151
|
Panet-Raymond V, Gottlieb B, Beitel LK, Pinsky L, Trifiro MA. Interactions between androgen and estrogen receptors and the effects on their transactivational properties. Mol Cell Endocrinol 2000; 167:139-50. [PMID: 11000528 DOI: 10.1016/s0303-7207(00)00279-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The physiological interplay of androgen and estrogen action in endocrine tissues is well recognized. The biochemical processes responsible for this interplay have yet to be fully defined. We have demonstrated that the androgen receptor (AR) and estrogen receptor-alpha (ERalpha) can interact directly using the yeast and mammalian two-hybrid systems. These interactions occurred between the C-terminal ERalpha ligand-binding domain and either the N-terminal AR transactivational domain or the full-length AR. Estrogen receptor-beta (ERbeta) did not interact with the AR. DNA cotransfection studies employing AR, ERalpha and ERbeta expression vectors and AR- or ER-reporter gene constructs were used to identify and measure potential functional effects of AR-ER interaction. Coexpression of ERalpha with AR decreased AR transactivation by 35%; coexpression of AR with ERalpha decreased ERalpha transactivation by 74%. Coexpression of AR and ERbeta did not significantly modulate AR or ERbeta transactivation. In summary, we have shown that specific domains of AR and ERalpha physically interact and have demonstrated the functional consequences of such interaction. These results may help explain the nature of the physiological interplay between androgens and estrogens.
Collapse
Affiliation(s)
- V Panet-Raymond
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, 3755 Cote-Ste-Catherine Road, Quebec, H3T 1E2, Montreal, Canada
| | | | | | | | | |
Collapse
|
152
|
Tan JA, Hall SH, Petrusz P, French FS. Thyroid receptor activator molecule, TRAM-1, is an androgen receptor coactivator. Endocrinology 2000; 141:3440-50. [PMID: 10965917 DOI: 10.1210/endo.141.9.7680] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An androgen receptor (AR) interacting protein was isolated from a HeLa cell complementary DNA library by two-hybrid screening in yeast using the AR DNA and ligand binding domains [amino acids (aa) 481-919] as bait. AR binding of the protein in yeast was dependent on the presence of testosterone or dihydrotestosterone (DHT). The isolated protein is identical to thyroid receptor activator molecule TRAM-1 but lacking aa 1-458. TRAM-1 is a steroid receptor coactivator-3 (SRC-3) subtype. In affinity matrix assays, 35S-labeled TRAM-1 bound the GST-AR ligand binding domain (aa 624-919) and GST-AR N-terminal and DNA binding domains (aa 1-660), but not the GST-AR DNA binding domain (aa 544-634) alone. Coexpression of TRAM-1 increased DHT-dependent AR transactivation 5-fold and constitutive activity of AR (aa 1-660) N-terminal and DNA-binding domains increased 9-fold. Full-length TRAM-1 (aa 1-1424) and the partial (aa 459-1424) were AR and GR coactivators as was SRC-1. In human testis, immunostaining of SRC-3 colocalized with AR in nuclei of Sertoli cells and peritubular myoid cells, indicating it could function as an AR coactivator in these cells. SRC-3 was also present in nuclei of spermatogenic cells where AR was not expressed, suggesting it might also be a coactivator with other nuclear receptors that regulate spermatogenesis.
Collapse
Affiliation(s)
- J A Tan
- The Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill 27599-7500, USA
| | | | | | | |
Collapse
|
153
|
He B, Kemppainen JA, Wilson EM. FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 2000; 275:22986-94. [PMID: 10816582 DOI: 10.1074/jbc.m002807200] [Citation(s) in RCA: 313] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear receptor superfamily members of eukaryotic transcriptional regulators contain a highly conserved activation function 2 (AF2) in the hormone binding carboxyl-terminal domain and, for some, an additional activation function 1 in the NH(2)-terminal region which is not conserved. Recent biochemical and crystallographic studies revealed the molecular basis of AF2 is hormone-dependent recruitment of LXXLL motif-containing coactivators, including the p160 family, to a hydrophobic cleft in the ligand binding domain. Our previous studies demonstrated that AF2 in the androgen receptor (AR) binds only weakly to LXXLL motif-containing coactivators and instead mediates an androgen-dependent interaction with the AR NH(2)-terminal domain required for its physiological function. Here we demonstrate in a mammalian two-hybrid assay, glutathione S-transferase fusion protein binding studies, and functional assays that two predicted alpha-helical regions that are similar, but functionally distinct from the p160 coactivator interaction sequence, mediate the androgen-dependent, NH(2)- and carboxyl-terminal interaction. FXXLF in the AR NH(2)-terminal domain with the sequence (23)FQNLF(27) mediates interaction with AF2 and is the predominant androgen-dependent interaction site. This FXXLF sequence and a second NH(2)-terminal WXXLF sequence (433)WHTLF(437) interact with different regions of the ligand binding domain to stabilize the hormone-receptor complex and may compete with AF2 recruitment of LXXLL motif-containing coactivators. The results suggest a unique mechanism for AR-mediated transcriptional activation.
