151
|
Wang L, Zhang M, Guo J, Guo W, Zhong N, Shen H, Cai J, Zhu Z, Wu W. In vitro activities of the tetrazole VT-1161 compared with itraconazole and fluconazole against Cryptococcus and non- albicans Candida species. Mycologia 2021; 113:918-925. [PMID: 34132632 DOI: 10.1080/00275514.2021.1913949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recently, Cryptococcus and non-albicans Candida (NAC) have emerged as health-threatening pathogens for clinical fungal infections. Due to their increased resistance to existing antifungal drugs, novel antifungals are urgently needed. In this study, we evaluated the antifungal effect of VT-1161 and its comparators itraconazole and fluconazole against common fluconazole-sensitive or -resistant Cryptococcus and NAC strains. The tested strains were obtained from Chinese patients by the Invasive Fungal Infection Group within the past 2 years. The minimum inhibitory concentrations (MICs) of VT-1161 and other triazoles were measured according to the Clinical and Laboratory Standards Institute (CLSI) M27-Ed4 guidelines. We found that VT-1161 exhibited strong in vitro activity against Cryptococcus spp.. VT-1161 (geometric mean MIC = 0.024 μg/mL) was 21.7-fold and 104.5-fold more potent than itraconazole and fluconazole, respectively. Against the seven Cryptococcus neoformans isolates with higher fluconazole MICs (≥8 μg/mL based on the MIC90 value of this azole), VT-1161 maintained potent activities, with MICs ranging between 0.031 and 0.5 μg/mL. For NAC spp., VT-1161 (geometric mean MIC = 0.099 μg/mL) was 6.0-fold and 11.4-fold more effective than itraconazole and fluconazole, respectively. There is a positive correlation of the MICs between VT-1161 and itraconazole/fluconazole. The MIC values of VT-1161 against Candida glabrata and Candida tropicalis were significantly lower than those of fluconazole, whereas for Candida parapsilosis the differences in the MIC values between VT-1161 and fluconazole were not statistically significant. The results showed that tetrazole VT-1161 might be a promising candidate for treating Cryptococcus and NAC infections.
Collapse
Affiliation(s)
- Lili Wang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Pudong New District, Shanghai, China
| | - Min Zhang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Pudong New District, Shanghai, China
| | - Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Pudong New District, Shanghai, China
| | - Wenzheng Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Pudong New District, Shanghai, China
| | - Ni Zhong
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Pudong New District, Shanghai, China
| | - Hui Shen
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Pudong New District, Shanghai, China
| | - Jinfeng Cai
- Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai, China
| | - Zhaoqin Zhu
- Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Pudong New District, Shanghai, China
| |
Collapse
|
152
|
Nishimoto AT, Sharma C, Rogers PD. Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans. J Antimicrob Chemother 2021; 75:257-270. [PMID: 31603213 DOI: 10.1093/jac/dkz400] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is an opportunistic yeast and the major human fungal pathogen in the USA, as well as in many other regions of the world. Infections with C. albicans can range from superficial mucosal and dermatological infections to life-threatening infections of the bloodstream and vital organs. The azole antifungals remain an important mainstay treatment of candidiasis and therefore the investigation and understanding of the evolution, frequency and mechanisms of azole resistance are vital to improving treatment strategies against this organism. Here the organism C. albicans and the genetic changes and molecular bases underlying the currently known resistance mechanisms to the azole antifungal class are reviewed, including up-regulated expression of efflux pumps, changes in the expression and amino acid composition of the azole target Erg11 and alterations to the organism's typical sterol biosynthesis pathways. Additionally, we update what is known about activating mutations in the zinc cluster transcription factor (ZCF) genes regulating many of these resistance mechanisms and review azole import as a potential contributor to azole resistance. Lastly, investigations of azole tolerance in C. albicans and its implicated clinical significance are reviewed.
Collapse
Affiliation(s)
- Andrew T Nishimoto
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cheshta Sharma
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - P David Rogers
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
153
|
Lu H, Shrivastava M, Whiteway M, Jiang Y. Candida albicans targets that potentially synergize with fluconazole. Crit Rev Microbiol 2021; 47:323-337. [PMID: 33587857 DOI: 10.1080/1040841x.2021.1884641] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/11/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Fluconazole has characteristics that make it widely used in the clinical treatment of C. albicans infections. However, fluconazole has only a fungistatic activity in C. albicans, therefore, in the long-term treatment of C. albicans infection with fluconazole, C. albicans has the potential to acquire fluconazole resistance. A promising approach to increase fluconazole's efficacy is identifying potential targets of drugs that can enhance the antifungal effect of fluconazole, or even make the drug fungicidal. In this review, we systematically provide a global overview of potential targets of drugs synergistic with fluconazole in C. albicans, identify new avenues for research on fluconazole potentiation, and highlight the promise of combinatorial strategies with fluconazole in combatting C. albicans infections.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
154
|
Bassyouni F, Tarek M, Salama A, Ibrahim B, Salah El Dine S, Yassin N, Hassanein A, Moharam M, Abdel-Rehim M. Promising Antidiabetic and Antimicrobial Agents Based on Fused Pyrimidine Derivatives: Molecular Modeling and Biological Evaluation with Histopathological Effect. Molecules 2021; 26:2370. [PMID: 33921827 PMCID: PMC8072832 DOI: 10.3390/molecules26082370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes is the most common metabolic disorder in both developing and non-developing countries, and a well-recognized global health problem. The WHO anticipates an increase in cases from 171 million in 2000 to 366 million by 2030. In the present study, we focus on the preparation of pyrimidine derivatives as potential antidiabetic and antimicrobial agents. Thein vivoeffect on total serum glucose concentration, cholesterol and antioxidant activity was assessed in adult male albino Wister rats and compared to the reference drug glimperide. Promising results were observed for compound 5. The histopathological study confirms that compound 5 results in significant activity with liver maintenance. The antimicrobial activities were evaluated against several bacterial strains such as Salmonella typhimurium ATCC 25566, Bacillus cereus, Escherichia coli NRRN 3008, Pseudomonas aeruginosa ATCC 10145, Staphylococcus aureus ATCC 6538and fungi such as Rhizopus oligosporus, Mucor miehei and Asperillus niger. Compounds 4 and 5 showed a good inhibition of the bacterial zone compared to the reference drug cephradine. Finally, we suggest protein targets for these drugs based on computational analysis, and infer their activities from their predicted modes of binding using molecular modeling. The molecular modeling for compounds 4 and 5 resulted in improved docking scores and hydrogen bonding. The docking studies are in good agreement with the in vitro and in vivo studies.
Collapse
Affiliation(s)
- Fatma Bassyouni
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industry Research Division, National Research Centre, Cairo 12622, Egypt;
| | - Mohammad Tarek
- Bioinformatics Department, Armed Forces College of Medicine (AFCM), Cairo 12622, Egypt;
| | - Abeer Salama
- Pharmacology Department, Medical Division, National Research Centre, Cairo 12622, Egypt; (A.S.); (B.I.); (S.S.E.D.); (N.Y.)
| | - Bassant Ibrahim
- Pharmacology Department, Medical Division, National Research Centre, Cairo 12622, Egypt; (A.S.); (B.I.); (S.S.E.D.); (N.Y.)
| | - Sawsan Salah El Dine
- Pharmacology Department, Medical Division, National Research Centre, Cairo 12622, Egypt; (A.S.); (B.I.); (S.S.E.D.); (N.Y.)
| | - Nemat Yassin
- Pharmacology Department, Medical Division, National Research Centre, Cairo 12622, Egypt; (A.S.); (B.I.); (S.S.E.D.); (N.Y.)
| | - Amina Hassanein
- Pathology Department, Medical Division, National Research Centre, Cairo 12622, Egypt;
| | - Maysa Moharam
- Chemistry Department of Microbial Products, Biotechnology Research Division, National Research Centre, Cairo 12622, Egypt;
| | - Mohamed Abdel-Rehim
- Department of Materials and Nanophysics, KTH Royal Institute of Technology, SE11419 Stockholm, Sweden
| |
Collapse
|
155
|
Hunsaker EW, Yu CHA, Franz KJ. Copper Availability Influences the Transcriptomic Response of Candida albicans to Fluconazole Stress. G3-GENES GENOMES GENETICS 2021; 11:6162163. [PMID: 33693623 PMCID: PMC8049437 DOI: 10.1093/g3journal/jkab065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/23/2021] [Indexed: 01/16/2023]
Abstract
The ability of pathogens to maintain homeostatic levels of essential biometals is known to be important for survival and virulence in a host, which itself regulates metal availability as part of its response to infection. Given this importance of metal homeostasis, we sought to address how the availability of copper in particular impacts the response of the opportunistic fungal pathogen Candida albicans to treatment with the antifungal drug fluconazole. The present study reports whole transcriptome analysis via time-course RNA-seq of C. albicans cells exposed to fluconazole with and without 10 µM supplemental CuSO4 added to the growth medium. The results show widespread impacts of small changes in Cu availability on the transcriptional response of C. albicans to fluconazole. Of the 2359 genes that were differentially expressed under conditions of cotreatment, 50% were found to be driven uniquely by exposure to both Cu and fluconazole. The breadth of metabolic processes that were affected by cotreatment illuminates a fundamental intersectionality between Cu metabolism and fungal response to drug stress. More generally, these results show that seemingly minor fluctuations in Cu availability are sufficient to shift cells’ transcriptional response to drug stress. Ultimately, the findings may inform the development of new strategies that capitalize on drug-induced vulnerabilities in metal homeostasis pathways.
