151
|
Munekata PE, Pérez-Álvarez JÁ, Pateiro M, Viuda-Matos M, Fernández-López J, Lorenzo JM. Satiety from healthier and functional foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
152
|
A Case Study of the Response of Immunogenic Gluten Peptides to Sourdough Proteolysis. Nutrients 2021; 13:nu13061906. [PMID: 34206002 PMCID: PMC8229354 DOI: 10.3390/nu13061906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Celiac disease is activated by digestion-resistant gluten peptides that contain immunogenic epitopes. Sourdough fermentation is a potential strategy to reduce the concentration of these peptides within food. However, we currently know little about the effect of partial sourdough fermentation on immunogenic gluten. This study examined the effect of a single sourdough culture (representative of those that the public may consume) on the digestion of immunogenic gluten peptides. Sourdough bread was digested via the INFOGEST protocol. Throughout digestion, quantitative and discovery mass spectrometry were used to model the kinetic release profile of key immunogenic peptides and profile novel peptides, while ELISA probed the gluten's allergenicity. Macrostructural studies were also undertaken. Sourdough fermentation altered the protein structure, in vitro digestibility, and immunogenic peptide release profile. Interestingly, sourdough fermentation did not decrease the total immunogenic peptide concentration but altered the in vitro digestion profile of select immunogenic peptides. This work demonstrates that partial sourdough fermentation can alter immunogenic gluten digestion, and is the first study to examine the in vitro kinetic profile of immunogenic gluten peptides from sourdough bread.
Collapse
|
153
|
Konieczna J, Morey M, Abete I, Bes-Rastrollo M, Ruiz-Canela M, Vioque J, Gonzalez-Palacios S, Daimiel L, Salas-Salvadó J, Fiol M, Martín V, Estruch R, Vidal J, Martínez-González MA, Canudas S, Jover AJ, Fernández-Villa T, Casas R, Olbeyra R, Buil-Cosiales P, Babio N, Schröder H, Martínez JA, Romaguera D. Contribution of ultra-processed foods in visceral fat deposition and other adiposity indicators: Prospective analysis nested in the PREDIMED-Plus trial. Clin Nutr 2021; 40:4290-4300. [PMID: 33610419 DOI: 10.1016/j.clnu.2021.01.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Ultra-processed food and drink products (UPF) consumption has been associated with obesity and its-related comorbidities. Excess of visceral fat, which appears with increasing age, has been considered as the culprit contributing to adiposity-associated adverse health outcomes. However, none of previous studies elucidated the link between UPF and directly quantified adiposity and its distribution. We aimed to prospectively investigate the association between concurrent changes in UPF consumption and objectively assessed adiposity distribution. METHODS A subsample of 1485 PREDIMED-Plus participants (Spanish men and women aged 55-75 years with overweight/obesity and metabolic syndrome) underwent body composition measurements. Consumption of UPF at baseline, 6 and 12 months was evaluated using a validated 143-item semi-quantitative Food Frequency Questionnaire. Food items (g/day) were categorized according to their degree of processing using NOVA system. Regional adiposity (visceral fat (in g) and android-to-gynoid fat ratio) and total fat mass (in g) at three time points were measured with dual-energy X-ray absorptiometry (DXA) and were normalized using sex-specific z-scores. The association of changes in UPF consumption, expressed as the percentage of total daily intake (daily g of UPF/total daily g of food and beverage intake∗100), with adiposity changes was evaluated using linear mixed-effects models. RESULTS On average, the consumption of UPF accounted for 8.11% (SD 7.41%) of total daily intake (in grams) at baseline. In multivariable-adjusted model, 10% daily increment in consumption of UPF was associated with significantly (all p-values <0.05) greater accumulation of visceral fat (β 0.09 z-scores, 95% CI 0.05; 0.13), android-to-gynoid fat ratio (0.05, 0.00; 0.09) and total fat (0.09, 0.06; 0.13). CONCLUSION A higher consumption of UPF was associated with greater age-related visceral and overall adiposity accumulation. Further studies are warranted to confirm these results in other populations and settings. TRIAL REGISTRATION The trial was registered at the International Standard Randomized Controlled Trial (ISRCTN: http://www.isrctn.com/ISRCTN89898870) with number 89898870 and registration date of 24 July 2014, retrospectively registered.
