151
|
Abstract
Schizophrenia is one of the most severe psychiatric disorders affecting 1% of the world population. There is yet no empirical method to validate the diagnosis of the disease. The identification of an underlying molecular alteration could lead to an improved disease understanding and may yield an objective panel of biomarkers to aid in the diagnosis of this devastating disease. Presented is the largest reported liquid chromatography-mass spectrometry-based proteomic profiling study investigating serum samples taken from first-onset drug-naive patients compared with samples collected from healthy volunteers. The results of this large-scale study are presented along with enzyme-linked immunosorbent assay-based validation data.
Collapse
|
152
|
Feeding conditions control the expression of genes involved in sterol metabolism in peripheral blood mononuclear cells of normoweight and diet-induced (cafeteria) obese rats. J Nutr Biochem 2010; 21:1127-33. [DOI: 10.1016/j.jnutbio.2009.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/24/2009] [Accepted: 10/01/2009] [Indexed: 11/22/2022]
|
153
|
Berger J, Pujol A, Aubourg P, Forss-Petter S. Current and future pharmacological treatment strategies in X-linked adrenoleukodystrophy. Brain Pathol 2010; 20:845-56. [PMID: 20626746 DOI: 10.1111/j.1750-3639.2010.00393.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in the ABCD1 gene cause the clinical spectrum of the neurometabolic disorder X-linked adrenoleukodystrophy/adrenomyeloneuropathy (X-ALD/AMN). Currently, the most efficient therapeutic opportunity for patients with the cerebral form of X-ALD is hematopoietic stem cell transplantation and possibly gene therapy of autologous hematopoietic stem cells. Both treatments, however, are only accessible to a subset of X-ALD patients, mainly because of the lack of markers that can predict the onset of cerebral demyelination. Moreover, for female or male X-ALD patients with AMN, currently only unsatisfying therapeutic opportunities are available. Thus, this review focuses on current and urgently needed future pharmacological therapies. The treatment of adrenal and gonadal insufficiency is well established, whereas applications of immunomodulatory and immunosuppressive drugs have failed to prevent progression of cerebral neuroinflammation. The use of Lorenzo's oil and the inefficacy of lovastatin to normalize very-long-chain fatty acids in clinical trials as well as currently experimental and therefore possible future therapeutic strategies are reviewed. The latter include pharmacological gene therapy mediated by targeted upregulation of ABCD2, the closest homolog of ABCD1, antioxidative drug treatment, small molecule histone deacetylase inhibitors such as butyrates and valproic acid, and other neuroprotective attempts.
Collapse
Affiliation(s)
- Johannes Berger
- Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
154
|
Zhao Y, Van Berkel TJ, Van Eck M. Relative roles of various efflux pathways in net cholesterol efflux from macrophage foam cells in atherosclerotic lesions. Curr Opin Lipidol 2010; 21:441-53. [PMID: 20683325 DOI: 10.1097/mol.0b013e32833dedaa] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Cholesterol efflux mechanisms are essential for macrophage cholesterol homeostasis. HDL, an important cholesterol efflux acceptor, comprises a class of heterogeneous particles that induce cholesterol efflux via distinct pathways. This review focuses on the understanding of the different cholesterol efflux pathways and physiological acceptors involved, and their regulation in atherosclerotic lesions. RECENT FINDINGS The synergistic interactions of ATP-binding cassette transporters A1 and G1 as well as ATP-binding cassette transporter A1 and scavenger receptor class B type I are essential for cellular cholesterol efflux and the prevention of macrophage foam cell formation. However, the importance of aqueous diffusion should also not be underestimated. Significant progress has been made in understanding the mechanisms underlying ATP-binding cassette A1-mediated cholesterol efflux and regulation of its expression and trafficking. Conditions locally in the atherosclerotic lesion, for example, lipids, cytokines, oxidative stress, and hypoxia, as well as systemic factors, including inflammation and diabetes, critically influence the expression of cholesterol transporters on macrophage foam cells. Furthermore, HDL modification and remodeling in atherosclerosis, inflammation, and diabetes impairs its function as an acceptor for cellular cholesterol. SUMMARY Recent advances in the understanding of the regulation of cholesterol transporters and their acceptors in atherosclerotic lesions indicate that HDL-based therapies should aim to enhance the activity of cholesterol transporters and improve both the quantity and quality of HDL.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, University of Leiden, Leiden, The Netherlands
| | | | | |
Collapse
|
155
|
Ibrolipim increases ABCA1/G1 expression by the LXRα signaling pathway in THP-1 macrophage-derived foam cells. Acta Pharmacol Sin 2010; 31:1343-9. [PMID: 20871621 DOI: 10.1038/aps.2010.166] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM To determine the effects and potential mechanisms of ibrolipim on ATP-binding membrane cassette transporter A-1 (ABCA1) and ATP-binding membrane cassette transporter G-1 (ABCG1) expression from human macrophage foam cells, which may play a critical role in atherogenesis. METHODS Human THP-1 cells pre-incubated with ox-LDL served as foam cell models. Specific mRNA was quantified using real-time RT-PCR and protein expression using Western blotting. Cellular cholesterol handling was studied using cholesterol efflux experiments and high performance liquid chromatography assays. RESULTS Ibrolipim 5 and 50 μmol/L significantly increased cholesterol efflux from THP-1 macrophage-derived foam cells to apoA-I or HDL. Moreover, it upregulated the expression of ABCA1 and ABCG1. In addition, LXRα was also upregulated by the ibrolipim treatment. In addition, LXRα small interfering RNA completely abolished the promotion effect that was induced by ibrolipim. CONCLUSION Ibrolipim increased ABCA1 and ABCG1 expression and promoted cholesterol efflux, which was mediated by the LXRα signaling pathway.
Collapse
|
156
|
Cheng B, Wan J, Wang Y, Mei C, Liu W, Ke L, He P. Ghrelin inhibits foam cell formation via simultaneously down-regulating the expression of acyl-coenzyme A:cholesterol acyltransferase 1 and up-regulating adenosine triphosphate-binding cassette transporter A1. Cardiovasc Pathol 2010; 19:e159-66. [DOI: 10.1016/j.carpath.2009.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 06/14/2009] [Accepted: 07/03/2009] [Indexed: 01/29/2023] Open
|
157
|
Lee-Rueckert M, Lappalainen J, Leinonen H, Pihlajamaa T, Jauhiainen M, Kovanen PT. Acidic Extracellular Environments Strongly Impair ABCA1-Mediated Cholesterol Efflux From Human Macrophage Foam Cells. Arterioscler Thromb Vasc Biol 2010; 30:1766-72. [DOI: 10.1161/atvbaha.110.211276] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
In the deep microenvironments of advanced human atherosclerotic lesions, the intimal fluid becomes acidic. We examined the effect of an acidic extracellular pH on cholesterol removal (efflux) from primary human macrophages.
Methods and Results—
When cholesterol efflux from acetyl-low-density lipoprotein-loaded macrophages to various cholesterol acceptors was evaluated at pH 7.5, 6.5, or 5.5, the lower the pH the more was cholesterol efflux reduced. The reduction of efflux to lipid-free apolipoprotein A-I was stronger than to high-density lipoprotein
2
or to plasma. Cholesterol efflux to every acceptor was severely compromised also at neutral pH when the macrophages had been loaded with cholesterol at acidic pH, or when both loading and efflux were carried out at acidic pH. Compatible with these observations, the typical upregulation of ABCA1 and ABCG1 mRNA levels in macrophages loaded with cholesterol at neutral pH was rapidly attenuated in acidic medium. The secondary structure of apolipoprotein A-I did not changed over the pH range studied, supporting the notion that the inhibitory effect of acidic pH on cholesterol efflux rather impaired the ability of the foam cells to facilitate ABCA1-mediated cholesterol release. Secretion of apolipoprotein E from the foam cells was fully inhibited when the pH was 5.5, which further reduced cholesterol efflux.
Conclusion—
An acidic pH reduces cholesterol efflux via different pathways and particularly impairs the function of the ABCA1 transporter. The pH-sensitive function of human macrophage foam cells in releasing cholesterol may accelerate lipid accumulation in deep areas of advanced atherosclerotic plaques where the intimal fluid is acidic.
Collapse
Affiliation(s)
- Miriam Lee-Rueckert
- From the Wihuri Research Institute, Helsinki, Finland (M.L.-R., J.L., H.L., P.T.K.); Institute of Biotechnology, University of Helsinki, Finland (T.P.); National Public Health Institute and Finnish Institute for Molecular Medicine, Biomedicum, Helsinki, Finland (M.J.)
| | - Jani Lappalainen
- From the Wihuri Research Institute, Helsinki, Finland (M.L.-R., J.L., H.L., P.T.K.); Institute of Biotechnology, University of Helsinki, Finland (T.P.); National Public Health Institute and Finnish Institute for Molecular Medicine, Biomedicum, Helsinki, Finland (M.J.)
| | - Hannele Leinonen
- From the Wihuri Research Institute, Helsinki, Finland (M.L.-R., J.L., H.L., P.T.K.); Institute of Biotechnology, University of Helsinki, Finland (T.P.); National Public Health Institute and Finnish Institute for Molecular Medicine, Biomedicum, Helsinki, Finland (M.J.)
| | - Tero Pihlajamaa
- From the Wihuri Research Institute, Helsinki, Finland (M.L.-R., J.L., H.L., P.T.K.); Institute of Biotechnology, University of Helsinki, Finland (T.P.); National Public Health Institute and Finnish Institute for Molecular Medicine, Biomedicum, Helsinki, Finland (M.J.)
| | - Matti Jauhiainen
- From the Wihuri Research Institute, Helsinki, Finland (M.L.-R., J.L., H.L., P.T.K.); Institute of Biotechnology, University of Helsinki, Finland (T.P.); National Public Health Institute and Finnish Institute for Molecular Medicine, Biomedicum, Helsinki, Finland (M.J.)
| | - Petri T. Kovanen
- From the Wihuri Research Institute, Helsinki, Finland (M.L.-R., J.L., H.L., P.T.K.); Institute of Biotechnology, University of Helsinki, Finland (T.P.); National Public Health Institute and Finnish Institute for Molecular Medicine, Biomedicum, Helsinki, Finland (M.J.)
| |
Collapse
|
158
|
Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis. Cell Metab 2010; 12:187-93. [PMID: 20674863 DOI: 10.1016/j.cmet.2010.07.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 04/11/2010] [Accepted: 06/07/2010] [Indexed: 11/22/2022]
Abstract
Several steps of the HDL-mediated reverse cholesterol transport (RCT) are transcriptionally regulated by the nuclear receptors LXRs in the macrophages, liver, and intestine. Systemic LXR activation via synthetic ligands induces RCT but also causes increased hepatic fatty acid synthesis and steatosis, limiting the potential therapeutic use of LXR agonists. During the last few years, the participation of the intestine in the control of RCT has appeared more evident. Here we show that while hepatic-specific LXR activation does not contribute to RCT, intestinal-specific LXR activation leads to decreased intestinal cholesterol absorption, improved lipoprotein profile, and increased RCT in vivo in the absence of hepatic steatosis. These events protect against atherosclerosis in the background of the LDLR-deficient mice. Our study fully characterizes the molecular and metabolic scenario that elects the intestine as a key player in the LXR-driven protective environment against cardiovascular disease.
