151
|
Shamshad S, Shahid M, Dumat C, Rafiq M, Khalid S, Sabir M, Missen MMS, S Shah N, Farooq ABU, Murtaza B, Niazi NK. A multivariate analysis of health risk assessment, phytoremediation potential, and biochemical attributes of Spinacia oleracea exposed to cadmium in the presence of organic amendments under hydroponic conditions. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:461-470. [PMID: 30821474 DOI: 10.1080/15226514.2018.1540539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) phytoremediation potential and its accumulation in edible and nonedible plant tissues is the function of various biochemical processes taking place inside plants. This study assessed the impact of organic ligands on Cd phyto uptake and different biophysiochemical processes of Spinacia oleracea L., and associated health hazards. Plants were exposed to Cd alone and chelated with citric acid (CA) and ethylenediaminetetraacetic acid (EDTA). Results revealed that the effect of Cd on lipid peroxidation, H2O2 production and pigment contents varied greatly with its applied level and the type of organic ligand. Moreover, the effect was more prominent in root tissues than leaf tissues and for high concentrations of Cd and organic ligands. Cadmium accumulation increased by 90 and 74% in roots and leaves, respectively, with increasing Cd levels (25-100 µM). Cadmium exposure at high levels caused lipid peroxidation in roots only. Application of both CA and EDTA slightly diminished Cd toxicity with respect to pigment contents, lipid peroxidation and hydrogen peroxide (H2O2) contents. Hazard quotient (HQ) of Cd was <1.00 for all the treatments. Under nonlinear effect of treatments, multivariate analysis can be an effective tool to trace overall effects/trends.
Collapse
Affiliation(s)
- Saliha Shamshad
- a Department of Environmental Sciences , COMSATS University Islamabad , Vehari , Pakistan
| | - Muhammad Shahid
- a Department of Environmental Sciences , COMSATS University Islamabad , Vehari , Pakistan
| | - Camille Dumat
- b Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP) , Université J. Jaurès - Toulouse II , Castanet-Tolosan , France
| | - Marina Rafiq
- a Department of Environmental Sciences , COMSATS University Islamabad , Vehari , Pakistan
| | - Sana Khalid
- a Department of Environmental Sciences , COMSATS University Islamabad , Vehari , Pakistan
| | - Muhammad Sabir
- c Institute of Soil and Environmental Sciences , University of Agriculture Faisalabad , Faisalabad , Pakistan
| | - Malik M S Missen
- d Department of Computer Science and Information Technology , The Islamia University of Bahawalpur , Bahawalpur , Punjab , Pakistan
| | - Noor S Shah
- a Department of Environmental Sciences , COMSATS University Islamabad , Vehari , Pakistan
| | - Abu Bakr Umer Farooq
- a Department of Environmental Sciences , COMSATS University Islamabad , Vehari , Pakistan
| | - Behzad Murtaza
- a Department of Environmental Sciences , COMSATS University Islamabad , Vehari , Pakistan
| | - Nabeel Khan Niazi
- e Institute of Soil and Environmental Sciences , University of Agriculture Faisalabad , Faisalabad , Pakistan
- f Southern Cross GeoScience , Southern Cross University , Lismore , NSW , Australia
| |
Collapse
|
152
|
Fu H, Yu H, Li T, Wu Y. Effect of cadmium stress on inorganic and organic components in xylem sap of high cadmium accumulating rice line (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:330-337. [PMID: 30390532 DOI: 10.1016/j.ecoenv.2018.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Physiological properties involved in cadmium (Cd) transport were investigated in the high Cd accumulating rice line (Lu527-8) in comparison with the normal rice line (Lu527-4) through a soil culture experiment. The results showed that Cd contents in xylem saps of Lu527-8 were 1.68-2.55 times higher than those of Lu527-4 under Cd stress. A high-positive correlation between Cd contents in xylem saps and Cd contents in shoots was observed. Lu527-8 owned a more rapid and effective transport of Cd to above-ground part. By analyzing the relationship between inorganic anions, organic components and Cd contents in xylem saps, the lower HPO42- and oxalate contents were considered to be related to the higher Cd transport in xylem sap of Lu527-8. As for citrate, tartaric and histidine content, significant increases were observed with the increasing Cd contents in xylem saps of two rice lines, and their contents of Lu527-8 were significantly higher than those of Lu527-4. Citrate, tartaric and histidine could take part in root-to-shoot Cd transport in xylem.