Collapse
Affiliation(s)
- Jadwiga Konieczna
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (HUSE), Palma de Mallorca, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Marga Morey
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (HUSE), Palma de Mallorca, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Itziar Abete
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, Pamplona, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maira Bes-Rastrollo
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Miguel Ruiz-Canela
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Jesus Vioque
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante, ISABIAL-UMH, Alicante, Spain
| | - Sandra Gonzalez-Palacios
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante, ISABIAL-UMH, Alicante, Spain
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Jordi Salas-Salvadó
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Universitat Rovira i Virgili, Department de Bioquímica i Biotecnologia, Unitat de Nutrició Humana. Hospital Universitari San Joan de Reus, Reus, Spain; Institut d'Investigació Pere Virgili (IISPV), Reus, Spain
| | - Miguel Fiol
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (HUSE), Palma de Mallorca, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Vicente Martín
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Grupo de Investigación en Interacciones Gen - Ambiente y Salud (GIIGAS)/Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Ramón Estruch
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Internal Medicine, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Endocrinology, Institut d'Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Miguel A Martínez-González
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Silvia Canudas
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Universitat Rovira i Virgili, Department de Bioquímica i Biotecnologia, Unitat de Nutrició Humana. Hospital Universitari San Joan de Reus, Reus, Spain; Institut d'Investigació Pere Virgili (IISPV), Reus, Spain
| | - Antoni J Jover
- Atención Primaria Mallorca, Centro de Salud Arquitecte Bennàssar, Palma de Mallorca, Spain
| | - Tania Fernández-Villa
- Grupo de Investigación en Interacciones Gen - Ambiente y Salud (GIIGAS)/Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Rosa Casas
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Internal Medicine, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Romina Olbeyra
- Department of Endocrinology, Institut d'Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Pilar Buil-Cosiales
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Atención Primaria, Servicio Navarro de Salud-Osasunbidea, Pamplona, Spain
| | - Nancy Babio
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Universitat Rovira i Virgili, Department de Bioquímica i Biotecnologia, Unitat de Nutrició Humana. Hospital Universitari San Joan de Reus, Reus, Spain; Institut d'Investigació Pere Virgili (IISPV), Reus, Spain
| | - Helmut Schröder
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Mèdica (IMIM), Barcelona, Spain
| | - J Alfredo Martínez
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, Pamplona, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Dora Romaguera
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (HUSE), Palma de Mallorca, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
154
|
Sandby K, Geiker NRW, Dalamaga M, Grønbæk H, Magkos F. Efficacy of Dietary Manipulations for Depleting Intrahepatic Triglyceride Content: Implications for the Management of Non-alcoholic Fatty Liver Disease. Curr Obes Rep 2021; 10:125-133. [PMID: 33580876 DOI: 10.1007/s13679-021-00430-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Understanding the effects of dietary manipulations on intrahepatic triglyceride (IHTG) balance will have important implications for the prevention and treatment of non-alcoholic fatty liver disease (NAFLD). RECENT FINDINGS Reducing calorie intake to induce weight loss is the most potent intervention to decrease IHTG. Carbohydrate restriction during the initial stages of weight loss may be particularly beneficial, but at later stages, the amount of weight loss predominates over diet composition. By contrast, during weight stability, restricting calories from fat seems to be optimal for depleting liver fat. The degree of dietary fat saturation and the glycemic index of the carbohydrate have inconsistent effects on IHTG. Recently, the matrix of some foods (e.g., dairy) has been inversely associated with NAFLD. Dietary macronutrients differ in their effects on liver fat depending on the energy balance and the matrix of the food in which they are consumed. Therefore, investigations into dietary approaches for managing NAFLD should shift their perspective from that of isolated nutrients to that of whole foods and diets and include useful mechanistic insights.
Collapse
Affiliation(s)
- Karoline Sandby
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Nina Rica Wium Geiker
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
155
|
Huang Z, Schoones T, Wells JM, Fogliano V, Capuano E. Substrate-Driven Differences in Tryptophan Catabolism by Gut Microbiota and Aryl Hydrocarbon Receptor Activation. Mol Nutr Food Res 2021; 65:e2100092. [PMID: 33964185 PMCID: PMC8365636 DOI: 10.1002/mnfr.202100092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/01/2021] [Indexed: 12/17/2022]
Abstract
SCOPE This study aims to investigate the effect of tryptophan sources on tryptophan catabolism by gut microbiota and the aryl hydrocarbon receptor (AhR) activation. METHODS AND RESULTS Four substrates (free tryptophan, soybean protein, single and clustered soybean cells) containing an equimolar amount of tryptophan, but with a different bioaccessibility are studied using in vitro batch fermentation. Tryptophan catabolites are identified by LC-MS/MS. AhR activity is measured by HepG2-Lucia AhR reporter cells. The total amount of tryptophan-derived catabolites increases with decreasing level of substrate complexity. Indole is the major catabolite produced from tryptophan and it is the most abundant in the free tryptophan fermentation. Indole-3-acetic acid and indole-3-aldehyde are abundantly generated in the soybean protein fermentation. The soybean cell fermentation produced high concentrations of tryptamine. Interestingly, large amounts of short-chain fatty acids (SCFAs) are also found in the soybean cell and protein fermentation. Both tryptophan-derived catabolites and SCFAs are able to increase AhR reporter activity over time in all four groups. CONCLUSION This study illustrates that bacterial catabolism of tryptophan and resulting AhR activation in the gut is modulated by the food matrix, suggesting a role for food design to improve gut health.