Collapse
|
159
|
Jiang YJ, Lu B, Tarling EJ, Kim P, Man MQ, Crumrine D, Edwards PA, Elias PM, Feingold KR. Regulation of ABCG1 expression in human keratinocytes and murine epidermis. J Lipid Res 2010; 51:3185-95. [PMID: 20675829 DOI: 10.1194/jlr.m006445] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ABCG1, a member of the ATP binding cassette superfamily, facilitates the efflux of cholesterol from cells to HDL. In this study, we demonstrate that ABCG1 is expressed in cultured human keratinocytes and murine epidermis, and induced during keratinocyte differentiation, with increased levels in the outer epidermis. ABCG1 is regulated by liver X receptor (LXR) and peroxisome proliferator-activated receptor-δ (PPAR-δ) activators, cellular sterol levels, and acute barrier disruption. Both LXR and PPAR-δ activators markedly stimulate ABCG1 expression in a dose- and time-dependent fashion. PPAR-γ activators also increase ABCG1 expression, but to a lesser degree. In contrast, activators of PPAR-α, retinoic acid receptor, retinoid X receptor, and vitamin D receptor do not alter ABCG1 expression. In response to increased intracellular sterol levels, ABCG1 expression increases, whereas inhibition of cholesterol biosynthesis decreases ABCG1 expression. In vivo, ABCG1 is stimulated 3-6 h after acute barrier disruption by either tape stripping or acetone treatment, an increase that can be inhibited by occlusion, suggesting a potential role of ABCG1 in permeability barrier homeostasis. Although Abcg1-null mice display normal epidermal permeability barrier function and gross morphology, abnormal lamellar body (LB) contents and secretion leading to impaired lamellar bilayer formation could be demonstrated by electron microscopy, indicating a potential role of ABCG1 in normal LB formation and secretion.
Collapse
Affiliation(s)
- Yan J Jiang
- Metabolism Section, Veterans Affairs Medical Center, Northern California Institute for Research and Education, University of California at San Francisco, San Francisco, CA 94121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Mani O, Körner M, Sorensen MT, Sejrsen K, Wotzkow C, Ontsouka CE, Friis RR, Bruckmaier RM, Albrecht C. Expression, localization, and functional model of cholesterol transporters in lactating and nonlactating mammary tissues of murine, bovine, and human origin. Am J Physiol Regul Integr Comp Physiol 2010; 299:R642-54. [DOI: 10.1152/ajpregu.00723.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Members of the ATP-binding cassette (ABC) transporters play a pivotal role in cellular lipid efflux. To identify candidate cholesterol transporters implicated in lipid homeostasis and mammary gland (MG) physiology, we compared expression and localization of ABCA1, ABCG1, and ABCA7 and their regulatory genes in mammary tissues of different species during the pregnancy-lactation cycle. Murine and bovine mammary glands (MGs) were investigated during different functional stages. The abundance of mRNAs was determined by quantitative RT-PCR. Furthermore, transporter proteins were localized in murine, bovine, and human MGs by immunohistochemistry. In the murine MG, ABCA1 mRNA abundance was elevated during nonlactating compared with lactating stages, whereas ABCA7 and ABCA1 mRNA profiles were not altered. In the bovine MG, ABCA1, ABCG1, and ABCA7 mRNAs abundances were increased during nonlactating stages compared with lactation. Furthermore, associations between mRNA levels of transporters and their regulatory genes LXRα, PPARγ, and SREBPs were found. ABCA1, ABCG1, and ABCA7 proteins were localized in glandular MG epithelial cells (MEC) during lactation, whereas during nonlactating stages, depending on species, the proteins showed distinct localization patterns in MEC and adipocytes. Our results demonstrate that ABCA1, ABCG1, and ABCA7 are differentially expressed between lactation and nonlactating stages and in association with regulatory genes. Combined expression and localization data suggest that the selected cholesterol transporters are universal MG transporters involved in transport and storage of cholesterol and in lipid homeostasis of MEC. Because of the species-specific expression patterns of transporters in mammary tissue, mechanisms of cholesterol homeostasis seem to be differentially regulated between species.
Collapse
Affiliation(s)
- Orlando Mani
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Meike Körner
- Institute of Pathology, University of Bern, Switzerland
| | - Martin T. Sorensen
- Department of Animal Health, Welfare and Nutrition, Aarhus University, Tjele, Denmark
| | - Kristen Sejrsen
- Department of Animal Health, Welfare and Nutrition, Aarhus University, Tjele, Denmark
| | - Carlos Wotzkow
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Corneille E. Ontsouka
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Robert R. Friis
- Department of Clinical Research, University of Bern, Bern, Switzerland; and
| | | | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
161
|
ATP-binding cassette proteins involved in glucose and lipid homeostasis. Biosci Biotechnol Biochem 2010; 74:899-907. [PMID: 20460728 DOI: 10.1271/bbb.90921] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucose and lipids are essential to the body, but excess glucose or lipids lead to metabolic syndrome. ATP-binding cassette (ABC) proteins are involved in the homeostasis of glucose and lipid in that they regulate insulin secretion and remove excess cholesterol from the body. Sulfonylurea receptor (SUR) is a subunit of the ATP-sensitive potassium channels, which regulate insulin secretion from pancreatic beta-cells by sensing cellular metabolic levels. ABCG1 removes excess cholesterol from peripheral tissues and functions in reverse cholesterol transport to the liver. ABCG5 and ABCG8 suppress the absorption of cholesterol in the intestine and exclude cholesterol from the liver to the bile duct. ABCG1 and ABCG4, expressed in the central nervous system, play roles in lipid metabolism in the brain. These ABC proteins are targets of drugs and functional foods to cure and prevent diabetes, hyperlipidemia, and neurodegenerative diseases. In this review, recent knowledge of the physiological function and regulation of ABC proteins in the homeostasis of glucose and lipids is discussed.
Collapse
|
162
|
Majdalawieh A, Ro HS. PPARgamma1 and LXRalpha face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. NUCLEAR RECEPTOR SIGNALING 2010; 8:e004. [PMID: 20419060 PMCID: PMC2858268 DOI: 10.1621/nrs.08004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/09/2010] [Indexed: 12/26/2022]
Abstract
Peroxisome proliferator-activated receptor γ1 (PPARγ1) and liver X receptor α (LXRα) are nuclear receptors that play pivotal roles in macrophage cholesterol homeostasis and inflammation; key biological processes in atherogenesis. The activation of PPARγ1 and LXRα by natural or synthetic ligands results in the transactivation of ABCA1, ABCG1, and ApoE; integral players in cholesterol efflux and reverse cholesterol transport. In this review, we describe the structure, isoforms, expression pattern, and functional specificity of PPARs and LXRs. Control of PPARs and LXRs transcriptional activity by coactivators and corepressors is also highlighted. The specific roles that PPARγ1 and LXRα play in inducing macrophage cholesterol efflux mediators and antagonizing macrophage inflammatory responsiveness are summarized. Finally, this review focuses on the recently reported regulatory functions that adipocyte enhancer-binding protein 1 (AEBP1) exerts on PPARγ1 and LXRα transcriptional activity in the context of macrophage cholesterol homeostasis and inflammation.
Collapse
|
163
|
Li D, Zhang Y, Ma J, Ling W, Xia M. Adenosine monophosphate activated protein kinase regulates ABCG1-mediated oxysterol efflux from endothelial cells and protects against hypercholesterolemia-induced endothelial dysfunction. Arterioscler Thromb Vasc Biol 2010; 30:1354-62. [PMID: 20395595 DOI: 10.1161/atvbaha.110.204230] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Adenosine monophosphate activated protein kinase (AMPK) has been identified as a regulator of vascular function via the preservation of endothelial cell (EC) function. In this study, we examined whether the beneficial effects of AMPK on ECs are dependent on its involvement in cholesterol efflux and its impact on hypercholesterolemia-induced endothelial dysfunction. METHODS AND RESULTS Using human aortic ECs and bovine aortic ECs, we show that AMPK activation upregulates ATP binding cassette G1 (ABCG1) expression independently of liver X receptor alpha (LXR alpha) transcriptional activity but through a posttranscriptional mechanism that increases mRNA stability. Using a heterologous system and a luciferase reporter, we further identify that the 3'-untranslated region of the ABCG1 mRNA is responsible for the regulatory effects of AMPK activation. 5-Aminoimidazole-4-carboxamide-1-beta-D-riboside treatment promotes endothelial 7-ketocholesterol efflux and prevents 7-ketocholesterol (7-KC)-induced reactive oxygen species production in an ABCG1-dependent manner, thus preserving endothelial nitric oxide synthase activity and nitric oxide bioavailability. Notably, in vivo studies using C57BL/6J mice receiving a high-cholesterol diet revealed that the infusion of 5-aminoimidazole-4-carboxamide-1-beta-d-riboside increases vascular ABCG1 expression and improves vascular reactivity. These effects are abrogated by the AMPK antagonist compound C and by the vascular gene transfer of ABCG1 small interfering RNA. CONCLUSIONS Our current findings uncover a novel mechanism by which AMPK protects against hypercholesterolemia-mediated endothelial dysfunction.
