151
|
Haeseleer F, Jang GF, Imanishi Y, Driessen CAGG, Matsumura M, Nelson PS, Palczewski K. Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina. J Biol Chem 2002; 277:45537-45546. [PMID: 12226107 PMCID: PMC1435693 DOI: 10.1074/jbc.m208882200] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoids are chromophores involved in vision, transcriptional regulation, and cellular differentiation. Members of the short chain alcohol dehydrogenase/reductase superfamily catalyze the transformation of retinol to retinal. Here, we describe the identification and properties of three enzymes from a novel subfamily of four retinol dehydrogenases (RDH11-14) that display dual-substrate specificity, uniquely metabolizing all-trans- and cis-retinols with C(15) pro-R specificity. RDH11-14 could be involved in the first step of all-trans- and 9-cis-retinoic acid production in many tissues. RDH11-14 fill the gap in our understanding of 11-cis-retinal and all-trans-retinal transformations in photoreceptor (RDH12) and retinal pigment epithelial cells (RDH11). The dual-substrate specificity of RDH11 explains the minor phenotype associated with mutations in 11-cis-retinol dehydrogenase (RDH5) causing fundus albipunctatus in humans and engineered mice lacking RDH5. Furthermore, photoreceptor RDH12 could be involved in the production of 11-cis-retinal from 11-cis-retinol during regeneration of the cone visual pigments. These newly identified enzymes add new elements to important retinoid metabolic pathways that have not been explained by previous genetic and biochemical studies.
Collapse
Affiliation(s)
- Françoise Haeseleer
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195
| | - Geeng-Fu Jang
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195
| | - Yoshikazu Imanishi
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195
| | - Carola A G G Driessen
- Department of Biochemistry, University of Nijmegen, 6500 HB Nijmegen, The Netherlands
| | - Masazumi Matsumura
- The Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Peter S Nelson
- The Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Krzysztof Palczewski
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
152
|
Belyaeva OV, Kedishvili NY. Human pancreas protein 2 (PAN2) has a retinal reductase activity and is ubiquitously expressed in human tissues. FEBS Lett 2002; 531:489-93. [PMID: 12435598 DOI: 10.1016/s0014-5793(02)03588-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Human gene for pancreas protein 2 (PAN2) is a novel member of the short-chain dehydrogenase/reductase gene superfamily. The properties of PAN2 protein have not yet been characterized. We present the first evidence that human PAN2 is a ubiquitously expressed microsomal enzyme that recognizes retinoids but not steroids as substrates with the apparent K(m) values between 0.08 microM and 0.4 microM. PAN2 is approximately 4-fold more efficient in the reductive than in the oxidative direction. The apparent K(m) values for NADP(+) and NADPH are 0.65 microM and 0.32 microM versus 1200 microM and 1060 microM for NAD(+) and NADH, respectively. Kinetic constants and expression pattern of PAN2 suggest that it is likely to function as a reductase in vivo and might contribute to the reduction of retinaldehyde to retinol in most human tissues.
Collapse
Affiliation(s)
- Olga V Belyaeva
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, 103 BSB, Kansas City, MO 64110, USA
| | | |
Collapse
|
153
|
Rexer BN, Ong DE. A novel short-chain alcohol dehydrogenase from rats with retinol dehydrogenase activity, cyclically expressed in uterine epithelium. Biol Reprod 2002; 67:1555-64. [PMID: 12390888 DOI: 10.1095/biolreprod.102.007021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Retinoic acid is necessary for the maintenance of many lining epithelia of the body, such as the epithelium of the luminal surface of the uterus. Administration of estrogen to prepubertal rats induces in these epithelial cells the ability to synthesize retinoic acid from retinol, coincident with the appearance of cellular retinoic acid-binding protein, type two, which is normally present in these cells only at estrus in the mature, cycling animal. Here, we report the isolation, from a cDNA library prepared from uterine mRNA collected at the estrous stage and from a rat mammary adenocarcinoma cell line, of a cDNA that encodes a novel retinol dehydrogenase. A member of the short-chain alcohol dehydrogenase family, the encoded enzyme was capable of metabolizing retinol to retinal when expressed in cells after transfection of its cDNA. When cotransfected with the cDNA of human aldehyde 6, a known retinaldehyde dehydrogenase, the transfected cells synthesized retinoic acid from retinol. Immunohistochemical analysis revealed that the protein was present in the uterine lining epithelium of the mature animal only at estrus, coincident with the presence of cellular retinol-binding protein and cellular retinoic acid-binding protein, type two. Consequently, this novel short-chain alcohol dehydrogenase is an excellent candidate for the retinol dehydrogenase that catalyzes the first step in retinoic acid biosynthesis that occurs in uterine epithelial cells.
