151
|
Lunde BM, Moore C, Varani G. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 2007; 8:479-90. [PMID: 17473849 PMCID: PMC5507177 DOI: 10.1038/nrm2178] [Citation(s) in RCA: 963] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many RNA-binding proteins have modular structures and are composed of multiple repeats of just a few basic domains that are arranged in various ways to satisfy their diverse functional requirements. Recent studies have investigated how different modules cooperate in regulating the RNA-binding specificity and the biological activity of these proteins. They have also investigated how multiple modules cooperate with enzymatic domains to regulate the catalytic activity of enzymes that act on RNA. These studies have shown how, for many RNA-binding proteins, multiple modules define the fundamental structural unit that is responsible for biological function.
Collapse
Affiliation(s)
- Bradley M Lunde
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
152
|
Wang E, Dimova N, Cambi F. PLP/DM20 ratio is regulated by hnRNPH and F and a novel G-rich enhancer in oligodendrocytes. Nucleic Acids Res 2007; 35:4164-78. [PMID: 17567613 PMCID: PMC1919487 DOI: 10.1093/nar/gkm387] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alternative splicing of competing 5′ splice sites is regulated by enhancers and silencers in the spliced exon. We have characterized sequences and splicing factors that regulate alternative splicing of PLP and DM20, myelin proteins produced by oligodendrocytes (OLs) by selection of 5′ splice sites in exon 3. We identify a G-rich enhancer (M2) of DM20 5′ splice site in exon 3B and show that individual G triplets forming M2 are functionally distinct and the distal group plays a dominant role. G-rich M2 and a G-rich splicing enhancer (ISE) in intron 3 share similarities in function and protein binding. The G-rich sequences are necessary for binding of hnRNPs to both enhancers. Reduction in hnRNPH and F expression in differentiated OLs correlates temporally with increased PLP/DM20 ratio. Knock down of hnRNPH increased PLP/DM20 ratio, while hnRNPF did not. Silencing hnRNPH and F increased the PLP/DM20 ratio more than hnRNPH alone, demonstrating a novel synergistic effect. Mutation of M2, but not ISE reduced the synergistic effect. Replacement of M2 and all G runs in exon 3B abolished it almost completely. We conclude that developmental changes in hnRNPH/F associated with OLs differentiation synergistically regulate PLP alternative splicing and a G-rich enhancer participates in the regulation.
Collapse
Affiliation(s)
| | | | - Franca Cambi
- *To whom Correspondence should be addressed. (859) 323 5683859 323 5943
| |
Collapse
|
153
|
Song XH, Liang B, Liu GF, Li R, Xie JP, Du K, Huang DY. Expression of a novel alternatively spliced variant of NADP(H)-dependent retinol dehydrogenase/reductase with deletion of exon 3 in cervical squamous carcinoma. Int J Cancer 2007; 120:1618-26. [PMID: 17230527 DOI: 10.1002/ijc.22306] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
NADP(H)-dependent retinol dehydrogenase/reductase (NRDR) plays an important role in maintaining the homeostasis of retinoid. Aberrations in retinoid metabolism are considered as early events in carcinogenesis. We identified a novel alternatively spliced variant, NRDRB1, in HeLa cell and human cervical squamous carcinoma tissues, which is characterized by a complete deletion of exon 3. The latter resulted in changes in subcellular localization of NRDRB1 when compared with the peroxisomal localization of NRDR. To clarify the clinical significance of NRDRB1, we investigated its mRNA and protein expressions in normal cervical and cervical squamous carcinoma tissues, using RT-PCR, quantitative real-time PCR, Gateway expressing system, immunoprecipitation, immunoblotting, MALDI-TOF mass spectrometry and immunohistochemistry. We detected NRDRB1 mRNA in 14 of 26 (53.9%) cervical cancer tissues, but in none of the 12 normal cervical tissues. NRDRB1 protein was expressed in NRDRB1 mRNA-positive cases. While the full-length NRDR mRNA was observed in both normal and neoplastic cervical tissues, its protein was only expressed in normal cervical epithelium. The results presented here provide evidence that metabolic disturbances of retinal and retinoic acid, due to abnormal splicing and functional disorder of NRDR, may be involved in cervical tumorigenesis.
