine sites under positive selection, we show that VWD2, membrane/A5 antigen mu receptor, and mucin-like domains in zonadhesin are rapidly evolving and, thus, may be involved in binding to the ZP in a species-specific manner in primates. In addition, polymorphism data from 48 human individuals revealed significant polymorphism-to-divergence heterogeneity and a significant departure from equilibrium-neutral expectations in the frequency spectrum, suggesting balancing selection and positive selection occurring in zonadhesin (ZAN) within human populations. Finally, we observe adaptive evolution in haplotypes segregating for a frameshift mutation that was previously thought to indicate that ZAN was a potential pseudogene.
Collapse
Affiliation(s)
- Joe Gasper
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
160
|
Abstract
Much progress has been made in the past two decades in understanding Darwin's mystery of the origins of species. Applying genomic techniques to the analysis of laboratory crosses and natural populations has helped to determine the genetic basis of barriers to gene flow which create new species. Although new methodologies have not changed the prevailing hypotheses about how species form, they have accelerated the pace of data collection. By facilitating the compilation of case studies, advances in genetic techniques will help to provide answers to the next generation of questions concerning the relative frequency and importance of different processes that cause speciation.
Collapse
Affiliation(s)
- Mohamed A F Noor
- DCMB Group/Biology Department, Duke University, BOX 91000, Durham, North Carolina 27708, USA.
| | | |
Collapse
|
161
|
Riginos C, Wang D, Abrams AJ. Geographic Variation and Positive Selection on M7 Lysin, an Acrosomal Sperm Protein in Mussels (Mytilus spp.). Mol Biol Evol 2006; 23:1952-65. [PMID: 16855010 DOI: 10.1093/molbev/msl062] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Successful fertilization in free-spawning marine organisms depends on the interactions between genes expressed on the surfaces of eggs and sperm. Positive selection frequently characterizes the molecular evolution of such genes, raising the possibility that some common deterministic process drives the evolution of gamete recognition genes and may even be important for understanding the evolution of prezygotic isolation and speciation in the marine realm. One hypothesis is that gamete recognition genes are subject to selection for prezygotic isolation, namely, reinforcement. In a previous study, positive selection on the gene coding for the acrosomal sperm protein M7 lysin was demonstrated among allopatric populations of mussels in the Mytilus edulis species group (M. edulis, Mytilus galloprovincialis, and Mytilus trossulus). Here, we expand sampling to include M7 lysin haplotypes from populations where mussel species are sympatric and hybridize to determine whether there is a pattern of reproductive character displacement (RCD), which would be consistent with reinforcement driving selection on this gene. We do not detect a strong pattern of RCD; neither are there unique haplotypes in sympatry nor is there consistently greater population structure in comparisons involving sympatric populations. One distinct group of haplotypes, however, is strongly affected by natural selection, and this group of haplotypes is found within M. galloprovincialis populations throughout the Northern Hemisphere concurrent with haplotypes common to M. galloprovincialis and M. edulis. We suggest that balancing selection, perhaps resulting from sexual conflicts between sperm and eggs, maintains old allelic diversity within M. galloprovincialis.
Collapse
|
162
|
Markov AV, Kulikov AM. The hypothesis of immune testing of partners—Friend/foe identification systems in historical perspective. BIOL BULL+ 2006. [DOI: 10.1134/s1062359006040017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
163
|
Levitan DR, Ferrell DL. Selection on Gamete Recognition Proteins Depends on Sex, Density, and Genotype Frequency. Science 2006; 312:267-9. [PMID: 16614223 DOI: 10.1126/science.1122183] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Gamete recognition proteins can evolve at astonishing rates and lie at the heart of reproductive isolation and speciation in diverse taxa. However, the source of selection driving this evolution remains unknown. We report on how the sperm bindin genotype influences reproductive success under natural conditions. An interaction between genotype frequency and spawning density determines how sperm bindin genotype influences reproductive success. Common genotypes are selected under sperm-limited conditions, whereas rare genotypes are selected under conditions of intense sperm competition and sexual conflict. Variation in the evolutionary rates of bindin may reflect historic differences in sperm availability.
Collapse
Affiliation(s)
- Don R Levitan
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-1100, USA.
| | | |
Collapse
|
164
|
FRICKE C, ARNQVIST G, AMARO N. Female modulation of reproductive rate and its role in postmating prezygotic isolation in Callosobruchus maculatus. Funct Ecol 2006. [DOI: 10.1111/j.1365-2435.2006.01102.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
165
|
Abstract
Sexual reproduction is a fundamental biological process common among eukaryotes. Because of the significance of reproductive proteins to fitness, the diversity and rapid divergence of proteins acting at many stages of reproduction is surprising and suggests a role of adaptive diversification in reproductive protein evolution. Here we review the evolution of reproductive proteins acting at different stages of reproduction among animals and plants, emphasizing common patterns. Although we are just beginning to understand these patterns, by making comparisons among stages of reproduction for diverse organisms we can begin to understand the selective forces driving reproductive protein diversity and the functional consequences of reproductive protein evolution.