Collapse
Affiliation(s)
- Brent N Rexer
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
154
|
Mata NL, Radu RA, Clemmons RS, Travis GH. Isomerization and oxidation of vitamin a in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight. Neuron 2002; 36:69-80. [PMID: 12367507 PMCID: PMC2851622 DOI: 10.1016/s0896-6273(02)00912-1] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The first step toward light perception is 11-cis to all-trans photoisomerization of the retinaldehyde chromophore in a rod or cone opsin-pigment molecule. Light sensitivity of the opsin pigment is restored through a multistep pathway called the visual cycle, which effects all-trans to 11-cis re-isomerization of the retinoid chromophore. The maximum throughput of the known visual cycle, however, is too slow to explain sustained photosensitivity in bright light. Here, we demonstrate three novel enzymatic activities in cone-dominant ground-squirrel and chicken retinas: an all-trans-retinol isomerase, an 11-cis-retinyl-ester synthase, and an 11-cis-retinol dehydrogenase. Together these activities comprise a novel pathway that regenerates opsin photopigments at a rate 20-fold faster than the known visual cycle. We suggest that this pathway is responsible for sustained daylight vision in vertebrates.
Collapse
Affiliation(s)
- Nathan L. Mata
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095
| | - Roxana A. Radu
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095
| | - Richard S. Clemmons
- Center for Basic Neuroscience, UT Southwestern Medical Center, Dallas, Texas 75235
| | - Gabriel H. Travis
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095
- Correspondence:
| |
Collapse
|
155
|
Kedishvili NY, Chumakova OV, Chetyrkin SV, Belyaeva OV, Lapshina EA, Lin DW, Matsumura M, Nelson PS. Evidence that the human gene for prostate short-chain dehydrogenase/reductase (PSDR1) encodes a novel retinal reductase (RalR1). J Biol Chem 2002; 277:28909-15. [PMID: 12036956 DOI: 10.1074/jbc.m202588200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All-trans-retinoic acid is a metabolite of vitamin A (all-trans-retinol) that functions as an activating ligand for a family of nuclear retinoic acid receptors. The intracellular levels of retinoic acid in tissues are tightly regulated, although the mechanisms underlying the control of retinoid metabolism at the level of specific enzymes are not completely understood. In this report we present the first characterization of the retinoid substrate specificity of a novel short-chain dehydrogenase/reductase (SDR) encoded by RalR1/PSDR1, a cDNA recently isolated from the human prostate (Lin, B., White, J. T., Ferguson, C., Wang, S., Vessella, R., Bumgarner, R., True, L. D., Hood, L., and Nelson, P. S. (2001) Cancer Res. 61, 1611-1618). We demonstrate that RalR1 exhibits an oxidoreductive catalytic activity toward retinoids, but not steroids, with at least an 800-fold lower apparent K(m) values for NADP+ and NADPH versus NAD+ and NADH as cofactors. The enzyme is approximately 50-fold more efficient for the reduction of all-trans-retinal than for the oxidation of all-trans-retinol. Importantly, RalR1 reduces all-trans-retinal in the presence of a 10-fold molar excess of cellular retinol-binding protein type I, which is believed to sequester all-trans-retinal from nonspecific enzymes. As shown by immunostaining of human prostate and LNCaP cells with monoclonal anti-RalR1 antibodies, the enzyme is highly expressed in the epithelial cell layer of human prostate and localizes to the endoplasmic reticulum. The enzymatic properties and expression pattern of RalR1 in prostate epithelium suggest that it might play a role in the regulation of retinoid homeostasis in human prostate.