Collapse
Affiliation(s)
- Xu-Hong Song
- Center for Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
154
|
Vávrová J, Janovská S, Rezácová M, Hernychová L, Tichá Z, Vokurková D, Záskodová D, Lukásová E. Proteomic analysis of MOLT-4 cells treated by valproic acid. Mol Cell Biochem 2007; 303:53-61. [PMID: 17426928 DOI: 10.1007/s11010-007-9455-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 03/14/2007] [Indexed: 01/13/2023]
Abstract
The effect of valproic acid (VA) on protein expression in human T-lymphocytic leukemia cells MOLT-4 was studied. VA is an inhibitor of histonedeacetylases and has a potential use as antitumor agent in leukemia treatment. The authors in this work prove that 4 h long incubation with 2 mmol/l VA causes phosphorylation of histone H2A.X and its colocalization with 53BP1 in nuclear foci. Their co-localization is typical for DSB signaling machinery. These foci were detected in cells after 4 h exposure without increase of Annexin V positive apoptotic cells. Slight increase in apoptosis (Annexin V positivity) after 24 h is accompanied by more intensive increase in phosphorylation of H2A.X and also by formation of nuclear foci containing gammaH2A.X and 53BP1. Treatment of cells with 2 mmol/l VA resulted in induction of apoptosis affecting about 30% of cells after incubation for 72 h. The changes in protein expression were examined after cell incubation with 2 mmol/l VA for 4 h. Proteins were separated by two-dimensional electrophoresis and quantified using image evaluation system. Those exhibiting significant VA-induced abundance alterations were identified by mass spectrometry. Changes in expression of 22 proteins were detected, of which 15 proteins were down-regulated. Proteomic analysis resulted in successful identification of three proteins involving alfa-tubulin 3, tubulin-specific chaperone and heterogeneous nuclear ribonucloprotein F. Expression of seven proteins was up-regulated, including heterogeneous nuclear ribonucloprotein A/B. Identified proteins are related to microtubular system and hnRNP family. Suppression of microtubular proteins and changes of balance among hnRNPs can contribute to proliferation arrest and apoptosis induction.
Collapse
Affiliation(s)
- Jirina Vávrová
- Department of Radiobiology and Department of Molecular Pathology, School of Military Health Sciences Hradec Králové, University of Defense Brno, Trebesská 1575, 500 01, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Paronetto MP, Achsel T, Massiello A, Chalfant CE, Sette C. The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol 2007; 176:929-39. [PMID: 17371836 PMCID: PMC2064079 DOI: 10.1083/jcb.200701005] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 02/13/2007] [Indexed: 11/22/2022] Open
Abstract
The RNA-binding protein Sam68 is involved in apoptosis, but its cellular mRNA targets and its mechanism of action remain unknown. We demonstrate that Sam68 binds the mRNA for Bcl-x and affects its alternative splicing. Depletion of Sam68 by RNA interference caused accumulation of antiapoptotic Bcl-x(L), whereas its up-regulation increased the levels of proapoptotic Bcl-x(s). Tyrosine phosphorylation of Sam68 by Fyn inverted this effect and favored the Bcl-x(L) splice site selection. A point mutation in the RNA-binding domain of Sam68 influenced its splicing activity and subnuclear localization. Moreover, coexpression of ASF/SF2 with Sam68, or fusion with an RS domain, counteracted Sam68 splicing activity toward Bcl-x. Finally, Sam68 interacted with heterogenous nuclear RNP (hnRNP) A1, and depletion of hnRNP A1 or mutations that impair this interaction attenuated Bcl-x(s) splicing. Our results indicate that Sam68 plays a role in the regulation of Bcl-x alternative splicing and that tyrosine phosphorylation of Sam68 by Src-like kinases can switch its role from proapoptotic to antiapoptotic in live cells.
Collapse
Affiliation(s)
- Maria Paola Paronetto
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
156
|
Schaub MC, Lopez SR, Caputi M. Members of the heterogeneous nuclear ribonucleoprotein H family activate splicing of an HIV-1 splicing substrate by promoting formation of ATP-dependent spliceosomal complexes. J Biol Chem 2007; 282:13617-26. [PMID: 17337441 DOI: 10.1074/jbc.m700774200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we analyzed members of the heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family to determine their RNA binding specificities and roles in splicing regulation. Our data indicate that hnRNPs H, H', F, 2H9, and GRSF-1 bind the consensus motif DGGGD (where D is U, G, or A) and aggregate in a multimeric complex. We analyzed the role of these proteins in the splicing of a substrate derived from the HIV-1 tat gene and have shown that hnRNP H family members are required for efficient splicing of this substrate. The hnRNP H protein family members activated splicing of the viral substrate by promoting the formation of ATP-dependent spliceosomal complexes. Mutational analysis of six consensus motifs present within the intron of the substrate indicated that only one of these motifs acts as an intronic splicing enhancer.