Collapse
Affiliation(s)
- Dan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510080 People's Republic of China
| | | | | | | | | |
Collapse
|
164
|
Ye D, Meurs I, Ohigashi M, Calpe-Berdiel L, Habets KLL, Zhao Y, Kubo Y, Yamaguchi A, Van Berkel TJC, Nishi T, Van Eck M. Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice. Biochem Biophys Res Commun 2010; 395:387-94. [PMID: 20382126 DOI: 10.1016/j.bbrc.2010.04.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 04/05/2010] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To determine the role of macrophage ATP-binding cassette transporter A5 (ABCA5) in cellular cholesterol homeostasis and atherosclerotic lesion development. METHODS AND RESULTS Chimeras with dysfunctional macrophage ABCA5 (ABCA5(-M/-M)) were generated by transplantation of bone marrow from ABCA5 knockout (ABCA5(-/-)) mice into irradiated LDLr(-/-) mice. In vitro, bone marrow-derived macrophages from ABCA5(-M/-M) chimeras exhibited a 29% (P<0.001) decrease in cholesterol efflux to HDL, whereas a 21% (P=0.07) increase in cholesterol efflux to apoA-I was observed. Interestingly, expression of ABCA1, but not ABCG1, was up-regulated in absence of functional ABCA5 in macrophages. To induce atherosclerosis, the transplanted LDLr(-/-) mice were fed a high-cholesterol Western-type diet (WTD) for 6, 10, or 18weeks, allowing analysis of effects on initial as well as advanced lesion development. Atherosclerosis development was not affected in male ABCA5(-M/-M) chimeras after 6, 10, and 18weeks WTD feeding. However, female ABCA5(-M/-M) chimeras did develop significantly (P<0.05) larger aortic root lesions as compared with female controls after 6 and 10weeks WTD feeding. CONCLUSIONS ABCA5 influences macrophage cholesterol efflux, and selective disruption of ABCA5 in macrophages leads to increased atherosclerotic lesion development in female LDLr(-/-) mice.
Collapse
Affiliation(s)
- Dan Ye
- Division of Biopharmaceutics, LACDR, Leiden University, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Fu Y. Rate-limiting factors of cholesterol efflux in reverse cholesterol transport: Acceptors and donors. Clin Exp Pharmacol Physiol 2010; 37:703-9. [DOI: 10.1111/j.1440-1681.2010.05386.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
166
|
Zhang Y, McGillicuddy FC, Hinkle CC, O'Neill S, Glick JM, Rothblat GH, Reilly MP. Adipocyte modulation of high-density lipoprotein cholesterol. Circulation 2010; 121:1347-55. [PMID: 20212278 DOI: 10.1161/circulationaha.109.897330] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Adipose harbors a large depot of free cholesterol. However, a role for adipose in cholesterol lipidation of high-density lipoprotein (HDL) in vivo is not established. We present the first evidence that adipocytes support transfer of cholesterol to HDL in vivo as well as in vitro and implicate ATP-binding cassette subfamily A member 1 (ABCA1) and scavenger receptor class B type I (SR-BI), but not ATP-binding cassette subfamily G member 1 (ABCG1), cholesterol transporters in this process. METHODS AND RESULTS Cholesterol efflux from wild-type, ABCA1(-/-), SR-BI(-/-), and ABCG1(-/-) adipocytes to apolipoprotein A-I (apoA-I) and HDL3 were measured in vitro. 3T3L1 adipocytes, labeled with (3)H-cholesterol, were injected intraperitoneally into wild-type, apoA-I transgenic, and apoA-I(-/-) mice, and tracer movement onto plasma HDL was monitored. Identical studies were performed with labeled wild-type, ABCA1(-/-), or SR-BI(-/-) mouse embryonic fibroblast adipocytes. The effect of tumor necrosis factor-alpha on transporter expression and cholesterol efflux was monitored during adipocyte differentiation. Cholesterol efflux to apoA-I and HDL3 was impaired in ABCA1(-/-) and SR-BI(-/-) adipocytes, respectively, with no effect observed in ABCG1(-/-) adipocytes. Intraperitoneal injection of labeled 3T3L1 adipocytes resulted in increased HDL-associated (3)H-cholesterol in apoA-I transgenic mice but reduced levels in apoA-I(-/-) animals. Intraperitoneal injection of labeled ABCA1(-/-) or SR-BI(-/-) adipocytes reduced plasma counts relative to their respective controls. Tumor necrosis factor-alpha reduced both ABCA1 and SR-BI expression and impaired cholesterol efflux from partially differentiated adipocytes. CONCLUSIONS These data suggest a novel metabolic function of adipocytes in promoting cholesterol transfer to HDL in vivo and implicate adipocyte SR-BI and ABCA1, but not ABCG1, in this process. Furthermore, adipocyte modulation of HDL may be impaired in adipose inflammatory disease states such as type 2 diabetes mellitus.
Collapse
Affiliation(s)
- YuZhen Zhang
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | | | | | | | | | | | | |
Collapse
|
167
|
Baker AD, Malur A, Barna BP, Kavuru MS, Malur AG, Thomassen MJ. PPARgamma regulates the expression of cholesterol metabolism genes in alveolar macrophages. Biochem Biophys Res Commun 2010; 393:682-7. [PMID: 20170635 DOI: 10.1016/j.bbrc.2010.02.056] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 02/10/2010] [Indexed: 11/28/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPARgamma has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPARgamma regulates cholesterol influx, efflux, and metabolism. PPARgamma promotes cholesterol efflux through the liver X receptor-alpha (LXRalpha) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPARgamma knockout (PPARgamma KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXRalpha and ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPARgamma would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPARgamma) to restore PPARgamma expression in the alveolar macrophages of PPARgamma KO mice. Our results show that the alveolar macrophages of PPARgamma KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPARgamma (1) induced transcription of LXRalpha and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPARgamma regulates cholesterol metabolism in alveolar macrophages.
Collapse
Affiliation(s)
- Anna D Baker
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | | | | | | | | |
Collapse
|
168
|
Whetzel AM, Sturek JM, Nagelin MH, Bolick DT, Gebre AK, Parks JS, Bruce AC, Skaflen MD, Hedrick CC. ABCG1 deficiency in mice promotes endothelial activation and monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol 2010; 30:809-17. [PMID: 20110576 DOI: 10.1161/atvbaha.109.199166] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Activated endothelium and increased monocyte-endothelial interactions in the vessel wall are key early events in atherogenesis. ATP binding cassette (ABC) transporters play important roles in regulating sterol homeostasis in many cell types. Endothelial cells (EC) have a high capacity to efflux sterols and express the ABC transporter, ABCG1. Here, we define the role of ABCG1 in the regulation of lipid homeostasis and inflammation in aortic EC. METHODS AND RESULTS Using EC isolated from ABCG1-deficient mice (ABCG1 KO), we observed reduced cholesterol efflux to high-density lipoprotein compared to C57BL/6 (B6) EC. However, total cholesteryl ester levels were not changed in ABCG1 KO EC. Secretions of KC, MCP-1, and IL-6 by ABCG1 KO EC were significantly increased, and surface expressions of intercellular adhesion molecule-1 and E-selectin were increased several-fold on ABCG1 KO EC. Concomitant with these findings, we observed a 4-fold increase in monocyte adhesion to the intact aortic endothelium of ABCG1 KO mice ex vivo and to isolated aortic EC from these mice in vitro. In a gain-of-function study in vitro, restoration of ABCG1 expression in ABCG1 KO EC reduced monocyte-endothelial interactions. Utilizing pharmacological inhibitors for STAT3 and the IL-6 receptor, we found that blockade of STAT3 and IL-6 receptor signaling in ABCG1 KO EC completely abrogated monocyte adhesion to ABCG1 KO endothelium. CONCLUSIONS ABCG1 deficiency in aortic endothelial cells activates endothelial IL-6-IL-6 receptor-STAT3 signaling, thereby increasing monocyte-endothelial interactions and vascular inflammation.
Collapse
Affiliation(s)
- Angela M Whetzel
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Fitzgerald ML, Mujawar Z, Tamehiro N. ABC transporters, atherosclerosis and inflammation. Atherosclerosis 2010; 211:361-70. [PMID: 20138281 DOI: 10.1016/j.atherosclerosis.2010.01.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 10/19/2022]
Abstract
Atherosclerosis, driven by inflamed lipid-laden lesions, can occlude the coronary arteries and lead to myocardial infarction. This chronic disease is a major and expensive health burden. However, the body is able to mobilize and excrete cholesterol and other lipids, thus preventing atherosclerosis by a process termed reverse cholesterol transport (RCT). Insight into the mechanism of RCT has been gained by the study of two rare syndromes caused by the mutation of ABC transporter loci. In Tangier disease, loss of ABCA1 prevents cells from exporting cholesterol and phospholipid, thus resulting in the build-up of cholesterol in the peripheral tissues and a loss of circulating HDL. Consistent with HDL being an athero-protective particle, Tangier patients are more prone to develop atherosclerosis. Likewise, sitosterolemia is another inherited syndrome associated with premature atherosclerosis. Here mutations in either the ABCG5 or G8 loci, prevents hepatocytes and enterocytes from excreting cholesterol and plant sterols, including sitosterol, into the bile and intestinal lumen. Thus, ABCG5 and G8, which from a heterodimer, constitute a transporter that excretes cholesterol and dietary sterols back into the gut, while ABCA1 functions to export excess cell cholesterol and phospholipid during the biogenesis of HDL. Interestingly, a third protein, ABCG1, that has been shown to have anti-atherosclerotic activity in mice, may also act to transfer cholesterol to mature HDL particles. Here we review the relationship between the lipid transport activities of these proteins and their anti-atherosclerotic effect, particularly how they may reduce inflammatory signaling pathways. Of particular interest are recent reports that indicate both ABCA1 and ABCG1 modulate cell surface cholesterol levels and inhibit its partitioning into lipid rafts. Given lipid rafts may provide platforms for innate immune receptors to respond to inflammatory signals, it follows that loss of ABCA1 and ABCG1 by increasing raft content will increase signaling through these receptors, as has been experimentally demonstrated. Moreover, additional reports indicate ABCA1, and possibly SR-BI, another HDL receptor, may directly act as anti-inflammatory receptors independent of their lipid transport activities. Finally, we give an update on the progress and pitfalls of therapeutic approaches that seek to stimulate the flux of lipids through the RCT pathway.