Collapse
Affiliation(s)
- Natalia Y Kedishvili
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Chen W, Song MS, Napoli JL. SDR-O: an orphan short-chain dehydrogenase/reductase localized at mouse chromosome 10/human chromosome 12. Gene 2002; 294:141-6. [PMID: 12234675 DOI: 10.1016/s0378-1119(02)00757-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report cloning a cDNA that encodes a novel short-chain dehydrogenase/reductase, SDR-O, conserved in mouse, human and rat. Human and mouse liver express SDR-O (short-chain dehydrogenase/reductase-orphan) mRNA intensely. The mouse embryo expresses SDR-O mRNA as early as day seven. Human SDR-O localizes on chromosome 12; mouse SDR-O localizes on chromosome 10 with CRAD1, CRAD2 and RDH4. SDR-O shares highest amino acid similarity with rat RoDH1 and mouse RDH1 (69-70%), but does not have the retinol and 3alpha-hydroxysteroid dehydrogenase activity of either, nor is it active as a 17beta- or 11beta-hydroxysteroid dehydrogenase. Short-chain dehydrogenase/reductases catalyse the metabolism of ligands that bind with nuclear receptors: the occurrence of 'orphan' nuclear receptors may imply existence of 'orphan' SDR, suggesting that SDR-O may catalyse the metabolism of another class of nuclear receptor ligand. Alternatively, SDR-O may not have a catalytic function, but may regulate metabolism by binding substrates/products and/or by serving as a regulatory factor.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CHO Cells
- Chromosome Mapping
- Chromosomes/genetics
- Chromosomes, Human, Pair 12/genetics
- Cloning, Molecular
- Cricetinae
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Female
- Gene Expression Regulation, Enzymologic
- Humans
- Male
- Mice
- Molecular Sequence Data
- Oxidoreductases/genetics
- Oxidoreductases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Synteny
Collapse
Affiliation(s)
- Weiguo Chen
- Department of Nutritional Sciences and Toxicology, University of California, 119 Morgan Hall, MC#3104, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
157
|
McBee JK, Van Hooser JP, Jang GF, Palczewski|| K. Isomerization of 11-cis-retinoids to all-trans-retinoids in vitro and in vivo. J Biol Chem 2001; 276:48483-93. [PMID: 11604395 PMCID: PMC1409735 DOI: 10.1074/jbc.m105840200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regeneration of 11-cis-retinal, the universal chromophore of the vertebrate retina, is a complex process involving photoreceptors and adjacent retinal pigment epithelial cells (RPE). 11-cis-Retinal is coupled to opsins in both rod and cone photoreceptor cells and is photoisomerized to all-trans-retinal by light. Here, we show that RPE microsomes can catalyze the reverse isomerization of 11-cis-retinol to all-trans-retinol (and 13-cis-retinol), and membrane exposure to UV light further enhances the rate of this reaction. This conversion is inhibited when 11-cis-retinol is in a complex with cellular retinaldehyde-binding protein (CRALBP), providing a clear demonstration of the protective effect of retinoid-binding proteins in retinoid processes in the eye, a function that has been long suspected but never proven. The reverse isomerization is nonenzymatic and specific to alcohol forms of retinoids, and it displays stereospecific preference for 11-cis-retinol and 13-cis-retinol but is much less efficient for 9-cis-retinol. The mechanism of reverse isomerization was investigated using stable isotope-labeled retinoids and radioactive tracers to show that this reaction occurs with the retention of configuration of the C-15 carbon of retinol through a mechanism that does not eliminate the hydroxyl group, in contrast to the enzymatic all-trans-retinol to 11-cis-retinol reaction. The activation energy for the conversion of 11-cis-retinol to all-trans-retinol is 19.5 kcal/mol, and 20.1 kcal/mol for isomerization of 13-cis-retinol to all-trans-retinol. We also demonstrate that the reverse isomerization occurs in vivo using exogenous 11-cis-retinol injected into the intravitreal space of wild type and Rpe65-/- mice, which have defective forward isomerization. This study demonstrates an uncharacterized activity of RPE microsomes that could be important in the normal flow of retinoids in the eye in vivo during dark adaptation.