Collapse
Affiliation(s)
- Michael C Schaub
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | | | | |
Collapse
|
157
|
Wang Y, He QY, Chen H, Chiu JF. Synergistic effects of retinoic acid and tamoxifen on human breast cancer cells: Proteomic characterization. Exp Cell Res 2007; 313:357-68. [PMID: 17098229 DOI: 10.1016/j.yexcr.2006.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Revised: 10/12/2006] [Accepted: 10/19/2006] [Indexed: 11/29/2022]
Abstract
The anti-estrogen tamoxifen and vitamin A-related compound, all-trans retinoic acid (RA), in combination act synergistically to inhibit the growth of MCF-7 human breast cancer cells. In the present study, we applied two-dimensional gel electrophoresis based proteomic approach to globally analyze this synergistic effect of RA and tamoxifen. Proteomic study revealed that multiple clusters of proteins were involved in RA and tamoxifen-induced apoptosis in MCF-7 breast cancer cells, including post-transcriptional and splicing factors, proteins related to cellular proliferation or differentiation, and proteins related to energy production and internal degradation systems. The negative growth factor-transforming growth factor beta (TGFbeta) was secreted by RA and/or tamoxifen treatment and was studies as a potential mediator of the synergistic effects of RA and tamoxifen in apoptosis. By comparing protein alterations in treatments of RA and tamoxifen alone or in combination to those of TGFbeta treatment, or co-treatment with TGFbeta inhibitor SB 431542, proteomic results showed that a number of proteins were involved in TGFbeta signaling pathway. These results provide valuable insights into the mechanisms of RA and tamoxifen-induced TGFbeta signaling pathway in breast cancer cells.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | |
Collapse
|
158
|
Martinez-Contreras R, Cloutier P, Shkreta L, Fisette JF, Revil T, Chabot B. hnRNP proteins and splicing control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:123-47. [PMID: 18380344 DOI: 10.1007/978-0-387-77374-2_8] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteins of the heterogeneous nuclear ribonucleoparticles (hnRNP) family form a structurally diverse group of RNA binding proteins implicated in various functions in metazoans. Here we discuss recent advances supporting a role for these proteins in precursor-messenger RNA (pre-mRNA) splicing. Heterogeneous nuclear RNP proteins can repress splicing by directly antagonizing the recognition of splice sites, or can interfere with the binding of proteins bound to enhancers. Recently, hnRNP proteins have been shown to hinder communication between factors bound to different splice sites. Conversely, several reports have described a positive role for some hnRNP proteins in pre-mRNA splicing. Moreover, cooperative interactions between bound hnRNP proteins may encourage splicing between specific pairs of splice sites while simultaneously hampering other combinations. Thus, hnRNP proteins utilize a variety of strategies to control splice site selection in a manner that is important for both alternative and constitutive pre-mRNA splicing.
Collapse
|
159
|
Marcucci R, Baralle FE, Romano M. Complex splicing control of the human Thrombopoietin gene by intronic G runs. Nucleic Acids Res 2006; 35:132-42. [PMID: 17158158 PMCID: PMC1802585 DOI: 10.1093/nar/gkl965] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 09/28/2006] [Accepted: 10/17/2006] [Indexed: 11/26/2022] Open
Abstract
The human thrombopoietin (THPO) gene displays a series of alternative splicing events that provide valuable models for studying splicing mechanisms. The THPO region spanning exon 1-4 presents both alternative splicing of exon 2 and partial intron 2 (IVS2) retention following the activation of a cryptic 3' splice site 85 nt upstream of the authentic acceptor site. IVS2 is particularly rich in stretches of 3-5 guanosines (namely, G1-G10) and we have characterized the role of these elements in the processing of this intron. In vivo studies show that runs G7-G10 work in a combinatorial way to control the selection of the proper 3' splice site. In particular, the G7 element behaves as the splicing hub of intron 2 and its interaction with hnRNP H1 is critical for the splicing process. Removal of hnRNP H1 by RNA interference promoted the usage of the cryptic 3' splice site so providing functional evidence that this factor is involved in the selection of the authentic 3' splice site of THPO IVS2.
Collapse
Affiliation(s)
- Roberto Marcucci
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99I-34012, Trieste, Italy
| | - Francisco E. Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99I-34012, Trieste, Italy
| | - Maurizio Romano
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99I-34012, Trieste, Italy
- Department of Physiology and Pathology, University of TriesteVia A. Fleming 22, 34127, Trieste, Italy
| |
Collapse
|
160
|
Tabbert A, Kappes F, Knippers R, Kellermann J, Lottspeich F, Ferrando-May E. Hypophosphorylation of the architectural chromatin protein DEK in death-receptor-induced apoptosis revealed by the isotope coded protein label proteomic platform. Proteomics 2006; 6:5758-72. [PMID: 17001602 DOI: 10.1002/pmic.200600197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During apoptosis nuclear morphology changes dramatically due to alterations of chromatin architecture and cleavage of structural nuclear proteins. To characterize early events in apoptotic nuclear dismantling we have performed a proteomic study of apoptotic nuclei. To this end we have combined a cell-free apoptosis system with a proteomic platform based on the differential isotopic labeling of primary amines with N-nicotinoyloxy-succinimide. We exploited the ability of this system to produce nuclei arrested at different stages of apoptosis to analyze proteome alterations which occur prior to or at a low level of caspase activation. We show that the majority of proteins affected at the onset of apoptosis are involved in chromatin architecture and RNA metabolism. Among them is DEK, an architectural chromatin protein which is linked to autoimmune disorders. The proteomic analysis points to the occurrence of multiple PTMs in early apoptotic nuclei. This is confirmed by showing that the level of phosphorylation of DEK is decreased following apoptosis induction. These results suggest the unexpected existence of an early crosstalk between cytoplasm and nucleus during apoptosis. They further establish a previously unrecognized link between DEK and cell death, which will prove useful in the elucidation of the physiological function of this protein.