Collapse
Affiliation(s)
- Nathaniel L Clark
- Department of Genome Sciences, University of Washington, Box 357730, Seattle, USA
| | | | | |
Collapse
|
166
|
Simmons LW. The Evolution of Polyandry: Sperm Competition, Sperm Selection, and Offspring Viability. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2005. [DOI: 10.1146/annurev.ecolsys.36.102403.112501] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Leigh W. Simmons
- Evolutionary Biology Research Group, School of Animal Biology, The University of Western Australia, Nedlands, Western Australia 6009, Australia;
| |
Collapse
|
167
|
Harper FM, Hart MW. Gamete compatibility and sperm competition affect paternity and hybridization between sympatric Asterias sea stars. THE BIOLOGICAL BULLETIN 2005; 209:113-26. [PMID: 16260771 DOI: 10.2307/3593129] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Gamete interactions may strongly influence speciation and hybridization in sympatric broadcast-spawning marine invertebrates. We examined the role of gamete compatibility in species integrity using cross-fertilization studies between sympatric Asterias sea stars from a secondary contact zone in the northwest Atlantic. In crosses between single males and single females, gametes of both species were compatible and produced viable, fertile hybrid offspring, but with considerable variation in the receptivity of eggs to heterospecific sperm. Differential compatibility of heterospecific gametes was detected in sperm competition studies in which we used a nuclear DNA marker to assign paternity to larval offspring. Several families showed conspecific sperm precedence in A. forbesi eggs, and one family showed competitive superiority of A. forbesi sperm fertilizing A. rubens eggs. Gametic interactions are an important component of prezygotic reproductive isolation in sympatric Asterias. The interaction between gametes of these closely related sea stars is consistent with the function of gamete recognition systems that are known to mediate fertilization success and speciation in other marine invertebrates.
Collapse
Affiliation(s)
- F M Harper
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada.
| | | |
Collapse
|
168
|
Abstract
When the availability of sperm limits female reproductive success, competition for sperm, may be an important broker of sexual selection. This is because sperm limitation can increase the variance in female reproductive success, resulting in strong selection on females to compete for limited fertilization opportunities. Sperm limitation is probably common in broadcast-spawning marine invertebrates, making these excellent candidates for investigating scramble competition between broods of eggs and its consequences for female reproductive success. Here, we report our findings from a series of experiments that investigate egg competition in the sessile, broadcast-spawning polychaete Galeolaria caespitosa. We initially tested whether the order in which eggs encounter sperm affects their fertilization success at two ecologically relevant current regimes. We used a split-clutch-split--ejaculate technique to compare the fertilization success of eggs from individual females that had either first access (competition-free treatment) or second access (egg competition treatment) to a batch of sperm. We found that fertilization success depended on the order in which eggs accessed sperm; eggs that were assigned to the competition-free treatment exhibited significantly higher fertilization rates than those assigned to the egg competition treatment at both current speeds. In subsequent experiments we found that prior exposure of sperm to eggs significantly reduced both the quantity and quality of sperm available to fertilize a second clutch of eggs, resulting in reductions in fertilization success at high and low sperm concentrations. These findings suggest that female traits that increase the likelihood of sperm-egg interactions (e.g. egg size) will respond to selection imposed by egg competition.
Collapse
Affiliation(s)
- D J Marshall
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | | |
Collapse
|
169
|
Pannebakker BA, Schidlo NS, Boskamp GJF, Dekker L, van Dooren TJM, Beukeboom LW, Zwaan BJ, Brakefield PM, van Alphen JJM. Sexual functionality of Leptopilina clavipes (Hymenoptera: Figitidae) after reversing Wolbachia-induced parthenogenesis. J Evol Biol 2005; 18:1019-28. [PMID: 16033575 DOI: 10.1111/j.1420-9101.2005.00898.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Females infected with parthenogenesis-inducing Wolbachia bacteria can be cured from their infection by antibiotic treatment, resulting in male production. In most cases, however, these males are either sexually not fully functional, or infected females have lost the ability to reproduce sexually. We studied the decay of sexual function in males and females of the parasitoid Leptopilina clavipes. In western Europe, infected and uninfected populations occur allopatrically, allowing for an investigation of both male and female sexual function. This was made by comparing females and males induced from different parthenogenetic populations with those from naturally occurring uninfected populations. Our results indicate that although males show a decay of sexual function, they are still able to fertilize uninfected females. Infected females, however, do not fertilize their eggs after mating with males from uninfected populations. The absence of genomic incompatibilities suggests that these effects are due to the difference in mode of reproduction.