Collapse
Affiliation(s)
- Joshua K. McBee
- From the Departments of Ophthalmology
- Chemistry, University of Washington, Seattle, Washington 98195
| | | | | | - Krzysztof Palczewski||
- From the Departments of Ophthalmology
- Chemistry, University of Washington, Seattle, Washington 98195
- To whom correspondence should be addressed: Dept. of Ophthalmology, University of Washington, Box 356485, Seattle, WA 98195-6485. Tel.: 206-543-9074; Fax: 206-221-6784; E-mail:
| |
Collapse
|
158
|
Rattner A, Smallwood PM, Williams J, Cooke C, Savchenko A, Lyubarsky A, Pugh EN, Nathans J. A photoreceptor-specific cadherin is essential for the structural integrity of the outer segment and for photoreceptor survival. Neuron 2001; 32:775-86. [PMID: 11738025 DOI: 10.1016/s0896-6273(01)00531-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A cadherin family member, prCAD, was identified in retina cDNA by subtractive hybridization and high throughput sequencing. prCAD is expressed only in retinal photoreceptors, and the prCAD protein is localized to the base of the outer segment of both rods and cones. In prCAD(-/-) mice, outer segments are disorganized and fragmented, and there is progressive death of photoreceptor cells. prCAD is unlikely to be involved in protein trafficking between inner and outer segments, since phototransduction proteins appear to be correctly localized and the light responses of both rods and cones are only modestly compromised in prCAD(-/-) mice. These experiments imply a highly specialized cell biological function for prCAD and suggest that localized adhesion activity is essential for outer segment integrity.
Collapse
Affiliation(s)
- A Rattner
- Department of Molecular Biology and Genetics, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Sun H, Nathans J. Mechanistic studies of ABCR, the ABC transporter in photoreceptor outer segments responsible for autosomal recessive Stargardt disease. J Bioenerg Biomembr 2001; 33:523-30. [PMID: 11804194 DOI: 10.1023/a:1012883306823] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
ABCR is an ABC transporter that is found exclusively in vertebrate photoreceptor outer segments. Mutations in the human ABCR gene are responsible for autosomal recessive Stargardt disease, the most common cause of early onset macular degeneration. In this paper we review our recent work with purified and reconstituted ABCR derived from bovine retina and from cultured cells expressing wild type or site-directed mutants of human ABCR. These experiments implicate all-trans-retinal (or Schiff base adducts between all-trans-retinal and phosphatidylethanolamine) as the transport substrate, and they reveal asymmetric roles for the two nucleotide binding domains in the transport reaction. A model for the retinal transport reaction is presented which accounts for these experimental observations.
Collapse
Affiliation(s)
- H Sun
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
160
|
Zhang M, Chen W, Smith SM, Napoli JL. Molecular characterization of a mouse short chain dehydrogenase/reductase active with all-trans-retinol in intact cells, mRDH1. J Biol Chem 2001; 276:44083-90. [PMID: 11562362 DOI: 10.1074/jbc.m105748200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metabolic activation of retinol (vitamin A) via sequential actions of retinol and retinal dehydrogenases produces the active metabolite all-trans-retinoic acid. This work reports cDNA cloning, enzymatic characterization, function in a reconstituted path of all-trans-retinoic acid biosynthesis in cell culture, and mRNA expression patterns in adult tissues and embryos of a mouse retinol dehydrogenase, RDH1. RDH1 represents a new member of the short chain dehydrogenase/reductase superfamily that differs from other mouse RDH in relative activity with all-trans and cis-retinols. RDH1 has a multifunctional catalytic nature, as do other short chain dehydrogenase/reductases. In addition to retinol dehydrogenase activity, RDH1 has strong 3alpha-hydroxy and weak 17beta-hydroxy steroid dehydrogenase activities. RDH1 has widespread and intense mRNA expression in tissues of embryonic and adult mice. The mouse embryo expresses RDH1 as early as 7.0 days post-coitus, and expression is especially intense within the neural tube, gut, and neural crest at embryo day 10.5. Cells cotransfected with RDH1 and any one of three retinal dehydrogenase isozymes synthesize all-trans-retinoic acid from retinol, demonstrating that RDH1contributes to a path of all-trans-retinoic acid biosynthesis in intact cells. These characteristics are consistent with RDH1 functioning in a path of all-trans-retinoic acid biosynthesis starting early during embryogenesis.