Collapse
Affiliation(s)
- Anja Tabbert
- University of Konstanz, Molecular Toxicology Group, Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
161
|
Crawford JB, Patton JG. Activation of alpha-tropomyosin exon 2 is regulated by the SR protein 9G8 and heterogeneous nuclear ribonucleoproteins H and F. Mol Cell Biol 2006; 26:8791-802. [PMID: 17000773 PMCID: PMC1636816 DOI: 10.1128/mcb.01677-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inclusion of exons 2 and 3 of alpha-tropomyosin is governed through tissue-specific alternative splicing. These exons are mutually exclusive, with exon 2 included in smooth muscle cells and exon 3 included in nearly all other cell types. Several cis-acting sequences contribute to this splicing decision: the branchpoints and pyrimidine tracts upstream of both exons, UGC-repeat elements flanking exon 3, and a series of purine-rich enhancers in exon 2. Previous work showed that proteins rich in serine-arginine (SR) dipeptides act through the exon 2 enhancers, but the specific proteins responsible for such activation remained unknown. Here we show that a 35-kDa member of the SR protein family, 9G8, can activate the splicing of alpha-tropomyosin exon 2. Using RNA affinity chromatography and cross-linking competition assays, we also demonstrate that the heterogeneous nuclear ribonucleoproteins (hnRNPs) H and F bind to and compete for the same elements. Overexpression of hnRNPs H and F blocked 9G8-mediated splicing both in vivo and in vitro, and small interfering RNA-directed depletion of H and F led to an increase in exon 2 splicing. These data suggest that the activation of exon 2 is dependent on the antagonistic activities of 9G8 and hnRNPs H and F.
Collapse
Affiliation(s)
- J. Barrett Crawford
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
- Corresponding author. Mailing address: Department of Biological Sciences, Box 1820 Station B, Vanderbilt University, Nashville, TN 37235. Phone: (615) 322-4738. Fax: (615) 343-6707. E-mail:
| |
Collapse
|
162
|
Kikin O, D'Antonio L, Bagga PS. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res 2006; 34:W676-82. [PMID: 16845096 PMCID: PMC1538864 DOI: 10.1093/nar/gkl253] [Citation(s) in RCA: 726] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The quadruplex structures formed by guanine-rich nucleic acid sequences have received significant attention recently because of growing evidence for their role in important biological processes and as therapeutic targets. G-quadruplex DNA has been suggested to regulate DNA replication and may control cellular proliferation. Sequences capable of forming G-quadruplexes in the RNA have been shown to play significant roles in regulation of polyadenylation and splicing events in mammalian transcripts. Whether quadruplex structure directly plays a role in regulating RNA processing requires investigation. Computational approaches to study G-quadruplexes allow detailed analysis of mammalian genomes. There are no known easily accessible user-friendly tools that can compute G-quadruplexes in the nucleotide sequences. We have developed a web-based server, QGRS Mapper, that predicts quadruplex forming G-rich sequences (QGRS) in nucleotide sequences. It is a user-friendly application that provides many options for defining and studying G-quadruplexes. It performs analysis of the user provided genomic sequences, e.g. promoter and telomeric regions, as well as RNA sequences. It is also useful for predicting G-quadruplex structures in oligonucleotides. The program provides options to search and retrieve desired gene/nucleotide sequence entries from NCBI databases for mapping G-quadruplexes in the context of RNA processing sites. This feature is very useful for investigating the functional relevance of G-quadruplex structure, in particular its role in regulating the gene expression by alternative processing. In addition to providing data on composition and locations of QGRS relative to the processing sites in the pre-mRNA sequence, QGRS Mapper features interactive graphic representation of the data. The user can also use the graphics module to visualize QGRS distribution patterns among all the alternative RNA products of a gene simultaneously on a single screen. QGRS Mapper can be accessed at .