Collapse
Affiliation(s)
- Michael L Fitzgerald
- Lipid Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA.
| | | | | |
Collapse
|
170
|
Baker AD, Malur A, Barna BP, Ghosh S, Kavuru MS, Malur AG, Thomassen MJ. Targeted PPAR{gamma} deficiency in alveolar macrophages disrupts surfactant catabolism. J Lipid Res 2010; 51:1325-31. [PMID: 20064973 DOI: 10.1194/jlr.m001651] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Surfactant accumulates in alveolar macrophages of granulocyte-macrophage colony-stimulating factor (GM-CSF) knockout (KO) mice and pulmonary alveolar proteinosis (PAP) patients with a functional loss of GM-CSF resulting from neutralizing anti-GM-CSF antibody. Alveolar macrophages from PAP patients and GM-CSF KO mice are de-ficient in peroxisome proliferator-activated receptor-gamma (PPARgamma) and ATP-binding cassette (ABC) lipid transporter ABCG1. Previous studies have demonstrated that GM-CSF induces PPARgamma. We therefore hypothesized that PPARgamma promotes surfactant catabolism through regulation of ABCG1. To address this hypothesis, macrophage-specific PPARgamma (MacPPARgamma) knockout mice were utilized. MacPPARgamma KO mice develop foamy, lipid-engorged Oil Red O positive alveolar macrophages. Lipid analyses revealed significant increases in the cholesterol and phospholipid contents of MacPPARgamma KO alveolar macrophages and extracellular bronchoalveolar lavage (BAL)-derived fluids. MacPPARgamma KO alveolar macrophages showed decreased expression of ABCG1 and a deficiency in ABCG1-mediated cholesterol efflux to HDL. Lipid metabolism may also be regulated by liver X receptor (LXR)-ABCA1 pathways. Interestingly, ABCA1 and LXRbeta expression were elevated, indicating that this pathway is not sufficient to prevent surfactant accumulation in alveolar macrophages. These results suggest that PPARgamma mediates a critical role in surfactant homeostasis through the regulation of ABCG1.
Collapse
Affiliation(s)
- Anna D Baker
- Department of Internal Medicine, East Carolina University, Greenville, NC, USA
| | | | | | | | | | | | | |
Collapse
|
171
|
Hu YW, Wang Q, Ma X, Li XX, Liu XH, Xiao J, Liao DF, Xiang J, Tang CK. TGF-β1 Up-Regulates Expression of ABCA1, ABCG1 and SR-BI through Liver X Receptor α Signaling Pathway in THP-1 Macrophage-Derived Foam Cells. J Atheroscler Thromb 2010; 17:493-502. [DOI: 10.5551/jat.3152] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yan-Wei Hu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China
- Laboratory Medicine Center, Nangfang Hospital, Southern Medical University
| | - Qian Wang
- Laboratory Medicine Center, Nangfang Hospital, Southern Medical University
| | - Xin Ma
- Department of Anesthesiology, the First Affiliated Hospital of University of South China
| | - Xiao-Xu Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China
| | - Xie-Hong Liu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China
| | - Ji Xiao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China
| | - Duan-Fang Liao
- Institute of Pharmacy and Pharmacology, Life Science Research Center, University of South China
| | - Jim Xiang
- Research Unit, Health Research Division, Saskatchewan Cancer Agency, Department of Oncology, University of Saskatchewan
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China
| |
Collapse
|
172
|
Zhou J, He WY, Wang WN, Yang CW, Wang L, Xin Y, Wu J, Cai DX, Liu Y, Wang AL. Molecular cloning and characterization of an ATP-binding cassette (ABC) transmembrane transporter from the white shrimp Litopenaeusvannamei. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:450-8. [PMID: 19595789 DOI: 10.1016/j.cbpc.2009.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 06/26/2009] [Accepted: 06/30/2009] [Indexed: 01/18/2023]
Abstract
ATP-binding cassette transmembrane transporters (ABC transporters) have a potential role in drug and xenobiotic resistance. Here, we report for the first time the cloning of an ABC transporter from white shrimp Litopenaeusvannamei (designated LvABCG), along with a study of its phylogenetic relationships, and measurements of its expression in different shrimp tissues exposed to cadmium and pH stress (acidic and alkaline conditions). Sequence analysis showed that LvABCG shares many similarities with the white/ABC transmembrane transporter, including two conserved regions: a highly conserved ATP-binding cassette (ABC) and transmembrane domain (TMD). Spatial analyses of transcript levels for ABCG in shrimp tissues, using reverse transcript PCR, revealed the highest transcript level in the hepatopancreas, less in the intestine and stomach, and none in the other tissues examined. The ABC transporter mRNA transcript in the hepatopancreas of L.vannamei was significantly up-regulated after 1.5 h and 24 h of exposure to alkaline and acidic conditions, respectively. LvABCG was also induced in intestine, but was downregulated in the stomach under the alkaline treatment. Upon exposure to cadmium (4.25 micromol L(-1) and 8.5 micromol L(-1)) for 48 h, the mRNA expression of LvABCG was up-regulated 4.79-fold (at 6 h) and 2.09-fold (at 12 h) in the hepatopancreas. LvABCG was also induced in the stomach after exposure to 4.25 micromol L(-1) cadmium, but downregulated in the stomach and intestine after exposure to 8.5 micromol L(-1) cadmium. These findings indicate that LvABCG might play an important role in the physiological changes related to metabolism and cell detoxification that occur when Pacific white shrimp are exposed to cadmium and pH stress.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Base Sequence
- Cadmium/toxicity
- Cloning, Molecular
- Conserved Sequence
- DNA, Complementary/biosynthesis
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Dose-Response Relationship, Drug
- Gastric Mucosa/metabolism
- Gene Expression Regulation
- Hepatopancreas/metabolism
- Hydrogen-Ion Concentration
- Intestinal Mucosa/metabolism
- Molecular Sequence Data
- Penaeidae/genetics
- Penaeidae/metabolism
- Phylogeny
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Stress, Physiological
- Time Factors
- Tissue Distribution
- Toxicity Tests, Acute
Collapse
Affiliation(s)
- Jun Zhou
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
An innate immunity signaling process suppresses macrophage ABCA1 expression through IRAK-1-mediated downregulation of retinoic acid receptor alpha and NFATc2. Mol Cell Biol 2009; 29:5989-97. [PMID: 19752193 DOI: 10.1128/mcb.00541-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) plays a central role in promoting cholesterol efflux from macrophages, thereby reducing the risk of foam cell formation and atherosclerosis. The expression of ABCA1 is induced by members of the nuclear receptor family of transcription factors, including retinoic acid receptors (RARs). A key innate immunity signaling kinase, IRAK-1, has been associated with an increased risk of atherosclerosis in humans and mice. This prompted us to investigate the potential connection between IRAK-1 and the expression of ABCA1. Here, we demonstrate that nuclear RARalpha levels are dramatically elevated in IRAK-1(-/-) macrophages. Correspondingly, IRAK-1(-/-) macrophages exhibit increased expression of ABCA1 mRNA and protein, as well as elevated cholesterol efflux in response to the RAR ligand ATRA. Analysis of the ABCA1 proximal promoter revealed binding sites for both RAR and NFAT. Chromatin immunoprecipitation assays demonstrated increased binding of RARalpha and NFATc2 to the ABCA1 promoter in IRAK-1(-/-) macrophages compared to wild-type macrophages. Additionally, lipopolysaccharide pretreatment reduced the nuclear levels of RARalpha and decreased ABCA1 expression and cholesterol efflux in wild-type but not in IRAK-1(-/-) cells. In summary, this study reveals a novel connection between innate immunity signaling processes and the regulation of ABCA1 expression in macrophages and defines a potential therapeutic target for treating atherosclerosis.
Collapse
|
174
|
Stogbauer F, Weigert J, Neumeier M, Wanninger J, Sporrer D, Weber M, Schaffler A, Enrich C, Wood P, Grewal T, Aslanidis C, Buechler C. Annexin A6 is highly abundant in monocytes of obese and type 2 diabetic individuals and is downregulated by adiponectin in vitro. Exp Mol Med 2009; 41:501-7. [PMID: 19322030 DOI: 10.3858/emm.2009.41.7.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Adiponectin stimulates cholesterol efflux in macrophages and low adiponectin may in part contribute to disturbed reverse cholesterol transport in type 2 diabetes. Monocytes express high levels of annexin A6 that could inhibit cholesterol efflux and it was investigated whether the atheroprotective effects of adiponectin are accompanied by changes in annexin A6 levels. Adiponectin reduces annexin A6 protein whereas mRNA levels are not affected. Adiponectin-mediated activation of peroxisome proliferator-activated receptor alpha (PPARalpha) and AMP-activated protein kinase (AMPK) does not account for reduced annexin A6 expression. Further, fatty acids and lipopolysaccharide that are elevated in obesity do not influence annexin A6 protein levels. Annexin A6 in monocytes from overweight probands or type 2 diabetic patients is significantly elevated compared to monocytes of normal-weight controls. Monocytic annexin A6 positively correlates with body mass index and negatively with systemic adiponectin of the blood donors. Therefore, the current study demonstrates that adiponectin reduces annexin A6 in monocytes and thereby may enhance cholesterol efflux. In agreement with these in vitro finding an increase of monocytic annexin A6 in type 2 diabetes monocytes was observed.
Collapse
Affiliation(s)
- Fabian Stogbauer
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Lack of Abcg1 results in decreased plasma HDL cholesterol levels and increased biliary cholesterol secretion in mice fed a high cholesterol diet. Atherosclerosis 2009; 206:141-7. [DOI: 10.1016/j.atherosclerosis.2009.02.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 02/12/2009] [Accepted: 02/16/2009] [Indexed: 01/26/2023]
|
176
|
Gelissen IC, Cartland S, Brown AJ, Sandoval C, Kim M, Dinnes DL, Lee Y, Hsieh V, Gaus K, Kritharides L, Jessup W. Expression and stability of two isoforms of ABCG1 in human vascular cells. Atherosclerosis 2009; 208:75-82. [PMID: 19651406 DOI: 10.1016/j.atherosclerosis.2009.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/12/2009] [Accepted: 06/28/2009] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the expression of two ABCG1 isoforms that differ in the presence or absence of a 12 amino acid (AA) peptide between the ABC cassette and the transmembrane region, termed ABCG1(+12) and ABCG1(-12), respectively, in human vascular cells and tissues. METHODS AND RESULTS mRNA for both isoforms was expressed in human macrophages, vascular endothelial and smooth muscle cells as well as whole human spleen, lung, liver and brain tissue. However, ABCG1(+12) was not expressed in mouse tissues. 2D gel electrophoresis of ABCG1 protein indicated that both protein isoforms were expressed in human macrophages. Furthermore the half-lives of the two ABCG1 protein isoforms, stably expressed in CHOK1 cells, measured under basal conditions were different, suggesting the presence of a degradation or stabilising signal in or near the 12AA region of ABCG1(+12). CONCLUSION ABCG1(+12) is an isoform of ABCG1 exclusively expressed in human cells at the RNA and protein level. As ABCG1(+12) is not expressed in mice, although mouse models are widely used to elucidate the function of ABCG1, further investigations into the importance of this human ABCG1 isoform are warranted.
