151
|
Diesel B, Ripoche N, Risch RT, Tierling S, Walter J, Kiemer AK. Inflammation-induced up-regulation of TLR2 expression in human endothelial cells is independent of differential methylation in the TLR2 promoter CpG island. Innate Immun 2011; 18:112-23. [PMID: 21768203 DOI: 10.1177/1753425910394888] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Toll-like receptors play an important role in endothelial inflammation; however, little is known on the mechanisms regulating their expression. Differential promoter DNA methylation is an increasingly recognized mechanism that determines a switch between gene silencing and gene transcription. We hypothesized that epigenetic mechanisms are involved in the regulation of endothelial TLR2 expression because of the localization of the TLR2 promoter on a CpG-island. Resting human umbilical vein endothelial cells (HUVECs) displayed rather low TLR2 mRNA expression, while a strong expression increase occurred under inflammatory conditions. We examined the TLR2 promoter methylation pattern in resting HUVECs and compared it to cells treated either with the inflammatory cytokine TNF-α or the DNA-demethylating agent 5-azacytidine. DNA bisulfite conversion was followed by either genomic sequencing or single nucleotide primer extension (SNuPE) HPLC. Results of both techniques showed a low- or non-methylated TLR2 promoter in resting HUVECs and no alteration of the methylation pattern under inflammatory conditions. Whereas 5-azacytidine significantly increased the mRNA expression of the epigenetically regulated gene H19, TLR2 expression was not affected. Taken together, employing different methodological approaches, our data show no implication of methylation pattern changes in inflammatory induction of TLR2 expression in human endothelial cells.
Collapse
Affiliation(s)
- Britta Diesel
- Department of Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
152
|
Du RH, Li EG, Cao Y, Song YC, Tan RX. Fumigaclavine C inhibits tumor necrosis factor α production via suppression of toll-like receptor 4 and nuclear factor κB activation in macrophages. Life Sci 2011; 89:235-40. [PMID: 21762706 DOI: 10.1016/j.lfs.2011.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 05/29/2011] [Accepted: 06/04/2011] [Indexed: 01/23/2023]
Abstract
AIMS Atherosclerosis is the main cause of cardiovascular disease and is widely treated with statins. However, there are a few cases of intolerable adverse reactions by statins; thus, there is still a need for new drugs to prevent atherosclerosis. The inflammation associated with the activation of Toll-like receptor 4 (TLR4) and nuclear factor κB (NFκB) has been shown to be an important factor in the development of atherosclerosis. In the current study, we investigated the anti-inflammatory action of the fungal alkaloid fumigaclavine C (FC), its effects on the TLR4 and NFκB signaling pathway, and its potential relevance as an anti-atherosclerotic agent. MAIN METHODS The inhibitory effects of FC on tumor necrosis factor α (TNFα) production were determined by enzyme-linked immunosorbent assays (ELISA). The mRNA and protein expression of TLR4 and p65NFκB were detected by quantitative real-time polymerase chain reaction and western blot analysis, respectively. The effect of FC on NFκB was determined using the Dual-Luciferase reporter assay. KEY FINDINGS FC reduced TNFα production in LPS-stimulated human whole blood and RAW 264.7 macrophages via reduced IκBα phosphorylation associated with the decreased expression of p65NFκB. FC also suppressed LPS-induced TLR4 overexpression at the mRNA and protein level. SIGNIFICANCE FC attenuated TNFα via the TLR4-NFκB signaling transduction pathway, suggesting that this alkaloid might serve as a promising molecule for anti-inflammatory treatment of atherosclerosis.
Collapse
Affiliation(s)
- Rong Hui Du
- School of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | |
Collapse
|
153
|
Wei H, Frei B, Beckman JS, Zhang WJ. Copper chelation by tetrathiomolybdate inhibits lipopolysaccharide-induced inflammatory responses in vivo. Am J Physiol Heart Circ Physiol 2011; 301:H712-20. [PMID: 21724870 DOI: 10.1152/ajpheart.01299.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Redox-active transition metal ions, such as iron and copper, may play an important role in vascular inflammation, which is an etiologic factor in atherosclerotic vascular diseases. In this study, we investigated whether tetrathiomolybdate (TTM), a highly specific copper chelator, can act as an anti-inflammatory agent, preventing lipopolysaccharide (LPS)-induced inflammatory responses in vivo. Female C57BL/6N mice were daily gavaged with TTM (30 mg/kg body wt) or vehicle control. After 3 wk, animals were injected intraperitoneally with 50 μg LPS or saline buffer and killed 3 h later. Treatment with TTM reduced serum ceruloplasmin activity by 43%, a surrogate marker of bioavailable copper, in the absence of detectable hepatotoxicity. The concentrations of both copper and molybdenum increased in various tissues, whereas the copper-to-molybdenum ratio decreased, consistent with reduced copper bioavailability. TTM treatment did not have a significant effect on superoxide dismutase activity in heart and liver. Furthermore, TTM significantly inhibited LPS-induced inflammatory gene transcription in aorta and heart, including vascular and intercellular adhesion molecule-1 (VCAM-1 and ICAM-1, respectively), monocyte chemotactic protein-1 (MCP-1), interleukin-6, and tumor necrosis factor (TNF)-α (ANOVA, P < 0.05); consistently, protein levels of VCAM-1, ICAM-1, and MCP-1 in heart were also significantly lower in TTM-treated animals. Similar inhibitory effects of TTM were observed on activation of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) in heart and lungs. Finally, TTM significantly inhibited LPS-induced increases of serum levels of soluble ICAM-1, MCP-1, and TNF-α (ANOVA, P < 0.05). These data indicate that copper chelation with TTM inhibits LPS-induced inflammatory responses in aorta and other tissues of mice, most likely by inhibiting activation of the redox-sensitive transcription factors, NF-κB and AP-1. Therefore, copper appears to play an important role in vascular inflammation, and TTM may have value as an anti-inflammatory or anti-atherogenic agent.
Collapse
Affiliation(s)
- Hao Wei
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | |
Collapse
|
154
|
Keynan Y, Fowke KR, Ball TB, Meyers AFA. Toll-Like Receptors Dysregulation after Influenza Virus Infection: Insights into Pathogenesis of Subsequent Bacterial Pneumonia. ACTA ACUST UNITED AC 2011. [DOI: 10.5402/2011/142518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The innate immune system utilizes an intricate network to aid in fighting foreign invaders. Recent insight and understanding of toll-like receptors (TLRs) has been critical in providing key information about early responses to infection, and more recently, understanding dysregulation of TLRs has shed light on pathogenic states. This paper addresses the importance of innate immunity and TLR regulation of immune responses to the presence of influenza infection and its role in the subsequent bacterial infections.
Collapse
Affiliation(s)
- Yoav Keynan
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Keith R. Fowke
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - T. Blake Ball
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- National Laboratory for HIV Viral Immunology and National HIV and Retrovirology Laboratories, Public Health Agency of Canada, 1015 Arlington Street Winnipeg, MB, Canada R3E 3R2
| | - Adrienne F. A. Meyers
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- National Laboratory for HIV Viral Immunology and National HIV and Retrovirology Laboratories, Public Health Agency of Canada, 1015 Arlington Street Winnipeg, MB, Canada R3E 3R2
| |
Collapse
|
155
|
|
156
|
Wang M, Chen Y, Zhang Y, Zhang L, Lu X, Chen Z. Mannan-binding lectin directly interacts with Toll-like receptor 4 and suppresses lipopolysaccharide-induced inflammatory cytokine secretion from THP-1 cells. Cell Mol Immunol 2011; 8:265-75. [PMID: 21383675 DOI: 10.1038/cmi.2011.1] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mannan-binding lectin (MBL) plays a key role in the lectin pathway of complement activation and can influence cytokine expression. Toll-like receptor 4 (TLR4) is expressed extensively and has been demonstrated to be involved in lipopolysaccharide (LPS)-induced signaling. We first sought to determine whether MBL exposure could modulate LPS-induced inflammatory cytokine secretion and nuclear factor-κB (NF-κB) activity by using the monocytoid cell line THP-1. We then investigated the possible mechanisms underlying any observed regulatory effect. Using ELISA and reverse transcriptase polymerase chain reaction (RT-PCR) analysis, we found that at both the protein and mRNA levels, treatment with MBL suppresses LPS-induced tumor-necrosis factor (TNF)-α and IL-12 production in THP-1 cells. An electrophoretic mobility shift assay and western blot analysis revealed that MBL treatment can inhibit LPS-induced NF-κB DNA binding and translocation in THP-1 cells. While the binding of MBL to THP-1 cells was evident at physiological calcium concentrations, this binding occurred optimally in response to supraphysiological calcium concentrations. This binding can be partly inhibited by treatment with either a soluble form of recombinant TLR4 extracellular domain or anti-TLR4 monoclonal antibody (HTA125). Activation of THP-1 cells by LPS treatment resulted in increased MBL binding. We also observed that MBL could directly bind to the extracellular domain of TLR4 in a dose-dependent manner, and this interaction could attenuate the binding of LPS to cell surfaces. Taken together, these data suggest that MBL may affect cytokine expression through modulation of LPS-/TLR-signaling pathways. These findings suggest that MBL may play an important role in both immune regulation and the signaling pathways involved in cytokine networks.