Collapse
Affiliation(s)
- Zhan Huang
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, Wageningen, 6700 AA, The Netherlands.,Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, P.O. Box 17, Wageningen, 6700 AA, The Netherlands
| | - Tessa Schoones
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, Wageningen, 6700 AA, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, P.O. Box 17, Wageningen, 6700 AA, The Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, Wageningen, 6700 AA, The Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, Wageningen, 6700 AA, The Netherlands
| |
Collapse
|
156
|
Tan Y, Zhou H, Zhang Z, McClements DJ. Bioaccessibility of oil-soluble vitamins (A, D, E) in plant-based emulsions: impact of oil droplet size. Food Funct 2021; 12:3883-3897. [PMID: 33978004 DOI: 10.1039/d1fo00347j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We systematically investigated the impact of oil droplet diameter (≈0.15, 1.6, and 11 μm) on the bioaccessibility of three oil-soluble vitamins (vitamin A palmitate, vitamin D, and vitamin E acetate) encapsulated within soybean oil-in-water emulsions stabilized by quillaja saponin. Lipid digestion kinetics decreased with increasing droplet size due to the reduction in oil-water interfacial area. Vitamin bioaccessibility decreased with increasing droplet size from 0.15 to 11 μm: 87 to 39% for vitamin A; 76 to 44% for vitamin D; 77 to 21% for vitamin E. Vitamin bioaccessibility also decreased as their hydrophobicity and molecular weight increased, probably because their tendency to remain inside the oil droplets and/or be poorly solubilized by the mixed micelles increased. Hydrolysis of the esterified vitamins also occurred under gastrointestinal conditions: vitamin A palmitate (∼90%) and vitamin E acetate (∼3%). Consequently, the composition and structure of emulsion-based delivery systems should be carefully designed when creating vitamin-fortified functional food products.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Hualu Zhou
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Zhiyun Zhang
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA. and Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
157
|
Mensi A, Udenigwe CC. Emerging and practical food innovations for achieving the Sustainable Development Goals (SDG) target 2.2. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
158
|
Nadia J, Bronlund J, Singh RP, Singh H, Bornhorst GM. Structural breakdown of starch-based foods during gastric digestion and its link to glycemic response: In vivo and in vitro considerations. Compr Rev Food Sci Food Saf 2021; 20:2660-2698. [PMID: 33884751 DOI: 10.1111/1541-4337.12749] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 01/10/2023]
Abstract
The digestion of starch-based foods in the small intestine as well as factors affecting their digestibility have been previously investigated and reviewed in detail. Starch digestibility has been studied both in vivo and in vitro, with increasing interest in the use of in vitro models. Although previous in vivo studies have indicated the effect of mastication and gastric digestion on the digestibility of solid starch-based foods, the physical breakdown of starch-based foods prior to small intestinal digestion is often less considered. Moreover, gastric digestion has received little attention in the attempt to understand the digestion of solid starch-based foods in the digestive tract. In this review, the physical breakdown of starch-based foods in the mouth and stomach, the quantification of these breakdown processes, and their links to physiological outcomes, such as gastric emptying and glycemic response, are discussed. In addition, the physical breakdown aspects related to gastric digestion that need to be considered when developing in vitro-in vivo correlation in starch digestion studies are discussed. The discussion demonstrates that physical breakdown prior to small intestinal digestion, especially during gastric digestion, should not be neglected in understanding the digestion of solid starch-based foods.
Collapse
Affiliation(s)
- Joanna Nadia
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - John Bronlund
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Rajinder Paul Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Gail M Bornhorst
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| |
Collapse
|
159
|
Pectin Influences the Absorption and Metabolism of Polyphenols from Blackcurrant and Green Tea in Rats. Foods 2021; 10:foods10040813. [PMID: 33918607 PMCID: PMC8070010 DOI: 10.3390/foods10040813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
Consumption of polyphenols and dietary fiber as part of a normal diet is beneficial to human health. In this study, we examined whether different amounts of dietary soluble fiber (pectin) affect the absorption and metabolism of polyphenols from blackcurrant and green tea in rats. After 28 days, the rats fed blackcurrant and green tea with pectin (4 or 8%) had significantly lower body weight gain and food intake compared to the rats fed a control diet. Rats fed a blackcurrant and green tea diet with 8% pectin had significantly higher fecal nitrogen output and lower protein digestibility. No polyphenols were observed in the urine, feces and plasma of rats fed the control diet. Parent catechins and flavonols were absent in urine obtained from all diet groups. Gallocatechin glucuronide was only observed in the plasma of rats fed the blackcurrant and green tea diet without pectin. Meanwhile, epicatechin and catechin gallate were present in the feces of rats fed a blackcurrant and green tea diet with and without 4% pectin. Pectin (4 or 8%) added to the blackcurrant and green tea diet increased the plasma antioxidant capacity in rats. Inclusion of pectin in the diet altered the host absorption and metabolism of polyphenols from blackcurrant and green tea.
Collapse
|
160
|
Shahidi F, Pan Y. Influence of food matrix and food processing on the chemical interaction and bioaccessibility of dietary phytochemicals: A review. Crit Rev Food Sci Nutr 2021; 62:6421-6445. [PMID: 33787422 DOI: 10.1080/10408398.2021.1901650] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Consumption of phytochemicals-rich foods shows the health effect on some chronic diseases. However, the bioaccessibility of these phytochemicals is extremely low, and they are often consumed in the diet along with the food matrix. The food matrix can be described as a complex assembly of various physical and chemical interactions that take place between the compounds present in the food. Some studies indicated that the physiological response and the health benefits of phytochemicals are resultant in these interactions. Some food substrates inhibit the absorption of phytochemicals via this interaction. Moreover, processing technologies have been developed to facilitate the release and/or to increase the accessibility of phytochemicals in plants or breakdown of the food matrix. Food processing processes may disrupt the activity of phytochemicals or reduce bioaccessibility. Enhancement of functional and sensorial attributes of phytochemicals in the daily diet may be achieved by modifying the food matrix and food processing in appropriate ways. Therefore, this review concisely elaborated on the mechanism and the influence of food matrix in different parts of the digestive tract in the human body, the chemical interaction between phytochemicals and other compounds in a food matrix, and the various food processing technologies on the bioaccessibility and chemical interaction of dietary phytochemicals. Moreover, the enhancing of phytochemical bioaccessibility through food matrix design and the positive/negative of food processing for dietary phytochemicals was also discussed in this study.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Yao Pan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, China
| |
Collapse
|
161
|
Abstract
Food digestion may be regarded as a physiological interface between food and health. During digestion, the food matrix is broken down and the component nutrients and bioactive compounds are absorbed through a synergy of mechanical, chemical, and biochemical processes. The food matrix modulates the extent and kinetics to which nutrients and bioactive compounds make themselves available for absorption, hence regulating their concentration profile in the blood and their utilization in peripheral tissues. In this review, we discuss the structural and compositional aspects of food that modulate macronutrient digestibility in each step of digestion. We also discuss in silico modeling approaches to describe the effect of the food matrix on macronutrient digestion. The detailed knowledge of how the food matrix is digested can provide a mechanistic basis to elucidate the complex effect of food on human health and design food with improved functionality.