Collapse
Affiliation(s)
- Elizabeth W Hunsaker
- Department of Chemistry, French Family Science Center, Duke University, Durham, NC 27708, USA
| | | | - Katherine J Franz
- Department of Chemistry, French Family Science Center, Duke University, Durham, NC 27708, USA
| |
Collapse
|
156
|
Watanabe T, Ishikawa T, Sato H, Hirose N, Nonaka L, Matsumura K, Masubuchi A, Nishimura K, Masuda M. Characterization of Prototheca CYP51/ERG11 as a possible target for therapeutic drugs. Med Mycol 2021; 59:855-863. [PMID: 33838030 DOI: 10.1093/mmy/myab012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
Prototheca spp. are achlorophyllous algae, ubiquitous in nature. An increasing number of human and animal cases of Prototheca infection (protothecosis) are reported, and antifungal azoles, which inhibit sterol 14α-demethylase (CYP51/ERG11) involved in ergosterol biosynthesis, have empirically been used for the treatment of protothecosis. Although Prototheca, like fungi, has ergosterol in the cell membrane, efficacy of the antifungal azoles in the treatment of protothecosis is controversial. For investigating the interaction of azole drugs with Prototheca CYP51/ERG11, the CYP51/ERG11 genomic genes of four strains of P. wickerhamii and one strain each of P. cutis and P. miyajii were isolated and characterized in this study. Compared with the CYP51/ERG11 gene of chlorophyllous Auxenochlorella Protothecoides, it is possible that ProtothecaCYP51/ERG11 gene, whose exon-intron structure appeared to be species-specific, lost introns associated with the loss of photosynthetic activity. Analysis of the deduced amino acid sequences revealed that Prototheca CYP51/ERG11 and fungal CYP51/ERG11 are phylogenetically distant from each other although their overall structures are similar. Our basic in silico studies predicted that antifungal azoles could bind to the catalytic pocket of Prototheca CYP51/ERG11. It was also suggested that amino acid residues away from the catalytic pocket might affect the drug susceptibility. The results of this study may provide useful insights into the phylogenetic taxonomy of Prototheca spp. in relationship to the CYP51/ERG11 structure and development of novel therapeutic drugs for the treatment of protothecosis. LAY SUMMARY Cases of infection by microalgae of Prototheca species are increasing. However, effective treatment has not been established yet. In this study, gene and structure of Prototheca's CYP51/ERG11, an enzyme which might serve as a target for therapeutic drugs, were characterized for the first time.
Collapse
Affiliation(s)
- Takahisa Watanabe
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan.,Hirara Clinic, Okinawa 906-0012, Japan
| | - Tomohiro Ishikawa
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Hirotaka Sato
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Noriyuki Hirose
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan.,BD Japan, Co., Ltd., Tokyo 107-0052, Japan
| | - Lisa Nonaka
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan.,Department of Nutritional Science, Faculty of Human Life Science, Shokei University, Kumamoto 862-8678, Japan
| | - Kaori Matsumura
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Akira Masubuchi
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Kazuko Nishimura
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan.,First Laboratories, Co. Ltd., Kanagawa 211-0013, Japan
| | - Michiaki Masuda
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| |
Collapse
|
157
|
Tunel H, Er M, Alici H, Onaran A, Karakurt T, Tahtaci H. Synthesis, structural characterization, biological activity, and theoretical studies of some novel
thioether‐bridged
2,
6‐disubstituted
imidazothiadiazole analogues. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hasan Tunel
- Department of Chemistry, Faculty of Science Karabuk University Karabuk Turkey
| | - Mustafa Er
- Department of Chemistry, Faculty of Science Karabuk University Karabuk Turkey
| | - Hakan Alici
- Department of Physics, Faculty of Arts and Sciences Zonguldak Bulent Ecevit University Zonguldak Turkey
| | - Abdurrahman Onaran
- Department of Plant and Animal Production, Kumluca Vocational School of Higher Education Akdeniz University Antalya Turkey
| | - Tuncay Karakurt
- Department of Chemical Engineering, Faculty of Engineering and Architecture Kirsehir Ahi Evran University Kirsehir Turkey
| | - Hakan Tahtaci
- Department of Chemistry, Faculty of Science Karabuk University Karabuk Turkey
| |
Collapse
|
158
|
Abbes S, Sellami H, Neji S, Trabelsi H, Makni F, Ayadi A. Implication of efflux pumps and ERG11 genes in resistance of clinical Trichosporon asahii isolates to fluconazole. J Med Microbiol 2021; 70. [PMID: 33688802 DOI: 10.1099/jmm.0.001236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction. Trichosporon asahii has been recognized as an opportunistic agent having a limited sensitivity to antifungal treatment.Hypothesis/Gap Statement. Molecular mechanisms of azole resistance have been rarely reported for Trichosproron asahii. Similar to other fungi, we hypothesized that both ERG11 gene mutation and efflux pumps genes hyper-expression were implicated.Aim. The current work aimed to study the sensitivity of clinical T. asahii isolates to different antifungal agents and to explore their resistance mechanisms by molecular methods including real-time PCR and gene sequencing.Methods. The sensitivity of T. asahii isolates to fluconazole, amphotericin B and voriconazole was estimated by the Etest method. Real-time PCR was used to measure the relative expression of Pdr11, Mdr and ERG11 genes via the ACT1 housekeeping gene. Three pairs of primers were also chosen to sequence the ERG11 gene. This exploration was followed by statistical study including the receiver operating characteristic (ROC) curve analysis to identify a relationship between gene mean expression and the sensitivity of isolates.Results. In 31 clinical isolates, the resistance frequencies were 87, 16.1 and 3.2 %, respectively, for amphotericin B, fluconazole and voriconazole. Quantitative real-time PCR demonstrated that only Mdr over-expression was significantly associated with FCZ resistance confirmed by univariate statistical study and the ROC curve analysis (P <0.05). The ERG11 sequencing revealed two mutations H380G and S381A in TN325U11 (MIC FCZ=8 µg ml-1) and H437R in TN114U09 (MIC FCZ=256 µg ml-1) in highly conserved regions (close to the haem-binding domain) but their involvement in the resistance mechanism has not yet been assigned.Conclusion. T. asahii FCZ resistance mechanisms are proven to be much more complex and gene alteration sequence and/or expression can be involved. Only Mdr gene over-expression was significantly associated with FCZ resistance and no good correlation was observed between FCZ and VCZ MIC values and relative gene expression. ERG11 sequence alteration seems to play a major role in T. asahii FCZ resistance mechanism but their involvement needs further confirmation.
Collapse
Affiliation(s)
- S Abbes
- Fungal and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - H Sellami
- Fungal and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - S Neji
- Fungal and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - H Trabelsi
- Fungal and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - F Makni
- Fungal and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - A Ayadi
- Fungal and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| |
Collapse
|
159
|
Röhrig UF, Majjigapu SR, Reynaud A, Pojer F, Dilek N, Reichenbach P, Ascencao K, Irving M, Coukos G, Vogel P, Michielin O, Zoete V. Azole-Based Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors. J Med Chem 2021; 64:2205-2227. [PMID: 33557523 DOI: 10.1021/acs.jmedchem.0c01968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The heme enzyme indoleamine 2,3-dioxygenase 1 (IDO1) plays an essential role in immunity, neuronal function, and aging through catalysis of the rate-limiting step in the kynurenine pathway of tryptophan metabolism. Many IDO1 inhibitors with different chemotypes have been developed, mainly targeted for use in anti-cancer immunotherapy. Lead optimization of direct heme iron-binding inhibitors has proven difficult due to the remarkable selectivity and sensitivity of the heme-ligand interactions. Here, we present experimental data for a set of closely related small azole compounds with more than 4 orders of magnitude differences in their inhibitory activities, ranging from millimolar to nanomolar levels. We investigate and rationalize their activities based on structural data, molecular dynamics simulations, and density functional theory calculations. Our results not only expand the presently known four confirmed chemotypes of sub-micromolar heme binding IDO1 inhibitors by two additional scaffolds but also provide a model to predict the activities of novel scaffolds.
Collapse
Affiliation(s)
- Ute F Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Laboratory of Glycochemistry and Asymmetric Synthesis, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Aline Reynaud
- Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nahzli Dilek
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Patrick Reichenbach
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - Kelly Ascencao
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland.,Department of Oncology, Ludwig Cancer Research-Lausanne Branch, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Oncology, Ludwig Cancer Research-Lausanne Branch, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
160
|
Monk BC, Keniya MV. Roles for Structural Biology in the Discovery of Drugs and Agrochemicals Targeting Sterol 14α-Demethylases. J Fungi (Basel) 2021; 7:67. [PMID: 33498194 PMCID: PMC7908997 DOI: 10.3390/jof7020067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antifungal drugs and antifungal agrochemicals have significant limitations. These include several unintended consequences of their use including the growing importance of intrinsic and acquired resistance. These problems underpin an increasingly urgent need to improve the existing classes of antifungals and to discover novel antifungals. Structural insights into drug targets and their complexes with both substrates and inhibitory ligands increase opportunity for the discovery of more effective antifungals. Implementation of this promise, which requires multiple skill sets, is beginning to yield candidates from discovery programs that could more quickly find their place in the clinic. This review will describe how structural biology is providing information for the improvement and discovery of inhibitors targeting the essential fungal enzyme sterol 14α-demethylase.
Collapse
Affiliation(s)
- Brian C. Monk
- Department of Oral Sciences, Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
| | | |
Collapse
|
161
|
Sagatova AA. Strategies to Better Target Fungal Squalene Monooxygenase. J Fungi (Basel) 2021; 7:49. [PMID: 33450973 PMCID: PMC7828399 DOI: 10.3390/jof7010049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/21/2023] Open
Abstract
Fungal pathogens present a challenge in medicine and agriculture. They also harm ecosystems and threaten biodiversity. The allylamine class of antimycotics targets the enzyme squalene monooxygenase. This enzyme occupies a key position in the sterol biosynthesis pathway in eukaryotes, catalyzing the rate-limiting reaction by introducing an oxygen atom to the squalene substrate converting it to 2,3-oxidosqualene. Currently, terbinafine-the most widely used allylamine-is mostly used for treating superficial fungal infections. The ability to better target this enzyme will have significant implications for human health in the treatment of fungal infections. The human orthologue can also be targeted for cholesterol-lowering therapeutics and in cancer therapies. This review will focus on the structural basis for improving the current therapeutics for fungal squalene monooxygenase.
