151
|
Yuan T, Keijer J, Guo AH, Lombard DB, de Boer VCJ. An optimized desuccinylase activity assay reveals a difference in desuccinylation activity between proliferative and differentiated cells. Sci Rep 2020; 10:17030. [PMID: 33046741 PMCID: PMC7552388 DOI: 10.1038/s41598-020-72833-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Succinylation is a novel post-translational modification identified on many proteins and is involved in multiple biological processes. Succinylation levels are dynamically regulated, balanced by succinylation and desuccinylation processes, and are closely connected to metabolic state in vivo. Sirtuins have been shown to possess NAD+-dependent desuccinylation activity in vitro and in vivo, among which the desuccinylation activity of SIRT5 is most extensively studied. Our understanding of the response of succinylation levels to different metabolic conditions, is hampered by the lack of a fast NAD+-dependent desuccinylation assay in a physiological context. In the present study, we therefore optimized and validated a fluorescence-based assay for measuring NAD+-dependent desuccinylation activity in cell lysates. Our results demonstrated that shorter and stricter reaction time was critical to approach the initial rate of NAD+-dependent desuccinylation activity in crude cell lysate systems, as compared to the desuccinylation reaction of purified His-SIRT5. Analysis of desuccinylation activity in SIRT5 knockout HEK293T cells confirmed the relevance of SIRT5 in cellular desuccinylation activity, as well as the presence of other NAD+-dependent desuccinylase activities. In addition, we were able to analyse desuccinylation and deacetylation activity in multiple cell lines using this assay. We showed a remarkably higher desuccinylase activity, but not deacetylase activity, in proliferative cultured muscle and adipose cells in comparison with their differentiated counterparts. Our results reveal an alteration in NAD+-dependent desuccinylation activity under different metabolic states.
Collapse
Affiliation(s)
- Taolin Yuan
- Human and Animal Physiology, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands
| | - Angela H Guo
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vincent C J de Boer
- Human and Animal Physiology, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands.
| |
Collapse
|
152
|
Imbalance of Lysine Acetylation Contributes to the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21197182. [PMID: 33003340 PMCID: PMC7582258 DOI: 10.3390/ijms21197182] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders. The neuropathological features of PD are selective and progressive loss of dopaminergic neurons in the substantia nigra pars compacta, deficiencies in striatal dopamine levels, and the presence of intracellular Lewy bodies. Interactions among aging and genetic and environmental factors are considered to underlie the common etiology of PD, which involves multiple changes in cellular processes. Recent studies suggest that changes in lysine acetylation and deacetylation of many proteins, including histones and nonhistone proteins, might be tightly associated with PD pathogenesis. Here, we summarize the changes in lysine acetylation of both histones and nonhistone proteins, as well as the related lysine acetyltransferases (KATs) and lysine deacetylases (KDACs), in PD patients and various PD models. We discuss the potential roles and underlying mechanisms of these changes in PD and highlight that restoring the balance of lysine acetylation/deacetylation of histones and nonhistone proteins is critical for PD treatment. Finally, we discuss the advantages and disadvantages of different KAT/KDAC inhibitors or activators in the treatment of PD models and emphasize that SIRT1 and SIRT3 activators and SIRT2 inhibitors are the most promising effective therapeutics for PD.
Collapse
|
153
|
Hong YA, Kim JE, Jo M, Ko GJ. The Role of Sirtuins in Kidney Diseases. Int J Mol Sci 2020; 21:ijms21186686. [PMID: 32932720 PMCID: PMC7555196 DOI: 10.3390/ijms21186686] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Sirtuins (SIRTs) are class III histone deacetylases (HDACs) that play important roles in aging and a wide range of cellular functions. Sirtuins are crucial to numerous biological processes, including proliferation, DNA repair, mitochondrial energy homeostasis, and antioxidant activity. Mammals have seven different sirtuins, SIRT1–7, and the diverse biological functions of each sirtuin are due to differences in subcellular localization, expression profiles, and cellular substrates. In this review, we summarize research advances into the role of sirtuins in the pathogenesis of various kidney diseases including acute kidney injury, diabetic kidney disease, renal fibrosis, and kidney aging along with the possible underlying molecular mechanisms. The available evidence indicates that sirtuins have great potential as novel therapeutic targets for the prevention and treatment of kidney diseases.
Collapse
Affiliation(s)
- Yu Ah Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Daejeon St. Mary Mary’s Hospital, Daejeon 34943, Korea;
| | - Ji Eun Kim
- Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (J.E.K.); (M.J.)
| | - Minjee Jo
- Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (J.E.K.); (M.J.)
| | - Gang-Jee Ko
- Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (J.E.K.); (M.J.)
- Correspondence: ; Tel.: +82-2-2626-3039
| |
Collapse
|
154
|
Ou T, Yang W, Li W, Lu Y, Dong Z, Zhu H, Sun X, Dong Z, Weng X, Chang S, Li H, Li Y, Qiu Z, Hu K, Sun A, Ge J. SIRT5 deficiency enhances the proliferative and therapeutic capacities of adipose-derived mesenchymal stem cells via metabolic switching. Clin Transl Med 2020; 10:e172. [PMID: 32997407 PMCID: PMC7510333 DOI: 10.1002/ctm2.172] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have therapeutic potential for multiple ischemic diseases. However, in vitro expansion of MSCs before clinical application leads to metabolic reprogramming from glycolysis to oxidative phosphorylation, drastically impairing their proliferative and therapeutic capacities. This study aimed to define the regulatory effects of Sirtuin 5 (SIRT5) on the proliferative and therapeutic functions of adipose-derived MSCs (ADMSCs) during in vitro expansion. METHODS ADMSCs were isolated from wild-type (WT) and Sirt5-knockout (Sirt5-/- ) mice. Cell counting assay was used to investigate the proliferative capacities of the ADMSCs. Dihydroethidium and senescence-associated β-galactosidase stainings were used to measure intracellular ROS and senescence levels. Mass spectrometry was used to analyze protein succinylation. Oxygen consumption rates and extra cellular acidification rates were measured as indicators of mitochondrial respiration and glycolysis. Metabolic-related genes expression were verified by quantitative PCR and western blot. Hind limb ischemia mouse model was used to evaluate the therapeutic potentials of WT and Sirt5-/- ADSMCs. RESULTS SIRT5 protein levels were upregulated in ADMCs during in vitro expansion. Sirt5-/- ADMSCs exhibited a higher proliferation rate, delayed senescence, and reduced ROS accumulation. Furthermore, elevated protein succinylation levels were observed in Sirt5-/- ADMSCs, leading to the reduced activity of tricarboxylic acid cycle-related enzymes and attenuated mitochondrial respiration. Glucose uptake, glycolysis, and pentose phosphate pathway were elevated in Sirt5-/- ADMSCs. Inhibition of succinylation by glycine or re-expression of Sirt5 reversed the metabolic alterations in Sirt5-/- ADMSCs, thus abolishing their enhanced proliferative capacities. In the hind limb ischemia mouse model, SIRT5-/- ADMSCs transplantation enhanced blood flow recovery and angiogenesis compared with WT ADMSCs. CONCLUSIONS Our results indicate that SIRT5 deficiency during ADMSC culture expansion leads to reversed metabolic pattern, enhanced proliferative capacities, and improved therapeutic outcomes. These data suggest SIRT5 as a potential target to enhance the functional properties of MSCs for clinical application.