Collapse
Affiliation(s)
- Mingyong Wang
- Department of Immunology, Southern Medical University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
157
|
Taraktsoglou M, Szalabska U, Magee DA, Browne JA, Sweeney T, Gormley E, MacHugh DE. Transcriptional profiling of immune genes in bovine monocyte-derived macrophages exposed to bacterial antigens. Vet Immunol Immunopathol 2011; 140:130-9. [DOI: 10.1016/j.vetimm.2010.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 01/07/2023]
|
158
|
Ogasawara N, Sasaki M, Itoh Y, Tokudome K, Kondo Y, Ito Y, Tanida S, Kamiya T, Kataoka H, Joh T, Kasugai K. Rebamipide suppresses TLR-TBK1 signaling pathway resulting in regulating IRF3/7 and IFN-α/β reduction. J Clin Biochem Nutr 2011; 48:154-60. [PMID: 21373269 PMCID: PMC3045689 DOI: 10.3164/jcbn.10-69] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/26/2010] [Indexed: 01/24/2023] Open
Abstract
TANK-binding kinase 1 (TBK1) regulates the interferon regulatory factor (IRF) 3 and IRF7 activation pathways by double strand RNA (dsRNA) via Toll-like receptor (TLR) 3 and by lipopolysaccharide (LPS) via TLR4. Rebamipide is useful for treating inflammatory bowel disease (IBD). Although IBD is associated with nuclear factor-κB (NF-κB), any association with the TBK1-IRF pathway remains unknown. How rebamipide affects the TBK1-IRF pathway is also unclear. We analyzed the relationship between IBD (particularly ulcerative colitis; UC) and the TLR-TBK1-IRF3/7 pathway using human colon tissue, a murine model of colitis and human colonic epithelial cells. Inflamed colonic mucosa over-expressed TKB1, NAP1, IRF3, and IRF7 mRNA compared with normal mucosa. TBK1 was mainly expressed in inflammatory epithelial cells of UC patients. The expression of TBK1, IRF3, IRF7, IFN-α and IFN-β mRNA was suppressed in mice given oral dextran sulfate-sodium (DSS) and daily rectal rebamipide compared with mice given only DSS. Rebamipide reduced the expression of TBK1, IRF3 and IRF7 mRNA induced by LPS/dsRNA, but not of NF-κB mRNA in colonic epithelial cells. Rebamipide might suppress the TLR-TBK1 pathway, resulting in IRF3/7-induction of IFN-α/β and inflammatory factors. TBK1 is important in the induction of inflammation in patients with UC. If rebamipide represses the TLR-TBK1 pathway, then rectal administration should suppress inflammation of the colonic mucosa in patients with UC.
Collapse
Affiliation(s)
- Naotaka Ogasawara
- Department of Gastroenterology, Aichi Medical University School of Medicine, 21 Karimata, Yazako, Nagakute-cho, Aichi 480-1195, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Blomkalns AL, Stoll LL, Shaheen W, Romig-Martin SA, Dickson EW, Weintraub NL, Denning GM. Low level bacterial endotoxin activates two distinct signaling pathways in human peripheral blood mononuclear cells. JOURNAL OF INFLAMMATION-LONDON 2011; 8:4. [PMID: 21352551 PMCID: PMC3056742 DOI: 10.1186/1476-9255-8-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 02/25/2011] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bacterial endotoxin, long recognized as a potent pro-inflammatory mediator in acute infectious processes, has more recently been identified as a risk factor for atherosclerosis and other cardiovascular diseases. When endotoxin enters the bloodstream, one of the first cells activated is the circulating monocyte, which exhibits a wide range of pro-inflammatory responses. METHODS We studied the effect of low doses of E. coli LPS on IL-8 release and superoxide formation by freshly isolated human peripheral blood mononuclear cells (PBMC). RESULTS IL-8 release was consistently detectable at 10 pg/ml of endotoxin, reaching a maximum at 1 ng/ml, and was exclusively produced by monocytes; the lymphocytes neither produced IL-8, nor affected monocyte IL-8 release. Superoxide production was detectable at 30 pg/ml of endotoxin, reaching a maximum at 3 ng/ml. Peak respiratory burst activity was seen at 15-20 min, and superoxide levels returned to baseline by 1 h. IL-8 release was dependent on both membrane-associated CD14 (mCD14) and Toll-like receptor 4 (TLR4. Superoxide production was dependent on the presence of LBP, but was not significantly affected by a blocking antibody to TLR4. Moreover, treatment with lovastatin inhibited LPS-dependent IL-8 release and superoxide production. CONCLUSIONS These findings suggest that IL-8 release and the respiratory burst are regulated by distinct endotoxin-dependent signaling pathways in PBMC in low level of endotoxin exposure. Selectively modulating these pathways could lead to new approaches to treat chronic inflammatory diseases, such as atherosclerosis, while preserving the capacity of monocytes to respond to acute bacterial infections.
Collapse
Affiliation(s)
- Andra L Blomkalns
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, OH USA
| | - Lynn L Stoll
- Department of Emergency Medicine, Roy J. And Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Wassim Shaheen
- The Department of Internal Medicine, Division of Cardiovascular Diseases, Roy J. And Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sara A Romig-Martin
- Department of Emergency Medicine, Roy J. And Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Eric W Dickson
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Neal L Weintraub
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, OH, USA
| | - Gerene M Denning
- Department of Emergency Medicine, Roy J. And Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
160
|
Toll-like receptor 2 mediates the activation of human monocytes and endothelial cells by antiphospholipid antibodies. Blood 2011; 117:5523-31. [PMID: 21330474 DOI: 10.1182/blood-2010-11-316158] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The presence of antiphospholipid antibodies (aPLAs) is associated with arterial or venous thrombosis and/or recurrent fetal loss. The proposed pathogenic mechanisms for aPLA effects include the inflammatory activation of monocytes and endothelial cells. Toll-like receptors (TLRs) are candidate signaling intermediates. The aim of this study was to investigate the relative contribution of TLR2 and TLR4 in cell activation by aPLAs. Of 32 patient-derived aPLAs, 19 induced an inflammatory activation of human monocytes and umbilical vein endothelial cells (HUVECs). In HUVECs, inflammatory responses to these aPLAs were increased by TNF pretreatment, which increases the expression of TLR2 but not TLR4. Anti-TLR2 but not anti-TLR4 antibodies reduced the aPLA-induced activation of monocytes and HUVECs. aPLAs activated TLR2-expressing human embryonic kidney 293 (HEK293) cells but not TLR4-expressing cells. Binding studies demonstrated an interaction between aPLAs and TLR2 but not TLR4. A role for CD14, a coreceptor for TLR2 and TLR4, can be inferred by observations that anti-CD14 antibodies reduced responses to aPLAs in monocytes, and that responses in HEK293 cells expressing TLR2 and CD14 were greater than in HEK293 cells expressing TLR2 alone. Our results demonstrate a role for TLR2 and CD14 in human endothelial cell and monocyte activation by aPLAs.
Collapse
|
161
|
de Groot D, Hoefer IE, Grundmann S, Schoneveld A, Haverslag RT, van Keulen JK, Bot PT, Timmers L, Piek JJ, Pasterkamp G, de Kleijn DP. Arteriogenesis requires toll-like receptor 2 and 4 expression in bone-marrow derived cells. J Mol Cell Cardiol 2011; 50:25-32. [DOI: 10.1016/j.yjmcc.2010.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 12/14/2022]
|
162
|
Palha De Sousa C, Blum CM, Sgroe EP, Crespo AM, Kurt RA. Murine mammary carcinoma cells and CD11c(+) dendritic cells elicit distinct responses to lipopolysaccharide and exhibit differential expression of genes required for TLR4 signaling. Cell Immunol 2010; 266:67-75. [PMID: 20869044 DOI: 10.1016/j.cellimm.2010.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/29/2010] [Accepted: 08/31/2010] [Indexed: 10/19/2022]
Abstract
Although TLR are often studied on DC because of their ability to bridge innate and adaptive defenses, TLR are also expressed by epithelial cells. Because the majority of cancers are carcinomas, and thus of epithelial origin, we wanted to know whether a carcinoma and DC responded similarly to a TLR agonist. We found the mammary carcinoma 4T1 and CD11c(+) DC both secreted proinflammatory chemokines in response to the TLR4 agonist lipopolysaccharide (LPS). However a clear dichotomy existed. DC, but not 4T1 secreted IL-1β, TNF-α, and upregulated CD80 and CD86 expression following LPS treatment. A potential reason for differential responsiveness was that DC expressed greater levels of TLR4, CD14, Myd88, and TRAM. Despite the low level of TLR signaling proteins, the carcinoma were able to elicit a range of responses contingent upon the source, dose, length, and frequency of TLR agonist treatment. Thus, carcinoma and DC are distinctly responsive to LPS.
Collapse
|
163
|
Shin HS, Xu F, Bagchi A, Herrup E, Prakash A, Valentine C, Kulkarni H, Wilhelmsen K, Warren S, Hellman J. Bacterial lipoprotein TLR2 agonists broadly modulate endothelial function and coagulation pathways in vitro and in vivo. THE JOURNAL OF IMMUNOLOGY 2010; 186:1119-30. [PMID: 21169547 DOI: 10.4049/jimmunol.1001647] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
TLR2 activation induces cellular and organ inflammation and affects lung function. Because deranged endothelial function and coagulation pathways contribute to sepsis-induced organ failure, we studied the effects of bacterial lipoprotein TLR2 agonists, including peptidoglycan-associated lipoprotein, Pam3Cys, and murein lipoprotein, on endothelial function and coagulation pathways in vitro and in vivo. TLR2 agonist treatment induced diverse human endothelial cells to produce IL-6 and IL-8 and to express E-selectin on their surface, including HUVEC, human lung microvascular endothelial cells, and human coronary artery endothelial cells. Treatment of HUVEC with TLR2 agonists caused increased monolayer permeability and had multiple coagulation effects, including increased production of plasminogen activator inhibitor-1 (PAI-1) and tissue factor, as well as decreased production of tissue plasminogen activator and tissue factor pathway inhibitor. TLR2 agonist treatment also increased HUVEC expression of TLR2 itself. Peptidoglycan-associated lipoprotein induced IL-6 production by endothelial cells from wild-type mice but not from TLR2 knockout mice, indicating TLR2 specificity. Mice were challenged with TLR2 agonists, and lungs and plasmas were assessed for markers of leukocyte trafficking and coagulopathy. Wild-type mice, but not TLR2 mice, that were challenged i.v. with TLR2 agonists had increased lung levels of myeloperoxidase and mRNAs for E-selectin, P-selectin, and MCP-1, and they had increased plasma PAI-1 and E-selectin levels. Intratracheally administered TLR2 agonist caused increased lung fibrin levels. These studies show that TLR2 activation by bacterial lipoproteins broadly affects endothelial function and coagulation pathways, suggesting that TLR2 activation contributes in multiple ways to endothelial activation, coagulopathy, and vascular leakage in sepsis.