Collapse
Affiliation(s)
- Alia A Sagatova
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
162
|
da Nóbrega Alves D, Monteiro AFM, Andrade PN, Lazarini JG, Abílio GMF, Guerra FQS, Scotti MT, Scotti L, Rosalen PL, de Castro RD. Docking Prediction, Antifungal Activity, Anti-Biofilm Effects on Candida spp., and Toxicity against Human Cells of Cinnamaldehyde. Molecules 2020; 25:molecules25245969. [PMID: 33339401 PMCID: PMC7767272 DOI: 10.3390/molecules25245969] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: This study evaluated the antifungal activity of cinnamaldehyde on Candida spp. In vitro and in situ assays were carried out to test cinnamaldehyde for its anti-Candida effects, antibiofilm activity, effects on fungal micromorphology, antioxidant activity, and toxicity on keratinocytes and human erythrocytes. Statistical analysis was performed considering α = 5%. Results: The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of cinnamaldehyde ranged from 18.91 μM to 37.83 μM. MIC values did not change in the presence of 0.8 M sorbitol, whereas an 8-fold increase was observed in the presence of ergosterol, suggesting that cinnamaldehyde may act on the cell membrane, which was subsequently confirmed by docking analysis. The action of cinnamaldehyde likely includes binding to enzymes involved in the formation of the cytoplasmic membrane in yeast cells. Cinnamaldehyde-treated microcultures showed impaired cellular development, with an expression of rare pseudo-hyphae and absence of chlamydoconidia. Cinnamaldehyde reduced biofilm adherence by 64.52% to 33.75% (p < 0.0001) at low concentrations (378.3–151.3 µM). Cinnamaldehyde did not show antioxidant properties. Conclusions: Cinnamaldehyde showed fungicidal activity through a mechanism of action likely related to ergosterol complexation; it was non-cytotoxic to keratinocytes and human erythrocytes and showed no antioxidant activity.
Collapse
Affiliation(s)
- Danielle da Nóbrega Alves
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Department of Clinic and Social Dentistry, Center for Health Sciences, Federal University of Paraiba, João Pessoa-PB 58051-900, Brazil;
| | - Alex France Messias Monteiro
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Patrícia Néris Andrade
- Experimental Pharmacology and Cell Culture Laboratory, Center for Health Sciences, Federal University of Paraiba, João Pessoa-PB 58051-900, Brazil;
| | - Josy Goldoni Lazarini
- Department of Bioscience, Piracicaba Dental School, University of Campinas, Campinas-SP 13414-903, Brazil; (J.G.L.); (P.L.R.)
| | - Gisely Maria Freire Abílio
- Department of Physiology and Pathology, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Felipe Queiroga Sarmento Guerra
- Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Marcus Tullius Scotti
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Department of Chemistry, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Luciana Scotti
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Cheminformatics Laboratory, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Pedro Luiz Rosalen
- Department of Bioscience, Piracicaba Dental School, University of Campinas, Campinas-SP 13414-903, Brazil; (J.G.L.); (P.L.R.)
- Biological Sciences Graduate Program (PPGCB), Institute of Biomedical Sciences (ICB), Federal University of Alfenas (UNIFAL-MG), Alfenas 37130-000, Brazil
| | - Ricardo Dias de Castro
- Department of Clinic and Social Dentistry, Center for Health Sciences, Federal University of Paraiba, João Pessoa-PB 58051-900, Brazil
- Correspondence: ; Tel.: +55-83-3216-7742
| |
Collapse
|
163
|
Yadav P, Lal K, Kumar A. Antimicrobial Screening, in Silico Studies and QSAR of Chalcone-based 1,4-disubstituted 1,2,3-triazole Hybrids. Drug Res (Stuttg) 2020; 71:149-156. [PMID: 33285581 DOI: 10.1055/a-1296-7751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The in vitro antimicrobial properties of some chalcones (1A-1C: ) and chalcone tethred 1,4-disubstituted 1,2,3-triazoles (2A-2U: ) towards different microbial strains viz. Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger and Candida albicans are reported. Compounds 2G: and 2U: exhibited better potency than the standard Fluconazole with MIC values of 0.0063 µmol/mL and 0.0068 µmol/mL, respectively. Furthermore, molecular docking was performed to investigate the binding modes of two potent compounds 2Q: and 2G: with E. coli topoisomerase II DNA gyrase B and C. albicans lanosterol 14α-demethylase, respectively. Based on these results, a statistically significant quantitative structure activity relationship (QSAR) model was successfully summarized for antibacterial activity against B. subtilis.
Collapse
Affiliation(s)
- Pinki Yadav
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| |
Collapse
|
164
|
Sari S, Avci A, Koçak E, Kart D, Sabuncuoğlu S, Doğan İS, Özdemir Z, Bozbey İ, Karakurt A, Saraç S, Dalkara S. Antibacterial azole derivatives: Antibacterial activity, cytotoxicity, and in silico mechanistic studies. Drug Dev Res 2020; 81:1026-1036. [PMID: 33216362 DOI: 10.1002/ddr.21721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/13/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023]
Abstract
Azole antifungal drugs are commonly used in antifungal chemotherapy. Antibacterial effects of some topical antifungals, such as miconazole and econazole, have lately been revealed, which suggests a promising venue in antimicrobial chemotherapy. In this study, we tested an in-house azole collection with antifungal properties for their antibacterial activity to identify dual-acting hits using the broth microdilution method. The in vitro screen yielded a number of potent derivatives against gram-positive bacteria, Enterococcus faecalis and Staphylococcus aureus. Compound 73's minimum inhibitory concentration (MIC) value less than 1 μg/ml against S. aureus; however, none of the compounds showed noteworthy activity against methicillin-resistant S. aureus (MRSA). All the active compounds were found safe at their MIC values against the healthy fibroblast cells in the in vitro cytotoxicity test. Molecular docking studies of the most active compounds using a set of docking programs with flavohemoglobin (flavoHb) structure, the proposed target of the azole antifungals with antibacterial activity, presented striking similarities regarding the binding modes and interactions between the tested compounds and the antifungal drugs with crystallographic data. In addition to being noncytotoxic, the library was predicted to be drug-like and free of pan-assay interference compounds (PAINS). As a result, the current study revealed several potential azole derivatives with both antifungal and antibacterial activities. Inhibition of bacterial flavoHb was suggested as a possible mechanism of action for the title compounds.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Ahmet Avci
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Ebru Koçak
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Didem Kart
- Department of Pharmaceutical Microbiology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - İnci Selin Doğan
- Department of Pharmaceutical Chemistry, Karadeniz Technical University Faculty of Pharmacy, Trabzon, Turkey
| | - Zeynep Özdemir
- Department of Pharmaceutical Chemistry, İnönü University Faculty of Pharmacy, Malatya, Turkey
| | - İrem Bozbey
- Department of Pharmaceutical Chemistry, Erzincan Binali Yıldırım University Faculty of Pharmacy, Erzincan, Turkey
| | - Arzu Karakurt
- Department of Pharmaceutical Chemistry, İnönü University Faculty of Pharmacy, Malatya, Turkey
| | - Selma Saraç
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Sevim Dalkara
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
165
|
Ogris I, Zelenko U, Sosič I, Gobec M, Skubic C, Ivanov M, Soković M, Kocjan D, Rozman D, Golič Grdadolnik S. Pyridylethanol(phenylethyl)amines are non-azole, highly selective Candida albicans sterol 14α-demethylase inhibitors. Bioorg Chem 2020; 106:104472. [PMID: 33261849 DOI: 10.1016/j.bioorg.2020.104472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Sterol 14α-demethylase (CYP51) is the main drug target for the treatment of fungal infections. The worldwide increase in the incidence of opportunistic fungal infections and the emerging resistance to available azole-based antifungal drugs, raise the need to develop structurally distinct and selective fungal CYP51 inhibitors. In this work we have, for the first time, investigated the binding of pyridylethanol(phenylethyl)amines to any fungal CYP51. The comparison of the binding to Candida albicans and human CYP51 studied by spectroscopic and modeling methods revealed moieties decisive for selectivity and potency and resulted in the development of highly selective derivatives with significantly increased inhibitory potency. The structure-based insight into the selectivity requirements of this new chemical class of fungal CYP51 inhibitors, their unique binding properties and the low molecular weight of lead derivatives offer novel directions for the targeted development of antifungal clinical candidates.
Collapse
Affiliation(s)
- Iza Ogris
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Urška Zelenko
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Cene Skubic
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marija Ivanov
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Darko Kocjan
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Damjana Rozman
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.
| |
Collapse
|
166
|
Ganeshkumar A, Suvaithenamudhan S, Rajaram R. In Vitro and In Silico Analysis of Ascorbic Acid Towards Lanosterol 14-α-Demethylase Enzyme of Fluconazole-Resistant Candida albicans. Curr Microbiol 2020; 78:292-302. [PMID: 33170381 DOI: 10.1007/s00284-020-02269-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Antibiotic resistance is one of the major concerns and the biggest threats to the world population. The incidents of antibiotic resistance in Candida spp. were frequently recorded. In the present investigation, antifungal potential of ascorbic acid (AA) was evaluated. According to the in vitro analysis, the zone of inhibition of AA (24.75 ± 0.35 mm) against C. albicans was greater as compared to other vitamins tested. AA significantly modulate the growth of C. albicans at 25 mg/ml. The highest percentage (94.67%) of cell viability was observed in untreated cells, and low cell viability (29.36%) was observed in cells treated with 50 mg/ml of AA (2 × MIC). Further, AO/EB (acridine orange/ethidium bromide), propidium iodide staining, and real-time qPCR confirmed the loss of membrane integrity due to membrane lesions that caused cell death. Lanosterol 14-α-demethylase (L-14α-DM) is the product of ERG11 and acted as superior drug target of C. albicans. Molecular docking analysis confirmed that active interaction of ascorbic acid with L-14α-DM. Based on the present investigation, the efficiency of AA was effectively proved through the in vitro and in silico analysis. This finding has evidenced the effectiveness of AA as a potential candidate against C. albicans.