Collapse
Affiliation(s)
- Tiantong Ou
- Department of Cardiology, Zhongshan HospitalFudan University, Shanghai Institute of Cardiovascular DiseasesShanghaiChina
| | - Wenlong Yang
- Department of Cardiology, Zhongshan HospitalFudan University, Shanghai Institute of Cardiovascular DiseasesShanghaiChina
| | - Wenjia Li
- Department of Cardiology, Zhongshan HospitalFudan University, Shanghai Institute of Cardiovascular DiseasesShanghaiChina
| | - Yijing Lu
- Department of Cardiology, Zhongshan HospitalFudan University, Shanghai Institute of Cardiovascular DiseasesShanghaiChina
- Institute of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zheng Dong
- Department of Cardiology, Zhongshan HospitalFudan University, Shanghai Institute of Cardiovascular DiseasesShanghaiChina
| | - Hongming Zhu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xiaolei Sun
- Department of Cardiology, Zhongshan HospitalFudan University, Shanghai Institute of Cardiovascular DiseasesShanghaiChina
| | - Zhen Dong
- Department of Cardiology, Zhongshan HospitalFudan University, Shanghai Institute of Cardiovascular DiseasesShanghaiChina
| | - Xinyu Weng
- Department of Cardiology, Zhongshan HospitalFudan University, Shanghai Institute of Cardiovascular DiseasesShanghaiChina
| | - Suchi Chang
- Department of Cardiology, Zhongshan HospitalFudan University, Shanghai Institute of Cardiovascular DiseasesShanghaiChina
| | - Hua Li
- Department of Cardiology, Zhongshan HospitalFudan University, Shanghai Institute of Cardiovascular DiseasesShanghaiChina
| | - Yufan Li
- Department of Cardiology, Zhongshan HospitalFudan University, Shanghai Institute of Cardiovascular DiseasesShanghaiChina
| | - Zhiwei Qiu
- Department of Cardiology, Zhongshan HospitalFudan University, Shanghai Institute of Cardiovascular DiseasesShanghaiChina
| | - Kai Hu
- Department of Cardiology, Zhongshan HospitalFudan University, Shanghai Institute of Cardiovascular DiseasesShanghaiChina
| | - Aijun Sun
- Department of Cardiology, Zhongshan HospitalFudan University, Shanghai Institute of Cardiovascular DiseasesShanghaiChina
- Institute of Biomedical SciencesFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Zhongshan HospitalFudan University, Shanghai Institute of Cardiovascular DiseasesShanghaiChina
- Institute of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
155
|
Xu W, Li L, Zhang L. NAD + Metabolism as an Emerging Therapeutic Target for Cardiovascular Diseases Associated With Sudden Cardiac Death. Front Physiol 2020; 11:901. [PMID: 32903597 PMCID: PMC7438569 DOI: 10.3389/fphys.2020.00901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to its central role in mediating oxidation reduction in fuel metabolism and bioenergetics, nicotinamide adenine dinucleotide (NAD+) has emerged as a vital co-substrate for a number of proteins involved in diverse cellular processes, including sirtuins, poly(ADP-ribose) polymerases and cyclic ADP-ribose synthetases. The connection with aging and age-associated diseases has led to a new wave of research in the cardiovascular field. Here, we review the basics of NAD+ homeostasis, the molecular physiology and new advances in ischemic-reperfusion injury, heart failure, and arrhythmias, all of which are associated with increased risks for sudden cardiac death. Finally, we summarize the progress of NAD+-boosting therapy in human cardiovascular diseases and the challenges for future studies.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Le Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
156
|
Roles of Mitochondrial Sirtuins in Mitochondrial Function, Redox Homeostasis, Insulin Resistance and Type 2 Diabetes. Int J Mol Sci 2020; 21:ijms21155266. [PMID: 32722262 PMCID: PMC7432223 DOI: 10.3390/ijms21155266] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are the metabolic hubs that process a number of reactions including tricarboxylic acid cycle, β-oxidation of fatty acids and part of the urea cycle and pyrimidine nucleotide biosynthesis. Mitochondrial dysfunction impairs redox homeostasis and metabolic adaptation, leading to aging and metabolic disorders like insulin resistance and type 2 diabetes. SIRT3, SIRT4 and SIRT5 belong to the sirtuin family proteins and are located at mitochondria and also known as mitochondrial sirtuins. They catalyze NAD+-dependent deacylation (deacetylation, demalonylation and desuccinylation) and ADP-ribosylation and modulate the function of mitochondrial targets to regulate the metabolic status in mammalian cells. Emerging evidence has revealed that mitochondrial sirtuins coordinate the regulation of gene expression and activities of a wide spectrum of enzymes to orchestrate oxidative metabolism and stress responses. Mitochondrial sirtuins act in synergistic or antagonistic manners to promote respiratory function, antioxidant defense, insulin response and adipogenesis to protect individuals from aging and aging-related metabolic abnormalities. In this review, we focus on the molecular mechanisms by which mitochondrial sirtuins regulate oxidative metabolism and antioxidant defense and discuss the roles of their deficiency in the impairment of mitochondrial function and pathogenesis of insulin resistance and type 2 diabetes.