Collapse
Affiliation(s)
- M Zhang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
161
|
Jang GF, Van Hooser JP, Kuksa V, McBee JK, He YG, Janssen JJM, Driessen CAGG, Palczewski K. Characterization of a dehydrogenase activity responsible for oxidation of 11-cis-retinol in the retinal pigment epithelium of mice with a disrupted RDH5 gene. A model for the human hereditary disease fundus albipunctatus. J Biol Chem 2001; 276:32456-65. [PMID: 11418621 PMCID: PMC1361690 DOI: 10.1074/jbc.m104949200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the vertebrate retina, the final step of visual chromophore production is the oxidation of 11-cis-retinol to 11-cis-retinal. This reaction is catalyzed by 11-cis-retinol dehydrogenases (11-cis-RDHs), prior to the chromophore rejoining with the visual pigment apo-proteins. The RDH5 gene encodes a dehydrogenase that is responsible for the majority of RDH activity. In humans, mutations in this gene are associated with fundus albipunctatus, a disease expressed by delayed dark adaptation of both cones and rods. In this report, an animal model for this disease, 11-cis-rdh-/- mice, was used to investigate the flow of retinoids after a bleach, and microsomal membranes from the retinal pigment epithelium of these mice were employed to characterize remaining enzymatic activities oxidizing 11-cis-retinol. Lack of 11-cis-RDH leads to an accumulation of cis-retinoids, particularly 13-cis-isomers. The analysis of 11-cis-rdh-/- mice showed that the RDH(s) responsible for the production of 11-cis-retinal displays NADP-dependent specificity toward 9-cis- and 11-cis-retinal but not 13-cis-retinal. The lack of 13-cis-RDH activity could be a reason why 13-cis-isomers accumulate in the retinal pigment epithelium of 11-cis-rdh-/- mice. Furthermore, our results provide detailed characterization of a mouse model for the human disease fundus albipunctatus and emphasize the importance of 11-cis-RDH in keeping the balance between different components of the retinoid cycle.
Collapse
Affiliation(s)
| | | | | | - Joshua K. McBee
- From the Departments of Ophthalmology
- Chemistry, University of Washington, Seattle, Washington 98195 and the
| | | | - Jacques J. M. Janssen
- Department of Ophthalmology, University of Nijmegen, 6525 EX Nijmegen,The Netherlands
| | | | - Krzysztof Palczewski
- From the Departments of Ophthalmology
- Pharmacology, and
- Chemistry, University of Washington, Seattle, Washington 98195 and the
| |
Collapse
|
162
|
Huang XF, Luu-The V. Gene structure, chromosomal localization and analysis of 3-ketosteroid reductase activity of the human 3(alpha-->beta)-hydroxysteroid epimerase. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1520:124-30. [PMID: 11513953 DOI: 10.1016/s0167-4781(01)00247-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Following our previous characterization of the first human 3(alpha-->beta)hydroxysteroid epimerase (hHSE), we determined the genomic structure and chromosomal localization of the hHSE gene using fluorescent in situ hybridization (FISH) in this study. The gene spans 23 kb and contains five exons and four introns. FISH mapping assigned this gene to chromosome band 12q13. Primer extension analysis allowed the identification of a single transcription start site at 179 bp upstream from the ATG start codon. The 5'-flanking sequence lacks a typical TATA box in the proximal region of the transcription start site. However, analysis of the 2 kb promoter region revealed the presence of multiple potential transcription factor binding sites. Furthermore, we studied the 3-ketosteroid reductase activity demonstrated by hHSE in intact cells stably expressing the enzyme. It has been known that, in vitro, 3beta-hydroxysteroid dehydrogenase (3beta-HSD) shows both oxidative and reductive activity. Our results showed that hHSE catalyzes the reduction of 3-ketosteroids to form 3beta-hydroxysteroids while 3beta-HSD cannot catalyze this reaction in intact cells. However, hHSE showed 3-keto reductase activity in both microsomal fractions and intact cells. Since intact cells constitute a system which closely reflects in vivo intracellular conditions, we propose that hHSE might contribute to the cellular 3-ketosteroid reductase activity in the peripheral tissues.