Collapse
Affiliation(s)
- Arumugam Ganeshkumar
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchchirappalli, Tamil Nadu, 620 024, India
| | - Suvaiyarasan Suvaithenamudhan
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchchirappalli, Tamil Nadu, 620 024, India
| | - Rajendran Rajaram
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
167
|
Poonia N, Lal K, Kumar A. Design, synthesis, antimicrobial evaluation and in silico studies of symmetrical bis (urea-1,2,3-triazole) hybrids. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04318-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
168
|
An Y, Dong Y, Liu M, Han J, Zhao L, Sun B. Novel naphthylamide derivatives as dual-target antifungal inhibitors: Design, synthesis and biological evaluation. Eur J Med Chem 2020; 210:112991. [PMID: 33183866 DOI: 10.1016/j.ejmech.2020.112991] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/15/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
Fungal infections have become a serious medical problem due to the high infection rate and the frequent emergence of drug resistance. Squalene epoxidase (SE) and 14α-demethylase (CYP51) are considered as the important antifungal targets, they can show the synergistic effect on antifungal therapy. In the study, a series of active fragments were screened through the method of De Novo Link, and these active fragments with the higher Ludi_Scores were selected, which can show the obvious binding ability with the dual targets (SE, CYP51). Subsequently, three series of target compounds with naphthyl amide scaffolds were constructed by connecting these core fragments, and their structures were synthesized. Most of compounds showed the antifungal activity in the treatment of pathogenic fungi. It was worth noting that compounds 10b-5 and 17a-2 with the excellent broad-spectrum antifungal properties also exhibited the obvious antifungal effects against drug-resistant fungi. Preliminary mechanism study has proved these target compounds can block the biosynthesis of ergosterol by inhibiting the activity of dual targets (SE, CYP51). Furthermore, target compounds 10-5 and 17a-2 with low toxicity side effects also demonstrated the excellent pharmacological effects in vivo. The molecular docking and ADMET prediction were performed, which can guide the optimization of subsequent lead compounds.
Collapse
Affiliation(s)
- Yunfei An
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Yue Dong
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China
| | - Liyu Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, 252000, PR China.
| |
Collapse
|
169
|
History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorg Chem 2020; 104:104240. [DOI: 10.1016/j.bioorg.2020.104240] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/17/2020] [Accepted: 08/11/2020] [Indexed: 01/12/2023]
|
170
|
Sun B, Dong Y, An Y, Liu M, Han J, Zhao L, Liu X. Design, synthesis and bioactivity evaluation of novel arylalkene-amide derivatives as dual-target antifungal inhibitors. Eur J Med Chem 2020; 205:112645. [DOI: 10.1016/j.ejmech.2020.112645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 07/05/2020] [Indexed: 01/07/2023]
|
171
|
Li X, Yang X, Zheng X, Bai M, Hu D. Review on Structures of Pesticide Targets. Int J Mol Sci 2020; 21:E7144. [PMID: 32998191 PMCID: PMC7582455 DOI: 10.3390/ijms21197144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Molecular targets play important roles in agrochemical discovery. Numerous pesticides target the key proteins in pathogens, insect, or plants. Investigating ligand-binding pockets and/or active sites in the proteins' structures is usually the first step in designing new green pesticides. Thus, molecular target structures are extremely important for the discovery and development of such pesticides. In this manuscript, we present a review of the molecular target structures, including those of antiviral, fungicidal, bactericidal, insecticidal, herbicidal, and plant growth-regulator targets, currently used in agrochemical research. The data will be helpful in pesticide design and the discovery of new green pesticides.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China;
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China;
| | - Miao Bai
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China;
| |
Collapse
|
172
|
Shi N, Zheng Q, Zhang H. Molecular Dynamics Investigations of Binding Mechanism for Triazoles Inhibitors to CYP51. Front Mol Biosci 2020; 7:586540. [PMID: 33102531 PMCID: PMC7546855 DOI: 10.3389/fmolb.2020.586540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 01/23/2023] Open
Abstract
The sterol 14α demethylase enzyme (CYP51) is an important target of fungal infections. However, the molecular mechanism between triazoles inhibitors and CYP51 remains obscure. In this study, we have investigated the binding mechanism and tunnel characteristic upon four triazoles inhibitors with CYP51 based on the molecular docking and molecular dynamics simulations. The results indicate the four inhibitors stabilize in the binding cavity of CYP51 in a similar binding mode. We discover a hydrophobic cavity (F58, Y64, Y118, L121, Y132, L376, S378, S506, S507, and M508) and the hydrophobic interaction is the main driving force for inhibitors binding to CYP51. The long-tailed inhibitors (posaconazole and itraconazole) have stronger binding affinities than short-tailed inhibitors (fluconazole and voriconazole) because long-tailed inhibitors can form more hydrophobic interactions with CYP51. The tunnel 2f is the predominant pathway for inhibitors ingress/egress protein, which is similar to the other works of CYP51. This study could provide the theoretical basis for the development of efficient azoles inhibitors and may lead a better insight into structure-function relationships of CYP51.
Collapse
Affiliation(s)
- Na Shi
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Qingchuan Zheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China
| | - Hongxing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
173
|
Kaur H, Gahlawat S, Singh J, Narasimhan B. Molecular Docking Study of Active Diazenyl Scaffolds as Inhibitors of Essential Targets Towards Antimicrobial Drug Discovery. Curr Drug Targets 2020; 20:1587-1602. [PMID: 31215386 DOI: 10.2174/1389450120666190618122359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The diazenyl compounds (-N=N- linkage) have been reported to have antimicrobial activity. In modern drug discovery, the drug-receptor interactions are generally explored by the molecular docking studies. MATERIALS AND METHODS Three categories of diazenyl scaffolds were screened for the docking studies to explore the binding mechanism of interaction with various microbial targets. The diazenyl Schiff bases (SBN-20, SBN-21, SBN-25, SBN-33, SBN-39, SBN-40 and SBN-42), naphthol pharmacophore based diazenyl Schiff bases (NS-2, NS-8, NS-12, NS-15, NS-21, and NS-23), morpholine based diazenyl chalcones (MD-6, MD-9, MD-14, MD-16, MD-20, and MD-21) were docked against various bacterial and fungal proteins in comparison with different standard drugs. Further, the drug likeliness and ADME properties of these molecules were predicted by QikProp module of the Schrodinger software. RESULTS Most of the derivatives had shown less docking scores and binding energies towards bacterial proteins, such as dihydropteroate synthase (PDB:2VEG), glucosamine-6-phosphate synthase (PDB:2VF5), dihydrofolate reductase (PDB:3SRW) in comparison with the standard drugs. The naphthol based diazenyl Schiff bases NS-21 and NS-23 were predicted to act on the cytochrome P450 sterol 14-alpha-demethylase (CYP51) (PDB:5FSA) involved in sterol biosynthesis, an essential target for antifungal drugs. The derivative MD-6, NS-2, NS-21, and NS-23 had shown high docking scores against bacterial DNA topoisomerase (PDB:3TTZ) in comparison with the standard drug ciprofloxacin. Further, most of the synthesized derivatives had shown drug like characters. CONCLUSION Hence, these compounds can be developed as novel antibacterial agents as potent DNA topoisomerase inhibitors and antifungal agents as CYP51 inhibitors.