Collapse
|
157
|
Zhao L, Cao J, Hu K, He X, Yun D, Tong T, Han L. Sirtuins and their Biological Relevance in Aging and Age-Related Diseases. Aging Dis 2020; 11:927-945. [PMID: 32765955 PMCID: PMC7390530 DOI: 10.14336/ad.2019.0820] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Sirtuins, initially described as histone deacetylases and gene silencers in yeast, are now known to have many more functions and to be much more abundant in living organisms. The increasing evidence of sirtuins in the field of ageing and age-related diseases indicates that they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. Here, we summarize some of the recent discoveries in sirtuin biology that clearly implicate the functions of sirtuins in the regulation of aging and age-related diseases. Furthermore, human sirtuins are considered promising therapeutic targets for anti-aging and ageing-related diseases and have attracted interest in scientific communities to develop small molecule activators or drugs to ameliorate a wide range of ageing disorders. In this review, we also summarize the discovery and development status of sirtuin-targeted drug and further discuss the potential medical strategies of sirtuins in delaying aging and treating age-related diseases.
Collapse
Affiliation(s)
- Lijun Zhao
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Jianzhong Cao
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kexin Hu
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Xiaodong He
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dou Yun
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Tanjun Tong
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Limin Han
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| |
Collapse
|
158
|
Sun C, Zeng X, Guo H, Wang T, Wei L, Zhang Y, Zhao J, Ma X, Zhang N. MicroRNA-125a-5p modulates radioresistance in LTEP-a2 non-small cell lung cancer cells by targeting SIRT7. Cancer Biomark 2020; 27:39-49. [PMID: 31683458 DOI: 10.3233/cbm-190381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Micro(mi)RNAs are a series of 20-24 nt non-coding small-molecule single-stranded RNAs that are believed to be closely related to tumor occurrence, development and other biological processes. MicroRNA-125a modulates radiochemotherapy sensitivity. However, the mechanism by which miRNA-125a regulates radiation resistance by lung cancer cells is yet to be elucidated. OBJECTIVE The present study was designed to explore the biological role of miR-125a in regulating radioresistance in non-small cell lung carcinoma (NSCLC). METHODS AND RESULTS The expression of miR-125a was assessed by quantitative real-time PCR in the human lung cancer cell lines, A549 and LTEP-a2. Notably, we found that miRNA-125a-5p regulated lung cancer radiosensitivity. We found that miRNA-125a-5p was more highly expressed in LTEP-a2 cells, which showed radiosensitivity compared to A549 cells with lower expression of miRNA-125a-5p. In addition, we up-regulated or down-regulated miR-125a-5p expression using an miR-125a-5p mimic or inhibitor, respectively, to reverse radioresistance. Flow cytometry revealed that the mimic increased the apoptotic rate as well as the expression of the apoptosis-related protein, cleaved poly ADP-ribose polymerase (PARP). Gene detection by luciferase reporter showed that sirtuin (SIRT)7 is a direct target of miR-125a-5p. Inhibiting SIRT7 using a small interfering RNA (siSIRT) abrogated resistance to radiation. In addition, the overexpression of SIRT7 decreased radiation-induced cell apoptosis. CONCLUSION Our results indicated that the miR-125a level varies in NSCLC cell lines with different radiosensitivities. We demonstrated that miR-125a-5p upregulated SIRT7 and further upregulated apoptosis in lung cancer cells to increase their radiosensitivity. Our findings provide new directions for improving radiosensitivity in malignant lung tumors.
Collapse
|
159
|
Mautone N, Zwergel C, Mai A, Rotili D. Sirtuin modulators: where are we now? A review of patents from 2015 to 2019. Expert Opin Ther Pat 2020; 30:389-407. [PMID: 32228181 DOI: 10.1080/13543776.2020.1749264] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In recent years, sirtuins (SIRTs) gained an increasing consideration because of their multiple key roles in several biological settings such as the regulation of transcription, energetic metabolism, cell cycle progression, and cytodifferentiation, apoptosis, neuro- and cardio-protection, inflammation, cancer onset and progression. Since there is mounting evidence in favor of potential therapeutic applications of SIRT modulators in various age-related disorders, the search about them is quite active. Areas covered: This review includes the patents regarding SIRT modulators released from 2015 to 2019 and provides an overview of the most relevant SIRT modulators.Expert opinion: Despite the knowledge about this family of broad-spectrum protein lysine deacylases has recently massively increased, there are still open questions, first of all, the exact nature of their involvement in various age-related conditions. The search for isoform-specific SIRT activators and inhibitors is still at its infancy, a limited number of patents describing them has been released, and not many clinical trials are ongoing. However, it is extremely likely that the successes obtained in the structural elucidation and structure-based design approaches that very recently have led to potent and specific SIRT modulators will pave the way for the development of further compounds selective for every single isoform.
Collapse
Affiliation(s)
- Nicola Mautone
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Clemens Zwergel
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy.,Dipartimento di Medicina di Precisione, "Luigi Vanvitelli", Università della Campania, Naples, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Dante Rotili
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| |
Collapse
|
160
|
Bannon DI, Bao W, Turner SD, McCain WC, Dennis W, Wolfinger R, Perkins E, Abounader R. Gene expression in mouse muscle over time after nickel pellet implantation. Metallomics 2020; 12:528-538. [PMID: 32065191 DOI: 10.1039/c9mt00289h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The transition metal nickel is used in a wide variety of alloys and medical devices. Nickel can cause a range of toxicities from allergy in humans to tumors when implanted in animals. Several microarray studies have examined nickel toxicity, but so far none have comprehensively profiled expression over an extended period. In this work, male mice were implanted with a single nickel pellet in the muscle of the right leg with the left leg used as a control. At 3 week intervals up to 12 months, nickel concentrations in bioflulids and microarrays of surrounding tissue were used to track gene expression patterns. Pellet biocorrosion resulted in varying levels of systemic nickel over time, with peaks of 600 μg L-1 in serum, while global gene expression was cyclical in nature with immune related genes topping the list of overexpressed genes. IPA and KEGG pathway analyses was used to attribute overall biological function to changes in gene expression levels, supported by GO enrichment analysis. IPA pathways identified sirtuin, mitochondria, and oxidative phosphorylation as top pathways, based predominantly on downregulated genes, whereas immune processes were associated with upregulated genes. Top KEGG pathways identified were lysosome, osteoclast differentiation, and phasgosome. Both pathway approaches identified common immune responses, as well as hypoxia, toll like receptor, and matrix metalloproteinases. Overall, pathway analysis identified a negative impact on energy metabolism, and a positive impact on immune function, in particular the acute phase response. Inside the cell the impacts were on mitochondria and lysosome. New pathways and genes responsive to nickel were identified from the large dataset in this study which represents the first long-term analysis of the effects of chronic nickel exposure on global gene expression.