Collapse
Affiliation(s)
- Edoardo Capuano
- Food Quality and Design Group, Wageningen University and Research, 6700 AA Wageningen, The Netherlands;
| | - Anja E M Janssen
- Food Processing Engineering Group, Wageningen University and Research, 6700 AA Wageningen, The Netherlands;
| |
Collapse
|
162
|
Dietary Management of Type 2 Diabetes in the MENA Region: A Review of the Evidence. Nutrients 2021; 13:nu13041060. [PMID: 33805161 PMCID: PMC8064070 DOI: 10.3390/nu13041060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
The alarmingly rising trend of type 2 diabetes constitutes a major global public health challenge particularly in the Middle Eastern and North African (MENA) region where the prevalence is among the highest in the world with a projection to increase by 96% by 2045. The economic boom in the MENA region over the past decades has brought exceptionally rapid shifts in eating habits characterized by divergence from the traditional Mediterranean diet towards a more westernized unhealthy dietary pattern, thought to be leading to the dramatic rises in obesity and non-communicable diseases. Research efforts have brought a greater understanding of the different pathways through which diet and obesity may affect diabetes clinical outcomes, emphasizing the crucial role of dietary interventions and weight loss in the prevention and management of diabetes. The purpose of this review is to explore the mechanistic pathways linking obesity with diabetes and to summarize the most recent evidence on the association of the intake of different macronutrients and food groups with the risk of type 2 diabetes. We also summarize the most recent evidence on the effectiveness of different macronutrient manipulations in the prevention and management of diabetes while highlighting the possible underlying mechanisms of action and latest evidence-based recommendations. We finally discuss the need to adequately integrate dietetic services in diabetes care specific to the MENA region and conclude with recommendations to improve dietetic care for diabetes in the region.
Collapse
|
163
|
Doesburg P, Fritz J, Athmann M, Bornhütter R, Busscher N, Geier U, Mergardt G, Scherr C. Kinesthetic engagement in Gestalt evaluation outscores analytical 'atomic feature' evaluation in perceiving aging in crystallization images of agricultural products. PLoS One 2021; 16:e0248124. [PMID: 33720965 PMCID: PMC7959341 DOI: 10.1371/journal.pone.0248124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/20/2021] [Indexed: 11/19/2022] Open
Abstract
There is an increasing interest in a systemic approach to food quality. From this perspective, the copper chloride crystallization method is an interesting asset as it enables an estimation of a sample's 'resilience' in response to controlled degradation. In previous studies, we showed that an ISO-standardized visual evaluation panel could correctly rank crystallization images of diverse agricultural products according to their degree of induced degradation. In this paper we examined the role of contextual sensitivity herein, with the aim to further improve the visual evaluation. To this end, we compared subjects' performance in ranking tests, while primed according to two perceptional strategies (levels: analytical vs. kinesthetic engagement), according to a within-subject design. The ranking test consisted out of wheat and rocket lettuce crystallization images, exhibiting four levels of induced degradation. The perceptual strategy imbuing kinesthetic engagement improved the performance of the ranking test in both samples tested. To the best of our knowledge, this is the first report on the training and application of such a perceptual strategy in visual evaluation.
Collapse
Affiliation(s)
- Paul Doesburg
- Institute for Integrative Medicine, University of Witten/Herdecke, Herdecke, Germany
| | - Jürgen Fritz
- Department of Organic Farming and Cropping Systems, University of Kassel, Witzenhausen, Germany
- Institute of Crop Science and Resource Conservation, Department of Agroecology and Organic Farming, University of Bonn, Bonn, Germany
| | - Miriam Athmann
- Department of Organic Farming and Cropping Systems, University of Kassel, Witzenhausen, Germany
| | | | - Nicolaas Busscher
- Department of Organic Food Quality and Food Culture, University of Kassel, Witzenhausen, Germany
| | - Uwe Geier
- Forschungsring e.V., Brandschneise 5, Darmstadt, Germany
| | - Gaby Mergardt
- Department of Organic Food Quality and Food Culture, University of Kassel, Witzenhausen, Germany
| | | |
Collapse
|
164
|
Saint-Criq V, Lugo-Villarino G, Thomas M. Dysbiosis, malnutrition and enhanced gut-lung axis contribute to age-related respiratory diseases. Ageing Res Rev 2021; 66:101235. [PMID: 33321253 DOI: 10.1016/j.arr.2020.101235] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Older people are at an increased risk of developing respiratory diseases such as chronic obstructive pulmonary diseases, asthma, idiopathic pulmonary fibrosis or lung infections. Susceptibility to these diseases is partly due to the intrinsic ageing process, characterized by genomic, cellular and metabolic hallmarks and immunosenescence, and is associated with changes in the intestinal microbiota. Importantly, in the lungs, ageing is also associated with a dysbiosis and loss of resilience of the resident microbiota and alterations of the gut-lung axis. Notably, as malnutrition is often observed in the elderly, nutrition is one of the most accessible modifiable factors affecting both senescence and microbiota. This article reviews the changes affecting the lung and its resident microbiota during ageing, as well as the interconnections between malnutrition, senescence, microbiota, gut-lung axis and respiratory health. As the communication along the gut-lung axis becomes more permissive with ageing, this review also explores the evidence that the gut and lung microbiota are key players in the maintenance of healthy lungs, and as such, are potential targets for nutrition-based preventive strategies against lung disease in elderly populations.