Collapse
Affiliation(s)
- Ingrid C Gelissen
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Tarr PT, Tarling EJ, Bojanic DD, Edwards PA, Baldán Á. Emerging new paradigms for ABCG transporters. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:584-93. [PMID: 19416657 PMCID: PMC2698934 DOI: 10.1016/j.bbalip.2009.01.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 12/14/2022]
Abstract
Every cell is separated from its external environment by a lipid membrane. Survival depends on the regulated and selective transport of nutrients, waste products and regulatory molecules across these membranes, a process that is often mediated by integral membrane proteins. The largest and most diverse of these membrane transport systems is the ATP binding cassette (ABC) family of membrane transport proteins. The ABC family is a large evolutionary conserved family of transmembrane proteins (>250 members) present in all phyla, from bacteria to Homo sapiens, which require energy in the form of ATP hydrolysis to transport substrates against concentration gradients. In prokaryotes the majority of ABC transporters are involved in the transport of nutrients and other macromolecules into the cell. In eukaryotes, with the exception of the cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7), ABC transporters mobilize substrates from the cytoplasm out of the cell or into specific intracellular organelles. This review focuses on the members of the ABCG subfamily of transporters, which are conserved through evolution in multiple taxa. As discussed below, these proteins participate in multiple cellular homeostatic processes, and functional mutations in some of them have clinical relevance in humans.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G
- ATP Binding Cassette Transporter, Subfamily G, Member 1
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP Binding Cassette Transporter, Subfamily G, Member 5
- ATP Binding Cassette Transporter, Subfamily G, Member 8
- ATP-Binding Cassette Transporters/classification
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- ATP-Binding Cassette Transporters/physiology
- Animals
- Biological Transport
- Lipoproteins/genetics
- Lipoproteins/metabolism
- Lipoproteins/physiology
- Mice
- Mice, Knockout
Collapse
Affiliation(s)
- Paul T. Tarr
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elizabeth J. Tarling
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Dragana D. Bojanic
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Peter A. Edwards
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Ángel Baldán
- Edward A. Doisy Department of Biochemistry and Molecular Biology, DRC 321, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| |
Collapse
|
178
|
Abstract
High-density lipoprotein (HDL) plays an important protective role against atherosclerosis, and the anti-atherogenic properties of HDL include the promotion of cellular cholesterol efflux and reverse cholesterol transport (RCT), as well as antioxidant, anti-inflammatory and anticoagulant effects. RCT is a complex pathway, which transports cholesterol from peripheral cells and tissues to the liver for its metabolism and biliary excretion. The major steps in the RCT pathway include the efflux of free cholesterol mediated by cholesterol transporters from cells to the main extracellular acceptor HDL, the conversion of free cholesterol to cholesteryl esters and the subsequent removal of cholesteryl ester in HDL by the liver. The efficiency of RCT is influenced by the mobilization of cellular lipids for efflux and the intravascular remodelling and kinetics of HDL metabolism. Despite the increased cardiovascular risk in people with type 2 diabetes, current knowledge on RCT in diabetes is limited. In this article, abnormalities in RCT in type 2 diabetes mellitus and therapeutic strategies targeting HDL and RCT will be reviewed.
Collapse
Affiliation(s)
- K C B Tan
- Department of Medicine, University of Hong Kong, Hong Kong.
| |
Collapse
|
179
|
Transport of lipids by ABC proteins: interactions and implications for cellular toxicity, viability and function. Chem Biol Interact 2009; 180:327-39. [PMID: 19426719 DOI: 10.1016/j.cbi.2009.04.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 04/15/2009] [Accepted: 04/24/2009] [Indexed: 12/16/2022]
Abstract
Members of the ATP-binding cassette (ABC) family of membrane-bound transporters are involved in multiple aspects of transport and redistribution of various lipids and their conjugates. Most ABC transporters localize to the plasma membrane; some are associated with liquid-ordered cholesterol-/sphingolipid-rich microdomains, and to a lesser extent the membranes of the Golgi and endoplasmic reticulum. Hence, ABC transporters are well placed to regulate plasma membrane lipid composition and the efflux and redistribution of structural phospholipids and sphingolipids during periods of cellular stress and recovery. ABC transporters can also modulate cellular sensitivity to extrinsic pro-apoptotic signals through regulation of sphingomyelin-ceramide biosynthesis and metabolism. The functionality of ABC transporters is, in turn, modulated by the lipid content of the microdomains in which they reside. Cholesterol, a major membrane microdomain component, is not only a substrate of several ABC transporters, but also regulates ABC activity through its effects on microdomain structure. Several important bioactive lipid mediators and toxic lipid metabolites are also effluxed by ABC transporters. In this review, the complex interactions between ABC transporters and their lipid/sterol substrates will be discussed and analyzed in the context of their relevance to cellular function, toxicity and apoptosis.
Collapse
|
180
|
Mathew G, Timm EA, Sotomayor P, Godoy A, Montecinos VP, Smith GJ, Huss WJ. ABCG2-mediated DyeCycle Violet efflux defined side population in benign and malignant prostate. Cell Cycle 2009; 8:1053-61. [PMID: 19270533 DOI: 10.4161/cc.8.7.8043] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The efflux of Hoechst 33342 by ATP-binding cassette protein G2 (ABCG2) membrane pump allows reproducible identification of a subpopulation of cells by flow cytometric analysis termed the "side population" (SP). The SP identified by constitutive Hoechst efflux contains the stem/progenitor cell population from bone marrow and many solid organs, including prostate. DyeCycle Violet (DCV) is a cell membrane permeable, fluorescent vital dye that intercalates into DNA and is a substrate for ABCG2-mediated efflux. Therefore, DCV was evaluated in this study as a tool for identification of the SP from prostate cancer cell lines and from freshly harvested human prostate tissue. SPs that demonstrated ABCG2-mediated efflux of DCV were identified in the human prostate cancer cell lines CWR-R1, DU-145 and RWPE-1, but not in the BPH-1, LAPC-4 or PC-3 cell lines. Additionally, a SP was identified in enzymatically disaggregated prostate tumors from Transgenic Adenocarcinoma of Mouse Prostate (TRAMP), human benign prostate tissue and human prostate cancer tissue. The causal role of ABCG2-mediated efflux of DCV in the identification of the SP was confirmed by loss of the SP by incubation with the specific inhibitor of ABCG2, Fumitremorgin C. Expression of ABCG2 in the SP cells was confirmed by qRT-PCR and immunofluorescence analysis. Consequently, DCV represents an important new tool for isolation of viable candidate stem cells/cancer stem cells as a SP from cultured prostate cell lines, and prostate tissue specimens, without the requirement for instrumentation with ultra-violet excitation capability and minimizing the risk of damage to DNA in the sorted population.
Collapse
Affiliation(s)
- Grinu Mathew
- Department of Urologic Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
181
|
Xu M, Zhou H, Gu Q, Li C. The expression of ATP-binding cassette transporters in hypertensive patients. Hypertens Res 2009; 32:455-61. [PMID: 19390536 DOI: 10.1038/hr.2009.46] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cholesterol efflux is regulated by cholesterol transporters, including adenosine triphosphate-binding cassette transporters, A1, G1 (ABCA1, ABCG1), and scavenger receptor class B type I (SR-BI). We have investigated whether the expression of these transporters/receptor is altered in patients with hypertension and also studied their functional effects in cholesterol efflux. The newly diagnosed hypertensive patients, as well as age- and gender-matched healthy controls were recruited. mRNA of ABCA1, ABCG1 and SR-BI in monocytes was measured. The functional effects of the three transporters/receptor and cholesterol efflux from monocyte-derived macrophages ex vivo were also determined. The expression of ABCA1 and ABCG1 was significantly decreased in the newly diagnosed untreated hypertensive patients compared with that in healthy controls. The levels of ABCA1 and ABCG1 were negatively associated with blood pressure, and the reduction of ABCA1 and ABCG1 could be reversed by anti-hypertensive therapy. No significant associations between plasma lipids, oxidized low-density lipoprotein (LDL) and the expression of ABCA1 or ABCG1 were found. Cholesterol efflux from monocyte-derived macrophages to autologous serum, apolipoprotein AI (apoAI) or high-density lipoprotein (HDL) was impaired in hypertensive patients. Cholesterol efflux to autologous serum or apoAI was associated with the expression of ABCA1, whereas cholesterol efflux to autologous serum or HDL was associated with the expression of ABCG1. The expression of ABCA1 and ABCG1 in monocytes is reduced in hypertensive patients, which could be reversed by anti-hypertensive therapy. The reduction in ABCA1/ABCG1 is associated with the impairment of cholesterol efflux from monocyte-derived macrophages.
Collapse
Affiliation(s)
- Mingzhi Xu
- Department of Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
182
|
Mauerer R, Ebert S, Langmann T. High glucose, unsaturated and saturated fatty acids differentially regulate expression of ATP-binding cassette transporters ABCA1 and ABCG1 in human macrophages. Exp Mol Med 2009; 41:126-32. [PMID: 19287193 DOI: 10.3858/emm.2009.41.2.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The ATP-binding cassette transporters ABCA1 and ABCG1 are highly expressed in macrophage-derived foam cells and promote reverse cholesterol efflux via biogenesis of high-density lipoproteins. The aim of this study was to analyze the direct effects of bioactive factors related to the metabolic syndrome on macrophage transcript levels of all 47 human ABC transporters. Using in vitro M-CSF predifferentiated macrophages and TaqMan low density arrays we could show that linoleic acid, palmitic acid, and high glucose levels have a major impact on ABCA1 and ABCG1 expression but do not strongly affect most other human ABC transporters. In Western blot experiments we demonstrate that ABCA1 and ABCG1 protein levels are synchronously suppressed by high glucose levels and the w6-unsaturated fatty acid linoleic acid. We conclude that metabolites associated with the metabolic syndrome enhance the formation of atherosclerotic lesions by diminishing the reverse cholesterol transport function of ABCA1 and ABCG1.