Collapse
Affiliation(s)
- Hae-Sook Shin
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Meng G, Liu Y, Lou C, Yang H. Emodin suppresses lipopolysaccharide-induced pro-inflammatory responses and NF-κB activation by disrupting lipid rafts in CD14-negative endothelial cells. Br J Pharmacol 2010; 161:1628-44. [PMID: 20726986 PMCID: PMC3010572 DOI: 10.1111/j.1476-5381.2010.00993.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 06/11/2010] [Accepted: 07/21/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Emodin [1,3,8-trihydroxy-6-methylanthraquinone] has been reported to exhibit vascular anti-inflammatory properties. However, the corresponding mechanisms are not well understood. The present study was designed to explore the molecular target(s) of emodin in modifying lipopolysaccharide (LPS)-associated signal transduction pathways in endothelial cells. EXPERIMENTAL APPROACH Cultured primary human umbilical vein endothelial cells (HUVECs; passages 3-5) were pre-incubated with emodin (1-50 µg·mL(-1) ). LPS-induced expression of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6] and chemokines (IL-8; CCL2/MCP-1) were determined by reverse transcription-PCR and elisa. Nuclear factor-κB (NF-κB) activation, inhibitor of κB (IκB)α degradation and Toll-like receptor-4 (TLR-4) were detected by immunocytochemistry and Western blotting. Cholesterol depletion [by methyl β-cyclodextrin (MBCD), a specific cholesterol binding agent] and cholesterol replenishment were further used to investigate the roles of lipid rafts in activation of HUVECs. KEY RESULTS Emodin inhibited, concentration-dependently, the expression of LPS-induced pro-inflammatory cytokines (IL-1β, IL-6) and chemokines (IL-8, CCL2) and, in parallel, inhibited NF-κB activation and IκBα degradation in HUVECs. However, emodin did not inhibit the NF-κB activation and IκBα degradation induced by IL-1β. The cholesterol binding agent, MBCD, inhibited LPS-induced NF-κB activation in passaged HUVECs [which also lack the LPS receptor, membrane CD14 (mCD14)], showing that lipid rafts played a key role in LPS signalling in mCD14-negative HUVECs. Moreover, emodin disrupted the formation of lipid rafts in cell membranes by depleting cholesterol. CONCLUSIONS AND IMPLICATIONS Lipid rafts were crucial in facilitating inflammatory responses of mCD14-negative HUVECs to LPS. Emodin disrupted lipid rafts through depleting cholesterol and, consequently, inhibited inflammatory responses in endothelial cells.
Collapse
Affiliation(s)
- Guoquan Meng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | | | | | | |
Collapse
|
165
|
Aoki T, Nishimura M, Ishibashi R, Kataoka H, Takagi Y, Hashimoto N. Toll-like receptor 4 expression during cerebral aneurysm formation. Laboratory investigation. J Neurosurg 2010; 113:851-8. [PMID: 19852543 DOI: 10.3171/2009.9.jns09329] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECT The pathophysiological origin of cerebral aneurysms is closely associated with chronic inflammation in arterial walls. Recently, the authors identified nuclear factor-kappa B (NF-κB) as a key mediator of cerebral aneurysm formation and progression. Because Toll-like receptor 4 (TLR4) stimulates NF-κB activation in arterial walls in atherosclerosis, the authors hypothesize that TLR4 expresses in cerebral aneurysms and contributes to the activation of NF-κB in cerebral aneurysm walls. METHODS Cerebral aneurysms were induced in male Sprague-Dawley rats. Expression of TLRs in cerebral aneurysm walls was assessed using reverse transcriptase polymerase chain reaction (RT-PCR). The expression of TLR4 was examined using RT-PCR, immunohistochemical studies, and Western blotting. To assess TLR4 dependency on NF-κB activation, double immunostaining and a study using NF-κB-deficient mice were done. Finally, TLR4 expression in human cerebral aneurysm walls was assessed using immunohistochemical studies. RESULTS In cerebral aneurysm walls, TLR1, -4, -5, -6, -10, and -11 were expressed. Among them, TLR4 and TLR10 expression changed during cerebral aneurysm formation. Expression of TLR4 was predominantly in the endothelial cell layer of cerebral aneurysm walls, and was transitionally upregulated at the early stage of cerebral aneurysm formation. The TLR4 expression coincided well with NF-κB activation. In human cerebral aneurysms, TLR4 was also expressed in the endothelial cell layer, as it was in rats. CONCLUSIONS Toll-like receptor 4 was expressed in cerebral aneurysm walls both in rats and humans. This receptor may play a crucial role in cerebral aneurysm formation through NF-κB activation in endothelial cells. The results of the present study will shed new light on the pathogenesis of cerebral aneurysm formation.
Collapse
Affiliation(s)
- Tomohiro Aoki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
166
|
Jindal R, Patel SJ, Yarmush ML. Tissue-engineered model for real-time monitoring of liver inflammation. Tissue Eng Part C Methods 2010; 17:113-22. [PMID: 20684748 DOI: 10.1089/ten.tec.2009.0782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Tissue-engineered in vitro models have the potential to be used for investigating inflammation in the complex microenvironment found in vivo. We have developed an in vitro model of hepatic tissue that facilitates real-time monitoring of endothelium activation in liver tissue. This was achieved by creating a layered coculture model in which hepatocytes were embedded in collagen gel and a reporter clone of endothelial cells, which synthesizes green fluorescent protein in response to nuclear factor-kappa B (NF-κB) activation, was overlaid on top of the gel. The efficacy of our approach was established by monitoring in real time the dynamics of NF-κB-regulated fluorescence in response to tumor necrosis factor α. Our studies revealed that endothelial cells in coculture with hepatocytes exhibited a similar NF-κB-mediated fluorescence to both pulse and step stimulation of lipopolysaccharide. By contrast, endothelial cells in monoculture displayed enhanced NF-κB-regulated fluorescence to step in comparison to pulse lipopolysaccharide stimulation. The NF-κB-mediated fluorescence correlated with endothelial cell expression of NF-κB-regulated genes such as intercellular adhesion molecule 1, vascular cell adhesion molecule 1, and E-Selectin, as well as with leukocyte adhesion. These findings suggest that our model provides a powerful platform for investigating hepatic endothelium activation in real time.
Collapse
Affiliation(s)
- Rohit Jindal
- 1 Center for Engineering in Medicine, Massachusetts General Hospital , Harvard Medical School, and the Shriners Hospitals for Children, Boston, Massachusetts
| | | | | |
Collapse
|
167
|
Xue Y, Jin L, Li AZ, Wang HJ, Li M, Zhang YX, Wang Y, Li JC. Microsatellite polymorphisms in intron 2 of the toll-like receptor 2 gene and their association with susceptibility to pulmonary tuberculosis in Han Chinese. Clin Chem Lab Med 2010; 48:785-9. [PMID: 20298136 DOI: 10.1515/cclm.2010.154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Toll-like receptor 2 (TLR2) is essential for the immune response to tuberculosis (TB). The goal of the present study was to investigate whether the guanine-thymine (GT) repeat microsatellite polymorphism in intron 2 of the TLR2 gene might be correlated with susceptibility to TB in Han Chinese. METHODS The number of (GT)n repeats was determined by gene scanning from 244 patients with TB and 233 control subjects. The expression of TLR2 on CD14+ peripheral blood mononuclear cells was determined using flow cytometry. RESULTS No association in allelic polymorphism between control subjects and patients with TB was found. However, the S/M genotype of the microsatellite polymorphism was more frequent in TB patients than in healthy controls (p=0.01). The S/L genotype was more popular in controls than in patients with TB (p=0.007). TLR2 expression was higher in subjects with the S/L genotype than in those with the S/M genotype (p<0.05). CONCLUSIONS Our data suggest that the S/M genotype of the microsatellite (GT)n polymorphisms in intron 2 of the TLR2 gene may increase susceptibility to TB in Chinese, and the S/L genotype may act as a negative risk factor.
Collapse
Affiliation(s)
- Yun Xue
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
168
|
LPS-Toll-Like Receptor-Mediated Signaling on Expression of Protein S and C4b-Binding Protein in the Liver. Gastroenterol Res Pract 2010; 2010. [PMID: 20827308 PMCID: PMC2933859 DOI: 10.1155/2010/189561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 05/19/2010] [Accepted: 06/07/2010] [Indexed: 12/11/2022] Open
Abstract
Protein S (PS), mainly synthesized in hepatocytes and endothelial cells, plays a critical role as a cofactor of anticoagulant activated protein C (APC). PS activity is regulated by C4b-binding protein (C4BP), structurally composed of seven α-chains (C4BPα) and a β-chain (C4BPβ). In this paper, based primarily on our previous studies, we review the lipopolysaccharide (LPS)-induced signaling which affects expression of PS and C4BP in the liver. Our in vivo studies in rats showed that after LPS injection, plasma PS levels are significantly decreased, whereas plasma C4BP levels first are transiently decreased after 2 to 12 hours and then significantly increased after 24 hours. LPS decreases PS antigen and mRNA levels in both hepatocytes and sinusoidal endothelial cells (SECs), and decreases C4BP antigen and both C4BPα and C4BPβ mRNA levels in hepatocytes. Antirat CD14 and antirat Toll-like receptor (TLR)-4 antibodies inhibited LPS-induced NFκB activation in both hepatocytes and SECs. Furthermore, inhibitors of NFκB and MEK recovered the LPS-induced decreased expression of PS in both cell types and the LPS-induced decreased expression of C4BP in hepatocytes. These data suggest that the LPS-induced decrease in PS expression in hepatocytes and SECs and LPS-induced decrease in C4BP expression in hepatocytes are mediated by MEK/ERK signaling and NFκB activation and that membrane-bound CD14 and TLR-4 are involved in this mechanism.