Collapse
Affiliation(s)
- Harmeet Kaur
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Sudhir Gahlawat
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Jasbir Singh
- College of Pharmacy, Postgraduate Institute of Medical Sciences, Rohtak-124001, India
| | | |
Collapse
|
174
|
Sari S, Koçak E, Kart D, Özdemir Z, Acar MF, Sayoğlu B, Karakurt A, Dalkara S. Azole derivatives with naphthalene showing potent antifungal effects against planktonic and biofilm forms of Candida spp.: an in vitro and in silico study. Int Microbiol 2020; 24:93-102. [DOI: 10.1007/s10123-020-00144-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
|
175
|
Golbaghi G, Groleau M, López de los Santos Y, Doucet N, Déziel E, Castonguay A. Cationic Ru
II
Cyclopentadienyl Complexes with Antifungal Activity against Several
Candida
Species. Chembiochem 2020; 21:3112-3119. [DOI: 10.1002/cbic.202000254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/22/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Golara Golbaghi
- Organometallic Chemistry Laboratory for the Design of Catalysts and Therapeutics INRS-Centre Armand-Frappier Santé Biotechnologie 531 boul. des Prairies Laval, Quebec H7V 1B7 Canada
| | - Marie‐Christine Groleau
- INRS-Centre Armand-Frappier Santé Biotechnologie 531 boul. des Prairies Laval, Quebec H7V 1B7 Canada
| | | | - Nicolas Doucet
- INRS-Centre Armand-Frappier Santé Biotechnologie 531 boul. des Prairies Laval, Quebec H7V 1B7 Canada
| | - Eric Déziel
- INRS-Centre Armand-Frappier Santé Biotechnologie 531 boul. des Prairies Laval, Quebec H7V 1B7 Canada
| | - Annie Castonguay
- Organometallic Chemistry Laboratory for the Design of Catalysts and Therapeutics INRS-Centre Armand-Frappier Santé Biotechnologie 531 boul. des Prairies Laval, Quebec H7V 1B7 Canada
| |
Collapse
|
176
|
Synthesis, Optimization, Antifungal Activity, Selectivity, and CYP51 Binding of New 2-Aryl-3-azolyl-1-indolyl-propan-2-ols. Pharmaceuticals (Basel) 2020; 13:ph13080186. [PMID: 32784450 PMCID: PMC7464559 DOI: 10.3390/ph13080186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
A series of 2-aryl-3-azolyl-1-indolyl-propan-2-ols was designed as new analogs of fluconazole (FLC) by replacing one of its two triazole moieties by an indole scaffold. Two different chemical approaches were then developed. The first one, in seven steps, involved the synthesis of the key intermediate 1-(1H-benzotriazol-1-yl)methyl-1H-indole and the final opening of oxiranes by imidazole or 1H-1,2,4-triazole. The second route allowed access to the target compounds in only three steps, this time with the ring opening by indole and analogs. Twenty azole derivatives were tested against Candida albicans and other Candida species. The enantiomers of the best anti-Candida compound, 2-(2,4-dichlorophenyl)-3-(1H-indol-1-yl)-1-(1H-1,2,4-triazol-1-yl)-propan-2-ol (8g), were analyzed by X-ray diffraction to determine their absolute configuration. The (−)-8g enantiomer (Minimum inhibitory concentration (MIC) = IC80 = 0.000256 µg/mL on C. albicans CA98001) was found with the S-absolute configuration. In contrast the (+)-8g enantiomer was found with the R-absolute configuration (MIC = 0.023 µg/mL on C. albicans CA98001). By comparison, the MIC value for FLC was determined as 0.020 µg/mL for the same clinical isolate. Additionally, molecular docking calculations and molecular dynamics simulations were carried out using a crystal structure of Candida albicans lanosterol 14α-demethylase (CaCYP51). The (−)-(S)-8g enantiomer aligned with the positioning of posaconazole within both the heme and access channel binding sites, which was consistent with its biological results. All target compounds have been also studied against human fetal lung fibroblast (MRC-5) cells. Finally, the selectivity of four compounds on a panel of human P450-dependent enzymes (CYP19, CYP17, CYP26A1, CYP11B1, and CYP11B2) was investigated.
Collapse
|
177
|
Khalaf HS, Naglah AM, Al-Omar MA, Moustafa GO, Awad HM, Bakheit AH. Synthesis, Docking, Computational Studies, and Antimicrobial Evaluations of New Dipeptide Derivatives Based on Nicotinoylglycylglycine Hydrazide. Molecules 2020; 25:molecules25163589. [PMID: 32784576 PMCID: PMC7464391 DOI: 10.3390/molecules25163589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/18/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022] Open
Abstract
Within a series of dipeptide derivatives (5–11), compound 4 was refluxed with d-glucose, d-xylose, acetylacetone, diethylmalonate, carbon disulfide, ethyl cyanoacetate, and ethyl acetoacetate which yielded 5–11, respectively. The candidates 5–11 were characterized and their biological activities were evaluated where they showed different anti-microbial inhibitory activities based on the type of pathogenic microorganisms. Moreover, to understand modes of binding, molecular docking was used of Nicotinoylglycine derivatives with the active site of the penicillin-binding protein 3 (PBP3) and sterol 14-alpha demethylase’s (CYP51), and the results, which were achieved via covalent and non-covalent docking, were harmonized with the biological activity results. Therefore, it was extrapolated that compounds 4, 7, 8, 9, and 10 had good potential to inhibit sterol 14-alpha demethylase and penicillin-binding protein 3; consequently, these compounds are possibly suitable for the development of a novel antibacterial and antifungal therapeutic drug. In addition, in silico properties of absorption, distribution, metabolism, and excretion (ADME) indicated drug likeness with low to very low oral absorption in most compounds, and undefined blood–brain barrier permeability in all compounds. Furthermore, toxicity (TOPKAT) prediction showed probability values for all carcinogenicity models were medium to pretty low for all compounds.
Collapse
Affiliation(s)
- Hemat S. Khalaf
- Chemistry Department, College of Science and Arts, Jouf University, Al Qurayyat 77425, Saudi Arabia;
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ahmed M. Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt;
- Correspondence: ; Tel.: +966-562003668
| | - Mohamed A. Al-Omar
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Gaber O. Moustafa
- Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt;
- Nahda University, New Beni-Suef City, Beni-Suef 62521, Egypt
| | - Hassan M. Awad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum 12702, Sudan
| |
Collapse
|
178
|
Eltayeb NE, Lasri J, Soliman SM, Mavromatis C, Hajjar D, Elsilk SE, Babgi BA, Hussien MA. Crystal structure, DFT, antimicrobial, anticancer and molecular docking of (4E)-4-((aryl)methyleneamino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
179
|
Marin V, Iturra A, Opazo A, Schmidt B, Heydenreich M, Ortiz L, Jiménez VA, Paz C. Oxidation of Isodrimeninol with PCC Yields Drimane Derivatives with Activity against Candida Yeast by Inhibition of Lanosterol 14-Alpha Demethylase. Biomolecules 2020; 10:biom10081101. [PMID: 32722158 PMCID: PMC7463952 DOI: 10.3390/biom10081101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022] Open
Abstract
Candida species cause an opportunistic yeast infection called Candidiasis, which is responsible for more than 50,000 deaths every year around the world. Effective treatments against candidiasis caused by non-albicans Candida species such as C. glabrata, C. parapsilosis, C. aureus, and C.krusei are limited due to severe resistance to conventional antifungal drugs. Natural drimane sesquiterpenoids have shown promising antifungal properties against Candida yeast and have emerged as valuable candidates for developing new candidiasis therapies. In this work, we isolated isodrimeninol (C1) from barks of Drimys winteri and used it as starting material for the hemi-synthesis of four sesquiterpenoids by oxidation with pyridinium chlorochromate (PCC). The structure of the products (C2, C3, C4, and C5) was elucidated by 1D and 2D NMR spectroscopy resulting in C4 being a novel compound. Antifungal activity assays against C. albicans, C. glabrata, and C. krusei revealed that C4 exhibited an increased activity (IC50 of 75 μg/mL) compared to C1 (IC50 of 125 μg/mL) in all yeast strains. The antifungal activity of C1 and C4 was rationalized in terms of their capability to inhibit lanosterol 14-alpha demethylase using molecular docking, molecular dynamics simulations, and MM/GBSA binding free energy calculations. In silico analysis revealed that C1 and C4 bind to the outermost region of the catalytic site of 14-alpha demethylase and block the entrance of lanosterol (LAN) to the catalytic pocket. Binding free energy estimates suggested that C4 forms a more stable complex with the enzyme than C1, in agreement with the experimental evidence. Based on this new approach it is possible to design new drimane-type sesquiterpenoids for the control of Candida species as inhibitors of 14-alpha demethylase.
Collapse
Affiliation(s)
- Victor Marin
- Laboratory of Natural Products & Drug Discovery, Department of Basic Science, Universidad de La Frontera, Av. Francisco Salazar 01145, 4780000 Temuco, Chile; (V.M.); (A.I.)
| | - Andres Iturra
- Laboratory of Natural Products & Drug Discovery, Department of Basic Science, Universidad de La Frontera, Av. Francisco Salazar 01145, 4780000 Temuco, Chile; (V.M.); (A.I.)
| | - Andres Opazo
- Universidad de Concepción, Departamento de Microbiología, Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Barrio Universitario S/N, 160-C 1807 Concepción, Chile;
| | - Bernd Schmidt
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany; (B.S.); (M.H.)
| | - Matthias Heydenreich
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany; (B.S.); (M.H.)
| | - Leandro Ortiz
- Universidad Austral de Chile, Instituto de Ciencias Química, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, 5091000 Valdivia, Chile;
| | - Verónica A. Jiménez
- Universidad Andres Bello, Sede Concepción, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Autopista Concepción-Talcahuano 7100, 4030000 Talcahuano, Chile
- Correspondence: (V.A.J.); (C.P.); Tel.: +56-41-2662151 (V.A.J.); Tel.: +56-45-259-2825 (C.P.)
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Department of Basic Science, Universidad de La Frontera, Av. Francisco Salazar 01145, 4780000 Temuco, Chile; (V.M.); (A.I.)
- Correspondence: (V.A.J.); (C.P.); Tel.: +56-41-2662151 (V.A.J.); Tel.: +56-45-259-2825 (C.P.)
| |
Collapse
|
180
|
Binjubair FA, Parker JE, Warrilow AG, Puri K, Braidley PJ, Tatar E, Kelly SL, Kelly DE, Simons C. Small-Molecule Inhibitors Targeting Sterol 14α-Demethylase (CYP51): Synthesis, Molecular Modelling and Evaluation Against Candida albicans. ChemMedChem 2020; 15:1294-1309. [PMID: 32459374 PMCID: PMC7496091 DOI: 10.1002/cmdc.202000250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/25/2020] [Indexed: 12/20/2022]
Abstract
Fungal infections are a global issue affecting over 150 million people worldwide annually, with 750 000 of these caused by invasive Candida infections. Azole drugs are the frontline treatment against fungal infections; however, resistance to current azole antifungals in C. albicans poses a threat to public health. Two series of novel azole derivatives, short and extended derivatives, have been designed, synthesised and investigated for CYP51 inhibitory activity, binding affinity and minimum inhibitory concentration (MIC) against C. albicans strains. The short derivatives were more potent against the C. albicans strains (e. g., MIC 2-(4-chlorophenyl)-N-(2,4-dichlorobenzyl)-3-(1H-imidazol-1-yl)propanamide (5 f) <0.03 μg/mL, N-(4-((4-chlorophenyl)sulfonamido)benzyl)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propanamide (12 c), 1 μg/mL, fluconazole 0.125 μg/mL) but both displayed comparable enzyme binding and inhibition (5 f Kd 62±17 nM, IC50 0.46 μM; 12 c Kd 43±18 nM, IC50 0.33 μM, fluconazole Kd 41±13 nM, IC50 0.31 μM, posaconazole Kd 43±11 nM, IC50 0.2 μM). The short series had poor selectivity for CaCYP51 over the human homologue, whereas the selectivity of the extended series, for example, compound 12 c, was higher (21.5-fold) than posaconazole (4.7-fold) based on Kd values, although posaconazole was more selective (615-fold) than 12 c (461-fold) based on IC50 values. Based on inhibitory activity and selectivity profile, the extended series are the better of the two series for further development.