Collapse
Affiliation(s)
| | | | - Paramjeet S Bagga
- To whom correspondence should be addressed. Tel: +1 201 684 7722; Fax: +1 201 684 7637;
| |
Collapse
|
163
|
Dominguez C, Allain FHT. NMR structure of the three quasi RNA recognition motifs (qRRMs) of human hnRNP F and interaction studies with Bcl-x G-tract RNA: a novel mode of RNA recognition. Nucleic Acids Res 2006; 34:3634-45. [PMID: 16885237 PMCID: PMC1540728 DOI: 10.1093/nar/gkl488] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 06/28/2006] [Accepted: 06/28/2006] [Indexed: 02/03/2023] Open
Abstract
The heterogeneous nuclear ribonucleoprotein (hnRNP) F belongs to the hnRNP H family involved in the regulation of alternative splicing and polyadenylation and specifically recognizes poly(G) sequences (G-tracts). In particular, hnRNP F binds a G-tract of the Bcl-x RNA and regulates its alternative splicing, leading to two isoforms, Bcl-x(S) and Bcl-x(L), with antagonist functions. In order to gain insight into G-tract recognition by hnRNP H members, we initiated an NMR study of human hnRNP F. We present the solution structure of the three quasi RNA recognition motifs (qRRMs) of hnRNP F and identify the residues that are important for the interaction with the Bcl-x RNA by NMR chemical shift perturbation and mutagenesis experiments. The three qRRMs exhibit the canonical betaalphabetabetaalphabeta RRM fold but additional secondary structure elements are present in the two N-terminal qRRMs of hnRNP F. We show that qRRM1 and qRRM2 but not qRRM3 are responsible for G-tract recognition and that the residues of qRRM1 and qRRM2 involved in G-tract interaction are not on the beta-sheet surface as observed for the classical RRM but are part of a short beta-hairpin and two adjacent loops. These regions define a novel interaction surface for RNA recognition by RRMs.
Collapse
Affiliation(s)
- Cyril Dominguez
- Institute of Molecular Biology and Biophysics, ETH ZürichCH-8093 Zürich, Switzerland
| | - Frédéric H.-T. Allain
- Institute of Molecular Biology and Biophysics, ETH ZürichCH-8093 Zürich, Switzerland
| |
Collapse
|
164
|
Affiliation(s)
- P S Schwartz
- Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
165
|
Cochrane AW, McNally MT, Mouland AJ. The retrovirus RNA trafficking granule: from birth to maturity. Retrovirology 2006; 3:18. [PMID: 16545126 PMCID: PMC1475878 DOI: 10.1186/1742-4690-3-18] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 03/17/2006] [Indexed: 11/10/2022] Open
Abstract
Post-transcriptional events in the life of an RNA including RNA processing, transport, translation and metabolism are characterized by the regulated assembly of multiple ribonucleoprotein (RNP) complexes. At each of these steps, there is the engagement and disengagement of RNA-binding proteins until the RNA reaches its final destination. For retroviral genomic RNA, the final destination is the capsid. Numerous studies have provided crucial information about these processes and serve as the basis for studies on the intracellular fate of retroviral RNA. Retroviral RNAs are like cellular mRNAs but their processing is more tightly regulated by multiple cis-acting sequences and the activities of many trans-acting proteins. This review describes the viral and cellular partners that retroviral RNA encounters during its maturation that begins in the nucleus, focusing on important events including splicing, 3' end-processing, RNA trafficking from the nucleus to the cytoplasm and finally, mechanisms that lead to its compartmentalization into progeny virions.
Collapse
Affiliation(s)
- Alan W Cochrane
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Mark T McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research-Sir Mortimer B. Davis Jewish General Hospital and McGill University, 3755 Côte-Ste-Catherine Road, H3T 1E2, Canada
| |
Collapse
|
166
|
Královicová J, Vorechovsky I. Position-dependent repression and promotion of DQB1 intron 3 splicing by GGGG motifs. THE JOURNAL OF IMMUNOLOGY 2006; 176:2381-8. [PMID: 16455996 DOI: 10.4049/jimmunol.176.4.2381] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alternative splicing of HLA-DQB1 exon 4 is allele-dependent and results in variable expression of soluble DQbeta. We have recently shown that differential inclusion of this exon in mature transcripts is largely due to intron 3 variants in the branch point sequence (BPS) and polypyrimidine tract. To identify additional regulatory cis-elements that contribute to haplotype-specific splicing of DQB1, we systematically examined the effect of guanosine (G) repeats on intron 3 removal. We found that the GGG or GGGG repeats generally improved splicing of DQB1 intron 3, except for those that were adjacent to the 5' splice site where they had the opposite effect. The most prominent splicing enhancement was conferred by GGGG motifs arranged in tandem upstream of the BPS. Replacement of a G-rich segment just 5' of the BPS with a series of random sequences markedly repressed splicing, whereas substitutions of a segment further upstream that lacked the G-rich elements and had the same size did not result in comparable splicing inhibition. Systematic mutagenesis of both suprabranch guanosine quadruplets (G(4)) revealed a key role of central G residues in splicing enhancement, whereas cytosines in these positions had the most prominent repressive effects. Together, these results show a significant role of tandem G(4)NG(4) structures in splicing of both complete and truncated DQB1 intron 3, support position dependency of G repeats in splicing promotion and inhibition, and identify positively and negatively acting sequences that contribute to the haplotype-specific DQB1 expression.