Collapse
|
169
|
Liu N, Liu JT, Ji YY, Lu PP. C-reactive protein triggers inflammatory responses partly via TLR4/IRF3/NF-κB signaling pathway in rat vascular smooth muscle cells. Life Sci 2010; 87:367-74. [PMID: 20670634 DOI: 10.1016/j.lfs.2010.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/20/2010] [Accepted: 07/20/2010] [Indexed: 01/18/2023]
Abstract
AIMS C-reactive protein (CRP) plays an important role in the inflammatory process of atherosclerosis. Toll-like receptor 4 (TLR4) participates in atherogenesis by mediating the inflammatory responses. The aim of this experiment was to investigate the pro-inflammatory effects and mechanisms of CRP in rat vascular smooth muscle cells (VSMCs), especially focusing on the effects of CRP on IL-6 and peroxisome proliferator-activated receptor γ (PPARγ), and TLR4-dependent signal pathway. MAIN METHODS rat VSMCs were cultured, and CRP was used as a stimulant for IL-6 and peroxisome proliferator-activated receptor γ (PPARγ). IL-6 level in the culture supernatant was measured by ELISA, and mRNA and protein expressions were assayed by quantitative real-time PCR and western blot, respectively. RNA interference was used to assess the roles of TLR4 and interferon regulatory factor 3 (IRF3) in the pro-inflammatory signal pathway of CRP. KEY FINDINGS CRP stimulated IL-6 secretion, and inhibited mRNA and protein expression of PPARγ in VSMCs in a concentration-dependent manner. Additionally, CRP induced TLR4 expression, promoted nuclear translocation of NF-κB (p65), and augmented IκBα phosphorylation in VSMCs. Taken together, CRP induces the inflammatory responses through increasing IL-6 generation and reducing PPARγ expression in VSMCs, which is mediated by TLR4/IRF3/NF-κB signal pathway. SIGNIFICANCE CRP is able to stimulate IL-6 production and to inhibit PPARγ expression in VSMCs via MyD88-independent TLR4 signaling pathway (TLR4/IRF3/NF-κB). These provide the novel evidence for the pro-inflammatory action of CRP involved in atherogenesis.
Collapse
Affiliation(s)
- Na Liu
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | | | | | | |
Collapse
|
170
|
Liu N, Liu J, Ji Y, Lu P, Wang C, Guo F. C-Reactive Protein Induces TNF-α Secretion by p38 MAPK–TLR4 Signal Pathway in Rat Vascular Smooth Muscle Cells. Inflammation 2010; 34:283-90. [DOI: 10.1007/s10753-010-9234-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
171
|
Farina GA, York MR, Di Marzio M, Collins CA, Meller S, Homey B, Rifkin IR, Marshak-Rothstein A, Radstake TRDJ, Lafyatis R. Poly(I:C) drives type I IFN- and TGFβ-mediated inflammation and dermal fibrosis simulating altered gene expression in systemic sclerosis. J Invest Dermatol 2010; 130:2583-93. [PMID: 20613770 DOI: 10.1038/jid.2010.200] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immune activation of fibrosis likely has a crucial role in the pathogenesis of systemic sclerosis (SSc). The aim of this study was to better understand the innate immune regulation and associated IFN- and transforming growth factor-β (TGFβ)-responsive gene expression in SSc skin and dermal fibroblasts, in particular the effect of different Toll-like receptor (TLR) ligands. To better understand the relationship between inflammation and fibrosis in vivo, we developed a murine model for chronic innate immune stimulation. We found that expression of both IFN- and TGFβ-responsive genes is increased in SSc skin and SSc fibroblasts when stimulated by TLR ligands. In contrast, cutaneous lupus skin showed much more highly upregulated IFN-responsive and much less highly upregulated TGFβ-responsive gene expression. Of the TLRs ligands tested, the TLR3 ligand, polyinosinic/polycytidylic acid (Poly(I:C)), most highly increased fibroblast expression of both IFN- and TGFβ-responsive genes as well as TLR3. Chronic subcutaneous immune stimulation by Poly(I:C) stimulated inflammation, and IFN- and TGFβ-responsive gene expression. However, in this model, type I IFNs had no apparent role in regulating TGFβ activity in the skin. These results suggest that TLR agonists may be important stimuli of dermal fibrosis, which is potentially mediated by TLR3 or other innate immune receptors.
Collapse
Affiliation(s)
- Giuseppina A Farina
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Miao HL, Qiu ZD, Hao FL, Bi YH, Li MY, Chen M, Chen NP, Zhou F. Significance of MD-2 and MD-2B expression in rat liver during acute cholangitis. World J Hepatol 2010; 2:233-8. [PMID: 21161002 PMCID: PMC2999288 DOI: 10.4254/wjh.v2.i6.233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/11/2010] [Accepted: 06/18/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the expression of myeloid differentiation protein-2 (MD-2), MD-2B (a splicing isoform of MD-2 that can block Toll-like receptor 4 (TLR4)/MD-2 LPS-mediated signal transduction) and TLR4 in the liver of acute cholangitis rats. METHODS Male Sprague-Dawley rats (SPF level) were randomly divided into four groups: (A) sham-operated group; (B) simple common bile duct ligation group; (C) acute cholangitis group; and (D) acute cholangitis anti-TLR4 intervention group (n = 25 per group). Rat liver tissue samples were used to detect TLR4, MD-2 and MD-2B mRNA expression by fluorescence quantitative PCR in parallel with pathological changes. RESULTS In acute cholangitis, liver TLR4 and MD-2 mRNA expression levels at 6, 12, 24, 48 and 72 h were gradually up-regulated but MD-2B mRNA expression gradually down-regulated (P < 0.05). After TLR4 antibody treatment, TLR4 and MD-2 mRNA expression were lower compared with the acute cholangitis group (P < 0.05). However, MD-2B mRNA expression was higher than in the acute cholangitis group (P < 0.05). MD-2 and TLR4 mRNA expressions were positively correlated (r = 0.94981, P < 0.05) and MD-2B mRNA expression was negatively correlated with MD-2 and TLR4 mRNA (r = -0.89031, -0.88997, P < 0.05). CONCLUSION In acute cholangitis, MD-2 plays an important role in the process of TLR4- mediated inflammatory response to liver injury while MD-2B plays a negative regulatory role.
Collapse
Affiliation(s)
- Hui-Lai Miao
- Hui-Lai Miao, Zhi-Dong Qiu, Ming-Yi Li, Ming Chen, Nian-Ping Chen, Department of Hepatobiliary Surgery, the Affiliated Hospital of Guangdong Medical College, Zhanjing 524001, Guangdong Province, China
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Arslan F, Keogh B, McGuirk P, Parker AE. TLR2 and TLR4 in ischemia reperfusion injury. Mediators Inflamm 2010; 2010:704202. [PMID: 20628516 PMCID: PMC2902053 DOI: 10.1155/2010/704202] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/07/2010] [Indexed: 12/15/2022] Open
Abstract
Ischemia reperfusion (I/R) injury refers to the tissue damage which occurs when blood supply returns to tissue after a period of ischemia and is associated with trauma, stroke, myocardial infarction, and solid organ transplantation. Although the cause of this injury is multifactorial, increasing experimental evidence suggests an important role for the innate immune system in initiating the inflammatory cascade leading to detrimental/deleterious changes. The Toll-like Receptors (TLRs) play a central role in innate immunity recognising both pathogen- and damage-associated molecular patterns and have been implicated in a range of inflammatory and autoimmune diseases. In this paper, we summarise the current state of knowledge linking TLR2 and TLR4 to I/R injury, including recent studies which demonstrate that therapeutic inhibition of TLR2 has beneficial effects on I/R injury in a murine model of myocardial infarction.
Collapse
Affiliation(s)
- F. Arslan
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - B. Keogh
- Opsona Therapeutics Ltd., Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James' Hospital, Dublin 8, Ireland
| | - P. McGuirk
- Opsona Therapeutics Ltd., Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James' Hospital, Dublin 8, Ireland
| | - A. E. Parker
- Opsona Therapeutics Ltd., Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James' Hospital, Dublin 8, Ireland
| |
Collapse
|
174
|
Nair P, O'Donnell CM, Janasek K, Sajduk MK, Smith EA, Golden JM, Vasta CA, Huggins AB, Kurt RA. Lipopolysacchride-treated mammary carcinomas secrete proinflammatory chemokines and exhibit reduced growth rates in vivo, but not in vitro. Immunol Invest 2010; 38:730-48. [PMID: 19860585 DOI: 10.3109/08820130903177810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Toll-like receptors (TLR) are pattern recognition receptors that play a pivotal role in the initiation of immune responses. Here we report that the murine mammary carcinoma 4T1 constitutively expressed genes encoding TLR2, 3, 4 and 5. Moreover, treatment of the 4T1 cell line with peptidoglycan (PGN), polyinosinic-polycytidylic acid (Poly(I:C)) or lipopolysaccharide (LPS), agonists for TLR2, 3 or 4 respectively, induced nuclear translocation of NFkappaB and secretion of CCL2, CCL5 and CXCL1 in a dose dependent manner. Although treating the tumor cells with the TLR agonists did not modulate growth or viability of the tumor cells in vitro, 4T1 exhibited a decreased growth rate in vivo following treatment with LPS that was dependent upon the presence of CD8(+) T cells. Analysis of 3 additional murine mammary carcinomas revealed that they also secreted CCL2, CCL5 and CXCL1 in response to TLR agonist treatment, and LPS treated 168 and SM1 tumors exhibited decreased growth rates in vivo, but not in vitro. These data indicated that 4 out of 4 murine mammary carcinomas secreted proinflammatory chemokines following treatment with TLR agonists, and 3 out of 4 of the mammary carcinomas responded to LPS treatment in a manner that decreased tumor growth in vivo.