Collapse
Affiliation(s)
- Faizah A. Binjubair
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBUK
| | - Josie E. Parker
- Centre for Cytochrome P450 BiodiversityInstitute of Life ScienceSwansea UniversitySwanseaSA2 8PPUK
| | - Andrew G. Warrilow
- Centre for Cytochrome P450 BiodiversityInstitute of Life ScienceSwansea UniversitySwanseaSA2 8PPUK
| | - Kalika Puri
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBUK
| | - Peter J. Braidley
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBUK
| | - Esra Tatar
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBUK
- Department of Pharmaceutical ChemistryFaculty of PharmacyMarmara University34668IstanbulTurkey
| | - Steven L. Kelly
- Centre for Cytochrome P450 BiodiversityInstitute of Life ScienceSwansea UniversitySwanseaSA2 8PPUK
| | - Diane E. Kelly
- Centre for Cytochrome P450 BiodiversityInstitute of Life ScienceSwansea UniversitySwanseaSA2 8PPUK
| | - Claire Simons
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBUK
| |
Collapse
|
181
|
Irannejad H, Emami S, Mirzaei H, Hashemi SM. Data on molecular docking of tautomers and enantiomers of ATTAF-1 and ATTAF-2 selectivty to the human/fungal lanosterol-14α-demethylase. Data Brief 2020; 31:105942. [PMID: 32671150 PMCID: PMC7341365 DOI: 10.1016/j.dib.2020.105942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/03/2022] Open
Abstract
The data have been obtained for tautomers and enantiomers of ATTAF-1 and ATTAF-2 that were developed based on antifungal standard drugs with triazole scaffold. These compounds were docked into the human and fungal lanosterol-14α-demethylase. In order to validate the data, 8 standard triazole antifungal drugs (Fluconazole, Itraconazole, Posaconazole, Ravuconazole, Albaconazole, Voriconazole, Isavuconazole and Efinaconazole) were also docked into the human and fungal lanosterol-14α-demethylase. The binding conformations of these molecules and their interactions with lanosterol-14α-demethylase may inform the development of further small molecule lanosterol-14α-demethylase inhibitors with significant selectivity toward this enzyme. The analysis has done on the basis of type of interactions (bond type and distance). The length of the Fe-N coordination bond for (R)-N2-ATTAF-1 and (S)-N1-ATTAF-2 complexes is obtained 6.36 and 4.19 Å, respectively and about 2 Å in the other tautomer and enantiomer complexes, reflecting the lower basicity of the N-4 atom in the 1,2,4-triazole ring of (R)-N2-ATTAF-1 and (S)-N1-ATTAF-2 in comparison with the N-4 atom in the 1,2,4-triazole ring in other tautomers and enantiomers and supporting higher selectivity of (R)-N2-ATTAF-1 and (S)-N1-ATTAF-2 towards the target CYP51 enzymes vs. human. Interestingly, we have investigated unfavorable interactions (donor-donor) with TRP239 and MET378 for (R)-N2-ATTAF-1 and (S)-N1-ATTAF-2, respectively. These unfavorable interactions also have been seen in case of posaconazole and isavuconazole. The data presented in this article are related to the research paper entitled "In silico prediction of ATTAF-1 and ATTAF-2 selectivity towards human/fungal lanosterol 14α-demethylase using molecular dynamic simulation and docking approaches".
Collapse
Affiliation(s)
- Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hassan Mirzaei
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyedeh Mahdieh Hashemi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
182
|
Franco CH, Warhurst DC, Bhattacharyya T, Au HYA, Le H, Giardini MA, Pascoalino BS, Torrecilhas AC, Romera LMD, Madeira RP, Schenkman S, Freitas-Junior LH, Chatelain E, Miles MA, Moraes CB. Novel structural CYP51 mutation in Trypanosoma cruzi associated with multidrug resistance to CYP51 inhibitors and reduced infectivity. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:107-120. [PMID: 32688218 PMCID: PMC7369355 DOI: 10.1016/j.ijpddr.2020.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022]
Abstract
Ergosterol biosynthesis inhibitors, such as posaconazole and ravuconazole, have been proposed as drug candidates for Chagas disease, a neglected infectious tropical disease caused by the protozoan parasite Trypanosoma cruzi. To understand better the mechanism of action and resistance to these inhibitors, a clone of the T. cruzi Y strain was cultured under intermittent and increasing concentrations of ravuconazole until phenotypic stability was achieved. The ravuconazole-selected clone exhibited loss in fitness in vitro when compared to the wild-type parental clone, as observed in reduced invasion capacity and slowed population growth in both mammalian and insect stages of the parasite. In drug activity assays, the resistant clone was above 300-fold more tolerant to ravuconazole than the sensitive parental clone, when the half-maximum effective concentration (EC50) was considered. The resistant clones also showed reduced virulence in vivo, when compared to parental sensitive clones. Cross-resistance to posaconazole and other CYP51 inhibitors, but not to other antichagasic drugs that act independently of CYP51, such as benznidazole and nifurtimox, was also observed. A novel amino acid residue change, T297M, was found in the TcCYP51 gene in the resistant but not in the sensitive clones. The structural effects of the T297M, and of the previously described P355S residue changes, were modelled to understand their impact on interaction with CYP51 inhibitors. A ravuconazole-resistant T. cruzi clone presented reduced in vitro and in vivo fitness. The ravuconazole-resistant clone presented cross-resistance to other CYP51 inhibitors. There was no cross-resistance to benznidazole and nifurtimox. Resistance is associated with a novel structural mutation in the TcCYP51 protein.
Collapse
Affiliation(s)
- Caio H Franco
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - David C Warhurst
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Tapan Bhattacharyya
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ho Y A Au
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Hai Le
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Miriam A Giardini
- Institut Pasteur Korea, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Bruno S Pascoalino
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | - Ana Claudia Torrecilhas
- Department of Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Lavinia M D Romera
- Department of Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Rafael Pedro Madeira
- Department of Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, UNIFESP, São Paulo, SP, Brazil
| | - Lucio H Freitas-Junior
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Institut Pasteur Korea, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Michael A Miles
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Carolina B Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Institut Pasteur Korea, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea; Department of Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil.
| |
Collapse
|
183
|
Antimicrobial peptide CGA-N12 decreases the Candida tropicalis mitochondrial membrane potential via mitochondrial permeability transition pore. Biosci Rep 2020; 40:223802. [PMID: 32368781 PMCID: PMC7225414 DOI: 10.1042/bsr20201007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Amino acid sequence from 65th to 76th residue of the N-terminus of Chromogranin A (CGA-N12) is an antimicrobial peptide (AMP). Our previous studies showed that CGA-N12 reduces Candida tropicalis mitochondrial membrane potential. Here, we explored the mechanism that CGA-N12 collapsed the mitochondrial membrane potential by investigations of its action on the mitochondrial permeability transition pore (mPTP) complex of C. tropicalis. The results showed that CGA-N12 induced cytochrome c (Cyt c) leakage, mitochondria swelling and led to polyethylene glycol (PEG) of molecular weight 1000 Da penetrate mitochondria. mPTP opening inhibitors bongkrekic acid (BA) could contract the mitochondrial swelling induced by CGA-N12, but cyclosporin A (CsA) could not. Therefore, we speculated that CGA-N12 could induce C. tropicolis mPTP opening by preventing the matrix-facing (m) conformation of adenine nucleotide transporter (ANT), thereby increasing the permeability of the mitochondrial membrane and resulted in the mitochondrial potential dissipation.
Collapse
|
184
|
Hussein MA, Alamry KA, Almehmadi SJ, Elfaky M, Džudžević-Čančar H, Asiri AM, Hussien MA. Novel biologically active polyurea derivatives and its TiO 2-doped nanocomposites. Des Monomers Polym 2020; 23:59-74. [PMID: 33029075 PMCID: PMC7448906 DOI: 10.1080/15685551.2020.1767490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/05/2020] [Indexed: 11/26/2022] Open
Abstract
A new series of polyurea derivatives and its nanocomposites were synthesised by the solution polycondensation method through the interaction between 4(2-aminothiazol-4-ylbenzylidene)-4-(tert-butyl) cyclohexanone and diisocyanate compound in pyridine. The PU1-3 structure was confirmed using Fourier transform-infrared (FTIR) spectroscopy and characterised by solubility, viscometry, gel permeation chromatography (GPC), and X-ray diffraction (XRD) analysis. In addition, PU1-3 was evaluated by TGA. Polyurea-TiO2nanocomposites were synthesised using the same technique as that of PU1-3 by adding TiO2 as a nanofiller. The thermal properties of PU2TiO2a-d were evaluated by TGA. Moreover, the morphological properties of a selected sample were examined by SEM and TEM. In addition, PU1-3 and PU2TiO2a-d were examined for antimicrobial activity against certain bacteria and fungi. The PU1-3 showed antibacterial activity against some of the tested bacteria and fungi, as did PU2TiO2a-d, which increased with the increase in TiO2 content. Furthermore, molecular docking studies were displayed against all PU1-3 derivatives against two types of proteins. The results show that the increase in the strength of π-H interactions and H-donors contributed to improved binding of PU2 compared to PU1 andPU3. The docking of 1KZN against the tested polymers suggests an increase in the docking score of PU2, then PU1, and PU3, which is in agreement with the antibacterial study.