Collapse
Affiliation(s)
- Jana Královicová
- Division of Human Genetics, University of Southampton, School of Medicine, UK
| | | |
Collapse
|
167
|
Kostadinov R, Malhotra N, Viotti M, Shine R, D'Antonio L, Bagga P. GRSDB: a database of quadruplex forming G-rich sequences in alternatively processed mammalian pre-mRNA sequences. Nucleic Acids Res 2006; 34:D119-24. [PMID: 16381828 PMCID: PMC1347436 DOI: 10.1093/nar/gkj073] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Guanine-rich nucleic acids are known to form highly stable G-quadruplex structures, also known as G-quartets. Recently, there has been a tremendous amount of interest in studying G-quadruplexes owing to the realization of their biological importance. G-rich sequences (GRSs) capable of forming G-quadruplexes are found in the vicinity of polyadenylation regions and are involved in regulating 3′ end processing of mammalian pre-mRNAs. G-rich motifs are also known to play an important role in alternative, tissue-specific splicing by interacting with hnRNP H protein subfamily. Whether quadruplex structure directly plays a role in regulating RNA processing events requires further investigation. To date there has not been a comprehensive effort to study G-quadruplexes near RNA processing sites. We have applied a computational approach to map putative Quadruplex forming GRSs within the transcribed regions of a large number of alternatively processed human and mouse gene sequences that were obtained as fully annotated entries from GenBank and RefSeq. We have used the computed data to build the GRSDB database that provides a unique avenue for studying G-quadruplexes in the context of RNA processing sites. GRSDB website offers visual comparison of G-quadruplex distribution patterns among all the alternative RNA products of a gene with the help of dynamic graphics. At present, GRSDB contains data from 1310 human and mouse genes, of which 1188 are alternatively processed. It has a total of 379 223 predicted G-quadruplexes, of which 54 252 are near RNA processing sites. GRSDB is a good resource for researchers interested in investigating the functional relevance of G-quadruplexes, especially in the context of alternative RNA processing. It can be accessed at .
Collapse
Affiliation(s)
| | | | | | | | | | - Paramjeet Bagga
- To whom correspondence should be addressed. Tel: +1 201 684 7722; Fax: +1 201 684 7637;
| |
Collapse
|
168
|
De Gaudenzi J, Frasch AC, Clayton C. RNA-binding domain proteins in Kinetoplastids: a comparative analysis. EUKARYOTIC CELL 2006; 4:2106-14. [PMID: 16339728 PMCID: PMC1317496 DOI: 10.1128/ec.4.12.2106-2114.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RNA-binding proteins are important in many aspects of RNA processing, function, and destruction. One class of such proteins contains the RNA recognition motif (RRM), which consists of about 90 amino acid residues, including the canonical RNP1 octapeptide: (K/R)G(F/Y)(G/A)FVX(F/Y). We used a variety of homology searches to classify all of the RRM proteins of the three kinetoplastids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. All three organisms have similar sets of RRM-containing protein orthologues, suggesting common posttranscriptional processing and regulatory pathways. Of the 75 RRM proteins identified in T. brucei, only 13 had clear homologues in other eukaryotes, although 8 more could be given putative functional assignments. A comparison with the 18 RRM proteins of the obligate intracellular parasite Encephalitozoon cuniculi revealed just 3 RRM proteins which appear to be conserved at the primary sequence level throughout eukaryotic evolution: poly(A) binding protein, the rRNA-processing protein MRD1, and the nuclear cap binding protein.
Collapse
Affiliation(s)
- Javier De Gaudenzi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, CONICET-UNSAM, Av. Gral Paz 5445, 1650 Buenos Aires, Argentina
| | | | | |
Collapse
|
169
|
Morrison AA, Ladomery MR. Presence of WT1 in nuclear messenger RNP particles in the human acute myeloid leukemia cell lines HL60 and K562. Cancer Lett 2006; 244:136-41. [PMID: 16457949 DOI: 10.1016/j.canlet.2005.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 11/29/2005] [Accepted: 12/05/2005] [Indexed: 11/28/2022]
Abstract
The WT1 gene is a key player in acute myeloid leukaemia, in which it is frequently over-expressed. WT1 encodes a multifunctional zinc finger protein transcription factor, which also binds mRNA. Thus increasing evidence suggests that WT1 works both at the DNA and mRNA level, not only in the urogenital system but also in other contexts. Nuclear poly(A)(+) mRNP particles were isolated by oligo(dT) chromatography from the human acute myeloid leukemia cell lines HL60 and K562, and analysed by Western blotting and 2D minigels. MALDI-TOF demonstrated the presence of hnRNP proteins, splice factors, and unexpectedly vimentin in the mRNP fraction. WT1 was also shown to be present in nuclear mRNP particles suggesting that in leukaemia, and by extension in all cancers in which it is involved, WT1 works both at the DNA and mRNA target level.