Collapse
Affiliation(s)
- B A Pannebakker
- Section of Animal Ecology, Institute of Biology, Leiden University, Leiden, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Etter R, Rex MA, Chase MR, Quattro JM. POPULATION DIFFERENTIATION DECREASES WITH DEPTH IN DEEP-SEA BIVALVES. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb01797.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
171
|
Palumbi SR, Lessios HA. Evolutionary animation: how do molecular phylogenies compare to Mayr's reconstruction of speciation patterns in the sea? Proc Natl Acad Sci U S A 2005; 102 Suppl 1:6566-72. [PMID: 15851681 PMCID: PMC1131860 DOI: 10.1073/pnas.0501806102] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ernst Mayr used the geography of closely related species in various stages of increasing divergence to "animate" the process of geographic, or allopatric, speciation. This approach was applied to a wide set of taxa, and a seminal paper by Mayr used it to explore speciation patterns in tropical sea urchins. Since then, taxonomic information in several of these genera has been augmented by detailed molecular phylogenies. We compare Mayr's animation with the phylogenies of eight sea urchin genera placed by Mayr into four speciation groups. True to Mayr's predictions, early-stage genera have on average lower species divergence and more polytypic species than genera in later stages. For six of these genera, we also have information about the evolution of the gamete recognition protein bindin, which is critical to reproductive isolation. These comparisons show that later-stage genera with many sympatric species tend to be those with rapid bindin evolution. By contrast, early-stage genera with few sympatric species are not necessarily earlier in the divergence process; they happen to be those with slow rates of bindin evolution. These results show that the rate of speciation in sea urchins does not only depend on the steady accumulation of genome divergence over time, but also on the rate of evolution of gamete recognition proteins. The animation method used by Mayr is generally supported by molecular phylogenies. However, the existence of multiple rates in the acquisition of reproductive isolation complicates placement of different genera in an evolutionary series.
Collapse
Affiliation(s)
- Stephen R Palumbi
- Hopkins Marine Station, Department of Biological Sciences, Stanford University, Pacific Grove, CA 93950, USA.
| | | |
Collapse
|
172
|
Edwards SV, Kingan SB, Calkins JD, Balakrishnan CN, Jennings WB, Swanson WJ, Sorenson MD. Speciation in birds: genes, geography, and sexual selection. Proc Natl Acad Sci U S A 2005; 102 Suppl 1:6550-7. [PMID: 15851678 PMCID: PMC1131863 DOI: 10.1073/pnas.0501846102] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular studies of speciation in birds over the last three decades have been dominated by a focus on the geography, ecology, and timing of speciation, a tradition traceable to Mayr's Systematics and the Origin of Species. However, in the recent years, interest in the behavioral and molecular mechanisms of speciation in birds has increased, building in part on the older traditions and observations from domesticated species. The result is that many of the same mechanisms proffered for model lineages such as Drosophila--mechanisms such as genetic incompatibilities, reinforcement, and sexual selection--are now being seriously entertained for birds, albeit with much lower resolution. The recent completion of a draft sequence of the chicken genome, and an abundance of single-nucleotide polymorphisms on the autosomes and sex chromosomes, will dramatically accelerate research on the molecular mechanisms of avian speciation over the next few years. The challenge for ornithologists is now to inform well studied examples of speciation in nature with increased molecular resolution-to clone speciation genes if they exist--and thereby evaluate the relative roles of extrinsic, intrinsic, deterministic, and stochastic causes for avian diversification.
Collapse
Affiliation(s)
- Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
173
|
Wong JL, Wessel GM. Major components of a sea urchin block to polyspermy are structurally and functionally conserved. Evol Dev 2005; 6:134-53. [PMID: 15099301 DOI: 10.1111/j.1525-142x.2004.04019.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One sperm fusing with one egg is requisite for successful fertilization; additional sperm fusions are lethal to the embryo. Because sperm usually outnumber eggs, evolution has selected for mechanisms that prevent this polyspermy by immediately modifying the egg extracellular matrix. We focus here on the contribution of cortical granule contents in the sea urchin block to polyspermy to begin to understand how well this process is conserved. We identified each of the major constituents of the fertilization envelope in two species of seaurchins, Strongylocentrotus purpuratus and Lytechinus variegatus, that diverged 30 to 50 million years ago. Our results show that the five major structural components of the fertilization envelope, derived from the egg cortical granules, are semiconserved. Most of these orthologs share sequence identity and encode multiple low-density lipoprotein receptor type A repeats or CUB domains but at least two contain radically different carboxy-terminal repeats. Using a new association assay, we also show that these major structural components are functionally conserved during fertilization envelope construction. Thus, it seems that this population of female reproductive proteins has retained functional motifs while gaining significant sequence diversity-two opposing paths that may reflect cooperativity among the proteins that compose the fertilization envelope.