Collapse
Affiliation(s)
- P Nair
- Department of Biology, Lafayette College, Easton, PA 18042, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Polyphenols from red wine are potent modulators of innate and adaptive immune responsiveness. Proc Nutr Soc 2010; 69:279-85. [PMID: 20522276 DOI: 10.1017/s0029665110000121] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It is well known that the consumption of dietary polyphenols leads to beneficial effects for human health as in the case of prevention and/or attenuation of cardiovascular, inflammatory, neurodegenerative and neoplastic diseases. This review summarizes the role of polyphenols from red wine in the immune function. In particular, using healthy human peripheral blood mononuclear cells, we have demonstrated the in vitro ability of Negroamaro, an Italian red wine, to induce the release of nitric oxide and both pro-inflammatory and anti-inflammatory cytokines, thus leading to the maintenance of the immmune homeostasis in the host. All these effects were abrogated by deprivation of polyphenols from red wine samples. We have also provided evidence that Negromaro polyphenols are able to activate extracellular regulated kinase and p38 kinase and switch off the NF-kappaB pathway via an increased expression with time of the IkappaBalpha phosphorylated form. These mechanisms may represent key molecular events leading to inhibition of the pro-inflammatory cascade and atherogenesis. In conclusion, according to the current literature and our own data, moderate consumption of red wine seems to be protective for the host in the prevention of several diseases, even including aged-related diseases by virtue of its immunomodulating properties.
Collapse
|
176
|
The protective function of neutrophil elastase inhibitor in liver ischemia/reperfusion injury. Transplantation 2010; 89:1050-6. [PMID: 20160675 DOI: 10.1097/tp.0b013e3181d45a98] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND.: A neutrophil elastase (NE) inhibitor, Sivelestat, has been approved for the treatment of acute lung injury associated with systemic inflammation in humans. Some reports have also shown its protective effects in liver inflammatory states. We have recently documented the importance of NE in the pathophysiology of liver ischemia/reperfusion injury, a local Ag-independent inflammation response. This study was designed to explore putative cytoprotective functions of clinically available Sivelestat in liver ischemia/reperfusion injury. METHODS.: Partial warm ischemia was produced in the left and middle hepatic lobes of C57BL/6 mice for 90 min, followed by 6 or 24 hr of reperfusion. The mice were given Sivelestat (100 mg/kg, subcutaneous) at 10 min before ischemia, 10 min before reperfusion, and at 1 and 3 hr of reperfusion thereafter. RESULTS.: Sivelestat treatment significantly reduced serum alanine aminotransferase levels and NE activity, when compared with controls. Histological liver examination has revealed that unlike in controls, Sivelestat ameliorated the hepatocellular damage and decreased local neutrophil activity and infiltration. The expression of proinflammatory cytokines (tumor necrosis factor-alpha and interleukin-6), chemokines (CXCL-1, CXCL-2, and CXCL-10), and toll-like receptor 4 was significantly reduced in the treatment group, along with diminished apoptosis through caspase-3 pathway. Moreover, in vitro studies confirmed downregulation of proinflammatory cytokine and chemokine programs in mouse macrophage cell cultures, along with depression of innate toll-like receptor 4 signaling. CONCLUSION.: Sivelestat-mediated NE inhibition may represent an effective therapeutic option in liver transplantation and other inflammation disease states.
Collapse
|
177
|
Lim SD, Kim KS, Cho SA, Do JR. Physiological Characteristics and Immunomodulating Activity by Lactobacillus paracasei subsp. paracasei BFI46 Isolated from New-Born Infant Feces. Korean J Food Sci Anim Resour 2010. [DOI: 10.5851/kosfa.2010.30.2.223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
178
|
Patrignani C, Lafont DT, Muzio V, Gréco B, Hooft van Huijsduijnen R, Zaratin PF. Characterization of protein tyrosine phosphatase H1 knockout mice in animal models of local and systemic inflammation. JOURNAL OF INFLAMMATION-LONDON 2010; 7:16. [PMID: 20353590 PMCID: PMC2873500 DOI: 10.1186/1476-9255-7-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 03/30/2010] [Indexed: 01/14/2023]
Abstract
Background PTPH1 is a protein tyrosine phosphatase expressed in T cells but its effect on immune response is still controversial. PTPH1 dephosphorylates TCRzeta in vitro, inhibiting the downstream inflammatory signaling pathway, however no immunological phenotype has been detected in primary T cells derived from PTPH1-KO mice. The aim of the present study is to characterize PTPH1 phenotype in two in vivo inflammatory models and to give insights in possible PTPH1 functions in cytokine release. Methods We challenged PTPH1-KO mice with two potent immunomodulatory molecules, carrageenan and LPS, in order to determine PTPH1 possible role in inflammatory response in vivo. Cytokine release, inflammatory pain and gene expression were investigated in challenged PTPH1-WT and KO mice. Results The present study shows that carrageenan induces a trend of slightly increased spontaneous pain sensitivity in PTPH1-KO mice compared to WT (wild-type) littermates, but no differences in cytokine release, induced pain perception and cellular infiltration have been detected between the two genotypes in this mouse model. On the other hand, LPS-induced TNFα, MCP-1 and IL10 release was significantly reduced in PTPH1-KO plasma compared to WTs 30 and 60 minutes post challenge. No cytokine release modulation was detectable 180 minutes post LPS challenge. Conclusion In conclusion, the present study points out a slight potential role for PTPH1 in spontaneous pain sensitivity and it indicates that this phosphatase might play a role in the positive regulation of the LPS-induced cytokines release in vivo, in contrast to previous reports indicating PTPH1 as potential negative regulator of immune response.
Collapse
Affiliation(s)
- Claudia Patrignani
- MerckSerono Ivrea, In vivo Pharmacology Department, via ribes 5, 10010 Colleretto G, (TO) Italy.
| | | | | | | | | | | |
Collapse
|
179
|
Guan Y, Ranoa DRE, Jiang S, Mutha SK, Li X, Baudry J, Tapping RI. Human TLRs 10 and 1 share common mechanisms of innate immune sensing but not signaling. THE JOURNAL OF IMMUNOLOGY 2010; 184:5094-103. [PMID: 20348427 DOI: 10.4049/jimmunol.0901888] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
TLRs are central receptors of the innate immune system that drive host inflammation and adaptive immune responses in response to invading microbes. Among human TLRs, TLR10 is the only family member without a defined agonist or function. Phylogenetic analysis reveals that TLR10 is most related to TLR1 and TLR6, both of which mediate immune responses to a variety of microbial and fungal components in cooperation with TLR2. The generation and analysis of chimeric receptors containing the extracellular recognition domain of TLR10 and the intracellular signaling domain of TLR1, revealed that TLR10 senses triacylated lipopeptides and a wide variety of other microbial-derived agonists shared by TLR1, but not TLR6. TLR10 requires TLR2 for innate immune recognition, and these receptors colocalize in the phagosome and physically interact in an agonist-dependent fashion. Computational modeling and mutational analysis of TLR10 showed preservation of the essential TLR2 dimer interface and lipopeptide-binding channel found in TLR1. Coimmunoprecipitation experiments indicate that, similar to TLR2/1, TLR2/10 complexes recruit the proximal adaptor MyD88 to the activated receptor complex. However, TLR10, alone or in cooperation with TLR2, fails to activate typical TLR-induced signaling, including NF-kappaB-, IL-8-, or IFN-beta-driven reporters. We conclude that human TLR10 cooperates with TLR2 in the sensing of microbes and fungi but possesses a signaling function distinct from that of other TLR2 subfamily members.
Collapse
Affiliation(s)
- Yue Guan
- Department of Microbiology, University of Illinois, B103 CLSL MC110, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
180
|
Saraswathy S, Nguyen AM, Rao NA. The role of TLR4 in photoreceptor {alpha}a crystallin upregulation during early experimental autoimmune uveitis. Invest Ophthalmol Vis Sci 2010; 51:3680-6. [PMID: 20207969 DOI: 10.1167/iovs.09-4575] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose. Previous studies indicate that the upregulation of alphaA crystallin prevents photoreceptor mitochondrial oxidative stress-mediated apoptosis in experimental autoimmune uveitis (EAU). In this study, the role of TLR4 was investigated in the upregulation of alphaA crystallin in the retinas of animals with EAU. Methods. TLR4(-/-), iNOS(-/-), TNF-alpha(-/-), MyD88(-/-), wild-type (WT) control (C57BL/6), and nude mice (B6.Cg-Foxn1(nu)) were immunized with IRBP mixed with complete Freund's adjuvant; eyes were enucleated on day 7 after immunization. Real-time polymerase chain reaction was first used to detect upregulated inflammatory cytokines and alphaA crystallin in retinas with EAU; confirmed with Western blot analysis, and the site of upregulation was localized by immunohistochemistry. Oxidative stress was localized using 8-OHdG, and TUNEL staining was used to detect apoptosis. Results. In early EAU, increased expression of TNF-alpha, iNOS, and alphaA crystallin genes were detected in the retinas of WT mice, whereas such upregulation was absent in TLR4-deficient mice (P < 0.001). alphaA Crystallin was not elevated in MyD88(-/-), TNF-alpha(-/-), and iNOS(-/-) mice with EAU. Immunostaining revealed TNF-alpha, iNOS, and alphaA crystallin localization in the photoreceptor inner segments and outer plexiform layer in the WT controls with EAU; but such staining was absent in TLR4-deficient mice with EAU. 8-OHdG staining showed oxidative stress in the photoreceptors in WT mice with EAU and there was no apoptosis. Conclusions. TLR4 plays an important role in the upregulation of alphaA crystallin through the interaction of MyD88 and the subsequent generation of TNF-alpha and iNOS in the EAU retina. Such crystallin upregulation may prevent oxidative stress-mediated apoptosis of photoreceptors in uveitis.