Collapse
Affiliation(s)
- Avril A Morrison
- Bristol Genomics Research Institute, Centre for Research in Biomedicine, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | | |
Collapse
|
170
|
McNally LM, Yee L, McNally MT. Heterogeneous nuclear ribonucleoprotein H is required for optimal U11 small nuclear ribonucleoprotein binding to a retroviral RNA-processing control element: implications for U12-dependent RNA splicing. J Biol Chem 2006; 281:2478-88. [PMID: 16308319 DOI: 10.1074/jbc.m511215200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
An RNA-processing element from Rous sarcoma virus, the negative regulator of splicing (NRS), represses splicing to generate unspliced RNA that serves as mRNA and as genomic RNA for progeny virions and also promotes polyadenylation of the unspliced RNA. Integral to NRS function is the binding of U1 small nuclear ribonucleoprotein (snRNP), but its binding is controlled by U11 snRNP that binds to an overlapping site. U11 snRNP, the U1 counterpart for splicing of U12-dependent introns, binds the NRS remarkably well and requires G-rich elements just downstream of the consensus U11 binding site. We present evidence that heterogeneous nuclear ribonucleoprotein (hnRNP) H binds to the NRS G-rich elements and that hnRNP H is required for optimal U11 binding in vitro. It is further shown that hnRNP H (but not hnRNP F) can promote U11 binding and splicing from the NRS in vivo when tethered to the RNA as an MS2 fusion protein. Interestingly, 17% of the naturally occurring U12-dependent introns have at least two potential hnRNP H binding sites positioned similarly to the NRS. For two such introns from the SCN4A and P120 genes, we show that hnRNP H binds to each in a G-tract-dependent manner, that G-tract mutations strongly reduce splicing of minigene RNA, and that tethered hnRNP H restores splicing to mutant RNA. In support of a role for hnRNP H in both splicing pathways, hnRNP H antibodies co-precipitate U1 and U11 small nuclear ribonucleoproteins. These results indicate that hnRNP H is an auxiliary factor for U11 binding to the NRS and that, more generally, hnRNP H is a splicing factor for a subset of U12-dependent introns that harbor G-rich elements.
Collapse
Affiliation(s)
- Lisa M McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | | |
Collapse
|
171
|
Gendron D, Carriero S, Garneau D, Villemaire J, Klinck R, Elela SA, Damha MJ, Chabot B. Modulation of 5' splice site selection using tailed oligonucleotides carrying splicing signals. BMC Biotechnol 2006; 6:5. [PMID: 16412215 PMCID: PMC1379639 DOI: 10.1186/1472-6750-6-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 01/13/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously described the use of tailed oligonucleotides as a means of reprogramming alternative pre-mRNA splicing in vitro and in vivo. The tailed oligonucleotides that were used interfere with splicing because they contain a portion complementary to sequences immediately upstream of the target 5' splice site combined with a non-hybridizing 5' tail carrying binding sites for the hnRNP A1/A2 proteins. In the present study, we have tested the inhibitory activity of RNA oligonucleotides carrying different tail structures. RESULTS We show that an oligonucleotide with a 5' tail containing the human beta-globin branch site sequence inhibits the use of the 5' splice site of Bcl-xL, albeit less efficiently than a tail containing binding sites for the hnRNP A1/A2 proteins. A branch site-containing tail positioned at the 3' end of the oligonucleotide also elicited splicing inhibition but not as efficiently as a 5' tail. The interfering activity of a 3' tail was improved by adding a 5' splice site sequence next to the branch site sequence. A 3' tail carrying a Y-shaped branch structure promoted similar splicing interference. The inclusion of branch site or 5' splice site sequences in the Y-shaped 3' tail further improved splicing inhibition. CONCLUSION Our in vitro results indicate that a variety of tail architectures can be used to elicit splicing interference at low nanomolar concentrations, thereby broadening the scope and the potential impact of this antisense technology.