Collapse
Affiliation(s)
- Desmond I Bannon
- U.S. Army Public Health Centre, Toxicology Directorate, 8988 Willoughby Road, Aberdeen Proving Ground, Maryland 21010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Zheng W. Review: The plant sirtuins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110434. [PMID: 32081272 DOI: 10.1016/j.plantsci.2020.110434] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/05/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The sirtuin family of intracellular enzymes are able to catalyze a unique β-nicotinamide adenine dinucleotide (β-NAD+)-dependent Nε-acyl-lysine deacylation reaction on histone and non-histone protein substrates. Since 2000, the sirtuin family members have been identified in both prokaryotes and eukaryotes; tremendous accomplishments have also been achieved on the mechanistic and functional (pharmacological) understanding of the sirtuin-catalyzed deacylation reaction. Among the eukaryotic organisms, past research has been focused more on the yeast and mammalian sirtuins than on the plant sirtuins, however, the very presence of sirtuins in various plant species and the functional studies on plant sirtuins published thus far attest to the importance of this particular subfamily of eukaryotic sirtuins in regulating the growth and development of plants and their responses to biotic and abiotic stresses. In this review, an integrated and updated account will be presented on the biochemical, cellular, and functional profiles of all the plant sirtuins identified thus far. It is hoped that this article will also set a stage for expanded efforts in the identification, characterization, and functional interrogation of plant sirtuins; and the development and exploration of their chemical modulators (activators and inhibitors) in plant research and agriculture.
Collapse
Affiliation(s)
- Weiping Zheng
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China.
| |
Collapse
|
162
|
A bicyclic pentapeptide-based highly potent and selective pan-SIRT1/2/3 inhibitor harboring Nε-thioacetyl-lysine. Bioorg Med Chem 2020; 28:115356. [DOI: 10.1016/j.bmc.2020.115356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 11/20/2022]
|
163
|
Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165768. [PMID: 32173461 DOI: 10.1016/j.bbadis.2020.165768] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Despite major progress in interventional and medical treatments, myocardial infarction (MI) and subsequent development of heart failure (HF) are still associated with high mortality. Both during ischemia reperfusion (IR) in the acute setting of MI, as well as in the chronic remodeling process following MI, oxidative stress substantially contributes to cardiac damage. Reactive oxygen species (ROS) generated within mitochondria are particular drivers of mechanisms contributing to IR injury, including induction of mitochondrial permeability transition or oxidative damage of intramitochondrial structures and molecules. But even beyond the acute setting, mechanisms like inflammatory signaling, extracellular remodeling, or pro-apoptotic signaling that contribute to post-infarction remodeling are regulated by mitochondrial ROS. In the current review, we discuss both sources and consequences of mitochondrial ROS during IR and in the chronic setting following MI, thereby emphasizing the potential therapeutic value of attenuating mitochondrial ROS to improve outcome and prognosis for patients suffering MI.
Collapse
|
164
|
Chen X, Zou Y, Wang J, Cao Z, Liu J, Li Y, Zhao Y, He B. Unexpected small molecules as novel SIRT2 suicide inhibitors. Bioorg Med Chem 2020; 28:115353. [DOI: 10.1016/j.bmc.2020.115353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022]
|
165
|
Transcriptome analyses of liver in newly-hatched chicks during the metabolic perturbation of fasting and re-feeding reveals THRSPA as the key lipogenic transcription factor. BMC Genomics 2020; 21:109. [PMID: 32005146 PMCID: PMC6995218 DOI: 10.1186/s12864-020-6525-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background The fasting-refeeding perturbation has been used extensively to reveal specific genes and metabolic pathways that control energy metabolism in the chicken. Most global transcriptional scans of the fasting-refeeding response in liver have focused on juvenile chickens that were 1, 2 or 4 weeks old. The present study was aimed at the immediate post-hatch period, in which newly-hatched chicks were subjected to fasting for 4, 24 or 48 h, then refed for 4, 24 or 48 h, and compared with a fully-fed control group at each age (D1-D4). Results Visual analysis of hepatic gene expression profiles using hierarchical and K-means clustering showed two distinct patterns, genes with higher expression during fasting and depressed expression upon refeeding and those with an opposing pattern of expression, which exhibit very low expression during fasting and more abundant expression with refeeding. Differentially-expressed genes (DEGs), identified from five prominent pair-wise contrasts of fed, fasted and refed conditions, were subjected to Ingenuity Pathway Analysis. This enabled mapping of analysis-ready (AR)-DEGs to canonical and metabolic pathways controlled by distinct gene interaction networks. The largest number of hepatic DEGs was identified by two contrasts: D2FED48h/D2FAST48h (968 genes) and D2FAST48h/D3REFED24h (1198 genes). The major genes acutely depressed by fasting and elevated upon refeeding included ANGTPL, ATPCL, DIO2, FASN, ME1, SCD, PPARG, SREBP2 and THRSPA—a primary lipogenic transcription factor. In contrast, major lipolytic genes were up-regulated by fasting or down-regulated after refeeding, including ALDOB, IL-15, LDHB, LPIN2, NFE2L2, NR3C1, NR0B1, PANK1, PPARA, SERTAD2 and UPP2. Conclusions Transcriptional profiling of liver during fasting/re-feeding of newly-hatched chicks revealed several highly-expressed upstream regulators, which enable the metabolic switch from fasted (lipolytic/gluconeogenic) to fed or refed (lipogenic/thermogenic) states. This rapid homeorhetic shift of whole-body metabolism from a catabolic-fasting state to an anabolic-fed state appears precisely orchestrated by a small number of ligand-activated transcription factors that provide either a fasting-lipolytic state (PPARA, NR3C1, NFE2L2, SERTAD2, FOX01, NR0B1, RXR) or a fully-fed and refed lipogenic/thermogenic state (THRSPA, SREBF2, PPARG, PPARD, JUN, ATF3, CTNNB1). THRSPA has emerged as the key transcriptional regulator that drives lipogenesis and thermogenesis in hatchling chicks, as shown here in fed and re-fed states.
Collapse
|
166
|
Anaizi N. Nicotinamide adenine dinucleotide, the sirtuins, and the secret of a long health span. IBNOSINA JOURNAL OF MEDICINE AND BIOMEDICAL SCIENCES 2020. [DOI: 10.4103/ijmbs.ijmbs_6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
167
|
Zheng S, Wohlfahrt J, Cohen I, Cen Y. Methods for studying human sirtuins with activity-based chemical probes. Methods Enzymol 2019; 633:251-269. [PMID: 32046849 DOI: 10.1016/bs.mie.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sirtuins are unique posttranslational modification enzymes that utilize NAD+ as the co-substrate to remove acyl groups from lysine residues. The deacylation events result in profound biological consequences, from transcription silencing to metabolism regulation. This article focuses on a newly developed technology using activity-based chemical probes to report sirtuin functional state in various settings. These chemical probes, thioacyllysine peptides carrying photo-cross-linker as well as bioorthogonal functionality, target the active site of sirtuins to form stalled reaction intermediate. Subsequently, the probe forms covalent adduct with the protein through photocrosslinking. Ultimately, the active sirtuin can be visualized via "click" chemistry-mediated conjugation to a fluorescent tag. Here, we describe the labeling protocols on recombinant protein, whole cell lysate, and in situ labeling.