Collapse
Affiliation(s)
- Julian L Wong
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Box G-J4, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
174
|
Miller KM, Laberee K, Kaukinen KH, Li S, Withler RE. Development of microsatellite loci in pinto abalone (Haliotis kamtschatkana
). ACTA ACUST UNITED AC 2005. [DOI: 10.1046/j.1471-8278.2001.00122.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
175
|
Abstract
In many species, females are thought to benefit from polyandry due to the reduced risks of fertilization by genetically incompatible sperm. However, few studies that have reported such benefits have directly attributed variation in female reproductive success to the interacting effects of males and females at fertilization. In this paper, we determine whether male x female interactions influence fertilization in vitro in the free-spawning, sessile polychaete Galeolaria caespitosa. Furthermore, we determined whether polyandry results in direct fertilization benefits for females by experimentally manipulating the number of males contributing towards staged spawning events. To test for male x female interaction effects we performed an initial experiment that crossed seven males with six females (in all 42 combinations), enabling us to assess fertilization rates for each specific male-female pairing and attribute variation in fertilization success to males, females and their interaction. This initial experiment revealed a strong interaction between males and females at fertilization, confirming that certain male-female combinations were more compatible than others. A second experiment tested the hypothesis that polyandry enhances female reproductive success by exposing each female's eggs to either a single male's sperm (monandry) or the sperm from three males simultaneously (polyandry). We performed this second experiment at two ecologically relevant sperm concentrations. This latter experiment revealed a strong fertilization benefit of polyandry, independent of the effects of sperm concentration (which were also significant). We suggest that these direct fertilization gains arising from polyandry will constitute an important source of selection on females to mate multiply in nature.
Collapse
Affiliation(s)
- D J Marshall
- School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, Australia.
| | | |
Collapse
|
176
|
|
177
|
Jennions MD, Hunt J, Graham R, Brooks R. No evidence for inbreeding avoidance through postcopulatory mechanisms in the black field cricket, Teleogryllus commodus. Evolution 2005; 58:2472-7. [PMID: 15612290 DOI: 10.1111/j.0014-3820.2004.tb00876.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Several studies suggest that females mate multiply so that they can preferentially fertilize eggs with the sperm of genetically more compatible males. Unrelated males are expected to be genetically more compatible with a female than her close relatives. We tested whether black field crickets, Teleogryllus commodus, can bias sperm usage toward unrelated males by comparing egg hatching success of females mated to two of their siblings (SS), two sibling males unrelated to the female (NN) or to one unrelated male and a sibling male (NS or SN). Egg hatching success was highly repeatable. Hatching success varied significantly among females of the three mating types (P = 0.011, n = 245 females). The estimated mean hatching success of 36.8% for SS females was significantly less that the 43.4% of NN females, indicating an effect of inbreeding on hatching success. If females preferentially use the sperm of a less closely related male, the hatching success of NS/SN females should be closer to 43.4% than 36.8%. It was, in fact, only 34.9%. This does not differ significantly from the value expected if the two males contributed an equal amount of sperm that was then used randomly. Although polyandry may confer indirect genetic benefits, our results provide no evidence that female T. commodus gain these benefits by biasing paternity toward genetically more compatible males through postcopulatory mechanisms.
Collapse
Affiliation(s)
- Michael D Jennions
- School of Botany and Zoology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | | | | | |
Collapse
|
178
|
|
179
|
Etter RJ, Rex MA, Chase MR, Quattro JM. POPULATION DIFFERENTIATION DECREASES WITH DEPTH IN DEEP-SEA BIVALVES. Evolution 2005. [DOI: 10.1554/04-538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
180
|
Evans JP, Marshall DJ. MALE-BY-FEMALE INTERACTIONS INFLUENCE FERTILIZATION SUCCESS AND MEDIATE THE BENEFITS OF POLYANDRY IN THE SEA URCHIN HELIOCIDARIS ERYTHROGRAMMA. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb00898.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
181
|
Abstract
Fertilization is the union of a single sperm and an egg, an event that results in a diploid embryo. Animals use many mechanisms to achieve this ratio; the most prevalent involves physically blocking the fusion of subsequent sperm. Selective pressures to maintain monospermy have resulted in an elaboration of diverse egg and sperm structures. The processes employed for monospermy are as diverse as the animals that result from this process. Yet, the fundamental molecular requirements for successful monospermic fertilization are similar, implying that animals may have a common ancestral block to polyspermy. Here, we explore this hypothesis, reviewing biochemical, molecular, and genetic discoveries that lend support to a common ancestral mechanism. We also consider the evolution of alternative or radical techniques, including physiological polyspermy, with respect to our ability to describe a parsimonious guide to fertilization.