Collapse
Affiliation(s)
- X F Huang
- Oncology and Molecular Endocrinology Research Center, Laval University Hospital Center (CHUL) and Laval University, 2705 Laurier Boulevard, G1V 4G2, Sainte-Foy, QC, Canada
| | | |
Collapse
|
163
|
McBee JK, Palczewski K, Baehr W, Pepperberg DR. Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 2001; 20:469-529. [PMID: 11390257 DOI: 10.1016/s1350-9462(01)00002-7] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Absorption of light by rhodopsin or cone pigments in photoreceptors triggers photoisomerization of their universal chromophore, 11-cis-retinal, to all-trans-retinal. This photoreaction is the initial step in phototransduction that ultimately leads to the sensation of vision. Currently, a great deal of effort is directed toward elucidating mechanisms that return photoreceptors to the dark-adapted state, and processes that restore rhodopsin and counterbalance the bleaching of rhodopsin. Most notably, enzymatic isomerization of all-trans-retinal to 11-cis-retinal, called the visual cycle (or more properly the retinoid cycle), is required for regeneration of these visual pigments. Regeneration begins in rods and cones when all-trans-retinal is reduced to all-trans-retinol. The process continues in adjacent retinal pigment epithelial cells (RPE), where a complex set of reactions converts all-trans-retinol to 11-cis-retinal. Although remarkable progress has been made over the past decade in understanding the phototransduction cascade, our understanding of the retinoid cycle remains rudimentary. The aim of this review is to summarize recent developments in our current understanding of the retinoid cycle at the molecular level, and to examine the relevance of these reactions to phototransduction.
Collapse
Affiliation(s)
- J K McBee
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
164
|
Affiliation(s)
- R R Rando
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 45 Shattuck Street, Boston, Massachusetts 02115, USA
| |
Collapse
|
165
|
Soref CM, Di YP, Hayden L, Zhao YH, Satre MA, Wu R. Characterization of a novel airway epithelial cell-specific short chain alcohol dehydrogenase/reductase gene whose expression is up-regulated by retinoids and is involved in the metabolism of retinol. J Biol Chem 2001; 276:24194-202. [PMID: 11304534 DOI: 10.1074/jbc.m100332200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple retinoic acid responsive cDNAs were isolated from a high density cDNA microarray membrane, which was developed from a cDNA library of human tracheobronchial epithelial cells. Five selected cDNA clones encoded the sequence of the same novel gene. The predicted open reading frame of the novel gene encoded a protein of 319 amino acids. The deduced amino acid sequence contains four motifs that are conserved in the short-chain alcohol dehydrogenase/reductase (SDR) family of proteins. The novel gene shows the greatest homology to a group of dehydrogenases that can oxidize retinol (retinol dehydrogenases). The mRNA of the novel gene was found in trachea, colon, tongue, and esophagus. In situ hybridization of airway tissue sections demonstrated epithelial cell-specific gene expression, especially in the ciliated cell type. Both all-trans-retinoic acid and 9-cis-retinoic acid were able to elevate the expression of the novel gene in primary human tracheobronchial epithelial cells in vitro. This elevation coincided with an enhanced retinol metabolism in these cultures. COS cells transfected with an expression construct of the novel gene were also elevated in the metabolism of retinol. The results suggested that the novel gene represents a new member of the SDR family that may play a critical role in retinol metabolism in airway epithelia as well as in other epithelia of colon, tongue, and esophagus.
Collapse
Affiliation(s)
- C M Soref
- Center for Comparative Respiratory Biology and Medicine and the Department of Nutrition, University of California at Davis, 95616, USA
| | | | | | | | | | | |
Collapse
|
166
|
Chen P, Lee TD, Fong HK. Interaction of 11-cis-retinol dehydrogenase with the chromophore of retinal g protein-coupled receptor opsin. J Biol Chem 2001; 276:21098-104. [PMID: 11274198 DOI: 10.1074/jbc.m010441200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrate opsins in both photoreceptors and the retinal pigment epithelium (RPE) have fundamental roles in the visual process. The visual pigments in photoreceptors are bound to 11-cis-retinal and are responsible for the initiation of visual excitation. Retinochrome-like opsins in the RPE are bound to all-trans-retinal and play an important role in chromophore metabolism. The retinal G protein-coupled receptor (RGR) of the RPE and Müller cells is an abundant opsin that generates 11-cis-retinal by stereospecific photoisomerization of its bound all-trans-retinal chromophore. We have analyzed a 32-kDa protein (p32) that co-purifies with bovine RGR from RPE microsomes. The co-purified p32 was identified by mass spectrometric analysis as 11-cis-retinol dehydrogenase (cRDH), and enzymatic assays have confirmed the isolation of an active cRDH. The co-purified cRDH showed marked substrate preference to 11-cis-retinal and preferred NADH rather than NADPH as the cofactor in reduction reactions. cRDH did not react with endogenous all-trans-retinal bound to RGR but reacted specifically with 11-cis-retinal that was generated by photoisomerization after irradiation of RGR. The reduction of 11-cis-retinal to 11-cis-retinol by cRDH enhanced the net photoisomerization of all-trans-retinal bound to RGR. These results indicate that cRDH is involved in the processing of 11-cis-retinal after irradiation of RGR opsin and suggest that cRDH has a novel role in the visual cycle.