Collapse
Affiliation(s)
- Song Zheng
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT, United States
| | - Jessica Wohlfahrt
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT, United States
| | - Ian Cohen
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT, United States
| | - Yana Cen
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT, United States.
| |
Collapse
|
168
|
Sun X, Wang S, Gai J, Guan J, Li J, Li Y, Zhao J, Zhao C, Fu L, Li Q. SIRT5 Promotes Cisplatin Resistance in Ovarian Cancer by Suppressing DNA Damage in a ROS-Dependent Manner via Regulation of the Nrf2/HO-1 Pathway. Front Oncol 2019; 9:754. [PMID: 31456942 PMCID: PMC6700301 DOI: 10.3389/fonc.2019.00754] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Sirtuin 5 (SIRT5), a mitochondrial class III NAD-dependent deacetylase, plays controversial roles in tumorigenesis and chemoresistance. Accordingly, its role in ovarian cancer development and drug resistance is not fully understood. Here, we demonstrate that SIRT5 is increased in ovarian cancer tissues compared to its expression in normal tissues and this predicts a poor response to chemotherapy. SIRT5 levels were also found to be higher in cisplatin-resistant SKOV-3 and CAOV-3 ovarian cancer cells than in cisplatin-sensitive A2780 cells. Furthermore, this protein was revealed to facilitate ovarian cancer cell growth and cisplatin-resistance in vitro. Mechanistically, we show that SIRT5 contributes to cisplatin resistance in ovarian cancer by suppressing cisplatin-induced DNA damage in a reactive oxygen species (ROS)-dependent manner via regulation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway.
Collapse
Affiliation(s)
- Xiaodan Sun
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Shouhan Wang
- Department of Hepatopancreatobiliary Surgery, Jilin Province Cancer Hospital, Changchun, China
| | - Junda Gai
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jingqian Guan
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ji Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yizhuo Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Chen Zhao
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Lin Fu
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
169
|
Zhu S, Dong Z, Ke X, Hou J, Zhao E, Zhang K, Wang F, Yang L, Xiang Z, Cui H. The roles of sirtuins family in cell metabolism during tumor development. Semin Cancer Biol 2019; 57:59-71. [DOI: 10.1016/j.semcancer.2018.11.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/11/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
|
170
|
Lu X, Yang P, Zhao X, Jiang M, Hu S, Ouyang Y, Zeng L, Wu J. OGDH mediates the inhibition of SIRT5 on cell proliferation and migration of gastric cancer. Exp Cell Res 2019; 382:111483. [PMID: 31247190 DOI: 10.1016/j.yexcr.2019.06.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 12/28/2022]
Abstract
SIRT5 has a wide range of functions in different cellular processes such as glycolysis, TCA cycle and antioxidant defense, which mediates lysine desuccinylation, deglutarylation and demalonylation. Recent evidences have implicated that SIRT5 is a potential suppressor of gastric cancer (GC). However, the underlying mechanism of SIRT5 in gastric cancer is still unclear. Here, we show that SIRT5 expression is significantly decreased in human GC tissues. Functional analysis demonstrates that SIRT5 inhibits cell growth in vitro and in vivo, arrests the cell cycle in G1/S transition, and suppresses migration and invasion of GC cells via regulating epithelial-to-mesenchymal transition. Mechanistically, we demonstrate that there is the direct interaction between SIRT5 and 2-oxoglutarate dehydrogenase (OGDH), and desuccinylation of OGDH by SIRT5 inhibits the activity of OGDH complex. Further studies of the relationship between SIRT5 and OGDH show OGDH inhibition by succinyl phosphonate (SP) or siRNA suppresses the increase in cell growth and migration induced by SIRT5 deletion. Moreover, SIRT5 decreases mitochondrial membrane potential (ΔΨm), ATP products and increases the ROS levels and NADP/NADPH ratio in GC cells through the inhibition of OGDH complex activity. Therefore, SIRT5 suppresses GC cell growth and migration through desuccinylating OGDH and inhibiting OGDH complex activity to disturb mitochondrial functions and redox status.
Collapse
Affiliation(s)
- Xin Lu
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China
| | - Pengfei Yang
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China
| | - Xinrui Zhao
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China
| | - Mingzu Jiang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Sijun Hu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yanan Ouyang
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China
| | - Li Zeng
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China
| | - Jing Wu
- Biomedical-information Engineering Laboratory of State Ministry of Education, Shaanxi Key Laboratory of Biomedical Engineering, School of Life and Science Technology, Xi'an Jiaotong University, 28 Xian Ning Western Road, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
171
|
Wang G, Meyer JG, Cai W, Softic S, Li ME, Verdin E, Newgard C, Schilling B, Kahn CR. Regulation of UCP1 and Mitochondrial Metabolism in Brown Adipose Tissue by Reversible Succinylation. Mol Cell 2019; 74:844-857.e7. [PMID: 31000437 PMCID: PMC6525068 DOI: 10.1016/j.molcel.2019.03.021] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/06/2019] [Accepted: 03/20/2019] [Indexed: 11/23/2022]
Abstract
Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis.
Collapse
Affiliation(s)
- GuoXiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jesse G Meyer
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Weikang Cai
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mengyao Ella Li
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Christopher Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27708, USA
| | | | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
172
|
Hernández-Saavedra D, Moody L, Xu GB, Chen H, Pan YX. Epigenetic Regulation of Metabolism and Inflammation by Calorie Restriction. Adv Nutr 2019; 10:520-536. [PMID: 30915465 PMCID: PMC6520046 DOI: 10.1093/advances/nmy129] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic caloric restriction (CR) without malnutrition is known to affect different cellular processes such as stem cell function, cell senescence, inflammation, and metabolism. Despite the differences in the implementation of CR, the reduction of calories produces a widespread beneficial effect in noncommunicable chronic diseases, which can be explained by improvements in immuno-metabolic adaptation. Cellular adaptation that occurs in response to dietary patterns can be explained by alterations in epigenetic mechanisms such as DNA methylation, histone modifications, and microRNA. In this review, we define these modifications and systematically summarize the current evidence related to CR and the epigenome. We then explain the significance of genome-wide epigenetic modifications in the context of disease development. Although substantial evidence exists for the widespread effect of CR on longevity, there is no consensus regarding the epigenetic regulations of the underlying cellular mechanisms that lead to improved health. We provide compelling evidence that CR produces long-lasting epigenetic effects that mediate expression of genes related to immuno-metabolic processes. Epigenetic reprogramming of the underlying chronic low-grade inflammation by CR can lead to immuno-metabolic adaptations that enhance quality of life, extend lifespan, and delay chronic disease onset.