Collapse
Affiliation(s)
- Julian L Wong
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
182
|
Geyer LB, Palumbi SR. CONSPECIFIC SPERM PRECEDENCE IN TWO SPECIES OF TROPICAL SEA URCHINS. Evolution 2005. [DOI: 10.1554/04-202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
183
|
Boughman JW, Rundle HD, Schluter D. PARALLEL EVOLUTION OF SEXUAL ISOLATION IN STICKLEBACKS. Evolution 2005. [DOI: 10.1554/04-153] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
184
|
|
185
|
Evans JP, Marshall DJ. MALE-BY-FEMALE INTERACTIONS INFLUENCE FERTILIZATION SUCCESS AND MEDIATE THE BENEFITS OF POLYANDRY IN THE SEA URCHIN HELIOCIDARIS ERYTHROGRAMMA. Evolution 2005. [DOI: 10.1554/04-386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
186
|
Biermann CH, Marks JA, Vilela-Silva ACES, Castro MO, Mourão PAS. Carbohydrate-based species recognition in sea urchin fertilization: another avenue for speciation? Evol Dev 2004; 6:353-61. [PMID: 15330868 DOI: 10.1111/j.1525-142x.2004.04043.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Spawning marine invertebrates are excellent models for studying fertilization and reproductive isolating mechanisms. To identify variation in the major steps in sea urchin gamete recognition, we studied sperm activation in three closely related sympatric Strongylocentrotus species. Sperm undergo acrosomal exocytosis upon contact with sulfated polysaccharides in the egg-jelly coat. This acrosome reaction exposes the protein bindin and is therefore a precondition for sperm binding to the egg. We found that sulfated carbohydrates from egg jelly induce the acrosome reaction species specifically in S. droebachiensis and S. pallidus. There appear to be no other significant barriers to interspecific fertilization between these two species. Other species pairs in the same genus acrosome react nonspecifically to egg jelly but exhibit species-specific sperm binding. We thus show that different cell-cell communication systems mediate mate recognition among very closely related species. By comparing sperm reactions to egg-jelly compounds from different species and genera, we identify the major structural feature of the polysaccharides required for the specific recognition by sperm: the position of the glycosidic bond of the sulfated alpha-L-fucans. We present here one of the few examples of highly specific pure-carbohydrate signal transduction. In this system, a structural change in a polysaccharide has far-reaching ecological and evolutionary consequences.
Collapse
|
187
|
Mah SA, Swanson WJ, Vacquier VD. Positive Selection in the Carbohydrate Recognition Domains of Sea Urchin Sperm Receptor for Egg Jelly (suREJ) Proteins. Mol Biol Evol 2004; 22:533-41. [PMID: 15525699 DOI: 10.1093/molbev/msi037] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A wealth of evidence shows that protein-carbohydrate recognition mediates the steps of gamete interaction during fertilization. Carbohydrate-recognition domains (CRDs) comprise a large family of ancient protein modules of approximately 120 amino acids, having the same protein fold, that bind terminal sugar residues on glycoproteins and polysaccharides. Sea urchin sperm express three suREJ (sea urchin receptor for egg jelly) proteins on their plasma membranes. suREJ1 has two CRDs, whereas suREJ2 and suREJ3 both have one CRD. suREJ1 binds the fucose sulfate polymer (FSP) of egg jelly to induce the sperm acrosome reaction. The structure of FSP is species specific. Therefore, the suREJ1 CRDs could encode molecular recognition between sperm and egg underlying the species-specific induction of the acrosome reaction. The functions of suREJ2 and suREJ3 have not been explored, but suREJ3 is exclusively localized on the plasma membrane over the sperm acrosomal vesicle and is physically associated with sea urchin polycystin-2, a known cation channel. An evolutionary analysis of these four CRDs was performed for six sea urchin species. Phylogenetic analysis shows that these CRDs were already differentiated in the common ancestor of these six sea urchins. The CRD phylogeny agrees with previous work on these species based on one nuclear gene and several mitochondrial genes. Maximum likelihood shows that positive selection acts on these four CRDs. Threading the suREJ CRDs onto the prototypic CRD crystal structure shows that many of the sites under positive selection are on extended loops, which are involved in saccharide binding. This is the first demonstration of positive selection in CRDs and is another example of positive selection acting on the evolution of gamete-recognition proteins.
Collapse
Affiliation(s)
- Silvia A Mah
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | | | | |
Collapse
|
188
|
Fricke C, Arnqvist G. Divergence in replicated phylogenies: the evolution of partial post-mating prezygotic isolation in bean weevils. J Evol Biol 2004; 17:1345-54. [PMID: 15525419 DOI: 10.1111/j.1420-9101.2004.00757.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
By tradition, speciation research has been focused on processes leading to either premating or post-zygotic reproductive isolation. The processes which generate isolation after mating but before zygote formation are less well understood. Here, we study divergence in characters which contribute to post-mating prezygotic isolation, such as egg production and remating rate. We propose that 'replicated' laboratory phylogenies with known histories can be used to yield insights into the processes of divergence. We performed a series of cross-matings between populations within two strains of the bean weevil Callosobruchus maculatus. Each strain has a unique and independent origin and both have been kept in the same set of laboratories during the last few decades. Our results show that divergence has occurred between laboratory populations within strains with regards to the effects that mating has on female reproductive behaviour, showing that the evolution of partial post-mating prezygotic isolation can be rapid. More importantly, the pattern of divergence across populations was distinct in the two strains, suggesting that coevolutionary trajectories are not determined by environmental factors but are to some extent arbitrary. We discuss the limitations of the novel empirical strategy employed here, and conclude that our results lend support to the hypothesis that post-mating sexual selection is capable of rapidly generating post-mating prezygotic isolation.