Collapse
Affiliation(s)
- Huijie Fu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Yao Wu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| |
Collapse
|
153
|
Azizollahi Z, Ghaderian SM, Ghotbi-Ravandi AA. Cadmium accumulation and its effects on physiological and biochemical characters of summer savory ( Satureja hortensis L.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1241-1253. [PMID: 31140292 DOI: 10.1080/15226514.2019.1619163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The objective of this study was to determine the effects of cadmium (Cd) toxicity on accumulation, growth, physiological responses, and biochemical characters in summer savory (Satureja hortensis L.). Plants were subjected to different levels of Cd concentrations including 0 (control), 2.5, 5, and 15 mg L-1 in the growing medium. Cd exposure led to a significant increase in root and shoot Cd content. Calculation of bioaccumulation factor, translocation factor, and transfer coefficient revealed that Cd mostly accumulated in roots of S. hortensis and root to shoot transport was effectively restricted. Cd toxicity negatively affected plant growth and significantly reduced chlorophyll content. Contrarily, proline, soluble and reducing carbohydrates, anthocyanin content, and the activity of antioxidant enzymes significantly increased as a result of Cd exposure. Cd application led to a significant increase in essential oil content of S. hortensis. GC-MS analysis revealed that percentage main constitute of S. hortensi, carvacrol, which determines the quality of oil increased under the highest Cd treatment. Based on our findings, S. hortensis can be considered an invaluable alternative crop for mildly Cd-contaminated soils. Besides, due to the high potential of Cd accumulation in the root, S. hortensis may offer a feasible tool for phytostabilization purposes.
Collapse
Affiliation(s)
- Zahra Azizollahi
- Department of Biology, Faculty of Sciences, University of Isfahan , Isfahan , Iran
| | | | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University , Tehran , Iran
| |
Collapse
|
154
|
Barraza F, Moore RET, Rehkämper M, Schreck E, Lefeuvre G, Kreissig K, Coles BJ, Maurice L. Cadmium isotope fractionation in the soil – cacao systems of Ecuador: a pilot field study. RSC Adv 2019; 9:34011-34022. [PMID: 35528875 PMCID: PMC9073709 DOI: 10.1039/c9ra05516a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022] Open
Abstract
The often high Cd concentrations of cacao beans are a serious concern for producers in Latin America due to the implementation of stricter Cd limits for cocoa products by the European Union in 2019. This is the first investigation to employ coupled Cd isotope and concentration measurements to study soil – cacao systems. Analyses were carried out for 29 samples of soils, soil amendments and cacao tree organs from organic farms in Ecuador that harvest three distinct cacao cultivars. The majority of soils from 0–80 cm depth have very similar δ114/110Cd of about −0.1‰ to 0‰. Two 0–5 cm topsoils, however, have high Cd concentrations coupled with heavy Cd isotope compositions of δ114/110Cd ≈ 0.2%, possibly indicating Cd additions from the tree litter used as organic fertilizer. Whilst cacao leaves, pods and beans are ubiquitously enriched in Cd relative to soils there are distinct Cd isotope signatures. The leaves and pods are isotopically heavier than the soils, with similar Δ114/110Cdleaf–soil values of 0.22 ± 0.07‰ to 0.41 ± 0.09‰. In contrast, the data reveal differences in Δ114/110Cdbean–leaf that may be linked to distinct cacao cultivars. In detail, Δ114/110Cdbean–leaf values of −0.34‰ to −0.40‰ were obtained for Nacional cacao from two farms, whilst CCN-51 hybrid cacao from a third farm showed no fractionation within error (−0.08 ± 0.13‰). As such, further work to investigate whether Cd isotopes are indeed useful for tracing sources of Cd enrichments in soils and to inform genetic efforts to reduce the Cd burden of cocoa is indicated. Cd isotope composition in cacao seems to be cultivar-specific whereas Cd in soil is probably due to tree litter recycling.![]()
Collapse
Affiliation(s)
- Fiorella Barraza
- Géosciences Environnement Toulouse (GET)
- Observatoire Midi-Pyrénées
- CNRS
- IRD
- Université de Toulouse
| | - Rebekah E. T. Moore
- Department of Earth Science & Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - Mark Rehkämper
- Department of Earth Science & Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - Eva Schreck
- Géosciences Environnement Toulouse (GET)
- Observatoire Midi-Pyrénées
- CNRS
- IRD
- Université de Toulouse
| | - Grégoire Lefeuvre
- Géosciences Environnement Toulouse (GET)
- Observatoire Midi-Pyrénées
- CNRS
- IRD
- Université de Toulouse
| | - Katharina Kreissig
- Department of Earth Science & Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - Barry J. Coles
- Department of Earth Science & Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - Laurence Maurice
- Géosciences Environnement Toulouse (GET)
- Observatoire Midi-Pyrénées
- CNRS
- IRD
- Université de Toulouse
| |
Collapse
|
155
|