Collapse
Affiliation(s)
- B He
- Laboratories for Reproductive Biology, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
154
|
Lee DK, Duan HO, Chang C. From androgen receptor to the general transcription factor TFIIH. Identification of cdk activating kinase (CAK) as an androgen receptor NH(2)-terminal associated coactivator. J Biol Chem 2000; 275:9308-13. [PMID: 10734072 DOI: 10.1074/jbc.275.13.9308] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR), like other steroid receptors, modulates the activity of the general transcription machinery on the core promoter to exert its function as a regulator. Co-immunoprecipitation of prostate cancer LNCaP cell extract using protein A-Sepharose coupled with anti-AR antibody indicates that the AR interacts with the general transcription factor TFIIH in a physiological condition. Co-transfection of cdk activating kinase (CAK), the kinase moiety of TFIIH, enhanced AR-mediated transcription in a ligand-dependent manner in human prostate cancer PC-3 and LNCaP cells, and in a ligand-independent manner in human prostate cancer DU145 cells. Detailed interaction studies further revealed that the AR NH(2)-terminal domain interacting with CAK was essential for the CAK-induced AR transactivation. Together, our data suggest that the AR may interact with TFIIH for efficient communication with the general transcription factors/RNA polymerase II on the core promoter.
Collapse
Affiliation(s)
- D K Lee
- George Whipple Laboratory for Cancer Research, Department of Pathology, Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
155
|
He B, Kemppainen JA, Voegel JJ, Gronemeyer H, Wilson EM. Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain. J Biol Chem 1999; 274:37219-25. [PMID: 10601285 DOI: 10.1074/jbc.274.52.37219] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation function 2 in the ligand binding domain of nuclear receptors forms a hydrophobic cleft that binds the LXXLL motif of p160 transcriptional coactivators. Here we provide evidence that activation function 2 in the androgen receptor serves as the contact site for the androgen dependent NH(2)- and carboxyl-terminal interaction of the androgen receptor and only weakly interacts with p160 coactivators in an LXXLL-dependent manner. Mutagenesis studies indicate that it is the NH(2)-/carboxyl-terminal interaction that is required by activation function 2 to stabilize helix 12 and slow androgen dissociation critical for androgen receptor activity in vivo. The androgen receptor recruits p160 coactivators through its NH(2)-terminal and DNA binding domains in an LXXLL motif-independent manner. The results suggest a novel function for activation function 2 and a unique mechanism of nuclear receptor transactivation.