Collapse
Affiliation(s)
- Richard Mauerer
- Synlab Medical Care Service, Medical Care Centre Weiden, Zur Kesselschmiede 4, 92637 Weiden, Germany
| | | | | |
Collapse
|
183
|
Kim GH, Park K, Yeom SY, Lee KJ, Kim G, Ko J, Rhee DK, Kim YH, Lee HK, Kim HW, Oh GT, Lee KU, Lee JW, Kim SW. Characterization of ASC-2 as an antiatherogenic transcriptional coactivator of liver X receptors in macrophages. Mol Endocrinol 2009; 23:966-74. [PMID: 19342446 DOI: 10.1210/me.2008-0308] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activating signal cointegrator-2 (ASC-2) functions as a transcriptional coactivator of many nuclear receptors and also plays important roles in the physiology of the liver and pancreas by interacting with liver X receptors (LXRs), which antagonize the development of atherosclerosis. This study was undertaken to establish the specific function of ASC-2 in macrophages and atherogenesis. Intriguingly, ASC-2 was more highly expressed in macrophages than in the liver and pancreas. To inhibit LXR-specific activity of ASC-2, we used DN2, which contains the C-terminal LXXLL motif of ASC-2 and thereby acts as an LXR-specific, dominant-negative mutant of ASC-2. In DN2-overexpressing transgenic macrophages, cellular cholesterol content was higher and cholesterol efflux lower than in control macrophages. DN2 reduced LXR ligand-dependent increases in the levels of ABCA1, ABCG1, and apolipoprotein E (apoE) transcripts as well as the activity of luciferase reporters driven by the LXR response elements (LXREs) of ABCA1, ABCG1, and apoE genes. These inhibitory effects of DN2 were reversed by overexpression of ASC-2. Chromatin immunoprecipitation analysis demonstrated that ASC-2 was recruited to the LXREs of the ABCA1, ABCG1, and apoE genes in a ligand-dependent manner and that DN2 interfered with the recruitment of ASC-2 to these LXREs. Furthermore, low-density lipoprotein receptor (LDLR)-null mice receiving bone marrow transplantation from DN2-transgenic mice showed accelerated atherogenesis when administered a high-fat diet. Taken together, these results indicate that suppression of the LXR-specific activity of ASC-2 results in both defective cholesterol metabolism in macrophages and accelerated atherogenesis, suggesting that ASC-2 is an antiatherogenic coactivator of LXRs in macrophages.
Collapse
Affiliation(s)
- Geun Hyang Kim
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Matsuki K, Tamasawa N, Yamashita M, Tanabe J, Murakami H, Matsui J, Imaizumi T, Satoh K, Suda T. Metformin restores impaired HDL-mediated cholesterol efflux due to glycation. Atherosclerosis 2009; 206:434-8. [PMID: 19376519 DOI: 10.1016/j.atherosclerosis.2009.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 03/05/2009] [Accepted: 03/05/2009] [Indexed: 01/19/2023]
Abstract
High-density lipoprotein (HDL) mediates cholesterol efflux, which is the initial and rate-limiting step of reverse cholesterol transport. The present study was undertaken to evaluate the effect, on macrophage cholesterol efflux, of functional modification of HDL by its glycation. We also investigated the effects of the glycation-inhibitors metformin (MF) and aminoguanidine (AG) on glycated HDL-mediated cholesterol efflux. Human plasma HDL (5mg protein/mL) was glycated by incubation with 3-deoxyglucosone (3-DG). Glycation was monitored by measuring carboxymethyl-lysine (CML). HDL-mediated cholesterol efflux was determined using human THP-1-derived macrophages pre-labeled with [(3)H]-cholesterol. To measure expression of potential factors related to the efflux in the macrophages, ATP-binding cassette transporter (ABC) G1 was analyzed by real-time quantitative RT-PCR and Western blot. Glycation of HDL significantly reduced the HDL-mediated cholesterol efflux from THP-1-derived macrophages (87.7+/-4.2% of control, n=9, p<0.0001). In the presence of metformin or aminoguanidine (100mM), glycated HDL-mediated cholesterol efflux was restored to 97.5+/-4.3% and 96.9+/-3.1%, respectively. Exogenous HDL reduced ABCG1 mRNA and protein expression in THP-1-derived macrophages, but glycation deprived HDL of this effect. We conclude that glycated HDL particles are ineffective as acceptors of ABCG1-mediated cholesterol efflux; and this may explain, at least in part, accelerated atherosclerosis in diabetic patients. Metformin serves as a possible candidate to restore impaired cholesterol efflux and reverse cholesterol transport.
Collapse
Affiliation(s)
- Kota Matsuki
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Jeannesson E, Siest G, Bastien B, Albertini L, Aslanidis C, Schmitz G, Visvikis-Siest S. Association of ABCB1 gene polymorphisms with plasma lipid and apolipoprotein concentrations in the STANISLAS cohort. Clin Chim Acta 2009; 403:198-202. [PMID: 19285054 DOI: 10.1016/j.cca.2009.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 02/27/2009] [Accepted: 02/27/2009] [Indexed: 01/11/2023]
Abstract
BACKGROUND While involvement of ABCB1 is well known in drug transport, its metabolite transport role is not so well understood. Like other ABC transporters, ABCB1 might be implicated in cholesterol homeostasis and ABCB1 polymorphisms which are responsible for drug resistance might affect lipid homeostasis. Our objective was thus to investigate the implication of ABCB1 polymorphisms and haplotypes in the genetic variability of lipid constituents in healthy people. METHODS T-129C, G-1A, A61G, G1199A, C1236T, T-76A, G2677T/A and C3435T polymorphisms were genotyped in 371 supposed healthy individuals from the STANISLAS cohort. Each polymorphism was tested with plasma concentrations of total cholesterol, HDL and LDL cholesterol, triglycerides and apolipoproteins A1, B, C3 and E. RESULTS After adjustment for covariates, carriers of at least one 3435T allele had a significant higher level of apolipoprotein A1 (p = 0.005). In addition, significant correlations were observed in a sex-dependent manner. Women carrying either T-76 or 1236T allele (tendency with G-1 and 2677T/A) had lower total cholesterol (p < or = 0.01) and apolipoprotein B (T-76 exclusively, p=0.002). Haplotypes analysis was not more informative than the single polymorphisms except G2677T/A-C3435T haplotypes for apolipoprotein A1 concentration. CONCLUSION ABCB1 polymorphisms contribute to the genetic variability of plasma values of lipids and lipoproteins in healthy people.
Collapse
Affiliation(s)
- Elise Jeannesson
- Unité de recherche Génétique Cardiovasculaire, Faculté de Pharmacie de Nancy, Université Henri Poincaré, France
| | | | | | | | | | | | | |
Collapse
|
186
|
Abstract
PURPOSE OF REVIEW Aberrations in cerebral cholesterol homeostasis can lead to severe neurological diseases and have been linked to Alzheimer's disease. Many proteins involved in peripheral cholesterol metabolism are also present in the brain. Yet, brain cholesterol metabolism is very different from that in the remainder of the body. This review reports on present insights into the regulation of cerebral cholesterol homeostasis, focusing on cholesterol trafficking between astrocytes and neurons. RECENT FINDINGS Astrocytes are a major site of cholesterol synthesis. They secrete cholesterol in the form of apolipoprotein E-containing HDL-like particles. After birth, neurons are thought to reduce their cholesterol synthesis and rely predominantly on astrocytes for their cholesterol supply. How exactly neurons regulate their cholesterol supply is largely unknown. A role for the brain-specific cholesterol metabolite, 24(S)-hydroxycholesterol, in this process was recently proposed. Recent findings strengthen the link between brain cholesterol metabolism and factors involved in synaptic plasticity, a process essential for learning and memory functions, as well as regeneration, which are affected in Alzheimer's disease. SUMMARY Insight into the regulation of cerebral cholesterol homeostasis will provide possibilities to modulate the key steps involved and may lead to the development of therapies for the prevention as well as treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Monique Mulder
- Department of Internal Medicine and Division of Pharmacology, Vascular and Metabolic diseases, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
187
|
Karla PK, Earla R, Boddu SH, Johnston TP, Pal D, Mitra A. Molecular expression and functional evidence of a drug efflux pump (BCRP) in human corneal epithelial cells. Curr Eye Res 2009; 34:1-9. [PMID: 19172464 DOI: 10.1080/02713680802518251] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Breast Cancer Resistance Protein (BCRP) belongs to the family of efflux transporters involved in drug efflux leading to drug resistance. The objective of this study was to explore physical barriers for ocular drug absorption and to verify the presence and possible role of BCRP as a barrier for ocular drug resistance. METHODS Transfected human corneal epithelial cells (SV40-HCEC) were selected as an in vitro model for corneal epithelium with MDCKII-BCRP as positive control. [(3)H]-Mitoxantrone ([(3)H]-MTX), which is a proven substrate for organic anion transporter like BCRP, was selected as a model drug for functional expression studies. Fumetremorgin C (FTC), a known specific inhibitor for BCRP and GF120918, an inhibitor for BCRP and P-gp, were added to inhibit BCRP-mediated efflux. PGP-4008, a specific inhibitor of P-gp was used to delineate the contribution of P-gp. The mRNA extracted from cells was used for RT-PCR analysis and gene expression. Membrane fractions of SV40-HCEC and MDCKII-BCRP were used for immunoprecipitation followed by Western blot analysis. RESULTS Efflux was inhibited significantly in the presence of FTC and GF120918. Dose-dependent inhibition of efflux by BCRP was noticed in SV40-HCEC and MDCKII-BCRP in the presence of FTC and GF120918, and the efflux was ATP-dependent. The metabolic inhibitor, 2,4-DNP, significantly inhibited efflux. No pH-dependent efflux was noticed except at pH 5.5. RT-PCR analysis indicated a unique and distinct band at approximately 429 bp, corresponding to BCRP in SV40-HCEC and MDCKII-BCRP cells. Western Blot analysis indicated a specific band at approximately 70 kDa in the membrane fraction of SV40-HCEC and MDCKII-BCRP cells. CONCLUSIONS We have demonstrated the expression of BCRP in human corneal epithelial cells and, for the first time, demonstrated its functional activity leading to drug efflux. RT-PCR and Western blot analysis further confirmed this finding.