Collapse
Affiliation(s)
- C Fricke
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen, Uppsala, Sweden.
| | | |
Collapse
|
189
|
Levitan DR. Density‐Dependent Sexual Selection in External Fertilizers: Variances in Male and Female Fertilization Success along the Continuum from Sperm Limitation to Sexual Conflict in the Sea Urchin Strongylocentrotus franciscanus. Am Nat 2004; 164:298-309. [PMID: 15478086 DOI: 10.1086/423150] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Accepted: 05/04/2004] [Indexed: 11/03/2022]
Abstract
Sperm competition and female choice are fundamentally driven by gender differences in investment per offspring and are often manifested as differences in variance in reproductive success: males compete and have high variance; most females are mated and have low variance. In marine organisms that broadcast spawn, however, females may encounter either sperm limitation or sperm competition. I measured the fertilization success of male and female Strongylocentrotus franciscanus over a range of population densities using microsatellite markers. Female fertilization success first increased and then decreased with mate density, limited at low density by sperm limitation and at high density by polyspermy. Mate density affected variance in fertilization success in both males and females. In males, the variance in fertilization success increased with mate density. In females, the pattern was more complex. The variance in female success increased similarly to males with increased mate density but then decreased to low levels at intermediate densities, where almost all eggs were fertilized. As density increased further, the female variances again increased as polyspermy lowered average fertilization success. Male and female variances differed only at intermediate densities. At low densities, both sexes may be under selection to increase fertilization success; at intermediate densities, males may compete; and at high densities, both sexes may be under selection to increase success by increasing (males) or decreasing (females) likelihood of fertilization during sexual conflict. Only within a narrow range of densities do patterns of sexual selection mirror those typically noted in internally fertilizing taxa.
Collapse
Affiliation(s)
- Don R Levitan
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA.
| |
Collapse
|
190
|
Hoysak DJ, Liley NR, Taylor EB. Raffles, roles, and the outcome of sperm competition in sockeye salmon. CAN J ZOOL 2004. [DOI: 10.1139/z04-073] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In species with male alternative reproductive phenotypes, one phenotype is usually disadvantaged in mating competition. In salmonid fishes, large late-maturing males pair with nesting females and maintain close contact before and during spawning. Small early-maturing males have little contact with nesting females and, during spawning, begin to release sperm after the paired male. The effects of male phenotype and timing of ejaculation on success in sperm competition are not known. In this study, we determined paternity of offspring resulting from in vitro competitive fertilizations to examine these two aspects of sperm competition in sockeye salmon, Oncorhynchus nerka (Walbaum, 1792). When we fertilized eggs with mixtures of equal numbers of sperm from each of two male age classes, we found that success in sperm competition did not depend on male age. However, success in these competitive fertilizations did not conform to the fair raffle model of sperm competition, since paternity in most of the clutches was biased in favour of one male. When we added milt from two males sequentially to a batch of eggs, we found that sperm from the second male fertilized fewer eggs than sperm from the first male, but the difference was less than expected. In addition, a male's success when his milt was added first was not correlated with his success when his milt was added second.
Collapse
|
191
|
Abstract
Sexual conflict, where male and female reproductive interests differ, is probably widespread and often mediated by male or sperm proteins and female or egg proteins that bind to each other during mating or fertilization. One potential consequence is maintenance of polymorphism in these proteins, which might result in reproductive isolation between sympatric subpopulations. I investigate the conditions for polymorphism maintenance in a series of mathematical models of sexual conflict over mating or fertilization frequency. The models represent a male or sperm ligand and a female or egg receptor, and they differ in whether expression of either protein is haploid or diploid. For diploid expression, the conditions imply that patterns of dominance, which involve neither overdominance nor underdominance, can determine whether polymorphism is maintained. For example, suppose ligand expression is diploid, and consider ligand alleles L1 and L2 in interactions with a given receptor genotype; if L1/L1 males are fitter than L2/L2 males in these interactions, then polymorphism is more likely to be maintained when L1/L2 males more closely resemble L1/L1 males in these interactions. Such fitter-allele dominance might be typical of a ligand or its receptor due to their biochemistry, in which case polymorphism might be typical of the pair.