Collapse
Affiliation(s)
- B He
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27599-7500, USA
| | | | | | | | | |
Collapse
|
156
|
Huang Y, Simons SS. Functional analysis of R651 mutations in the putative helix 6 of rat glucocorticoid receptors. Mol Cell Endocrinol 1999; 158:117-30. [PMID: 10630412 DOI: 10.1016/s0303-7207(99)00171-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Trypsin digestion of steroid-free, but not steroid-bound, rat glucocorticoid receptor (GR) has recently been reported to occur at arginine-651 (R651). This residue is close to the affinity labeled Cys-656 and thus could be a sensitive probe of steroid binding. This hypothesis is supported by the current model of the GR ligand binding domain (LBD), which is based on the X-ray structures of several related receptor LBDs and places R651 in the middle of the putative alpha-helix 6 (649-EQRMS-653 of rat GR), close to the bound steroid. To test this model, R651, which could be involved in hydrophilic and/or hydrogen bonding, was mutated to alanine (A), which favors alpha-helices, the helix breakers proline (P) and glycine (G), or tryptophan (W). All receptors were expressed at about the same level, as determined by Western blots, but the cell-free binding activity of R651P was reduced twofold. The cell-free binding affinities were all within a factor of 10 of wild type receptors. Whole cell biological activity with transiently transfected receptors was determined with a variety of GR agonists (dexamethasone and deacylcortivazol) or antagonists (dexamethasone mesylate, RU486, and progesterone). Reporters containing both simple (GRE) and complex (MMTV) enhancers were used to test for alterations in GR interactions with enhancer/promoter complexes. Surprisingly, no correlation was observed between biological activity and ability to preserve alpha-helical structures for each point mutation. Finally, similar trypsin digestion patterns indicated no major differences in the tertiary structure of the mutant receptors. Collectively, these results argue that the polar/ionizable residue R651 is not required for GR activity and is not part of an alpha-helix in the steroid-free or bound GR. The effect of these mutations on GR structure and activity may result from a cascade of initially smaller perturbations. These LBD alterations were the most varied for interactions with deacylcortivazol and RU 486, which have recently been predicted to be sub-optimal binders due to their large size. However, further analyses of ligand size versus affinity suggest that there is no narrowly defined optimal size for ligand binding, although larger ligands may be more sensitive to modifications of LBD structure. Finally, the changes in GR activity with the various mutations seem to result from altered LBD interactions with common, as opposed to enhancer specific, transcription factors.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Blotting, Western
- Cell Line
- Enhancer Elements, Genetic
- Ligands
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation, Missense
- Protein Binding
- Protein Structure, Tertiary
- Rats
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/drug effects
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Steroids/metabolism
- Steroids/pharmacology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Y Huang
- Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
157
|
Giannoukos G, Silverstein AM, Pratt WB, Simons SS. The seven amino acids (547-553) of rat glucocorticoid receptor required for steroid and hsp90 binding contain a functionally independent LXXLL motif that is critical for steroid binding. J Biol Chem 1999; 274:36527-36. [PMID: 10593951 DOI: 10.1074/jbc.274.51.36527] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp90 association with glucocorticoid receptors (GRs) is required for steroid binding. We recently reported that seven amino acids (547-553) overlapping the amino-terminal end of the rat GR ligand-binding domain are necessary for hsp90 binding, and consequently steroid binding. The role of a LXXLL motif at the COOH terminus of this sequence has now been analyzed by determining the properties of Leu to Ser mutations in full-length GR and glutathione S-transferase chimeras. Surprisingly, these mutations decreased steroid binding capacity without altering receptor levels, steroid binding affinity, or hsp90 binding. Single mutations in the context of the full-length receptor did not affect the transcriptional activity but the double mutant (L550S/L553S) was virtually inactive. This biological inactivity was found to be due to an increased rate of steroid dissociation from the activated mutant complex. These results, coupled with those from trypsin digestion studies, suggest a model in which the GR ligand-binding domain is viewed as having a "hinged pocket," with the hinge being in the region of the trypsin digestion site at Arg(651). The pocket would normally be kept shut via the intramolecular interactions of the LXXLL motif at amino acids 550-554 acting as a hydrophobic clasp.
Collapse
Affiliation(s)
- G Giannoukos
- Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health, Bethesda, Maryland 20892-0805, USA
| | | | | | | |
Collapse
|
158
|
Brinkmann AO, Trapman J. Genetic analysis of androgen receptors in development and disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1999; 47:317-41. [PMID: 10582090 DOI: 10.1016/s1054-3589(08)60115-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- A O Brinkmann
- Department of Endocrinology and Reproduction, Erasmus University Rotterdam
| | | |
Collapse
|
159
|
Bevan CL, Hoare S, Claessens F, Heery DM, Parker MG. The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol 1999; 19:8383-92. [PMID: 10567563 PMCID: PMC84931 DOI: 10.1128/mcb.19.12.8383] [Citation(s) in RCA: 303] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/1999] [Accepted: 09/14/1999] [Indexed: 11/20/2022] Open
Abstract
The androgen receptor is unusual among nuclear receptors in that most, if not all, of its activity is mediated via the constitutive activation function in the N terminus. Here we demonstrate that p160 coactivators such as SRC1 (steroid receptor coactivator 1) interact directly with the N terminus in a ligand-independent manner via a conserved glutamine-rich region between residues 1053 and 1123. Although SRC1 is capable of interacting with the ligand-binding domain by means of LXXLL motifs, this interaction is not essential since an SRC1 mutant with no functional LXXLL motifs retains its ability to potentiate androgen receptor activity. In contrast, mutants lacking the glutamine-rich region are inactive, indicating that this region is both necessary and sufficient for recruitment of SRC1 to the androgen receptor. This recruitment is in direct contrast to the recruitment of SRC1 to the estrogen receptor, which requires interaction with the ligand-binding domain.