Collapse
Affiliation(s)
- Pradeep K Karla
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA
| | | | | | | | | | | |
Collapse
|
188
|
Lammers B, Out R, Hildebrand RB, Quinn CM, Williamson D, Hoekstra M, Meurs I, Van Berkel TJC, Jessup W, Van Eck M. Independent protective roles for macrophage Abcg1 and Apoe in the atherosclerotic lesion development. Atherosclerosis 2009; 205:420-6. [PMID: 19217108 DOI: 10.1016/j.atherosclerosis.2009.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 01/09/2009] [Accepted: 01/12/2009] [Indexed: 11/25/2022]
Abstract
OBJECTIVE ATP-binding cassette transporter G1 (Abcg1) and apolipoprotein E (Apoe) play a role in macrophage cholesterol efflux and consequently the development of atherosclerosis. A possible interaction between Abcg1 and Apoe in cholesterol efflux was postulated, but the potential combined action of these proteins on atherosclerotic lesion formation is unclear. METHODS LDL receptor knockout (KO) mice were transplanted with bone marrow from Abcg1/Apoe double KO (dKO) mice, their respective single knockouts, and wild-type (WT) controls and challenged with a high-fat/high-cholesterol diet for 6 weeks to induce atherosclerosis. RESULTS No differences were found in serum lipid levels. The mean atherosclerotic lesion area in dKO transplanted animals (187+/-18x10(3)microm(2)) was 1.4-fold (p<0.01) increased compared to single knockouts (Abcg1 KO: 138+/-5x10(3)microm(2); Apoe KO: 131+/-7x10(3)microm(2)) and 1.9-fold (p<0.001) as compared to WT controls (97+/-15x10(3)microm(2)). In vitro cholesterol efflux experiments established that combined deletion of Abcg1 and Apoe leads to a larger attenuation of macrophage cholesterol efflux to HDL as compared to single knockouts. CONCLUSIONS Single deletion of macrophage Abcg1 or Apoe does lead to a moderate non-significant increase in atherosclerotic lesion development as tested by ANOVA, while combined deletion of Abcg1 and Apoe induces a more dramatic and significant increase in atherosclerosis. Our results indicate an additive, independent effect for both macrophage Abcg1 and Apoe in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Bart Lammers
- Gorlaeus Leiden/Amsterdam Center for Drug Research, Leiden University, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Majdalawieh A, Ro HS. LPS-induced suppression of macrophage cholesterol efflux is mediated by adipocyte enhancer-binding protein 1. Int J Biochem Cell Biol 2009; 41:1518-25. [PMID: 19166963 DOI: 10.1016/j.biocel.2009.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/30/2008] [Accepted: 01/05/2009] [Indexed: 12/22/2022]
Abstract
Macrophages facilitate clearance of cholesterol from the body via reverse cholesterol transport (RCT). The first event in RCT is internalization of modified low density lipoprotein by macrophages, upon which PPARgamma1 and LXRalpha signaling pathways are turned on, leading to the transactivation of a cascade of genes (e.g. ABCA1 and ABCG1), whose products promote macrophage cholesterol efflux. Down-regulation of macrophage cholesterol efflux mediators leads to an imbalance in cholesterol homeostasis, promoting foam cell formation. Lipopolysaccharide (LPS) has been shown to suppress PPARgamma1 and its downstream target genes in macrophages, inducing foam cell formation; a key mechanism proposed to underlie bacterial infection-induced atherosclerosis. Herein, we show that adipocyte enhancer-binding protein 1 (AEBP1) is up-regulated during monocyte differentiation. Moreover, we provide experimental evidence suggesting that AEBP1 expression is induced by LPS, and that LPS-induced down-regulation of pivotal macrophage cholesterol efflux mediators, leading to foam cell formation, is largely mediated by AEBP1. Although AEBP1-independent pathways seem to contribute to these LPS effects, such pathways can only mediate lesser and delayed effects of LPS on macrophage cholesterol efflux and development of foam cells. We speculate that AEBP1 may serve as a potential therapeutic target for the prevention/treatment of bacterial infection-induced atherosclerosis.
Collapse
Affiliation(s)
- Amin Majdalawieh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Sir Charles Tupper Medical Building, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
190
|
Furuyama S, Uehara Y, Zhang B, Baba Y, Abe S, Iwamoto T, Miura SI, Saku K. Genotypic Effect of ABCG1 Gene Promoter -257T>G Polymorphism on Coronary Artery Disease Severity in Japanese Men. J Atheroscler Thromb 2009; 16:194-200. [DOI: 10.5551/jat.e380] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
191
|
Abstract
Because of the obvious negative relation between high-density lipoprotein (HDL) cholesterol and cardiovascular disease and the substantial residual risk of this disease even during treatment with high-dose statin there has been an urgent need to investigate the possible therapeutic benefit of increasing HDL. Even if treatment with nicotinic acid with its marked HDL-increasing effect has been encouraging, there is no evidence so far that specific increase of HDL cholesterol results in less cardiovascular disease. Treatment with the cholesterol ester transfer protein (CETP) inhibitor and HDL-increasing drug torcetrapib resulted in increased risk of cardiovascular disease. These negative results were followed by a lively discussion regarding the possible benefit of HDL-increasing treatment in general and CETP inhibition in particular. Suggested possible causes for the negative outcome by torcetrapib treatment are off-target non-CETP-related effect of this particular inhibitor, inability of very high blood HDL cholesterol levels to protect, induction of dysfunctional HDL, and direct atherogenic effect of CETP inhibition. It is concluded that still today little is known about the effect of specific therapeutic elevation of HDL cholesterol, particularly so through CETP inhibition on cardiovascular risk. New interventional studies on this therapeutic principle are welcomed and under way.
Collapse
Affiliation(s)
- Anders G Olsson
- Department of Medicine and Health, Faculty of Health Sciences, University of Linkoping, Sweden.
| |
Collapse
|
192
|
Jänis MT, Laaksonen R, Oresic M. Metabolomic strategies to identify tissue-specific effects of cardiovascular drugs. Expert Opin Drug Metab Toxicol 2008; 4:665-80. [PMID: 18611110 DOI: 10.1517/17425255.4.6.665] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The number of patients eligible for cardiovascular therapies in general is forecast to increase substantially in the coming decades. However, the current list of potential future cardiovascular blockbuster drugs is alarmingly short. There is thus a clear need for innovative strategies to increase the efficiency of drug development pipelines by establishing new sensitive biomarkers to monitor drug efficacy and safety in the context of complexity of lipoprotein metabolism targeted by the cardiovascular drugs. METHODS Metabolomics is a discipline dedicated to the systematic study of small molecules in cells, tissues and biofluids. Since lipids (including cholesterol), as well as other metabolites, are key constituents of lipoprotein particles and are thus part of the complex lipoprotein metabolism that includes exchange of lipids and metabolites with peripheral tissues, cardiovascular drug safety and efficacy needs to be addressed in the context of systemic lipid metabolism. RESULTS/CONCLUSION Metabolomics, lipidomics in particular, is expected to make an important impact on the discovery and development of cardiovascular therapies.
Collapse
Affiliation(s)
- Minna T Jänis
- Zora Biosciences Oy, Biologinkuja 1, Espoo, FI-02150, Finland
| | | | | |
Collapse
|
193
|
Transcriptional profiles of receptors and transporters involved in brain cholesterol homeostasis at the blood-brain barrier: use of an in vitro model. Brain Res 2008; 1249:34-42. [PMID: 18996096 DOI: 10.1016/j.brainres.2008.10.036] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/04/2008] [Accepted: 10/11/2008] [Indexed: 01/03/2023]
Abstract
Brain is the most cholesterol rich organ of the whole body and recent studies suggest a role for the blood-brain barrier (BBB) in cerebral cholesterol homeostasis. Low density lipoprotein receptor (LDLR)-related receptors and ATP-binding Cassette (ABC) transporters play an important role in peripheral sterol homeostasis. The purpose of this study was to determine the mRNA expression profiles of ABC transporters (ABCA1, 2, 3, 7 and ABCG1) and low density lipoprotein receptor (LDLR)-related receptors (LDLR, vLDLR, LRP1, LRP2 and LRP8) in BBB endothelium using an in vitro co-culture model of bovine brain capillary endothelial cells (BCECs) and rat glial cells. All transcripts tested are expressed by BCECs and in capillary extract, except vLDLR. Glial cells influence ABCG1, A1, 2, 7 and LRP1 transcription, suggesting a role in cerebral lipid supply/elimination through the modulation of the expression of these transporters and receptors by these cells. Altogether, these results highlight the importance of glial input in the BBB transport phenotype for sterol homeostasis in the central nervous system, and confirm the importance of the BBB in this process.
Collapse
|
194
|
DiBlasio-Smith EA, Arai M, Quinet EM, Evans MJ, Kornaga T, Basso MD, Chen L, Feingold I, Halpern AR, Liu QY, Nambi P, Savio D, Wang S, Mounts WM, Isler JA, Slager AM, Burczynski ME, Dorner AJ, LaVallie ER. Discovery and implementation of transcriptional biomarkers of synthetic LXR agonists in peripheral blood cells. J Transl Med 2008; 6:59. [PMID: 18925943 PMCID: PMC2576083 DOI: 10.1186/1479-5876-6-59] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 10/16/2008] [Indexed: 11/29/2022] Open
Abstract
Background LXRs (Liver X Receptor α and β) are nuclear receptors that act as ligand-activated transcription factors. LXR activation causes upregulation of genes involved in reverse cholesterol transport (RCT), including ABCA1 and ABCG1 transporters, in macrophage and intestine. Anti-atherosclerotic effects of synthetic LXR agonists in murine models suggest clinical utility for such compounds. Objective Blood markers of LXR agonist exposure/activity were sought to support clinical development of novel synthetic LXR modulators. Methods Transcript levels of LXR target genes ABCA1 and ABCG1 were measured using quantitative reverse transcriptase/polymerase chain reaction assays (qRT-PCR) in peripheral blood from mice and rats (following a single oral dose) and monkeys (following 7 daily oral doses) of synthetic LXR agonists. LXRα, LXRβ, ABCA1, and ABCG1 mRNA were measured by qRT-PCR in human peripheral blood mononuclear cells (PBMC), monocytes, T- and B-cells treated ex vivo with WAY-252623 (LXR-623), and protein levels in human PBMC were measured by Western blotting. ABCA1/G1 transcript levels in whole-blood RNA were measured using analytically validated assays in human subjects participating in a Phase 1 SAD (Single Ascending Dose) clinical study of LXR-623. Results A single oral dose of LXR agonists induced ABCA1 and ABCG1 transcription in rodent peripheral blood in a dose- and time-dependent manner. Induction of gene expression in rat peripheral blood correlated with spleen expression, suggesting LXR gene regulation in blood has the potential to function as a marker of tissue gene regulation. Transcriptional response to LXR agonist was confirmed in primates, where peripheral blood ABCA1 and ABCG1 levels increased in a dose-dependent manner following oral treatment with LXR-623. Human PBMC, monocytes, T- and B cells all expressed both LXRα and LXRβ, and all cell types significantly increased ABCA1 and ABCG1 expression upon ex vivo LXR-623 treatment. Peripheral blood from a representative human subject receiving a single oral dose of LXR-623 showed significant time-dependent increases in ABCA1 and ABCG1 transcription. Conclusion Peripheral blood cells express LXRα and LXRβ, and respond to LXR agonist treatment by time- and dose-dependently inducing LXR target genes. Transcript levels of LXR target genes in peripheral blood are relevant and useful biological indicators for clinical development of synthetic LXR modulators.