Collapse
Affiliation(s)
- Ralph Haygood
- Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
192
|
Holt WV, Van Look KJW. Concepts in sperm heterogeneity, sperm selection and sperm competition as biological foundations for laboratory tests of semen quality. Reproduction 2004; 127:527-35. [PMID: 15129008 DOI: 10.1530/rep.1.00134] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stringent selection mechanisms, in both internal and external fertilisation systems, reject all but a significant minority of the spermatozoa released at ejaculation. Sperm competition theory provides circumstantial evidence that the selection process involves mechanisms by which the quality of the fertilising spermatozoon is controlled, thereby ensuring that females and their offspring receive high quality genetic material. In this review we examine some of these selection processes to see whether they could be exploited for the improvement of laboratory tests of sperm quality. Such tests are not only required for clinical and agricultural purposes, but are increasingly needed in fields such as reproductive and environmental toxicology where the species requirement is much broader. Despite many years of research, sperm quality assessment methods continue to provide imprecise data about fertility; here we suggest that this may be a consequence of using tests that focus on the spermatozoa that would normally be unable to fertilise under natural conditions.To achieve fertilisation a spermatozoon must be capable of responding appropriately to external signalling stimuli; those involving protein kinase-regulated flagellar function seem especially influential in governing effects ranging from non-Mendelian inheritance in mammals to sperm chemotaxis in sea urchins. Examination of the elicited responses reveals considerable heterogeneity in all species. Here we propose that this level of heterogeneity is meaningful both in terms of understanding how spermatozoa from some individuals possess fertility advantages over spermatozoa from their rivals in sperm competition, and in that the heterogeneity should be exploitable in the development of more accurate laboratory tests.
Collapse
Affiliation(s)
- William V Holt
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK.
| | | |
Collapse
|
193
|
McCartney MA, Lessios HA. Adaptive Evolution of Sperm Bindin Tracks Egg Incompatibility in Neotropical Sea Urchins of the Genus Echinometra. Mol Biol Evol 2004; 21:732-45. [PMID: 14963103 DOI: 10.1093/molbev/msh071] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bindin is a gamete recognition protein known to control species-specific sperm-egg adhesion and membrane fusion in sea urchins. Previous analyses have shown that diversifying selection on bindin amino acid sequence is found when gametically incompatible species are compared, but not when species are compatible. The present study analyzes bindin polymorphism and divergence in the three closely related species of Echinometra in Central America: E. lucunter and E. viridis from the Caribbean, and E. vanbrunti from the eastern Pacific. The eggs of E. lucunter have evolved a strong block to fertilization by sperm of its neotropical congeners, whereas those of the other two species have not. As in the Indo-West Pacific (IWP) Echinometra, the neotropical species show high intraspecific bindin polymorphism in the same gene regions as in the IWP species. Maximum likelihood analysis shows that many of the polymorphic codon sites are under mild positive selection. Of the fixed amino acid replacements, most have accumulated along the bindin lineage of E. lucunter. We analyzed the data with maximum likelihood models of variation in positive selection across lineages and codon sites, and with models that consider sites and lineages simultaneously. Our results show that positive selection is concentrated along the E. lucunter bindin lineage, and that codon sites with amino acid replacements fixed in this species show by far the highest signal of positive selection. Lineage-specific positive selection paralleling egg incompatibility provides support that adaptive evolution of sperm proteins acts to maintain recognition of bindin by changing egg receptors. Because both egg incompatibility and bindin divergence are greater between allopatric species than between sympatric species, the hypothesis of selection against hybridization (reinforcement) cannot explain why adaptive evolution has been confined to a single lineage in the American Echinometra. Instead, processes acting to varying degrees within species (e.g., sperm competition, sexual selection, and sexual conflict) are more promising explanations for lineage-specific positive selection on bindin.