Collapse
Affiliation(s)
- C L Bevan
- Molecular Endocrinology Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom
| | | | | | | | | |
Collapse
|
160
|
Xu M, Modarress KJ, Meeker JE, Simons SS. Steroid-induced conformational changes of rat glucocorticoid receptor cause altered trypsin cleavage of the putative helix 6 in the ligand binding domain. Mol Cell Endocrinol 1999; 155:85-100. [PMID: 10580842 DOI: 10.1016/s0303-7207(99)00110-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Steroid-induced changes in receptor protein conformation constitute a logical means of translating the variations in steroid structures into the observed array of whole cell biological activities. One conformational change in the rat glucocorticoid receptor (GR) can be readily discerned by following the ability of trypsin digestion to afford a 16-kDa fragment. This fragment is seen after proteolysis of steroid-free receptors but disappears in digests of either glucocorticoid- or antiglucocorticoid-bound receptors. The location of this cleavage site has now been located unambiguously as R651, in helix 6 of the ligand binding domain, by a combination of point mutagenesis, arginine specific protease digestion, and radiochemical sequencing. This 16-kDa species, corresponding to amino acids 652-795, was non-covalently associated with another, approximately 17-kDa species that was determined to be amino acids 518-651 after a comparison of co-immunoprecipitated fragments from wild type and two chimeric receptors. These assignments revise our earlier report of amino acids 537-673 being the 16-kDa fragment and suggest that sequences of the entire ligand binding domain are required for high affinity and specificity binding. This was supported by the observation that trypsin digestion of the steroid-free R651A mutant GR gave rise to the 30-kDa meroreceptor (amino acids 518-795), which displayed wild type affinity. This 30-kDa species is thus the smallest non-associated fragment of GR possessing wild type steroid binding affinity. This suggests that other GR regions do not influence steroid binding affinity. The above results are reminiscent of those observed for the estrogen receptor. However, unlike the estrogen receptor or the more closely related progesterone receptor, the precise proteolytic cleavage points of both the steroid-free and -bound GR fall within regions that are predicted, on the basis of X-ray crystal structures of related receptors, to be alpha-helical and resistant to proteolysis. Thus, the tertiary structure of the GR ligand binding domain may be distinctly different from that of estrogen and progesterone receptors.
Collapse
Affiliation(s)
- M Xu
- Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
161
|
Alen P, Claessens F, Verhoeven G, Rombauts W, Peeters B. The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol Cell Biol 1999; 19:6085-97. [PMID: 10454556 PMCID: PMC84524 DOI: 10.1128/mcb.19.9.6085] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/1999] [Accepted: 05/11/1999] [Indexed: 01/08/2023] Open
Abstract
Steroid receptors are conditional transcription factors that, upon binding to their response elements, regulate the expression of target genes via direct protein interactions with transcriptional coactivators. We have analyzed the functional interactions between the androgen receptor (AR) and 160-kDa nuclear receptor coactivators. Upon overexpression in mammalian cells, these coactivators enhance the transcriptional activity of both the amino-terminal domain (NTD) and the ligand-binding domain (LBD) of the AR. The coactivator activity for the LBD is strictly ligand-controlled and depends on the nature of the DNA-binding domain to which it is fused. We demonstrate that the NTD physically interacts with coactivators and with the LBD and that this interaction, like the functional interaction between the LBD and p160 coactivators, relies on the activation function 2 (AF2) core domain. The mutation of a highly conserved lysine residue in the predicted helix 3 of the LBD (K720A), however, blunts the functional interaction with coactivators but not with the NTD. Moreover, this mutation does not affect the transcriptional activity of the full-size AR. A mutation in the NTD of activation function AF1a (I182A/L183A), which dramatically impairs the activity of the AR, has no effect on the intrinsic transcriptional activity of the NTD but interferes with the cooperation between the NTD and the LBD. Finally, p160 proteins in which the three LXXLL motifs are mutated retain most of their coactivator activity for the full-size AR, although they are no longer functional for the isolated LBD. Together, these data suggest that in the native AR the efficient recruitment of coactivators requires a functional association of the NTD with the LBD and that the binding of coactivators occurs primarily through the NTD.