Collapse
Affiliation(s)
- Elizabeth A DiBlasio-Smith
- Department of Biological Technologies, Wyeth Research, 35 CambridgePark Drive, Cambridge, MA 02140, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
The development of a single-celled fertilized egg, through the blastocyst stage of a ball of cells and the embryonic stage when almost all organ systems begin to develop, and finally to the fetal stage where growth and physiological maturation occurs, is a complex and multifaceted process. A change in metabolism during gestation, especially when organogenesis occurs, can lead to abnormal development and congenital defects. Although many studies have described the roles of specific proteins in development, the roles of specific lipids, such as sterols, have not been studied as intensely. Sterol's functions in development range from being a structural component of membranes to regulating the patterning of the forebrain through sonic hedgehog to regulating expression of key proteins involved in metabolic processes. This review focuses on the roles of sterols in embryonic and fetal development and metabolism. Potential sources of cholesterol for the fetus and embryo are also discussed.
Collapse
Affiliation(s)
- Laura A Woollett
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| |
Collapse
|
196
|
Burgess B, Naus K, Chan J, Hirsch-Reinshagen V, Tansley G, Matzke L, Chan B, Wilkinson A, Fan J, Donkin J, Balik D, Tanaka T, Ou G, Dyer R, Innis S, McManus B, Lütjohann D, Wellington C. Overexpression of Human ABCG1 Does Not Affect Atherosclerosis in Fat-Fed ApoE-Deficient Mice. Arterioscler Thromb Vasc Biol 2008; 28:1731-7. [DOI: 10.1161/atvbaha.108.168542] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
The purpose of this study was to evaluate the effects of whole body overexpression of human ABCG1 on atherosclerosis in apoE
−/−
mice.
Methods and Results—
We generated BAC transgenic mice in which human ABCG1 is expressed from endogenous regulatory signals, leading to a 3- to 7-fold increase in ABCG1 protein across various tissues. Although the ABCG1 BAC transgene rescued lung lipid accumulation in ABCG1
−/−
mice, it did not affect plasma lipid levels, macrophage cholesterol efflux to HDL, atherosclerotic lesion area in apoE
−/−
mice, or levels of tissue cholesterol, cholesterol ester, phospholipids, or triglycerides. Subtle changes in sterol biosynthetic intermediate levels were observed in liver, with chow-fed ABCG1 BAC Tg mice showing a nonsignificant trend toward decreased levels of lathosterol, lanosterol, and desmosterol, and fat-fed mice exhibiting significantly elevated levels of each intermediate. These changes were insufficient to alter ABCA1 expression in liver.
Conclusions—
Transgenic human ABCG1 does not influence atherosclerosis in apoE
−/−
mice but may participate in the regulation of tissue cholesterol biosynthesis.
Collapse
Affiliation(s)
- Braydon Burgess
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - Kathryn Naus
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - Jeniffer Chan
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - Veronica Hirsch-Reinshagen
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - Gavin Tansley
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - Lisa Matzke
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - Benny Chan
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - Anna Wilkinson
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - Jianjia Fan
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - James Donkin
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - Danielle Balik
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - Tracie Tanaka
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - George Ou
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - Roger Dyer
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - Sheila Innis
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - Bruce McManus
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - Dieter Lütjohann
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| | - Cheryl Wellington
- From the Department of Pathology and Laboratory Medicine (B.B., K.N., J.C., V.H.-R., G.T., A.W., J.F., J.D., D.B., T.T., G.O., C.W.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; ICapture Centre (L.M., B.M.), University of British Columbia, Vancouver, Canada; the Department of Pediatrics (B.C., R.D., S.I.), Child and Family Research Institute, University of British Columbia, Vancouver, Canada; and the Department of Clinical Pharmacology (D.L.), University
| |
Collapse
|
197
|
Kratzer A, Buchebner M, Pfeifer T, Becker TM, Uray G, Miyazaki M, Miyazaki-Anzai S, Ebner B, Chandak PG, Kadam RS, Calayir E, Rathke N, Ahammer H, Radovic B, Trauner M, Hoefler G, Kompella UB, Fauler G, Levi M, Levak-Frank S, Kostner GM, Kratky D. Synthetic LXR agonist attenuates plaque formation in apoE-/- mice without inducing liver steatosis and hypertriglyceridemia. J Lipid Res 2008; 50:312-26. [PMID: 18812595 PMCID: PMC2636920 DOI: 10.1194/jlr.m800376-jlr200] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Liver X receptors (LXRs) are important regulators of cholesterol and lipid metabolism. LXR agonists have been shown to limit the cellular cholesterol content by inducing reverse cholesterol transport, increasing bile acid production, and inhibiting intestinal cholesterol absorption. Most of them, however, also increase lipogenesis via sterol regulatory element-binding protein-1c (SREBP1c) and carbohydrate response element-binding protein activation resulting in hypertriglyceridemia and liver steatosis. We report on the antiatherogenic properties of the steroidal liver X receptor agonist N,N-dimethyl-3beta-hydroxy-cholenamide (DMHCA) in apolipoprotein E (apoE)-deficient mice. Long-term administration of DMHCA (11 weeks) significantly reduced lesion formation in male and female apoE-null mice. Notably, DMHCA neither increased hepatic triglyceride (TG) levels in male nor female apoE-deficient mice. ATP binding cassette transporter A1 and G1 and cholesterol 7alpha-hydroxylase mRNA abundances were increased, whereas SREBP1c mRNA expression was unchanged in liver, and even decreased in macrophages and intestine. Short-term treatment revealed even higher changes on mRNA regulation. Our data provide evidence that DMHCA is a strong candidate as therapeutic agent for the treatment or prevention of atherosclerosis, circumventing the negative side effects of other LXR agonists.
Collapse
Affiliation(s)
- Adelheid Kratzer
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/3, 8010 Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Koshiba S, An R, Saito H, Wakabayashi K, Tamura A, Ishikawa T. Human ABC transporters ABCG2 (BCRP) and ABCG4. Xenobiotica 2008; 38:863-88. [DOI: 10.1080/00498250801986944] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
199
|
Tazoe F, Yagyu H, Okazaki H, Igarashi M, Eto K, Nagashima SI, Inaba T, Shimano H, Osuga JI, Ishibashi S. Induction of ABCA1 by overexpression of hormone-sensitive lipase in macrophages. Biochem Biophys Res Commun 2008; 376:111-5. [PMID: 18762171 DOI: 10.1016/j.bbrc.2008.08.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 08/22/2008] [Indexed: 11/16/2022]
Abstract
Initial step toward the reverse-cholesterol transport is cholesterol efflux that is mediated by the ATP-binding cassette transporter A1 (ABCA1). However, it is unknown how the cholesteryl ester (CE) hydrolysis induces the expression of the ABCA1 gene. Overexpression of hormone-sensitive lipase (HSL) increased the hydrolysis of CE and stimulated the expression of ABCA1 gene at the transcriptional level in RAW 264.7 macrophages. The stimulatory effects of the HSL overexpression and cholesterol loading on the ABCA1 promoter activity were additive. Mutational analyses of the promoter of ABCA1 identified the responsible element as the direct repeat-4 (DR-4) that binds LXR/RXR heterodimers. In conclusion, stimulation of hydrolysis of CE in macrophages induces the expression of ABCA1 gene primarily via the LXR-dependent pathway and can be useful for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Fumiko Tazoe
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Baldán A, Gomes AV, Ping P, Edwards PA. Loss of ABCG1 results in chronic pulmonary inflammation. THE JOURNAL OF IMMUNOLOGY 2008; 180:3560-8. [PMID: 18292583 DOI: 10.4049/jimmunol.180.5.3560] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABCG1, a member of the ATP-binding cassette transporter superfamily, is highly expressed in multiple cells of the lung. Loss of ABCG1 results in severe pulmonary lipidosis in mice, with massive deposition of cholesterol in both alveolar macrophages and type 2 cells and the accumulation of excessive surfactant phospholipids. These observations are consistent with ABCG1 controlling cellular sterol metabolism. Herein, we report on the progressive and chronic inflammatory process that accompanies the lipidosis in the lungs of Abcg1-/- mice. Compared with wild-type animals, the lungs of aged chow-fed mice deficient in ABCG1 show distinctive signs of inflammation that include macrophage accumulation, lymphocytic infiltration, hemorrhage, eosinophilic crystals, and elevated levels of numerous cytokines and cytokine receptors. Analysis of bronchoalveolar lavages obtained from Abcg1-/- mice revealed elevated numbers of foamy macrophages and leukocytes and the presence of multiple markers of inflammation including crystals of chitinase-3-like proteins. These data suggest that cholesterol and/or cholesterol metabolites that accumulate in Abcg1-/- lungs can trigger inflammatory signaling pathways. Consistent with this hypothesis, the expression of a number of cytokines was found to be significantly increased following increased cholesterol delivery to either primary peritoneal macrophages or Raw264.7 cells. Finally, cholesterol loading of primary mouse macrophages induced cytokine mRNAs to higher levels in Abcg1-/-, as compared with wild-type cells. These results demonstrate that ABCG1 plays critical roles in pulmonary homeostasis, balancing both lipid/cholesterol metabolism and inflammatory responses.
Collapse
Affiliation(s)
- Angel Baldán
- Department of Biological Chemistry, Center for Health Sciences, David Geffen School of Medicine, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|