Collapse
Affiliation(s)
- Sindhu Saraswathy
- Doheny Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | | | | |
Collapse
|
181
|
Shin EM, Zhou HY, Xu GH, Lee SH, Merfort I, Kim YS. Anti-inflammatory activity of hispidol A 25-methyl ether, a triterpenoid isolated from Ponciri Immaturus Fructus. Eur J Pharmacol 2010; 627:318-24. [DOI: 10.1016/j.ejphar.2009.10.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 09/26/2009] [Accepted: 10/14/2009] [Indexed: 11/29/2022]
|
182
|
Legrand M, Klijn E, Payen D, Ince C. The response of the host microcirculation to bacterial sepsis: does the pathogen matter? J Mol Med (Berl) 2010; 88:127-33. [PMID: 20119709 PMCID: PMC2832870 DOI: 10.1007/s00109-009-0585-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/25/2009] [Accepted: 12/21/2009] [Indexed: 12/05/2022]
Abstract
Sepsis results from the interaction between a host and an invading pathogen. The microcirculatory dysfunction is now considered central in the development of the often deadly multiple organ dysfunction syndrome in septic shock patients. The microcirculatory flow shutdown and flow shunting leading to oxygen demand and supply mismatch at the cellular level and the local activation of inflammatory pathways resulting from the leukocyte–endothelium interactions are both features of the sepsis-induced microcirculatory dysfunction. Although the host response through the inflammatory and immunologic response appears to be critical, there are also evidences that Gram-positive and Gram-negative bacteria can exert different effects at the microcirculatory level. In this review we discuss available data on the potential bacterial-specific microcirculatory alterations observed during sepsis.
Collapse
Affiliation(s)
- Matthieu Legrand
- Department of Intensive Care, Erasmus Medical Center, Erasmus University of Rotterdam, s Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
183
|
Baranova IN, Bocharov AV, Vishnyakova TG, Kurlander R, Chen Z, Fu D, Arias IM, Csako G, Patterson AP, Eggerman TL. CD36 is a novel serum amyloid A (SAA) receptor mediating SAA binding and SAA-induced signaling in human and rodent cells. J Biol Chem 2010; 285:8492-506. [PMID: 20075072 DOI: 10.1074/jbc.m109.007526] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Serum amyloid A (SAA) is a major acute phase protein involved in multiple physiological and pathological processes. This study provides experimental evidence that CD36, a phagocyte class B scavenger receptor, functions as a novel SAA receptor mediating SAA proinflammatory activity. The uptake of Alexa Fluor 488 SAA as well as of other well established CD36 ligands was increased 5-10-fold in HeLa cells stably transfected with CD36 when compared with mock-transfected cells. Unlike other apolipoproteins that bind to CD36, only SAA induced a 10-50-fold increase of interleukin-8 secretion in CD36-overexpressing HEK293 cells when compared with control cells. SAA-mediated effects were thermolabile, inhibitable by anti-SAA antibody, and also neutralized by association with high density lipoprotein but not by association with bovine serum albumin. SAA-induced cell activation was inhibited by a CD36 peptide based on the CD36 hexarelin-binding site but not by a peptide based on the thrombospondin-1-binding site. A pronounced reduction (up to 60-75%) of SAA-induced pro-inflammatory cytokine secretion was observed in cd36(-/-) rat macrophages and Kupffer cells when compared with wild type rat cells. The results of the MAPK phosphorylation assay as well as of the studies with NF-kappaB and MAPK inhibitors revealed that two MAPKs, JNK and to a lesser extent ERK1/2, primarily contribute to elevated cytokine production in CD36-overexpressing HEK293 cells. In macrophages, four signaling pathways involving NF-kappaB and three MAPKs all appeared to contribute to SAA-induced cytokine release. These observations indicate that CD36 is a receptor mediating SAA binding and SAA-induced pro-inflammatory cytokine secretion predominantly through JNK- and ERK1/2-mediated signaling.
Collapse
Affiliation(s)
- Irina N Baranova
- Department of Laboratory Medicine, Clinical Center, NICHD,National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Li X, Su J, Cui X, Li Y, Barochia A, Eichacker PQ. Can we predict the effects of NF-kappaB inhibition in sepsis? Studies with parthenolide and ethyl pyruvate. Expert Opin Investig Drugs 2010; 18:1047-60. [PMID: 19555300 DOI: 10.1517/13543780903018880] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Based partially on encouraging findings from preclinical models, interest has grown in therapeutic inhibition of NF-kappaB to limit inflammatory injury during sepsis. However, NF-kappaB also regulates protective responses, and predicting the net survival effects of such inhibition may be difficult. OBJECTIVES To highlight the caution necessary with this therapeutic approach, we review our investigations in a mouse sepsis model with parthenolide and ethyl pyruvate, two NF-kappaB inhibitors proposed for clinical study. RESULTS Consistent with published studies, parthenolide decreased NF-kappaB binding activity and inflammatory cytokine release from lipopolysaccharide (LPS) stimulated RAW 264.7 cells in vitro. In LPS-challenged mice (C57BL/6J), however, while both agents decreased lung and kidney NF-kappaB binding activity and plasma cytokines early (1-3 h), these measures were increased later (6-12 h) in patterns differing significantly over time. Furthermore, despite studying several doses of parthenolide (0.25-4.0 mg/kg) and ethyl pyruvate (0.1-100 mg/kg), each produced small but consistent decreases in survival which overall were significant (p < or = 0.04 for each agent). CONCLUSION While NF-kappaB inhibitors hold promise for inflammatory conditions such as sepsis, caution is necessary. Clear understanding of the net effects of NF-kappaB inhibitors on outcome will be necessary before such agents are used clinically.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Nephrology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | | | | | | | | |
Collapse
|
185
|
Myocardial Ischemia/Reperfusion Injury Is Mediated by Leukocytic Toll-Like Receptor-2 and Reduced by Systemic Administration of a Novel Anti–Toll-Like Receptor-2 Antibody. Circulation 2010; 121:80-90. [DOI: 10.1161/circulationaha.109.880187] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
186
|
Ward JR, Francis SE, Marsden L, Suddason T, Lord GM, Dower SK, Crossman DC, Sabroe I. A central role for monocytes in Toll-like receptor-mediated activation of the vasculature. Immunology 2009; 128:58-68. [PMID: 19689736 DOI: 10.1111/j.1365-2567.2009.03071.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There is increasing evidence that activation of inflammatory responses in a variety of tissues is mediated co-operatively by the actions of more than one cell type. In particular, the monocyte has been implicated as a potentially important cell in the initiation of inflammatory responses to Toll-like receptor (TLR)-activating signals. To determine the potential for monocyte-regulated activation of tissue cells to underpin inflammatory responses in the vasculature, we established cocultures of primary human endothelial cells and monocytes and dissected the inflammatory responses of these systems following activation with TLR agonists. We observed that effective activation of inflammatory responses required bidirectional signalling between the monocyte and the tissue cell. Activation of cocultures was dependent on interleukin-1 (IL-1). Although monocyte-mediated IL-1beta production was crucial to the activation of cocultures, TLR specificity to these responses was also provided by the endothelial cells, which served to regulate the signalling of the monocytes. TLR4-induced IL-1beta production by monocytes was increased by TLR4-dependent endothelial activation in coculture, and was associated with increased monocyte CD14 expression. Activation of this inflammatory network also supported the potential for downstream monocyte-dependent T helper type 17 activation. These data define co-operative networks regulating inflammatory responses to TLR agonists, identify points amenable to targeting for the amelioration of vascular inflammation, and offer the potential to modify atherosclerotic plaque instability after a severe infection.
Collapse
Affiliation(s)
- Jon R Ward
- Cardiovascular Research Unit, School of Medicine and Biomedical Sciences, The University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Pockley AG, Calderwood SK, Multhoff G. The atheroprotective properties of Hsp70: a role for Hsp70-endothelial interactions? Cell Stress Chaperones 2009; 14:545-53. [PMID: 19357992 PMCID: PMC2866956 DOI: 10.1007/s12192-009-0113-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/23/2009] [Accepted: 03/26/2009] [Indexed: 01/28/2023] Open
Abstract
Although heat shock (stress) proteins are typically regarded as being exclusively intracellular molecules, it is now apparent that they can be released from cells in the absence of cellular necrosis. We and others have reported the presence of Hsp60 (HSPD1) and Hsp70 (HSPA1A) in the circulation of normal individuals and our finding that increases in carotid intima-media thicknesses (a measure of atherosclerosis) in subjects with hypertension at a 4-year follow-up are less prevalent in those having high serum Hsp70 (HSPA1A) levels at baseline suggests that circulating Hsp70 (HSPA1A) has atheroprotective effects. Given that circulating Hsp70 (HSPA1A) levels can be in the range which has been shown to elicit a number of biological effects in vitro, and our preliminary findings that Hsp70 (HSPA1A) binds to and is internalised by human endothelial cell populations, we speculate on the mechanisms that might be involved in the apparent atheroprotective properties of this protein.