Collapse
Affiliation(s)
| | | | - Guanying Bianca Xu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Hong Chen
- Division of Nutritional Sciences,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL,Address correspondence to Y-XP (e-mail: )
| |
Collapse
|
173
|
The function of histone acetylation in cervical cancer development. Biosci Rep 2019; 39:BSR20190527. [PMID: 30886064 PMCID: PMC6465204 DOI: 10.1042/bsr20190527] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer is the fourth most common female cancer in the world. It is well known that cervical cancer is closely related to high-risk human papillomavirus (HPV) infection. However, epigenetics has increasingly been recognized for its role in tumorigenesis. Epigenetics refers to changes in gene expression levels based on non-gene sequence changes, primarily through transcription or translation of genes regulation, thus affecting its function and characteristics. Typical post-translational modifications (PTMs) include acetylation, propionylation, butyrylation, malonylation and succinylation, among which the acetylation modification of lysine sites has been studied more clearly so far. The acetylation modification of lysine residues in proteins is involved in many aspects of cellular life activities, including carbon metabolism, transcriptional regulation, amino acid metabolism and so on. In this review, we summarize the latest discoveries on cervical cancer development arising from the aspect of acetylation, especially histone acetylation.
Collapse
|
174
|
Elías-Villalobos A, Barrales RR, Ibeas JI. Chromatin modification factors in plant pathogenic fungi: Insights from Ustilago maydis. Fungal Genet Biol 2019; 129:52-64. [PMID: 30980908 DOI: 10.1016/j.fgb.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
Adaptation to the environment is a requirement for the survival of every organism. For pathogenic fungi this also implies coping with the different conditions that occur during the infection cycle. After detecting changes to external media, organisms must modify their gene expression patterns in order to accommodate the new circumstances. Control of gene expression is a complex process that involves the coordinated action of multiple regulatory elements. Chromatin modification is a well-known mechanism for controlling gene expression in response to environmental changes in all eukaryotes. In pathogenic fungi, chromatin modifications are known to play crucial roles in controlling host interactions and their virulence capacity, yet little is known about the specific genes they directly target and to which signals they respond. The smut fungus Ustilago maydis is an excellent model system in which multiple molecular and cellular approaches are available to study biotrophic interactions. Many target genes regulated during the infection process have been well studied, however, how they are controlled and specifically how chromatin modifications affect gene regulation in the context of infection is not well known in this organism. Here, we analyse the presence of chromatin modifying enzymes and complexes in U. maydis and discuss their putative roles in this plant pathogen in the context of findings from other organisms, including other plant pathogens such as Magnaporthe oryzae and Fusarium graminearum. We propose U. maydis as a remarkable organism with interesting chromatin features, which would allow finding new functions of chromatin modifications during plant pathogenesis.
Collapse
Affiliation(s)
- Alberto Elías-Villalobos
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR5237-Centre National de la Recherche Scientifique-Université de Montpellier, Montpellier, France.
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain.
| | - José I Ibeas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain
| |
Collapse
|
175
|
Ma Y, Qi Y, Wang L, Zheng Z, Zhang Y, Zheng J. SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis. Free Radic Biol Med 2019; 134:458-467. [PMID: 30703481 DOI: 10.1016/j.freeradbiomed.2019.01.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
Abstract
Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Protein succinylation influences cell metabolism, but its effects on ccRCC tumorigenesis remain largely uncharacterized. In this study, we investigated the lysine succinylome of ccRCC tissues by using tandem mass tag labeling, affinity enrichment, liquid chromatography-tandem mass spectrometry and integrated bioinformatics analyses. Proteins involved in metabolic process, the tricarboxylic acid (TCA) cycle, oxidation-reduction and transport processes were subject to succinylation. A total of 135 sites in 102 proteins were differentially succinylated between ccRCC and adjacent normal tissues. Succinate dehydrogenase complex subunit A (SDHA), which is involved in both the TCA cycle and oxidative phosphorylation, was desuccinylated at lysine 547 in ccRCC. SDHA desuccinylation by mimetic mutation (K547R) suppressed its activity through the inhibition of succinate dehydrogenase 5 (SDH5) binding, further promoted ccRCC cell proliferation. The desuccinylase sirtuin5 (SIRT5) was found to interact with SDHA, and SIRT5 silencing led to the hypersuccinylation and reactivation of SDHA. SIRT5 was also found to be upregulated in ccRCC tissues, and its silencing inhibited ccRCC cell proliferation. This indicates that SIRT5 promotes ccRCC tumorigenesis through inhibiting SDHA succinylation. This is the first quantitative study of lysine succinylome in ccRCC, through which we identified succinylation in core enzymes as a novel mechanism regulating various ccRCC metabolic pathways. These results expand our understanding about the mechanisms of ccRCC tumorigenesis and highlight succinylation as a novel therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Yuanzhen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yijun Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lei Wang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhaoxu Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yue Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Junfang Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Beijing International Cooperation Base for Science and Technology on China-UK Cancer Research, Beijing, 100069, China.
| |
Collapse
|
176
|
Revisiting Histone Deacetylases in Human Tumorigenesis: The Paradigm of Urothelial Bladder Cancer. Int J Mol Sci 2019; 20:ijms20061291. [PMID: 30875794 PMCID: PMC6471041 DOI: 10.3390/ijms20061291] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/24/2022] Open
Abstract
Urinary bladder cancer is a common malignancy, being characterized by substantial patient mortality and management cost. Its high somatic-mutation frequency and molecular heterogeneity usually renders tumors refractory to the applied regimens. Hitherto, methotrexate-vinblastine-adriamycin-cisplatin and gemcitabine-cisplatin represent the backbone of systemic chemotherapy. However, despite the initial chemosensitivity, the majority of treated patients will eventually develop chemoresistance, which severely reduces their survival expectancy. Since chromatin regulation genes are more frequently mutated in muscle-invasive bladder cancer, as compared to other epithelial tumors, targeted therapies against chromatin aberrations in chemoresistant clones may prove beneficial for the disease. “Acetyl-chromatin” homeostasis is regulated by the opposing functions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). The HDAC/SIRT (super-)family contains 18 members, which are divided in five classes, with each family member being differentially expressed in normal urinary bladder tissues. Since a strong association between irregular HDAC expression/activity and tumorigenesis has been previously demonstrated, we herein attempt to review the accumulated published evidences that implicate HDACs/SIRTs as critical regulators in urothelial bladder cancer. Moreover, the most extensively investigated HDAC inhibitors (HDACis) are also analyzed, and the respective clinical trials are also described. Interestingly, it seems that HDACis should be preferably used in drug-combination therapeutic schemes, including radiation.