Collapse
Affiliation(s)
- P Chen
- Center for Craniofacial Molecular Biology, University of Southern California School of Dentistry, Department of Ophthalmology, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
167
|
Yan W, Jang GF, Haeseleer F, Esumi N, Chang J, Kerrigan M, Campochiaro M, Campochiaro P, Palczewski K, Zack DJ. Cloning and characterization of a human beta,beta-carotene-15,15'-dioxygenase that is highly expressed in the retinal pigment epithelium. Genomics 2001; 72:193-202. [PMID: 11401432 DOI: 10.1006/geno.2000.6476] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinoids play a critical role in vision, as well as in development and cellular differentiation. beta,beta-Carotene-15,15'-dioxygenase (Bcdo), the enzyme that catalyzes the oxidative cleavage of beta,beta-carotene into two retinal molecules, plays an important role in retinoid synthesis. We report here the first cloning of a mammalian Bcdo. Human BCDO encodes a protein of 547 amino acid residues that demonstrates 68% identity with chicken Bcdo. It is expressed highly in the retinal pigment epithelium (RPE) and also in kidney, intestine, liver, brain, stomach, and testis. The gene spans approximately 20 kb, is composed of 11 exons and 10 introns, and maps to chromosome 16q21-q23. A mouse orthologue was also identified, and its predicted amino acid sequence is 83% identical with human BCDO. Biochemical analysis of baculovirus expressed human BCDO demonstrates the predicted beta,beta-carotene-15,15'-dioxygenase activity. The expression pattern of BCDO suggests that it may provide a local supplement to the retinoids available to photoreceptors, as well as a supplement to the retinoid pools utilized elsewhere in the body. In addition, the finding that many of the enzymes involved in retinoid metabolism are mutated in retinal degenerations suggests that BCDO may also be a candidate gene for retinal degenerative disease.
Collapse
Affiliation(s)
- W Yan
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Baker ME. Evolution of 17beta-hydroxysteroid dehydrogenases and their role in androgen, estrogen and retinoid action. Mol Cell Endocrinol 2001; 171:211-5. [PMID: 11165032 DOI: 10.1016/s0303-7207(00)00414-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) regulate androgen and estrogen concentrations in mammals. By 1995, four distinct enzymes with 17beta-HSD activity had been identified--17beta-HSD-types 1 and 3, which, in vivo, are NADPH-dependent reductases; and 17beta-HSD-types 2 and 4, which, in vivo, are NAD(+)-dependent oxidases. Since then, six additional enzymes with 17beta-HSD activity have been isolated from mammals. With the exception of 17beta-HSD-type 5, which belongs to the aldoketo-reductase (AKR) family, these 17beta-HSDs belong to the short chain dehydrogenase/reductase (SDR) family. Several 17beta-HSDs appear to be examples of convergent evolution. That is, 17beta-HSD activity arose several times from different ancestors. Some 17beta-HSDs share a common ancestor with retinoid oxido-reductases and have retinol dehydrogenase activity. 17beta-HSD-types 2, 6 and 9 appear to have diverged from ancestral retinoid dehydrogenases early in the evolution of deuterostomes during the Cambrian, about 540 million years ago. This coincided with the origin of nuclear receptors for androgens and estrogens suggesting that expression of 17beta-HSDs had an important role in the early evolution of the physiological response to androgens and estrogens.
Collapse
Affiliation(s)
- M E Baker
- Department of Medicine, 0823 University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0823, USA.
| |
Collapse
|
169
|
Abstract
The basis of the duplex theory of vision is examined in view of the dazzling array of data on visual pigment sequences and the pigments they form, on the microspectrophotometry measurements of single photoreceptor cells, on the kinds of photoreceptor cascade enzymes, and on the electrophysiological properties of photoreceptors. The implications of the existence of five distinct visual pigment families are explored, especially with regard to what pigments are in what types of photoreceptors, if there are different phototransduction enzymes associated with different types of photoreceptors, and if there are electrophysiological differences between different types of cones.