Collapse
Affiliation(s)
- Mahmoud A. Hussein
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Polymer Chemistry Lab., Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Khalid A. Alamry
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samar J Almehmadi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M.A. Elfaky
- Faculty of Pharmacy, Natural Products and Alternative Medicine Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H. Džudžević-Čančar
- Department of Natural Science in Pharmacy, Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia-Herzegovina
| | - Abdullah M. Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mostafa A. Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
185
|
Han G, Liu N, Li C, Tu J, Li Z, Sheng C. Discovery of Novel Fungal Lanosterol 14α-Demethylase (CYP51)/Histone Deacetylase Dual Inhibitors to Treat Azole-Resistant Candidiasis. J Med Chem 2020; 63:5341-5359. [PMID: 32347094 DOI: 10.1021/acs.jmedchem.0c00102] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Invasive fungal infections (particularly candidiasis) are emerging as severe infectious diseases worldwide. Because of serious antifungal drug resistance, therapeutic efficacy of the current treatment for candidiasis is limited and associated with high mortality. However, it is highly challenging to develop novel strategies and effective therapeutic agents to combat drug resistance. Herein, the first generation of lanosterol 14α-demethylase (CYP51)-histone deacetylase (HDAC) dual inhibitors was designed, which exhibited potent antifungal activity against azole-resistant clinical isolates. In particular, compounds 12h and 15j were highly active both in vitro and in vivo to treat azole-resistant candidiasis. Antifungal mechanism studies revealed that they acted by blocking ergosterol biosynthesis and HDAC catalytic activity in fungus, suppressing the function of efflux pump, yeast-to-hypha morphological transition, and biofilm formation. Therefore, CYP51-HDAC dual inhibitors represent a promising strategy to develop novel antifungal agents against azole-resistant candidiasis.
Collapse
Affiliation(s)
- Guiyan Han
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Na Liu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chenglan Li
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.,School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Jie Tu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhuang Li
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
186
|
Jović O, Šmuc T. Combined Machine Learning and Molecular Modelling Workflow for the Recognition of Potentially Novel Fungicides. Molecules 2020; 25:molecules25092198. [PMID: 32397151 PMCID: PMC7249108 DOI: 10.3390/molecules25092198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
Novel machine learning and molecular modelling filtering procedures for drug repurposing have been carried out for the recognition of the novel fungicide targets of Cyp51 and Erg2. Classification and regression approaches on molecular descriptors have been performed using stepwise multilinear regression (FS-MLR), uninformative-variable elimination partial-least square regression, and a non-linear method called Forward Stepwise Limited Correlation Random Forest (FS-LM-RF). Altogether, 112 prediction models from two different approaches have been built for the descriptor recognition of fungicide hit compounds. Aiming at the fungal targets of sterol biosynthesis in membranes, antifungal hit compounds have been selected for docking experiments from the Drugbank database using the Autodock4 molecular docking program. The results were verified by Gold Protein-Ligand Docking Software. The best-docked conformation, for each high-scored ligand considered, was submitted to quantum mechanics/molecular mechanics (QM/MM) gradient optimization with final single point calculations taking into account both the basis set superposition error and thermal corrections (with frequency calculations). Finally, seven Drugbank lead compounds were selected based on their high QM/MM scores for the Cyp51 target, and three were selected for the Erg2 target. These lead compounds could be recommended for further in vitro studies.
Collapse
|
187
|
Çiçek İ, Tunç T, Ogutcu H, Abdurrahmanoglu S, Günel A, Demirel N. Synthesis and Antibacterial Activity of New Chiral Aminoalcohol and Benzimidazole Hybrids. ChemistrySelect 2020. [DOI: 10.1002/slct.202000355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- İlknur Çiçek
- Department of Chemistry, Faculty of Arts and SciencesAhi Evran University 40100 Kırşehir Turkey
| | - Turgay Tunç
- Department of Chemistry Engineering and Process, Faculty of EngineeringUniversity of Ahi Evran Kırsehir 40100 Turkey
| | - Hatice Ogutcu
- Department of Field Crops, Faculty of AgricultureUniversity Ahi Evran Kırsehir 40100 Turkey
| | - Suzan Abdurrahmanoglu
- Department of ChemistryFaculty of Arts and Science, Marmara University Istanbul 34722 Turkey
| | - Aslıhan Günel
- Department of Chemistry, Faculty of Arts and SciencesAhi Evran University 40100 Kırşehir Turkey
| | - Nadir Demirel
- Department of Chemistry, Faculty of Arts and SciencesAhi Evran University 40100 Kırşehir Turkey
| |
Collapse
|
188
|
Suchodolski J, Derkacz D, Muraszko J, Panek JJ, Jezierska A, Łukaszewicz M, Krasowska A. Fluconazole and Lipopeptide Surfactin Interplay During Candida albicans Plasma Membrane and Cell Wall Remodeling Increases Fungal Immune System Exposure. Pharmaceutics 2020; 12:pharmaceutics12040314. [PMID: 32244775 PMCID: PMC7238018 DOI: 10.3390/pharmaceutics12040314] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recognizing the β-glucan component of the Candida albicans cell wall is a necessary step involved in host immune system recognition. Compounds that result in exposed β-glucan recognizable to the immune system could be valuable antifungal drugs. Antifungal development is especially important because fungi are becoming increasingly drug resistant. This study demonstrates that lipopeptide, surfactin, unmasks β-glucan when the C. albicans cells lack ergosterol. This observation also holds when ergosterol is depleted by fluconazole. Surfactin does not enhance the effects of local chitin accumulation in the presence of fluconazole. Expression of the CHS3 gene, encoding a gene product resulting in 80% of cellular chitin, is downregulated. C. albicans exposure to fluconazole changes the composition and structure of the fungal plasma membrane. At the same time, the fungal cell wall is altered and remodeled in a way that makes the fungi susceptible to surfactin. In silico studies show that surfactin can form a complex with β-glucan. Surfactin forms a less stable complex with chitin, which in combination with lowering chitin synthesis, could be a second anti-fungal mechanism of action of this lipopeptide.
Collapse
Affiliation(s)
- Jakub Suchodolski
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (J.S.); (D.D.); (J.M.); (M.L.)
| | - Daria Derkacz
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (J.S.); (D.D.); (J.M.); (M.L.)
| | - Jakub Muraszko
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (J.S.); (D.D.); (J.M.); (M.L.)
| | - Jarosław J. Panek
- Faculty of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland; (J.J.P.); (A.J.)
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland; (J.J.P.); (A.J.)
| | - Marcin Łukaszewicz
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (J.S.); (D.D.); (J.M.); (M.L.)
| | - Anna Krasowska
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (J.S.); (D.D.); (J.M.); (M.L.)
- Correspondence:
| |
Collapse
|
189
|
Xu J, Xiong H, Zhang X, Muhayimana S, Liu X, Xue Y, Huang Q. Comparative cytotoxic effects of five commonly used triazole alcohol fungicides on human cells of different tissue types. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:438-446. [PMID: 32180509 DOI: 10.1080/03601234.2019.1709377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The widespread application of triazole fungicides makes people attach great concern over its adverse effects in mammalian. In this paper, cytotoxic effects of triazole alcohol fungicides (TAFs) were assessed on human HeLa, A549, HCT116 and K562 cells, and the potential mechanism of TAFs cytotoxicity was studied preliminarily. Results showed that TAFs had cytotoxicity on human cells with different level and cytotoxic selectivity. TAFs cytotoxicity was resonated with a typical hormetic biphasic dose action that produced a complex pattern of stimulatory or inhibitory effects on cell viability. Among the five TAFs, diniconazole revealed a widest range of cytotoxicity to inhibit the viability of the adherent and the suspension cells, causing HeLa cells shrinkage, A549 cells shrunken, and K562 cells collapse, and showed stronger cytotoxicity than hexaconazole. Moreover, the involvement of ROS generation in the cytotoxicity of TAFs on human cells was observed, and the apoptosis of HeLa cells and the formation of apoptotic body in K562 cells induced by diniconazole were characterized. The results indicated the cytotoxicity of TAFs with different structures on human cells was depended on their own property and cell specificity, K562 cells were the most susceptible to TAFs and diniconazole was the strongest toxic.
Collapse
Affiliation(s)
- Jiuyong Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Hui Xiong
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Xianfei Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Solange Muhayimana
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Xuefeng Liu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Yufan Xue
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| |
Collapse
|
190
|
Howard KC, Dennis EK, Watt DS, Garneau-Tsodikova S. A comprehensive overview of the medicinal chemistry of antifungal drugs: perspectives and promise. Chem Soc Rev 2020; 49:2426-2480. [PMID: 32140691 DOI: 10.1039/c9cs00556k] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The emergence of new fungal pathogens makes the development of new antifungal drugs a medical imperative that in recent years motivates the talents of numerous investigators across the world. Understanding not only the structural families of these drugs but also their biological targets provides a rational means for evaluating the merits and selectivity of new agents for fungal pathogens and normal cells. An equally important aspect of modern antifungal drug development takes a balanced look at the problems of drug potency and drug resistance. The future development of new antifungal agents will rest with those who employ synthetic and semisynthetic methodology as well as natural product isolation to tackle these problems and with those who possess a clear understanding of fungal cell architecture and drug resistance mechanisms. This review endeavors to provide an introduction to a growing and increasingly important literature, including coverage of the new developments in medicinal chemistry since 2015, and also endeavors to spark the curiosity of investigators who might enter this fascinatingly complex fungal landscape.