Collapse
Affiliation(s)
- A Graham Pockley
- Immunobiology Research Unit, K Floor, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.
| | | | | |
Collapse
|
188
|
Weber JS, Zarour H, Redman B, Trefzer U, O'Day S, van den Eertwegh AJM, Marshall E, Wagner S. Randomized phase 2/3 trial of CpG oligodeoxynucleotide PF-3512676 alone or with dacarbazine for patients with unresectable stage III and IV melanoma. Cancer 2009; 115:3944-54. [PMID: 19536884 DOI: 10.1002/cncr.24473] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The primary objective of this phase 2 study was to assess the objective response rate (complete response [CR] + partial responses [PR]), by Response Evaluation Criteria in Solid Tumors, of PF-3512676, a CpG oligodeoxynucleotide, alone in 2 doses or in combination with dacarbazine (DTIC) in patients with unresectable stage IIIB/C or stage IV malignant melanoma, with the aim of selecting an arm to take forward to a phase 3 portion of the study. METHODS A total of 184 patients were randomized to 1 of 4 treatments: PF-3512676 10 mg (low dose), at 40 mg (high dose), 40 mg plus DTIC (850 mg/m(2)), or DTIC (850 mg/m(2)) alone. Patients received PF-3512676 subcutaneously weekly in a 3-week cycle and received DTIC intravenously on the first week of the cycle. RESULTS The objective response rate (PR or CR, confirmed or unconfirmed) in the 40 mg + DTIC arm was 16% (7 patients) compared with 8% (3 patients) with DTIC alone. One (2%) patient in the 10-mg and 0 patients in the 40-mg arms achieved an objective response. Best response of CR or PR or stable disease (SD), with no minimum duration defined for SD, was achieved by 15 (33%) patients in the 40 mg + DTIC arm, 15 (38%) patients in the DTIC-only arm, 8 (17%) patients in the 10-mg arm, and 9 (20%) patients in the 40-mg arm. The most frequently reported adverse events were classified as local injection site reactions or systemic flu-like symptoms, specifically fatigue, rigors, and pyrexia. CONCLUSIONS PF-3512676 at the doses used was generally well tolerated. The modest objective response rates observed in all arms did not warrant continuation to the phase 3 portion of the study.
Collapse
Affiliation(s)
- Jeffrey S Weber
- Department of Oncologic Sciences, Moffitt Cancer Center, Tampa, FL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Innate immune signals in atherosclerosis. Clin Immunol 2009; 134:5-24. [PMID: 19740706 DOI: 10.1016/j.clim.2009.07.016] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is a chronic disease characterised by lipid retention and inflammation in the arterial intima. Innate immune mechanisms are central to atherogenesis, involving activation of pattern-recognition receptors (PRRs) and induction of inflammatory processes. In a complex tissue, such as the atherosclerotic lesion, innate signals can originate from several sources and promote atherogenesis through ligation of PRRs. The receptors recognise conserved molecular patterns on pathogens and endogenous products of tissue injury and inflammation. Activation of PRRs might affect several aspects of atherosclerosis by acting on lesion resident cells. Scavenger receptors mediate antigen uptake and clearance of lipoproteins, thereby promoting foam cell formation. Signalling receptors, such as Toll-like receptors (TLRs), lead to induction of pro-inflammatory cytokines and antigen-specific immune responses. In this review we describe the innate mechanisms present in the plaque. We focus on TLRs, their cross-talk with other PRRs, and how their signalling cascades influence inflammation within the atherosclerotic lesion.
Collapse
|
190
|
Vamadevan AS, Fukata M, Arnold ET, Thomas LS, Hsu D, Abreu MT. Regulation of Toll-like receptor 4-associated MD-2 in intestinal epithelial cells: a comprehensive analysis. Innate Immun 2009; 16:93-103. [PMID: 19710105 DOI: 10.1177/1753425909339231] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The intestinal epithelium maintains a state of controlled inflammation despite continuous contact with Gram-negative commensal bacteria and lipopolysaccharide (LPS) on its luminal surface. Recognition of LPS by the Toll-like receptor (TLR) 4/MD-2 complex results in pro-inflammatory gene expression and cytokine secretion in intestinal epithelial cells (IECs). We have shown that IECs express low levels of MD-2 and TLR4 and are poorly responsive to LPS. In this study, we did a comprehensive analysis to understand the immune-mediated and epigenetic mechanisms by which IECs down-regulate MD-2 expression. Expression of MD-2 and TLR4 mRNA was examined in human inflammatory bowel disease and intestinal epithelial cell lines (T84, HT-29, Caco-2). Nuclear factor-kappaB transcriptional activation was used as a measure of LPS responsiveness. Intestinal epithelial cells in patients with inflammatory bowel disease exhibited increased expression of MD-2 and TLR4 mRNA. Lipopolysaccharide responsiveness in IECs was polarized to the basolateral membrane. Bisulfite sequencing of the MD-2 promoter demonstrated methylation of CpG dinucleotides. Inhibition of methylation by 5-azacytidine and histone de-actylation by trichostatin A, two forms of epigenetic silencing, resulted in increased mRNA expression of MD-2 in IECs. These results demonstrate various molecular mechanisms by which IECs down-regulate MD-2 and, thereby, protect against dysregulated inflammation to commensal bacteria in the intestinal lumen.
Collapse
Affiliation(s)
- Arunan S Vamadevan
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | | | |
Collapse
|
191
|
Early lipopolysaccharide-induced reactive oxygen species production evokes necrotic cell death in human umbilical vein endothelial cells. J Hypertens 2009; 27:1202-16. [PMID: 19307985 DOI: 10.1097/hjh.0b013e328329e31c] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Endothelial dysfunction is a crucial step in the pathogenesis of cardiovascular diseases. Reactive oxygen species (ROS) generated in response to lipopolysaccharide (LPS) during sepsis promotes progressive endothelial failure. Typically, LPS-stimulated leukocytes produce pro-inflammatory cytokines, which trigger endothelial ROS production through NAD(P)H oxidase (Nox) activation, in a process that takes hours. Noteworthy, endothelial cells exposed to LPS may also generate ROS in just a few minutes. However, the mechanisms underlying this early event and its deleterious effect in endothelial function are unknown. Here, we investigated the mechanisms of early LPS-induced ROS generation and its effect in endothelial cell viability. METHODS Human umbilical vein endothelial cells were exposed to LPS for 1-40 min to study ROS generation, cytokines expression, and signaling transduction by confocal microscopy, real-time PCR (RT-PCR), western blot, and immunoprecipation. Fourty-eight hour treatments were used to determine cell death by MTT assay, cell counting, and flow cytometry. Contribution of specific Nox isoform was evaluated using a siRNAs approach. RESULTS LPS rapidly evoked a cytokine-independent ROS production, eliciting a rapid increase in p47phox phosphorylation by a phospholipase C/conventional protein kinase C and PI3-K signaling. It is noteworthy that the early LPS-induced ROS production triggered significant endothelial necrosis, which was prevented by a previous, but not a posterior, antioxidant treatment. The early LPS-induced ROS production as well as endothelial necrosis was totally dependent of Nox2 and Nox4 activity. CONCLUSION Endothelial cells exposure to LPS triggers an early ROS production. Remarkably, this single early ROS production is enough to generate extensive endothelial cell death by necrosis dependent on the activity of Nox2 and Nox4. Because, in sepsis, ROS production can cause endothelial dysfunction, results here provided may be relevant when considering the development of strategies for sepsis therapy.
Collapse
|
192
|
Uchida Y, Freitas MCS, Zhao D, Busuttil RW, Kupiec-Weglinski JW. The inhibition of neutrophil elastase ameliorates mouse liver damage due to ischemia and reperfusion. Liver Transpl 2009; 15:939-47. [PMID: 19642132 PMCID: PMC2752954 DOI: 10.1002/lt.21770] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neutrophils are considered crucial effector cells in the pathophysiology of organ ischemia/reperfusion injury (IRI). Although neutrophil elastase (NE) accounts for a substantial portion of the neutrophil activity, the function of NE in liver IRI remains unclear. This study focuses on the role of NE in the mechanism of liver IRI. Partial warm ischemia was produced in the left and middle hepatic lobes of C57BL/6 mice for 90 minutes, and this was followed by 6 to 24 hours of reperfusion. Mice were treated with neutrophil elastase inhibitor (NEI; 2 mg/kg per os) at 60 minutes prior to the ischemia insult. NEI treatment significantly reduced serum alanine aminotransferase levels in comparison with controls. Histological examination of liver sections revealed that unlike in controls, NEI treatment ameliorated hepatocellular damage and decreased local neutrophil infiltration, as assessed by myeloperoxidase assay, naphthol AS-D chloroacetate esterase stains, and immunohistochemistry (anti-Ly-6G). The expression of pro-inflammatory cytokines (tumor necrosis factor alpha and interleukin 6) and chemokines [chemokine (C-X-C motif) ligand 1 (CXCL-1), CXCL-2, and CXCL-10] was significantly reduced in the NEI treatment group, along with diminished apoptosis, according to terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining and caspase-3 activity. In addition, toll-like receptor 4 (TLR4) expression was diminished in NEI-pretreated livers, and this implies a putative role of NE in the TLR4 signal transduction pathway. Thus, targeting NE represents a useful approach for preventing liver IRI and hence expanding the organ donor pool and improving the overall success of liver transplantation. Liver Transpl 15:939-947, 2009. (c) 2009 AASLD.
Collapse
Affiliation(s)
- Yoichiro Uchida
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
193
|
Andonegui G, Zhou H, Bullard D, Kelly MM, Mullaly SC, McDonald B, Long EM, Robbins SM, Kubes P. Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection. J Clin Invest 2009; 119:1921-30. [PMID: 19603547 DOI: 10.1172/jci36411] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recognition of LPS by TLR4 on immune sentinel cells such as macrophages is thought to be key to the recruitment of neutrophils to sites of infection with Gram-negative bacteria. To explore whether endothelial TLR4 plays a role in this process, we engineered and imaged mice that expressed TLR4 exclusively on endothelium (known herein as EndotheliumTLR4 mice). Local administration of LPS into tissue induced comparable neutrophil recruitment in EndotheliumTLR4 and wild-type mice. Following systemic LPS or intraperitoneal E. coli administration, most neutrophils were sequestered in the lungs of wild-type mice and did not accumulate at primary sites of infection. In contrast, EndotheliumTLR4 mice showed reduced pulmonary capillary neutrophil sequestration over the first 24 hours; as a result, they mobilized neutrophils to primary sites of infection, cleared bacteria, and resisted a dose of E. coli that killed 50% of wild-type mice in the first 48 hours. In fact, the only defect we detected in EndotheliumTLR4 mice was a failure to accumulate neutrophils in the lungs following intratracheal administration of LPS; this response required TLR4 on bone marrow-derived immune cells. Therefore, endothelial TLR4 functions as the primary intravascular sentinel system for detection of bacteria, whereas bone marrow-derived immune cells are critical for pathogen detection at barrier sites. Nonendothelial TLR4 contributes to failure to accumulate neutrophils at primary infection sites in a disseminated systemic infection.