Collapse
|
165
|
Lane MM, Davis JA, Beattie S, Gómez-Donoso C, Loughman A, O'Neil A, Jacka F, Berk M, Page R, Marx W, Rocks T. Ultraprocessed food and chronic noncommunicable diseases: A systematic review and meta-analysis of 43 observational studies. Obes Rev 2021; 22:e13146. [PMID: 33167080 DOI: 10.1111/obr.13146] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
This systematic review and meta-analysis investigated the association between consumption of ultraprocessed food and noncommunicable disease risk, morbidity and mortality. Forty-three observational studies were included (N = 891,723): 21 cross-sectional, 19 prospective, two case-control and one conducted both a prospective and cross-sectional analysis. Meta-analysis demonstrated consumption of ultraprocessed food was associated with increased risk of overweight (odds ratio: 1.36; 95% confidence interval [CI], 1.23-1.51; P < 0.001), obesity (odds ratio: 1.51; 95% CI, 1.34-1.70; P < 0.001), abdominal obesity (odds ratio: 1.49; 95% CI, 1.34-1.66; P < 0.0001), all-cause mortality (hazard ratio: 1.28; 95% CI, 1.11-1.48; P = 0.001), metabolic syndrome (odds ratio: 1.81; 95% CI, 1.12-2.93; P = 0.015) and depression in adults (hazard ratio: 1.22; 95% CI, 1.16-1.28, P < 0.001) as well as wheezing (odds ratio: 1.40; 95% CI, 1.27-1.55; P < 0.001) but not asthma in adolescents (odds ratio: 1.20; 95% CI, 0.99-1.46; P = 0.065). In addition, consumption of ultraprocessed food was associated with cardiometabolic diseases, frailty, irritable bowel syndrome, functional dyspepsia and cancer (breast and overall) in adults while also being associated with metabolic syndrome in adolescents and dyslipidaemia in children. Although links between ultraprocessed food consumption and some intermediate risk factors in adults were also highlighted, further studies are required to more clearly define associations in children and adolescents. STUDY REGISTRATION: Prospero ID: CRD42020176752.
Collapse
Affiliation(s)
- Melissa M Lane
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food and Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Jessica A Davis
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food and Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Sally Beattie
- The Barwon Centre of Orthopaedic Research and Education (B-CORE), Barwon Health and St John of God Hospital Geelong, Geelong, Victoria, Australia
| | - Clara Gómez-Donoso
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| | - Amy Loughman
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food and Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Adrienne O'Neil
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food and Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Felice Jacka
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food and Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia.,Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Black Dog Institute, Randwick, New South Wales, Australia.,College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food and Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Richard Page
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food and Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia.,The Barwon Centre of Orthopaedic Research and Education (B-CORE), Barwon Health and St John of God Hospital Geelong, Geelong, Victoria, Australia.,School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Wolfgang Marx
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food and Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Tetyana Rocks
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food and Mood Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
166
|
García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, Coca S, Guijarro LG, García-Honduvilla N, Asúnsolo A, Sanchez-Trujillo L, Lahera G, Bujan J, Monserrat J, Álvarez-Mon M, Álvarez-Mon MA, Ortega MA. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients 2021; 13:699. [PMID: 33671569 PMCID: PMC7927055 DOI: 10.3390/nu13020699] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The most prevalent diseases of our time, non-communicable diseases (NCDs) (including obesity, type 2 diabetes, cardiovascular diseases and some types of cancer) are rising worldwide. All of them share the condition of an "inflammatory disorder", with impaired immune functions frequently caused or accompanied by alterations in gut microbiota. These multifactorial maladies also have in common malnutrition related to physiopathology. In this context, diet is the greatest modulator of immune system-microbiota crosstalk, and much interest, and new challenges, are arising in the area of precision nutrition as a way towards treatment and prevention. It is a fact that the westernized diet (WD) is partly responsible for the increased prevalence of NCDs, negatively affecting both gut microbiota and the immune system. Conversely, other nutritional approaches, such as Mediterranean diet (MD), positively influence immune system and gut microbiota, and is proposed not only as a potential tool in the clinical management of different disease conditions, but also for prevention and health promotion globally. Thus, the purpose of this review is to determine the regulatory role of nutritional components of WD and MD in the gut microbiota and immune system interplay, in order to understand, and create awareness of, the influence of diet over both key components.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Alejandro J. Castellanos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Fernando Noguerales-Fraguas
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Department of General Surgery, Príncipe de Asturias Hospital, 28806 Alcalá de Henares, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Angel Asúnsolo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
| | - Lara Sanchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Service of Pediatric, Hospital Universitario Principe de Asturias, Alcalá de Henares,28806 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain;
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain;
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Department of Psychiatry and Medical Psychology, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain;
| |
Collapse
|
167
|
The Effect of Balsamic Vinegar Dressing on Protein and Carbohydrate Digestibility is Dependent on the Food Matrix. Foods 2021; 10:foods10020411. [PMID: 33673211 PMCID: PMC7917894 DOI: 10.3390/foods10020411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 01/21/2023] Open
Abstract
The balsamic vinegar of Modena (BVM), a food specialty under the European Protected Geographical Indication system, is made from grape must blended with wine vinegar exclusively in the Italian province of Modena or Reggio Emilia. Vinegar is associated to an improved digestive function and glycemic response to carbohydrate-rich meals, appetite stimulation, and reduction of hyperlipidemia and obesity. Although many of these effects are attributed to the high concentration of bioactive molecules, the modulation of digestive enzymes activity could have a role. The aim of this study was to investigate the effect of BVM on the digestibility and component release of three foods that are often seasoned with this dressing but have different composition: Parmigiano Reggiano cheese, Bresaola (cured meat), and boiled potatoes. BVM modulated the protein digestion of protein-rich foods (cheese and cured meat) in a matrix-dependent manner, and the BVM effect was mainly related to the inhibition of pepsin in the gastric phase. In the starch-rich food (boiled potatoes), the most impressive effect of BVM was the lower release of anomeric and total carbohydrates, which was consistent with the observed reduction of pancreatic amylase activity. The present investigation shed a new light on the impact of BVM on the digestion process.