Collapse
|
194
|
Fiebig A, Kimport R, Preuss D. Comparisons of pollen coat genes across Brassicaceae species reveal rapid evolution by repeat expansion and diversification. Proc Natl Acad Sci U S A 2004; 101:3286-91. [PMID: 14970339 PMCID: PMC365782 DOI: 10.1073/pnas.0305448101] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Indexed: 11/18/2022] Open
Abstract
Reproductive genes and traits evolve rapidly in many organisms, including mollusks, algae, and primates. Previously we demonstrated that a family of glycine-rich pollen surface proteins (GRPs) from Arabidopsis thaliana and Brassica oleracea had diverged substantially, making identification of homologous genes impossible despite a separation of only 20 million years. Here we address the molecular genetic mechanisms behind these changes, sequencing the eight members of the GRP cluster, along with 11 neighboring genes in four related species, Arabidopsis arenosa, Olimarabidopsis pumila, Capsella rubella, and Sisymbrium irio. We found that GRP genes change more rapidly than their neighbors; they are more repetitive and have undergone substantially more insertion/deletion events while preserving repeat amino acid composition. Genes flanking the GRP cluster had an average K(a)/K(s) approximately 0.2, indicating strong purifying selection. This ratio rose to approximately 0.5 in the first GRP exon, indicating relaxed selective constraints. The repetitive nature of the second GRP exon makes alignment difficult; even so, K(a)/K(s) within the Arabidopsis genus demonstrated an increase that correlated with exon length. We conclude that rapid GRP evolution is primarily due to duplication, deletion, and divergence of repetitive sequences. GRPs may mediate pollen recognition and hydration by female cells, and divergence of these genes could correlate with or even promote speciation. We tested cross-species interactions, showing that the ability of A. arenosa stigmas to hydrate pollen correlated with GRP divergence and identifying A. arenosa as a model for future studies of pollen recognition.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
195
|
|
196
|
Jennions MD, Hunt J, Graham R, Brooks R. NO EVIDENCE FOR INBREEDING AVOIDANCE THROUGH POSTCOPULATORY MECHANISMS IN THE BLACK FIELD CRICKET, TELEOGRYLLUS COMMODUS. Evolution 2004. [DOI: 10.1554/04-261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
197
|
Levitan DR, Fukami H, Jara J, Kline D, McGovern TM, McGhee KE, Swanson CA, Knowlton N. MECHANISMS OF REPRODUCTIVE ISOLATION AMONG SYMPATRIC BROADCAST-SPAWNING CORALS OF THE MONTASTRAEA ANNULARIS SPECIES COMPLEX. Evolution 2004. [DOI: 10.1554/02-700] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
198
|
Affiliation(s)
- Victor D Vacquier
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
199
|
Zigler KS, Raff EC, Popodi E, Raff RA, Lessios HA. Adaptive evolution of bindin in the genus Heliocidaris is correlated with the shift to direct development. Evolution 2003; 57:2293-302. [PMID: 14628917 DOI: 10.1111/j.0014-3820.2003.tb00241.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sea urchins are widely used to study both fertilization and development. In this study we combine the two fields to examine the evolution of reproductive isolation in the genus Heliocidaris. Heliocidaris tuberculata develops indirectly via a feeding larva, whereas the only other species in the genus, H. erythrogramma, has evolved direct development through a nonfeeding larva. We estimated the time of divergence between H. erythrogramma and H. tuberculata from mitochondrial DNA divergence, quantified levels of gametic compatibility between the two species in cross-fertilization assays, and examined the mode of evolution of the sperm protein bindin by sequencing multiple alleles of the two species. Bindin is the major component of the sea urchin sperm acrosomal vesicle, and is involved in sperm-egg attachment and fusion. Based on our analyses, we conclude that: the two species of Heliocidaris diverged less than five million years ago, indicating that direct development can evolve rapidly in sea urchins; since their divergence, the two species have become gametically incompatible; Heliocidaris bindin has evolved under positive selection; and this positive selection is concentrated on the branch leading to H. erythrogramma. Three hypotheses can explain the observed pattern of selection on bindin: (1) it is a correlated response to the evolution of direct development in H. erythrogramma; (2) it is the result of an intraspecific process acting in H. erythrogramma but not in H. tuberculata; or (3) it is the product of reinforcement on the species that invests more energy into each egg to avoid hybridization.
Collapse
Affiliation(s)
- Kirk S Zigler
- Smithsonian Tropical Research Institute, Box 2072, Balboa, Panama.
| | | | | | | | | |
Collapse
|
200
|
Civetta A. Shall we dance or shall we fight? Using DNA sequence data to untangle controversies surrounding sexual selection. Genome 2003; 46:925-9. [PMID: 14663506 DOI: 10.1139/g03-109] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Population and evolutionary genetics studies have largely benefitted from advances in DNA manipulation and sequencing, as well as DNA data analysis techniques. Molecular evolution studies of male reproductive genes show a pattern of rapid evolution shaped, in some cases, by an adaptive selective process. Despite the large body of data on male reproductive genes, the female side of the story has remained unexplored. The few cases of female egg receptors analyzed also show rapid evolution. However, to disentangle between competing hypotheses on how selection operates on male × female molecular interaction leading to fertilization, we need to find male and female molecules that are partners in fertilization. A conflict model of sexual selection (similar to a host-parasite model) assumes a male-driven system where females are being forced under suboptimal conditions. This predicts that the amount of divergence at a female receptor depends on the amount of divergence among the male reproductive proteins that it binds (i.e., males are leading). Under a classical model of runaway sexual selection, female protein receptors might be the key to the rapid molecular changes observed in male reproductive proteins and higher divergence should be expected among female receptors than among their respective male binding proteins.Key words: Reproductive genes, DNA sequence data, sexual selection, coadaptation, conflict.
Collapse
|