Collapse
|
177
|
Barros L, Eichwald T, Solano AF, Scheffer D, da Silva RA, Gaspar JM, Latini A. Epigenetic modifications induced by exercise: Drug-free intervention to improve cognitive deficits associated with obesity. Physiol Behav 2019; 204:309-323. [PMID: 30876771 DOI: 10.1016/j.physbeh.2019.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Abstract
Obesity and metabolic disorders are increasing worldwide and are associated with brain atrophy and dysfunction, which are risk factors for late-onset dementia and Alzheimer's disease. Epidemiological studies demonstrated that changes in lifestyle, including the frequent practice of physical exercise are able to prevent and treat not only obesity/metabolic disorders, but also to improve cognitive function and dementia. Several biochemical pathways and epigenetic mechanisms have been proposed to understand the beneficial effects of physical exercise on cognition. This manuscript revised central ongoing research on epigenetic mechanisms induced by exercise and the beneficial effects on obesity-associated cognitive decline, highlighting potential mechanistic mediators.
Collapse
Affiliation(s)
- Leonardo Barros
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Tuany Eichwald
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Alexandre Francisco Solano
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Débora Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Rodrigo Augusto da Silva
- Departamento de Química e Bioquímica, Laboratório de Bioensaios e Dinâmica Celular, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Campus Botucatu, Botucatu, Brazil
| | - Joana M Gaspar
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Programa de Pós-Graduação em Bioquímica, UFSC, Florianópolis, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.
| |
Collapse
|
178
|
Cadet JL, Patel R, Jayanthi S. Compulsive methamphetamine taking and abstinence in the presence of adverse consequences: Epigenetic and transcriptional consequences in the rat brain. Pharmacol Biochem Behav 2019; 179:98-108. [PMID: 30797763 DOI: 10.1016/j.pbb.2019.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Methamphetamine addiction is characterized by compulsive binges of drug intake despite adverse life consequences. A model of methamphetamine self-administration that includes contingent footshocks to constitute adverse consequences has helped to segregate rats that reduce or stop lever pressing for methamphetamine (sensitive) from those that continue to lever press for the drug (resistant) in the presence of negative outcomes. We have observed differential DNA hydroxymethylation and increased expression of potassium channel mRNAs in the nucleus accumbens of sensitive compared to resistant rats, suggesting a role of these channels in suppressing methamphetamine intake. There were also significant increases in nerve growth factor (NGF) expression and activation of its downstream signaling pathway (NGF-TrkA and p75NTR/MAPK signaling) in only the dorsal striatum of sensitive rats after a month of abstinence. In contrast, oxytocin mRNA expression was increased in only the nucleus accumbens of resistant rats compared to sensitive rats euthanized after that time. These results indicate that footshocks can differentiate two behavioral phenotypes with differential biochemical and epigenetic consequences in the ventral and dorsal striatum.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, USA.
| | - Ravish Patel
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, USA
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
179
|
Janssen JJE, Grefte S, Keijer J, de Boer VCJ. Mito-Nuclear Communication by Mitochondrial Metabolites and Its Regulation by B-Vitamins. Front Physiol 2019; 10:78. [PMID: 30809153 PMCID: PMC6379835 DOI: 10.3389/fphys.2019.00078] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are cellular organelles that control metabolic homeostasis and ATP generation, but also play an important role in other processes, like cell death decisions and immune signaling. Mitochondria produce a diverse array of metabolites that act in the mitochondria itself, but also function as signaling molecules to other parts of the cell. Communication of mitochondria with the nucleus by metabolites that are produced by the mitochondria provides the cells with a dynamic regulatory system that is able to respond to changing metabolic conditions. Dysregulation of the interplay between mitochondrial metabolites and the nucleus has been shown to play a role in disease etiology, such as cancer and type II diabetes. Multiple recent studies emphasize the crucial role of nutritional cofactors in regulating these metabolic networks. Since B-vitamins directly regulate mitochondrial metabolism, understanding the role of B-vitamins in mito-nuclear communication is relevant for therapeutic applications and optimal dietary lifestyle. In this review, we will highlight emerging concepts in mito-nuclear communication and will describe the role of B-vitamins in mitochondrial metabolite-mediated nuclear signaling.
Collapse
Affiliation(s)
| | | | | | - Vincent C. J. de Boer
- Human and Animal Physiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
180
|
Chen D, Yan L, Zheng W. Cyclic Peptide-Based Sirtuin Substrates. Molecules 2019; 24:E424. [PMID: 30682801 PMCID: PMC6384901 DOI: 10.3390/molecules24030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 11/17/2022] Open
Abstract
In the current study, four side chain-to-side chain cyclic peptides (three 5-mers and one 4-mer) harboring Nε-acetyl-lysine or Nε-myristoyl-lysine were found to be in vitro substrates of the human SIRT1/2/3-catalyzed deacylation with good substrate activities, as judged by the kcat/KM ratios.
Collapse
Affiliation(s)
- Di Chen
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Lingling Yan
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Weiping Zheng
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
181
|
Ghirotto B, Terra FF, Câmara NOS, Basso PJ. Sirtuins in B lymphocytes metabolism and function. World J Exp Med 2019; 9:1-13. [PMID: 30705866 PMCID: PMC6354076 DOI: 10.5493/wjem.v9.i1.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023] Open
Abstract
Sirtuins (SIRTs) are NAD+-dependent histone deacetylases and play a role in virtually all cell biological processes. As SIRTs functions vary according to their subtypes, they can either activate or inhibit signaling pathways upon different conditions or tissues. Recent studies have focused on metabolic effects performed by SIRTs in several cell types since specific metabolic pathways (e.g., aerobic glycolysis, oxidative phosphorylation, β-oxidation, glutaminolysis) are used to determine the cell fate. However, few efforts have been made to understand the role of SIRTs on B lymphocytes metabolism and function. These cells are associated with humoral immune responses by secreting larger amounts of antibodies after differentiating into antibody-secreting cells. Besides, both the SIRTs and B lymphocytes are potential targets to treat several immune-mediated disorders, including cancer. Here, we provide an outlook of recent studies regarding the role of SIRTs in general cellular metabolism and B lymphocytes functions, pointing out the future perspectives of this field.