Collapse
|
168
|
From Green Technology to Functional Olive Oils: Assessing the Best Combination of Olive Tree-Related Extracts with Complementary Bioactivities. Antioxidants (Basel) 2021; 10:antiox10020202. [PMID: 33573339 PMCID: PMC7912092 DOI: 10.3390/antiox10020202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023] Open
Abstract
Our aim was to assess the combination of olive tree-related extracts with the most favorable profile of in vitro bioactive properties. We tested the antioxidant (increment of low-density lipoprotein resistance against oxidation), vasoactive (promotion of nitric oxide release and decrease of endothelin-1 production in human umbilical vein endothelial cells), anti-inflammatory (decrease of the endothelial production of vascular cell adhesion molecule-1), and antithrombotic (reduction of the endothelial release of plasminogen activator inhibitor-1) capacities of six phenolic extracts and three triterpenic acid solutions (Ps and Ts, respectively). We tested extracts alone and in combination, at nutritional (Ps: 0.05–0.5 μmol/L; Ts: 0.001–0.1 μmol/L) and nutraceutical doses (Ps: 1–10 μmol/L; Ts: 0.25–10 μmol/L). The combination of Ps rich in 3,4-dihydroxyphenylglycol (76%, P2), hydroxytyrosol (95%, P3), and oleuropein (70%, P4) (final nutritional concentration: 0.15 μmol/L; final nutraceutical concentration: 3 μmol/L) was the best in order to prepare functional products and nutraceuticals with cardioprotective properties, despite the fact that the isolated extract with the greatest in vitro properties was P5 (75% oleocanthal), suggesting a potential synergistic effect among different olive components.
Collapse
|
169
|
Liu M, Han TJ, Huan F, Li MS, Xia F, Yang Y, Wu YH, Chen GX, Cao MJ, Liu GM. Effects of thermal processing on the allergenicity, structure, and critical epitope amino acids of crab tropomyosin. Food Funct 2021; 12:2032-2043. [DOI: 10.1039/d0fo02869j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food processing can change the structure and immunoreactivity of purified allergens, but the effect of food processing on the immunoreactivity of the processed and purified allergen is still poorly understood.
Collapse
|
170
|
Joint position statement on management of patient with osteoporosis during COVID-19 contingency from the AMMOM, CONAMEGER, FELAEN, FEMECOG, FEMECOT, and ICAAFYD. Arch Osteoporos 2021; 16:18. [PMID: 33495916 PMCID: PMC7833891 DOI: 10.1007/s11657-020-00869-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/25/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED Infection by SARS-Cov-2 (COVID-19) has affected practically all the world. This joint position statement of Latin American Medical Societies provides an updated guide for the prevention, diagnosis, and treatment of osteoporotic patients in the face of possible clinical scenarios posed by the COVID-19 health crisis. BACKGROUND Infection by SARS-Cov-2 (COVID-19) has affected practically all the world. Characterized by high contagiousness, significative morbidity, and mortality in a segment of those infected, it has overwhelmed health services and forced to redirect resources to the emergency while impacting the attention of acute non-COVID-19 and many chronic conditions. OBJECTIVE The objective of this study is to provide an updated guide for the prevention, diagnosis, and treatment of osteoporotic patients in the face of possible clinical scenarios posed by the COVID-19 health crisis. METHODS A task force, of bone specialists with a wide range of disciplines in the field of osteoporosis and fragility fracture, was convened with the representation of several professional associations, namely, the Mexican Association of Bone and Mineral Metabolism (AMMOM), the National College of Geriatric Medicine (CONAMEGER), the Latin American Federation of Endocrinology (FELAEN), the Mexican Federation of Colleges of Obstetrics and Gynecology (FEMECOG), the Mexican Federation of Colleges of Orthopedics and Traumatology (FEMECOT), and the Institute of Applied Sciences for Physical Activity and Sports of the University of Guadalajara (ICAAFYD). Clinical evidence was collated, and an evidence report was rapidly generated and disseminated. After finding the gaps in the available evidence, a consensus opinion of experts was made. The resulting draft was reviewed and modified accordingly, in 4 rounds, by the participants. RESULTS The task force approved the initial guidance statements, with moderate and high consensus. These were combined, resulting in the final guidance statements on the (1) evaluation of fracture risk; (2) stratification of risk priorities; (3) indications of bone density scans and lab tests; (4) initiation and continuation of pharmacologic therapy; (5) interruptions of therapy; (6) treatment of patients with incident fracture; (7) physical therapy and fall prevention; and (8) nutritional interventions. CONCLUSION These guidance statements are provided to promote optimal care to patients at risk for osteoporosis and fracture, during the current COVID-19 pandemic. However, given the low level of available evidence and the rapidly evolving literature, this guidance is presented as a "living document" and future updates are anticipated.