Collapse
Affiliation(s)
- T Ebrey
- University of Washington, Seattle 98195, USA
| | | |
Collapse
|
170
|
McBee JK, Kuksa V, Alvarez R, de Lera AR, Prezhdo O, Haeseleer F, Sokal I, Palczewski K. Isomerization of all-trans-retinol to cis-retinols in bovine retinal pigment epithelial cells: dependence on the specificity of retinoid-binding proteins. Biochemistry 2000; 39:11370-80. [PMID: 10985782 PMCID: PMC1408314 DOI: 10.1021/bi001061c] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the retinal rod and cone photoreceptors, light photoactivates rhodopsin or cone visual pigments by converting 11-cis-retinal to all-trans-retinal, the process that ultimately results in phototransduction and visual sensation. The production of 11-cis-retinal in adjacent retinal pigment epithelial (RPE) cells is a fundamental process that allows regeneration of the vertebrate visual system. Here, we present evidence that all-trans-retinol is unstable in the presence of H(+) and rearranges to anhydroretinol through a carbocation intermediate, which can be trapped by alcohols to form retro-retinyl ethers. This ability of all-trans-retinol to form a carbocation could be relevant for isomerization. The calculated activation energy of isomerization of all-trans-retinyl carbocation to the 11-cis-isomer was only approximately 18 kcal/mol, as compared to approximately 36 kcal/mol for all-trans-retinol. This activation energy is similar to approximately 17 kcal/mol obtained experimentally for the isomerization reaction in RPE microsomes. Mass spectrometric (MS) analysis of isotopically labeled retinoids showed that isomerization proceeds via alkyl cleavage mechanism, but the product of isomerization depended on the specificity of the retinoid-binding protein(s) as evidenced by the production of 13-cis-retinol in the presence of cellular retinoid-binding protein (CRBP). To test the influence of an electron-withdrawing group on the polyene chain, which would inhibit carbocation formation, 11-fluoro-all-trans-retinol was used in the isomerization assay and was shown to be inactive. Together, these results strengthen the idea that the isomerization reaction is driven by mass action and may occur via carbocation intermediate.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Krzysztof Palczewski
- * To whom correspondence should be addressed. Krzysztof Palczewski, Ph.D., University of Washington School of Medicine, Department of Ophthalmology, Box 356485, Seattle, WA 98195-6485. Phone: 206-543-9074; fax: 206-221-6784; e-mail:
| |
Collapse
|
171
|
Jang GF, McBee JK, Alekseev AM, Haeseleer F, Palczewski K. Stereoisomeric specificity of the retinoid cycle in the vertebrate retina. J Biol Chem 2000; 275:28128-38. [PMID: 10871622 PMCID: PMC1435698 DOI: 10.1074/jbc.m004488200] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding of the stereospecificity of enzymatic reactions that regenerate the universal chromophore required to sustain vision in vertebrates, 11-cis-retinal, is needed for an accurate molecular model of retinoid transformations. In rod outer segments (ROS), the redox reaction involves all-trans-retinal and pro-S-NADPH that results in the production of pro-R-all-trans-retinol. A recently identified all-trans-retinol dehydrogenase (photoreceptor retinol dehydrogenase) displays identical stereospecificity to that of the ROS enzyme(s). This result is unusual, because photoreceptor retinol dehydrogenase is a member of a short chain alcohol dehydrogenase family, which is often pro-S-specific toward their hydrophobic alcohol substrates. The second redox reaction occurring in retinal pigment epithelium, oxidation of 11-cis-retinol, which is largely catalyzed by abundantly expressed 11-cis-retinol dehydrogenase, is pro-S-specific to both 11-cis-retinol and NADH. However, there is notable presence of pro-R-specific activities. Therefore, multiple retinol dehydrogenases are involved in regeneration of 11-cis-retinal. Finally, the cellular retinaldehyde-binding protein-induced isomerization of all-trans-retinol to 11-cis-retinol proceeds with inversion of configuration at the C(15) carbon of retinol. Together, these results provide important additions to our understanding of retinoid transformations in the eye and a prelude for in vivo studies that ultimately may result in efficient pharmacological intervention to restore and prevent deterioration of vision in several inherited eye diseases.
Collapse
Affiliation(s)
| | | | | | | | - Krzysztof Palczewski
- From the Departments of Ophthalmology
- Chemistry, and
- Pharmacology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
172
|
Degrip W, Rothschild K. Chapter 1 Structure and mechanism of vertebrate visual pigments. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1383-8121(00)80004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|