Collapse
Affiliation(s)
- Daniel Gendron
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sandra Carriero
- Department of chemistry, McGill University, Montréal, Québec, Canada
| | - Daniel Garneau
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jonathan Villemaire
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Roscoe Klinck
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Masad J Damha
- Department of chemistry, McGill University, Montréal, Québec, Canada
| | - Benoit Chabot
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
172
|
Martinez-Contreras R, Fisette JF, Nasim FUH, Madden R, Cordeau M, Chabot B. Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLoS Biol 2006; 4:e21. [PMID: 16396608 PMCID: PMC1326234 DOI: 10.1371/journal.pbio.0040021] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 11/15/2005] [Indexed: 12/20/2022] Open
Abstract
hnRNP A/B proteins modulate the alternative splicing of several mammalian and viral pre-mRNAs, and are typically viewed as proteins that enforce the activity of splicing silencers. Here we show that intronic hnRNP A/B–binding sites (ABS) can stimulate the in vitro splicing of pre-mRNAs containing artificially enlarged introns. Stimulation of in vitro splicing could also be obtained by providing intronic ABS in trans through the use of antisense oligonucleotides containing a non-hybridizing ABS-carrying tail. ABS-tailed oligonucleotides also improved the in vivo inclusion of an alternative exon flanked by an enlarged intron. Notably, binding sites for hnRNP F/H proteins (FBS) replicate the activity of ABS by improving the splicing of an enlarged intron and by modulating 5′ splice-site selection. One hypothesis formulated to explain these effects is that bound hnRNP proteins self-interact to bring in closer proximity the external pair of splice sites. Consistent with this model, positioning FBS or ABS at both ends of an intron was required to stimulate splicing of some pre-mRNAs. In addition, a computational analysis of the configuration of putative FBS and ABS located at the ends of introns supports the view that these motifs have evolved to support cooperative interactions. Our results document a positive role for the hnRNP A/B and hnRNP F/H proteins in generic splicing, and suggest that these proteins may modulate the conformation of mammalian pre-mRNAs. Typically viewed as enforcing splicing silencers, hnRNP A/B proteins may facilitate splicing by modulating the conformation of mammalian pre-mRNAs.
Collapse
Affiliation(s)
- Rebeca Martinez-Contreras
- 1 RNA/RNP Group, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Fisette
- 1 RNA/RNP Group, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Faiz-ul Hassan Nasim
- 1 RNA/RNP Group, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Madden
- 2 Centre de genomique fonctionnelle de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mélanie Cordeau
- 1 RNA/RNP Group, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Benoit Chabot
- 1 RNA/RNP Group, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
- 2 Centre de genomique fonctionnelle de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
173
|
Wilusz JE, Devanney SC, Caputi M. Chimeric peptide nucleic acid compounds modulate splicing of the bcl-x gene in vitro and in vivo. Nucleic Acids Res 2005; 33:6547-54. [PMID: 16299354 PMCID: PMC1289079 DOI: 10.1093/nar/gki960] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing of the bcl-x gene generates two transcripts: the anti-apoptotic bcl-xL isoform and the pro-apoptotic bcl-xS isoform. The ratio between the two isoforms is a key factor in development and in cancer progression. Here, we show that a short antisense chimeric peptide nucleic acid (PNA) oligonucleotide conjugated to a polypeptide containing eight Ser-Arg repeats (SR)8 can modulate splicing of bcl-x both in vitro and in vivo and induces apoptosis in HeLa cells. The PNA-SR oligo was targeted to a region of bcl-x that does not contain splicing regulatory sequences and was able to override the complex network of splicing enhancers and silencers that regulates the ratio between the two bcl-x isoforms. Thus, PNA-SR oligos are powerful tools that can potentially modulate splice site choice in endogenous genes independent of the presence of other splicing regulatory mechanisms on the target gene.
Collapse
Affiliation(s)
| | - Sean C. Devanney
- Biomedical Science Department, Florida Atlantic UniversityBoca Raton, FL 33431, USA
| | - Massimo Caputi
- Biomedical Science Department, Florida Atlantic UniversityBoca Raton, FL 33431, USA
- To whom correspondence should be addressed. Tel: +1 561 297 0627; Fax: +1 561 297 2221;
| |
Collapse
|
174
|
Carpenter B, MacKay C, Alnabulsi A, MacKay M, Telfer C, Melvin WT, Murray GI. The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression. Biochim Biophys Acta Rev Cancer 2005; 1765:85-100. [PMID: 16378690 DOI: 10.1016/j.bbcan.2005.10.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 10/18/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNP) are a family of proteins which share common structural domains, and extensive research has shown that they have central roles in DNA repair, telomere biogenesis, cell signaling and in regulating gene expression at both transcriptional and translational levels. Through these key cellular functions, individual hnRNPs have a variety of potential roles in tumour development and progression including the inhibition of apoptosis, angiogenesis and cell invasion. The aims of this review are to provide an overview of the multi functional roles of the hnRNPs, and how such roles implicate this family as regulators of tumour development. The different stages of tumour development that are potentially regulated by the hnRNPs along with their aberrant expression profiles in tumour tissues will also be discussed.
Collapse
Affiliation(s)
- Brian Carpenter
- Department of Pathology, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | |
Collapse
|