Collapse
Affiliation(s)
- Graciela Andonegui
- Immunology Research Group, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Epstein SE, Zhu J, Najafi AH, Burnett MS. Insights Into the Role of Infection in Atherogenesis and in Plaque Rupture. Circulation 2009; 119:3133-41. [PMID: 19546396 DOI: 10.1161/circulationaha.109.849455] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Stephen E. Epstein
- From the Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC
| | - Jianhui Zhu
- From the Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC
| | - Amir H. Najafi
- From the Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC
| | - Mary S. Burnett
- From the Cardiovascular Research Institute, MedStar Research Institute, Washington Hospital Center, Washington, DC
| |
Collapse
|
195
|
Alhawi M, Stewart J, Erridge C, Patrick S, Poxton IR. Bacteroides fragilis signals through Toll-like receptor (TLR) 2 and not through TLR4. J Med Microbiol 2009; 58:1015-1022. [PMID: 19528164 DOI: 10.1099/jmm.0.009936-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although it is desirable to identify the interactions between endotoxin/LPS and the innate immune mechanism, it is often not possible to isolate these interactions from other cell wall-related structures of protein or polysaccharide origin. There is no universally accepted method to extract different LPSs from different bacteria, and their natural state will be influenced by their interactions with the associated molecules in the bacterial outer membrane. It is now believed that Toll-like receptor (TLR) 4 is the main signal transducer of classical LPS (i.e. Escherichia coli LPS), while TLR2 is used by certain non-classical LPSs. There are contradictory reports as to whether Bacteroides fragilis LPS, a non-classical LPS, signals primarily through TLR2 or TLR4. This study was designed to address this problem. Different non-purified and purified B. fragilis LPSs extracted by different methods together with different heat-killed, whole-cell populations of B. fragilis were used to elucidate the TLR specificity. All of these B. fragilis preparations showed a significant signalling specificity for TLR2 but not for TLR4. This indicates that changing the extraction methods, with or without applying a repurification procedure, and varying the cell populations do not alter the TLR specificity of B. fragilis LPS.
Collapse
Affiliation(s)
- Mohammad Alhawi
- Medical Microbiology, Centre for Infectious Diseases, University of Edinburgh College of Medicine and Veterinary Medicine, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - John Stewart
- Medical Microbiology, Centre for Infectious Diseases, University of Edinburgh College of Medicine and Veterinary Medicine, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Clett Erridge
- Department of Cardiovascular Sciences, University of Leicester, Clinical Science Wing, Glenfield General Hospital, Leicester LE3 9QP, UK
| | - Sheila Patrick
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ian R Poxton
- Medical Microbiology, Centre for Infectious Diseases, University of Edinburgh College of Medicine and Veterinary Medicine, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
196
|
Eckert RE, Sharief Y, Jones SL. p38 mitogen-activated kinase (MAPK) is essential for equine neutrophil migration. Vet Immunol Immunopathol 2009; 129:181-91. [DOI: 10.1016/j.vetimm.2008.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
197
|
The structurally similar, penta-acylated lipopolysaccharides of Porphyromonas gingivalis and Bacteroides elicit strikingly different innate immune responses. Microb Pathog 2009; 47:68-77. [PMID: 19460428 DOI: 10.1016/j.micpath.2009.04.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 02/12/2009] [Accepted: 04/27/2009] [Indexed: 11/21/2022]
Abstract
Lipid A structural modifications can substantially impact the host's inflammatory response to bacterial LPS. Bacteroides fragilis, an opportunistic pathogen associated with life-threatening sepsis and intra-abdominal abscess formation, and Bacteroides thetaiotaomicron, a symbiont pivotal for proper host intestinal tissue development, both produce an immunostimulatory LPS comprised of penta-acylated lipid A. Under defined conditions, Porphyromonas gingivalis, an oral pathogen associated with periodontitis, also produces an LPS bearing a penta-acylated lipid A. However, this LPS preparation is 100-1000 times less potent than Bacteroides LPS in stimulating endothelial cells. We analyzed Bacteroides and P. gingivalis lipid A structures using MALDI-TOF MS and gas chromatography to determine the structural basis for this phenomenon. Even though both Bacteroides and P. gingivalis lipid A molecules are penta-acylated and mono-phosphorylated, subtle differences in mass and fatty acid content could account for the observed difference in LPS potency. This fatty acid heterogeneity is also responsible for the peak "clusters" observed in the mass spectra and obfuscates the correlation between LPS structure and immunostimulatory ability. Further, we show the difference in potency between Bacteroides and P. gingivalis LPS is TLR4-dependent. Altogether, the data suggest subtle changes in lipid A structure may profoundly impact the host's innate immune response.
Collapse
|
198
|
Arlian LG, Elder BL, Morgan MS. House dust mite extracts activate cultured human dermal endothelial cells to express adhesion molecules and secrete cytokines. JOURNAL OF MEDICAL ENTOMOLOGY 2009; 46:595-604. [PMID: 19496432 PMCID: PMC2736796 DOI: 10.1603/033.046.0326] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The human skin contacts molecules from house dust mites that are ubiquitous in many environments. These mite-derived molecules may penetrate the skin epidermis and dermis and contact microvascular endothelial cells and influence their function. The purpose of this study was to determine the response of normal human dermal microvascular endothelial cells to extracts of the dust mites, Dermatophagoides farinae, D. pteronyssinus, and Euroglyphus maynei with and without endotoxin (lipopolysaccharide). Endothelial cells were stimulated with mite extracts and the expression of surface molecules and the secretion of cytokines were measured in the absence and presence of polymyxin B to bind endotoxin. All three mite extracts stimulated endothelial cells to express intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin and to secrete interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP-1), and granulocyte/macrophage colony stimulating factor (GM-CSF). Euroglyphus maynei-induced expression of all the cell surface molecules was not inhibited when the endotoxin activity in the mite extract was inhibited. In contrast, endothelial cells challenged with D. farinae or D. pteronyssinus extract depleted of endotoxin activity expressed only constitutive levels of ICAM-1, VCAM-1, and E-selectin. D. farinae and E. maynei extracts depleted of endotoxin activity still induced secretion of IL-8 and MCP-1 but at reduced levels. Only constitutive amounts of IL-6, G-CSF, and GM-CSF were secreted in response to any of the endotoxin-depleted mite extracts. Extracts of D. farinae, D. pteronyssinus, and E. maynei contain both endotoxins and other molecules that can stimulate expression of cell adhesion molecules and chemokine receptors and the secretion of cytokines by normal human microvascular endothelial cells.
Collapse
Affiliation(s)
- Larry G Arlian
- Department of Biological Sciences, Wright State University, 3640 Col. Glenn Highway, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
199
|
Maina V, Cotena A, Doni A, Nebuloni M, Pasqualini F, Milner CM, Day AJ, Mantovani A, Garlanda C. Coregulation in human leukocytes of the long pentraxin PTX3 and TSG-6. J Leukoc Biol 2009; 86:123-32. [PMID: 19389798 PMCID: PMC3516831 DOI: 10.1189/jlb.0608345] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The prototypic long PTX3 is a multifunctional protein involved in innate resistance to pathogens and in controlling inflammation. TSG-6 is a hyaluronan-binding protein that is involved in ECM remodeling and has anti-inflammatory and chondroprotective functions. PTX3 and TSG-6 are coregulated by growth differentiation factor-9 in granulosa cells, where they are produced during the periovulatory period and play essential roles in the incorporation of hyaluronan into the ECM during cumulus expansion. The present study was designed to assess whether PTX3 and TSG-6 are coregulated in leukocytes, in particular, in phagocytes and DC. Monocytes, macrophages, and myeloid DC were found to produce high levels of TSG-6 and PTX3 in response to proinflammatory mediators (LPS or cytokines). Unstimulated neutrophil polymorphonuclear granulocytes expressed high levels of TSG-6 mRNA, but not PTX3 transcript, and stored both proteins in granules. In contrast, endothelial cells expressed substantial amounts of PTX3 mRNA and low levels of TSG-6 transcript under the conditions tested. Anti-inflammatory cytokines, such as IL-4, dampened LPS-induced TSG-6 and PTX3 expression. Divergent effects were observed with IL-10, which synergizes with TLR-mediated PTX3 induction but inhibits LPS-induced TSG-6 transcription. Immunohistochemical analysis confirms the colocalization of the two proteins in inflammatory infiltrates and in endothelial cells of inflamed tissues. Thus, here we show that myelomonocytic cells and MoDC are a major source of TSG-6 and that PTX3 and TSG-6 are coregulated under most of the conditions tested. The coordinated expression of PTX3 and TSG-6 may play a role in ECM remodeling at sites of inflammation.
Collapse
Affiliation(s)
- Virginia Maina
- Research Laboratory in Immunology and Inflammation, Istituto Clinico Humanitas (IRCCS), Rozzano, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Hong WS, Chen HC, Chen YP, Chen MJ. Effects of kefir supernatant and lactic acid bacteria isolated from kefir grain on cytokine production by macrophage. Int Dairy J 2009. [DOI: 10.1016/j.idairyj.2008.10.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|