Collapse
|
171
|
Lammerskitten A, Wiktor A, Mykhailyk V, Samborska K, Gondek E, Witrowa-Rajchert D, Toepfl S, Parniakov O. Pulsed electric field pre-treatment improves microstructure and crunchiness of freeze-dried plant materials: Case of strawberry. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
172
|
Smiljanec K, Mbakwe AU, Ramos-Gonzalez M, Mesbah C, Lennon SL. Associations of Ultra-Processed and Unprocessed/Minimally Processed Food Consumption with Peripheral and Central Hemodynamics, and Arterial Stiffness in Young Healthy Adults. Nutrients 2020; 12:nu12113229. [PMID: 33105677 PMCID: PMC7690393 DOI: 10.3390/nu12113229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Consumption of ultra-processed food (UPF) replaces the intake of freshly prepared unprocessed/minimally processed food (MPF) and is positively associated with hypertension and cardiovascular disease (CVD). The objective of this observational study was to investigate the relation between (1) UPF and (2) MPF with peripheral and central blood pressure (BP), wave reflection, and arterial stiffness. Habitual dietary intake, ambulatory BP, augmentation index (AIx), and pulse wave velocity (PWV) were assessed in 40 normotensive young adults (15 M/25 W; 27 ± 1 y; body mass index 23.6 ± 0.5 kg/m2). UPF consumption was positively associated with overall and daytime peripheral systolic BP (B = 0.25, 95% confidence interval (CI) 0.03, 0.46, p = 0.029; B = 0.32, 95% CI 0.09, 0.56, p = 0.008, respectively), daytime diastolic BP (B = 0.18, 95% CI 0.01, 0.36, p = 0.049) and daytime peripheral pulse pressure (PP; B = 0.22, 95% CI 0.03, 0.41, p = 0.027). MPF consumption was inversely associated with daytime peripheral PP (B = −0.27, 95% CI −0.47, −0.07, p = 0.011), overall and daytime central systolic BP (B = −0.27, 95% CI −0.51, −0.02, p = 0.035; B = −0.31, 95% CI −0.58, −0.04, p = 0.024, respectively), and nighttime central PP (B = −0.10, 95% CI −0.19, −0.01, p = 0.042). Both UPF and MPF were not associated with AIx nor PWV. These data suggest avoidance of UPF and consumption of more MPF may reduce CVD risk factors.
Collapse
|
173
|
|
174
|
Abstract
This review outlines the current use of magnetic resonance (MR) techniques to study digestion and highlights their potential for providing markers of digestive processes such as texture changes and nutrient breakdown. In vivo digestion research can be challenging due to practical constraints and biological complexity. Therefore, digestion is primarily studied using in vitro models. These would benefit from further in vivo validation. NMR is widely used to characterise food systems. MRI is a related technique that can be used to study both in vitro model systems and in vivo gastro-intestinal processes. MRI allows visualisation and quantification of gastric processes such as gastric emptying and coagulation. Both MRI and NMR scan sequences can be configured to be sensitive to different aspects of gastric or intestinal contents. For example, magnetisation transfer and chemical exchange saturation transfer can detect proton (1H) exchange between water and proteins. MRI techniques have the potential to provide molecular-level and quantitative information on in vivo gastric (protein) digestion. This requires careful validation in order to understand what these MR markers of digestion mean in a specific digestion context. Combined with other measures they can be used to validate and inform in vitro digestion models. This may bridge the gap between in vitro and in vivo digestion research and can aid the optimisation of food properties for different applications in health and disease.
Collapse
|
175
|
Tonyali B, Sensoy I, Karakaya S. Effects of processing on onion skin powder added extrudates. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:3426-3435. [PMID: 32728290 PMCID: PMC7374643 DOI: 10.1007/s13197-020-04376-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 11/26/2022]
Abstract
It is possible to enhance the functional properties of extruded products with the inclusion of fruit and vegetable by-products. Onion skin, a rich source of quercetin and fiber, is considered as waste in the industry and can be used as an alternative ingredient to improve the nutritional value of the extruded products. Three levels (3, 6, and 9%) of onion skin powder (OSP) were added to wheat flour and compared with control (0% OSP). The effect of the extrusion process on accessible quercetin, total phenolic content, and antioxidant activity of the samples were investigated. In addition, carbohydrate digestibility analyses were conducted for the products. Mass spectrometry (LC-MS/MS) results indicated that increasing the OSP level increased the quercetin content. The process caused the release of the entrapped quercetin from OSP, which was revealed by significantly higher quercetin levels for the extrudates. Some of the quercetin was lost during in vitro digestion process. Increasing the OSP level increased antioxidant activity and total phenolic contents of the samples. Total phenolic contents decreased significantly after the processing, yet antioxidant activities were not affected. The extruded products showed high amounts of rapidly available glucose (69.5 g/100 g). The OSP enhancement did not change the carbohydrate digestibility of products. The results indicated that the extrusion process could increase the level of accessible bioactive ingredients, and the level of functional compound addition can be optimized further.