Collapse
Affiliation(s)
- P Alen
- Division of Biochemistry, Faculty of Medicine, University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
162
|
Liao M, Zhou ZX, Wilson EM. Redox-dependent DNA binding of the purified androgen receptor: evidence for disulfide-linked androgen receptor dimers. Biochemistry 1999; 38:9718-27. [PMID: 10423251 DOI: 10.1021/bi990589i] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Full-length histidine-tagged, dihydrotestosterone-bound human androgen receptor (AR) was purified to homogeneity by affinity and gel-filtration chromatography for antibody production and analysis of AR dimerization and DNA binding properties. A monoclonal antibody was raised that recognized human and rat AR epitope (360)ArgAspTyrTyrAsnPheProLeuAla(368) in the NH(2)-terminal domain and slowed migration of AR-DNA complexes in mobility shift assays. AR binding to androgen response element DNA had a K(d) of 2.0 nM and a Hill coefficient of 2.1, indicating high-affinity, cooperative binding. AR solution dimerization was detected only at >/=0.2 microM AR, and DNA binding increased dimerization up to 30-fold. Slow- and fast-migrating AR-DNA complexes were detected under different reducing conditions that differed 5-fold in their dissociation rates from DNA. Treatment with the sulfhydryl oxidizing reagent diamide formed the faster migrating, slower dissociating complex, indicating it represents disulfide-linked AR dimers bound to DNA. The results indicate that high concentrations of purified AR are required for solution dimerization and that cooperative DNA binding stabilizes two dimer forms that differ in redox state.
Collapse
Affiliation(s)
- M Liao
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, Chapel Hill 27599, USA
| | | | | |
Collapse
|
163
|
Tetel MJ, Giangrande PH, Leonhardt SA, McDonnell DP, Edwards DP. Hormone-dependent interaction between the amino- and carboxyl-terminal domains of progesterone receptor in vitro and in vivo. Mol Endocrinol 1999; 13:910-24. [PMID: 10379890 DOI: 10.1210/mend.13.6.0300] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Full transcriptional activation by steroid hormone receptors requires functional synergy between two transcriptional activation domains (AF) located in the amino (AF-1) and carboxyl (AF-2) terminal regions. One possible mechanism for achieving this functional synergy is a physical intramolecular association between amino (N-) and carboxyl (C-) domains of the receptor. Human progesterone receptor (PR) is expressed in two forms that have distinct functional activities: full-length PR-B and the amino-terminally truncated PR-A. PR-B is generally a stronger activator than PR-A, whereas under certain conditions PR-A can act as a repressor in trans of other steroid receptors. We have analyzed whether separately expressed N- (PR-A and PR-B) and C-domains [hinge plus ligand-binding domain (hLBD)] of PR can functionally interact within cells by mammalian two-hybrid assay and whether this involves direct protein contact as determined in vitro with purified expressed domains of PR. A hormone agonist-dependent interaction between N-domains and the hLBD was observed functionally by mammalian two-hybrid assay and by direct protein-protein interaction assay in vitro. With both experimental approaches, N-C domain interactions were not induced by the progestin antagonist RU486. However, in the presence of the progestin agonist R5020, the N-domain of PR-B interacted more efficiently with the hLBD than the N-domain of PR-A. Coexpression of steroid receptor coactivator-1 (SRC-1) and the CREB binding protein (CBP), enhanced functional interaction between N- and C-domains by mammalian two-hybrid assay. However, addition of SRC-1 and CBP in vitro had no influence on direct interaction between purified N- and C-domains. These results suggest that the interaction between N- and C-domains of PR is direct and requires a hormone agonist-induced conformational change in the LBD that is not allowed by antagonists. Additionally, coactivators are not required for physical association between the N- and C-domains but are capable of enhancing a functionally productive interaction. In addition, the more efficient interaction of the hLBD with the N-domain of PR-B, compared with that of PR-A, suggests that distinct interactions between N- and C-terminal regions contribute to functional differences between PR-A and PR-B.