Collapse
Affiliation(s)
- Bruno Ghirotto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Fernanda Fernandes Terra
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
- Laboratory of Renal Physiology (LIM 16), School of Medicine, University of São Paulo, São Paulo 01246-903, Brazil
| | - Paulo José Basso
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
182
|
Gong J, Wang H, Lou W, Wang G, Tao H, Wen H, Liu Y, Xie Q. Associations of sirtuins with clinicopathological parameters and prognosis in non-small cell lung cancer. Cancer Manag Res 2018; 10:3341-3356. [PMID: 30237737 PMCID: PMC6138963 DOI: 10.2147/cmar.s166946] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide and it is critical to discover specific biomarkers to provide better individualized treatment and subsequently better prognosis. The sirtuins (SIRT1-7) have been reported to be involved in cancers including non-small cell lung cancer (NCSLC), however, the results are not consistent and not all the seven sirtuins are explored and compared. METHODS TCGA data was downloaded and used to investigate and compare the associations of sirtuins mRNA levels with clinicopathological parameters and prognosis in NSCLC. RESULTS Our results suggested SIRT1, SIRT3, SIRT4, and SIRT7 were highly expressed in adeno-carcinoma (ADC) patients and female patients while SIRT5 were highly expressed in squamous cell carcinoma (SCC) patients and male patients. Associations of high SIRT7 with younger onset age, high SIRT1 with distant metastasis and low T stage, and high SIRT4 with high T stage and TNM stage were also found. Kaplan-Meier plot curves and univariate Cox proportional regression analyses indicated that high SIRT2, SIRT4, and SIRT6 expressions were associated with longer overall survival (OS) time. Multivariate analyses indicated that SIRT2 and SIRT6 were still associated with OS. For recurrence-free survival (RFS), high SIRT1 expression was significantly associated with shorter RFS time while high SIRT2-3 and SIRT5-7 expressions were associated with longer RFS time in univariate analyses. After adjusting the confounding factors, significant associations were still found in SIRT1-2 and SIRT5-7 but not in SIRT3. We also stratified the patients by combining SIRT1 and SIRT2 and revealed that the combination of SIRT1 and SIRT2 was a better prediction model for RFS in NSCLC. To preliminarily understand the potential mechanisms of sirtuins in NSCLC carcinogenesis, the genes co-expressed with sirtuins were analyzed and annotated. CONCLUSION sirtuins might be the potential therapy targets and prognostic biomarkers in NSCLC.
Collapse
Affiliation(s)
- Jian Gong
- Department of Laboratory Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China,
| | - Huiyan Wang
- Department of Laboratory Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China,
| | - Wenwen Lou
- Department of Laboratory Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China,
| | - Guiye Wang
- Department of Laboratory Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China,
| | - Hongqun Tao
- Department of Laboratory Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China,
| | - Huaikai Wen
- Department of Laboratory Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China,
| | - Yu Liu
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Qipeng Xie
- Department of Laboratory Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China,
| |
Collapse
|
183
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D. Melatonin Mitigates Mitochondrial Meltdown: Interactions with SIRT3. Int J Mol Sci 2018; 19:E2439. [PMID: 30126181 PMCID: PMC6121285 DOI: 10.3390/ijms19082439] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin exhibits extraordinary diversity in terms of its functions and distribution. When discovered, it was thought to be uniquely of pineal gland origin. Subsequently, melatonin synthesis was identified in a variety of organs and recently it was shown to be produced in the mitochondria. Since mitochondria exist in every cell, with a few exceptions, it means that every vertebrate, invertebrate, and plant cell produces melatonin. The mitochondrial synthesis of melatonin is not photoperiod-dependent, but it may be inducible under conditions of stress. Mitochondria-produced melatonin is not released into the systemic circulation, but rather is used primarily in its cell of origin. Melatonin's functions in the mitochondria are highly diverse, not unlike those of sirtuin 3 (SIRT3). SIRT3 is an NAD+-dependent deacetylase which regulates, among many functions, the redox state of the mitochondria. Recent data proves that melatonin and SIRT3 post-translationally collaborate in regulating free radical generation and removal from mitochondria. Since melatonin and SIRT3 have cohabitated in the mitochondria for many eons, we predict that these molecules interact in many other ways to control mitochondrial physiology. It is predicted that these mutual functions will be intensely investigated in the next decade and importantly, we assume that the findings will have significant applications for preventing/delaying some age-related diseases and aging itself.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Dun Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guardalajara, 4436 Jalisco, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Antonoma Metropolitana-Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 Mexico D.F., Mexico.
| | - Mei-Jie Jou
- Department of Physiology and Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Dario Acuna-Castroviejo
- Departamento de Fisiologia, Instituto de Biotecnologia, Universidad de Granada, Avenida de Conocimiento S/U, 18016 Granada, Spain.
| |
Collapse
|
184
|
Tissue distribution, subcellular localization, and enzymatic activity analysis of human SIRT5 isoforms. Biochem Biophys Res Commun 2018; 503:763-769. [PMID: 29932920 DOI: 10.1016/j.bbrc.2018.06.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 01/08/2023]
Abstract
SIRT5 is one of the seven mammalian sirtuins which are NAD+-dependent deacylases. In human beings, SIRT5 gene encodes for four SIRT5 protein isoforms, namely SIRT5iso1, SIRT5iso2, SIRT5iso3, and SIRT5iso4. Previous studies have focused mostly on SIRT5iso1. Characteristics regarding localization, activity and tissue distribution of the other three SIRT5 isoforms remain unclear. In the present study, we characterized these properties of these SIRT5 isoforms. We found that SIRT5iso1-3 were mitochondria-localized, while SIRT5iso4 localized mainly in cytoplasm. SIRT5iso2-4 had little deacylase activity comparing with SIRT5iso1. Although cDNAs of all SIRT5 isoforms were readily detected in multiply tissues according to EST database, proteins of SIRT5iso2-4 were seldom observed in human cell lines. Altogether, we dissected the four isoforms of human SIRT5 protein.
Collapse
|