Collapse
Affiliation(s)
- Bade Tonyali
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Present Address: Department of Animal Science and Industry, Food Science Institute, Kansas State University, Manhattan, KS USA
| | - Ilkay Sensoy
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Sibel Karakaya
- Department of Food Engineering, Ege University, Izmir, Turkey
| |
Collapse
|
176
|
Hazard B, Trafford K, Lovegrove A, Griffiths S, Uauy C, Shewry P. Strategies to improve wheat for human health. NATURE FOOD 2020; 1:475-480. [PMID: 37128081 DOI: 10.1038/s43016-020-0134-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/17/2020] [Indexed: 05/03/2023]
Abstract
Despite their economic importance and growing demand, concerns are emerging around wheat-based foods and human health. Most wheat-based foods are made from refined white flour rather than wholemeal flour, and the overconsumption of these products may contribute to the increasing global prevalence of chronic diseases, particularly type 2 diabetes and obesity. Here, we review how the amount, composition and interactions of starch and cell wall polysaccharides, the major carbohydrate components in refined wheat products, impact human health. We discuss strategies and challenges to manipulate these components for improved diet and health using newly developed wheat genomics tools and resources. Commercial foods developed from these novel approaches must be produced without adverse effects on cost, consumer acceptability and processing properties.
Collapse
|
177
|
Villa C, Moura MBMV, Costa J, Mafra I. Immunoreactivity of Lupine and Soybean Allergens in Foods as Affected by Thermal Processing. Foods 2020; 9:E254. [PMID: 32120788 PMCID: PMC7142587 DOI: 10.3390/foods9030254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 12/18/2022] Open
Abstract
Lupine and soybean are important technological aids for the food industry. However, they are also capable of inducing severe allergic reactions in food-sensitized/allergic individuals. In this context, this work intended to study the combined effects of thermal processing and food matrix on the immunoreactivity of lupine and soybean proteins used as ingredients in bakery and meat products, respectively. For this purpose, the effects of baking, mild oven cooking, and autoclaving on the protein profiles were evaluated, using model mixtures simulating the production of lupine-containing breads and soybean-containing cooked hams/sausages, by native- and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and immunoblotting using specific antibodies. The results showed that lupine gamma-conglutin immunoreactivity was slightly decreased in wheat flour mixtures compared to rice, but it was more pronounced in baked products. In meat mixtures, substantial protein fragmentation was noted after autoclaving, with decreased immunoreactivity of soybean trypsin inhibitor. The analysis of 22 commercial products enabled the identification of lupine gamma-conglutin in four bakery samples and soybean trypsin-inhibitor in five sausages, and further differentiated autoclaved from other milder thermally treated products. Generally, the immunoreactivity of target proteins was reduced by all the tested thermal treatments, though at a higher extent after autoclaving, being slightly altered by the food matrix.
Collapse
Affiliation(s)
| | | | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.V.); (M.B.M.V.M.)
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.V.); (M.B.M.V.M.)
| |
Collapse
|
178
|
Monfoulet LE, Buffière C, Istas G, Dufour C, Le Bourvellec C, Mercier S, Bayle D, Boby C, Remond D, Borel P, Rodriguez-Mateos A, Milenkovic D, Morand C. Effects of the apple matrix on the postprandial bioavailability of flavan-3-ols and nutrigenomic response of apple polyphenols in minipigs challenged with a high fat meal. Food Funct 2020; 11:5077-5090. [DOI: 10.1039/d0fo00346h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Food matrix interactions with polyphenols can affect their bioavailability and as a consequence may modulate their biological effects.
Collapse
Affiliation(s)
| | | | - Geoffrey Istas
- Department of Nutritional Sciences
- School of Life Course Sciences
- Faculty of Life Sciences and Medicine
- King's College
- London
| | - Claire Dufour
- INRAE
- Université d′Avignon
- UMR408
- Sécurité et Qualité des Produits d′Origine Végétale (SQPOV)
- Avignon
| | - Carine Le Bourvellec
- INRAE
- Université d′Avignon
- UMR408
- Sécurité et Qualité des Produits d′Origine Végétale (SQPOV)
- Avignon
| | - Sylvie Mercier
- Université Clermont Auvergne
- INRAE
- UNH
- Clermont-Ferrand
- France
| | | | - Céline Boby
- INRAE
- Unité Mixte de Recherches sur les Herbivores
- Clermont-Ferrand
- France
| | - Didier Remond
- Université Clermont Auvergne
- INRAE
- UNH
- Clermont-Ferrand
- France
| | | | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences
- School of Life Course Sciences
- Faculty of Life Sciences and Medicine
- King's College
- London
| | | | | |
Collapse
|
179
|
Dairy Fat Consumption and the Risk of Metabolic Syndrome: An Examination of the Saturated Fatty Acids in Dairy. Nutrients 2019; 11:nu11092200. [PMID: 31547352 PMCID: PMC6769731 DOI: 10.3390/nu11092200] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Lifestyle is a key modifiable risk factor involved in the manifestation of metabolic syndrome and, in particular, diet plays a pivotal role in its prevention and development. Current dietary guidelines discourage the consumption of saturated fat and dietary sources rich in saturated fat, such as dairy products, despite data suggesting that full-fat dairy consumption is protective against metabolic syndrome. This narrative review assessed the recent epidemiological and clinical research that examined the consumption of dairy-derived saturated fatty acids (SFA) on metabolic syndrome risk. In addition, this review evaluated studies of individual SFA to gain insight into the potential mechanisms at play with intake of a diet enriched with these dairy-derived fatty acids. This work underscores that SFA are a heterogenous class of fatty acids that can differ considerably in their biological activity within the body depending on their length and specific chemical structure. In summary, previous work on the impact of dairy-derived SFA consumption on disease risk suggests that there is currently insufficient evidence to support current dietary guidelines which consolidate all dietary SFA into a single group of nutrients whose consumption should be reduced, regardless of dietary source, food matrix, and composition.
Collapse
|