Collapse
Affiliation(s)
- M J Tetel
- Department of Pathology and Molecular Biology Program, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
164
|
Ghadessy FJ, Lim J, Abdullah AA, Panet-Raymond V, Choo CK, Lumbroso R, Tut TG, Gottlieb B, Pinsky L, Trifiro MA, Yong EL. Oligospermic infertility associated with an androgen receptor mutation that disrupts interdomain and coactivator (TIF2) interactions. J Clin Invest 1999; 103:1517-25. [PMID: 10359561 PMCID: PMC408364 DOI: 10.1172/jci4289] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Structural changes in the androgen receptor (AR) are one of the causes of defective spermatogenesis. We screened the AR gene of 173 infertile men with impaired spermatogenesis and identified 3 of them, unrelated, who each had a single adenine-->guanine transition that changed codon 886 in exon 8 from methionine to valine. This mutation was significantly associated with the severely oligospermic phenotype and was not detected in 400 control AR alleles. Despite the location of this substitution in the ligand-binding domain (LBD) of the AR, neither the genital skin fibroblasts of the subjects nor transfected cell types expressing the mutant receptor had any androgen-binding abnormality. However, the mutant receptor had a consistently (approximately 50%) reduced capacity to transactivate each of 2 different androgen-inducible reporter genes in 3 different cell lines. Deficient transactivation correlated with reduced binding of mutant AR complexes to androgen response elements. Coexpression of AR domain fragments in mammalian and yeast two-hybrid studies suggests that the mutation disrupts interactions of the LBD with another LBD, with the NH2-terminal transactivation domain, and with the transcriptional intermediary factor TIF2. These data suggest that a functional element centered around M886 has a role, not for ligand binding, but for interdomain and coactivator interactions culminating in the formation of a normal transcription complex.
Collapse
Affiliation(s)
- F J Ghadessy
- Department of Obstetrics and Gynaecology, National University of Singapore, Republic of Singapore 119074
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Brinkmann AO, Blok LJ, de Ruiter PE, Doesburg P, Steketee K, Berrevoets CA, Trapman J. Mechanisms of androgen receptor activation and function. J Steroid Biochem Mol Biol 1999; 69:307-13. [PMID: 10419007 DOI: 10.1016/s0960-0760(99)00049-7] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Androgens play a crucial role in several stages of male development and in the maintenance of the male phenotype. Androgens act in their target cells via an interaction with the androgen receptor, resulting in direct regulation of gene expression. The androgen receptor is a phosphoprotein and modulation of the phosphorylation status of the receptor influences ligand-binding and consequently transcription activation of androgen responsive genes. Androgen binding induces a conformational change in the ligand-binding domain, accompanied by additional receptor phosphorylation. Subsequently the liganded androgen receptor interacts with specific androgen response elements in the regulatory regions of androgen target genes, resulting in stimulation of gene expression. Anti-androgens induce a different conformational change of the ligand-binding domain, which does not or only partially result in stimulation of transactivation. Interestingly, different anti-androgens can induce different inactive conformations of the androgen receptor ligand-binding domain. Recent evidence strongly supports a ligand dependent functional interaction between the ligand-binding domain and the NH2-terminal transactivating domain of the androgen receptor. Two regions in the NH2-terminal domain are involved in this interaction, whereas in the ligand-binding domain the AF-2 AD core region is involved.
Collapse
Affiliation(s)
- A O Brinkmann
- Department of Endocrinology & Reproduction, Erasmus University Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
166
|
Kemppainen JA, Langley E, Wong CI, Bobseine K, Kelce WR, Wilson EM. Distinguishing androgen receptor agonists and antagonists: distinct mechanisms of activation by medroxyprogesterone acetate and dihydrotestosterone. Mol Endocrinol 1999; 13:440-54. [PMID: 10077001 DOI: 10.1210/mend.13.3.0255] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Natural and pharmacological androgen receptor (AR) ligands were tested for their ability to induce the AR NH2-terminal and carboxyl-terminal (N/C) interaction in a two-hybrid protein assay to determine whether N/C complex formation distinguishes in vivo AR agonists from antagonists. High-affinity agonists such as dihydrotestosterone, mibolerone, testosterone, and methyltrienolone at concentrations between 0.1 and 1 nM induce the N/C interaction more than 40-fold. The lower affinity anabolic steroids, oxandrolone and fluoxymesterone, require concentrations of 10-100 nM for up to 23-fold induction of the N/C interaction. However no N/C interaction was detected in the presence of the antagonists, hydroxyflutamide, cyproterone acetate, or RU56187, at concentrations up to 1 microM, or with 1 microM estradiol, progesterone, or medroxyprogesterone acetate; each of these steroids at 1-500 nM inhibited the dihydrotestosterone-induced N/C interaction, with medroxyprogesterone acetate being the most effective. In transient and stable cotransfection assays using the mouse mammary tumor virus reporter vector, all ligands displayed concentration-dependent AR agonist activity that paralleled induction of the N/C interaction, with antagonists and weaker agonists failing to induce the N/C interaction. AR dimerization and DNA binding in mobility shift assays and AR stabilization reflected, but were not dependent on, the N/C interaction. The results indicate that the N/C interaction facilitates agonist potency at low physiological ligand concentrations as detected in transcription, dimerization/DNA binding, and stabilization assays. However the N/C interaction is not required for agonist activity at sufficiently high ligand concentrations, nor does its inhibition imply antagonist activity.