Collapse
Affiliation(s)
- Kaitlind C Howard
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | | | | | |
Collapse
|
191
|
Bozbey İ, Sari S, Şalva E, Kart D, Karakurt A. p-Trifluoroacetophenone Oxime Ester Derivatives: Synthesis, Antimicrobial and Cytotoxic Evaluation and Molecular Modeling Studies. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666181128112249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background:
Azole antifungals are among the first-line drugs clinically used for the
treatment of systemic candidiasis, a deadly type of fungal infection that threatens mostly immunecompromised
and hospitalized patients. Some azole derivatives were also reported to have
antiproliferative effects on cancer cells.
Objective:
In this study, 1-(4-trifluoromethylphenyl)-2-(1H-imidazol-1-yl)ethanone (3), its oxime
(4), and a series of its novel oxime ester derivatives (5a-v) were synthesized and tested for their in
vitro antimicrobial activities against certain ATCC standard strains of Candida sp. fungi and
bacteria. The compounds were also tested for their cytotoxic effects against mouse fibroblast and
human neuroblastoma cell lines. Molecular modeling studies were performed to provide insights into
their possible mechanisms for antifungal and antibacterial actions.
Methods:
The compounds were synthesized by the reaction of various oximes with acyl chlorides.
Antimicrobial activity of the compounds was determined according to the broth microdilution
method. For the determination of cytotoxic effect, we used MTS assay. Molecular docking and
QM/MM studies were performed to predict the binding mechanisms of the active compounds in the
catalytic site of C. albicans CYP51 (CACYP51) and S. aureus flavohemoglobin (SAFH), the latter
of which was created via homology modeling.
Results:
5d, 5l, and 5t showed moderate antifungal activity against C. albicans, while 3, 5c, and 5r
showed significant antibacterial activity against Staphylococcus aureus and Pseudomonas
aeruginosa. Most of the compounds showed approximately 40-50% inhibition against the human
neuroblastoma cells at 100 µM. In this line, 3 was the most potent with an IC50 value of 82.18 μM
followed by 5a, 5o, and 5t. 3 and 5a were highly selective to the neuroblastoma cells. Molecular
modelling results supported the hypothesis that our compounds were inhibitors of CAYP51 and
SAFH.
Conclusion:
This study supports that oxime ester derivatives may be used for the development of
new antimicrobial and cytotoxic agents.
Collapse
Affiliation(s)
- İrem Bozbey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280, Malatya, Turkey
| | - Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Emine Şalva
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Inonu University, 44280, Malatya, Turkey
| | - Didem Kart
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Arzu Karakurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
192
|
Eltayeb NE, Şen F, Lasri J, Hussien MA, Elsilk SE, Babgi BA, Gökce H, Sert Y. Hirshfeld Surface analysis, spectroscopic, biological studies and molecular docking of (4E)-4-((naphthalen-2-yl)methyleneamino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
193
|
Design, synthesis, and structure-activity relationship studies of novel triazole agents with strong antifungal activity against Aspergillus fumigatus. Bioorg Med Chem Lett 2020; 30:126951. [DOI: 10.1016/j.bmcl.2020.126951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 11/22/2022]
|
194
|
Montoir D, Guillon R, Gazzola S, Ourliac-Garnier I, Soklou KE, Tonnerre A, Picot C, Planchat A, Pagniez F, Le Pape P, Logé C. New azole antifungals with a fused triazinone scaffold. Eur J Med Chem 2020; 189:112082. [PMID: 32000050 DOI: 10.1016/j.ejmech.2020.112082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 01/25/2023]
Abstract
We identified a new series of azole antifungal agents bearing a pyrrolotriazinone scaffold. These compounds exhibited a broad in vitro antifungal activity against pathogenic Candida spp. (fluconazole-susceptible and fluconazole-resistant) and were 10- to 100-fold more active than voriconazole against two Candida albicans isolates with known mechanisms of azole resistance (overexpression of efflux pumps and/or specific point substitutions in the Erg11p/CYP51 enzyme). Our lead compound 12 also displayed promising in vitro antifungal activity against some filamentous fungi such as Aspergillus fumigatus and the zygomycetes Rhizopus oryzae and Mucor circinelloides and an in vivo efficiency against two murine models of lethal systemic infections caused by Candida albicans.
Collapse
Affiliation(s)
- David Montoir
- Université de Nantes, Nantes Atlantique Universités, Département de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Rémi Guillon
- Université de Nantes, Nantes Atlantique Universités, Département de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Sophie Gazzola
- Université de Nantes, Nantes Atlantique Universités, Département de Parasitologie et Mycologie Médicale, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Isabelle Ourliac-Garnier
- Université de Nantes, Nantes Atlantique Universités, Département de Parasitologie et Mycologie Médicale, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Kossi Efouako Soklou
- Université de Nantes, Nantes Atlantique Universités, Département de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Alain Tonnerre
- Université de Nantes, Nantes Atlantique Universités, Département de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Carine Picot
- Université de Nantes, Nantes Atlantique Universités, Département de Parasitologie et Mycologie Médicale, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Aurélien Planchat
- Université de Nantes, Nantes Atlantique Universités, CEISAM, Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, Faculté des Sciences et Techniques, F-44322, Nantes, France
| | - Fabrice Pagniez
- Université de Nantes, Nantes Atlantique Universités, Département de Parasitologie et Mycologie Médicale, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Patrice Le Pape
- Université de Nantes, Nantes Atlantique Universités, Département de Parasitologie et Mycologie Médicale, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Cédric Logé
- Université de Nantes, Nantes Atlantique Universités, Département de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France.
| |
Collapse
|
195
|
Irannejad H, Emami S, Mirzaei H, Hashemi SM. In silico prediction of ATTAF-1 and ATTAF-2 selectivity towards human/fungal lanosterol 14α-demethylase using molecular dynamic simulation and docking approaches. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
196
|
Starosta R, de Almeida RFM, Puchalska M, Białońska A, Panek JJ, Jezierska A, Szmigiel I, Suchodolski J, Krasowska A. New anticandidal Cu(i) complexes with neocuproine and ketoconazole derived diphenyl(aminomethyl)phosphane: luminescence properties for detection in fungal cells. Dalton Trans 2020; 49:8528-8539. [DOI: 10.1039/d0dt01162b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Anticandidal activity and a complex luminescence in water solutions of the new copper(i) complexes with a ketoconazole derived phosphane ligand.
Collapse
Affiliation(s)
- Radosław Starosta
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
- Centro de Química Estrutural
| | - Rodrigo F. M. de Almeida
- Centro de Química Estrutural
- Faculdade de Ciências da Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | | | - Agata Białońska
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | | | - Aneta Jezierska
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - Ida Szmigiel
- Faculty of Biotechnology
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | | | - Anna Krasowska
- Faculty of Biotechnology
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| |
Collapse
|
197
|
Dennis EK, Kim JH, Parkin S, Awuah SG, Garneau-Tsodikova S. Distorted Gold(I)–Phosphine Complexes as Antifungal Agents. J Med Chem 2019; 63:2455-2469. [DOI: 10.1021/acs.jmedchem.9b01436] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Emily K. Dennis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Jong Hyun Kim
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506-0055, United States
| | - Sean Parkin
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506-0055, United States
| | - Samuel G. Awuah
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506-0055, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
198
|
Zhao L, Sun N, Tian L, Sun Y, Chen Y, Wang X, Zhao S, Su X, Zhao D, Cheng M. Combating fluconazole-resistant fungi with novel β-azole-phenylacetone derivatives. Eur J Med Chem 2019; 183:111689. [DOI: 10.1016/j.ejmech.2019.111689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 10/26/2022]
|
199
|
Xu H, Hou Z, Liang Z, Guo M, Su X, Guo C. Design, Synthesis and Antifungal Activity of Benzofuran and Its Analogues. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hang Xu
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Zhuang Hou
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Zhen Liang
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Meng‐Bi Guo
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Xin Su
- School of life sciences and biological pharmacyShenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Chun Guo
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University Shenyang Liaoning 110016 China
| |
Collapse
|
200
|
Villalta F, Rachakonda G. Advances in preclinical approaches to Chagas disease drug discovery. Expert Opin Drug Discov 2019; 14:1161-1174. [PMID: 31411084 PMCID: PMC6779130 DOI: 10.1080/17460441.2019.1652593] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/02/2019] [Indexed: 12/21/2022]
Abstract
Introduction: Chagas disease affects 8-10 million people worldwide, mainly in Latin America. The current therapy for Chagas disease is limited to nifurtimox and benznidazole, which are effective in treating only the acute phase of the disease but with severe side effects. Therefore, there is an unmet need for new drugs and for the exploration of innovative approaches which may lead to the discovery of new effective and safe drugs for its treatment. Areas covered: The authors report and discuss recent approaches including structure-based design that have led to the discovery of new promising small molecule candidates for Chagas disease which affect prime targets that intervene in the sterol pathway of T. cruzi. Other trypanosome targets, phenotypic screening, the use of artificial intelligence and the challenges with Chagas disease drug discovery are also discussed. Expert opinion: The application of recent scientific innovations to the field of Chagas disease have led to the discovery of new promising drug candidates for Chagas disease. Phenotypic screening brought new hits and opportunities for drug discovery. Artificial intelligence also has the potential to accelerate drug discovery in Chagas disease and further research into this is warranted.
Collapse
Affiliation(s)
- Fernando Villalta
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College , Nashville , TN , USA
| | - Girish Rachakonda
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College , Nashville , TN , USA
| |
Collapse
|