Collapse
Affiliation(s)
- J A Kemppainen
- Department of Pediatrics, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | | | | | |
Collapse
|
167
|
Lu J, Danielsen M. Differential regulation of androgen and glucocorticoid receptors by retinoblastoma protein. J Biol Chem 1998; 273:31528-33. [PMID: 9813067 DOI: 10.1074/jbc.273.47.31528] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) plays a major role in the development and maintenance of male primary and secondary sexual characteristics. The growth promoting effects of androgens are clearly seen in prostate cancer where treatment by androgen ablation usually leads to tumor regression, followed sometime later, by growth of tumor cells that are resistant to endocrine therapy. We have found that the level of pRB in cells controls AR activity. Overexpression of pRB leads to increased transcriptional activity of the AR. This is similar to the previously reported potentiation of glucocorticoid receptor activity by pRB. In contrast, loss of pRB activity inhibits AR but not glucocorticoid receptor activity. This inhibition correlates with the unique ability of the AR to form a protein-protein complex with pRB in vitro. The site of interaction with pRB lies within the N-terminal domain of the AR and co-localizes with the region of the AR that specifies a requirement for pRB. Thus, the AR has a novel requirement for pRB raising the possibility that the growth promoting activity of AR is due to its direct interaction with pRB. Furthermore, loss of pRB activity during progression of prostate cancer may directly result in a decreased response to androgens.
Collapse
Affiliation(s)
- J Lu
- Department of Biochemistry and Molecular Biology, Georgetown University Medical School, Washington, D.C. 20007, USA
| | | |
Collapse
|
168
|
Scheller A, Hughes E, Golden KL, Robins DM. Multiple receptor domains interact to permit, or restrict, androgen-specific gene activation. J Biol Chem 1998; 273:24216-22. [PMID: 9727045 DOI: 10.1074/jbc.273.37.24216] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A critical problem within transcription factor families is how diverse regulatory programs are directed by highly related members. Androgen and glucocorticoid receptors (AR, GR) recognize a consensus DNA hormone response element (HRE), but they activate target genes with precise specificity, largely dependent on the promoter and cell context. We have assessed the role of different receptor domains in hormone-specific response by testing chimeras of AR and GR for their ability to activate the androgen-specific enhancer of the mouse sex-limited protein (Slp) gene. Although all of the mutant receptors activated simple HREs, only a few activated the androgen-specific element. One component shared by receptors functional on the AR-specific target was the AR DNA binding domain. Activation was not due to differential DNA affinity but rather to the AR DNA binding domain escaping suppression directed at the GR DNA binding domain in this enhancer context. A further mechanism increasing specific activation was cooperation of receptors at multiple and weak HREs, which was accentuated in the presence of both the AR N terminus and ligand binding domain. These domains together increased recognition of weak HREs, as demonstrated by in vitro DNase I footprinting and transactivation of mutant enhancers. Further, AR N-terminal subdomains reported to interact directly with the ligand binding domain relieved an inhibitory effect imposed by that domain. Therefore, functions intrinsic to AR augment steroid-specific gene activation, by evading negative regulation operating on the domains of other receptors and by enhancing cooperativity through intra- and inter-receptor domain interactions. These subtle distinctions in AR and GR behavior enforce transcriptional specificity established by the context of nonreceptor factors.
Collapse
Affiliation(s)
- A Scheller
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA
| | | | | | | |
Collapse
|