Halimaa P, Blande D, Baltzi E, Aarts MGM, Granlund L, Keinänen M, Kärenlampi SO, Kozhevnikova AD, Peräniemi S, Schat H, Seregin IV, Tuomainen M, Tervahauta AI. Transcriptional effects of cadmium on iron homeostasis differ in calamine accessions of Noccaea caerulescens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:306-320. [PMID: 30288820 DOI: 10.1111/tpj.14121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 05/26/2023]
Abstract
Calamine accessions of the zinc/cadmium/nickel hyperaccumulator, Noccaea caerulescens, exhibit striking variation in foliar cadmium accumulation in nature. The Ganges accession (GA) from Southern France displays foliar cadmium hyperaccumulation (>1000 μg g-1 DW), whereas the accession La Calamine (LC) from Belgium, with similar local soil metal composition, does not (<100 μg g-1 DW). All calamine accessions are cadmium hypertolerant. To find out the differences between LC and GA in their basic adaptation mechanisms, we bypassed the cadmium excluding phenotype of LC by exposing the plants to 50 μm cadmium in hydroponics, achieving equal cadmium accumulation in the shoots. The iron content increased in the roots of both accessions. GA exhibited significant decreases in manganese and zinc contents in the roots and shoots, approaching those in LC. Altogether 702 genes responded differently to cadmium exposure between the accessions, 157 and 545 in the roots and shoots, respectively. Cadmium-exposed LC showed a stress response and had decreased levels of a wide range of photosynthesis-related transcripts. GA showed less changes, mainly exhibiting an iron deficiency-like response. This included increased expression of genes encoding five iron deficiency-regulated bHLH transcription factors, ferric reduction oxidase FRO2, iron transporters IRT1 and OPT3, and nicotianamine synthase NAS1, and decreased expression of genes encoding ferritins and NEET (a NEET family iron-sulfur protein), which is possibly involved in iron transfer, distribution and/or management. The function of the IRT1 gene in the accessions was compared. We conclude that the major difference between the two accessions is in the way they cope with iron under cadmium exposure.
Collapse
Affiliation(s)
- Pauliina Halimaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
| | - Daniel Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
| | - Erol Baltzi
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, P.O. Box 16, 6700 AH, Wageningen, The Netherlands
| | - Lars Granlund
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
| | - Sirpa O Kärenlampi
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
| | - Anna D Kozhevnikova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, Moscow, 127276, Russia
| | - Sirpa Peräniemi
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
| | - Henk Schat
- Laboratory of Genetics, Wageningen University and Research, P.O. Box 16, 6700 AH, Wageningen, The Netherlands
- Institute of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Ilya V Seregin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, Moscow, 127276, Russia
| | - Marjo Tuomainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
| | - Arja I Tervahauta
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
| |
Collapse
|
156
|
Płachetka-Bożek A, Kafel A, Augustyniak M. Reproduction and development of Spodoptera exigua from cadmium and control strains under differentiated cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:138-145. [PMID: 30265877 DOI: 10.1016/j.ecoenv.2018.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/29/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
The growth and development of living organisms is programmed in genes, but exogenous factors (e.g. cadmium) may modulate endogenous information. Heavy metals may disturb physiological functions and accumulate in the tissues. The insects under prolonged heavy metal stress show some modifications in their metabolism management. The aim of this study was to compare the reproduction and development between individuals of S. exigua from the strain, exposed over 130 generations to sublethal concentration of cadmium (44 mg Cd/kg dry weight of larval diet), and the individuals from the control strain, both additionally exposed to different concentration of cadmium (22-704 mg Cd/kg dry weight of larval diet). The exposure to various cadmium concentrations in the diet revealed survival difference between the cadmium and the control animals at the larvae stage. The differences between adults were not evident. The telomere length (responsible for the duration of a lifespan) in the cadmium strain was shorter in the females than in the males and the individuals from the control strain. TERF1 gene expression (indirectly responsible for the telomere length) was higher in the individuals from the cadmium strain 24 hrs after eclosion. The significant reduction in the larvae body mass was observed in both strains, when the metal concentration was equal to or higher than 264 mg/kg dry weight of larval diet. The EC50 values (defined as of body mass loss), calculated 48 hours after cadmium exposure of individuals from control and cadmium strains, were respectively 632 and 725 mg Cd/kg dry weight of diet. However, some difference in reproduction (the total number of eggs laid and the oviposition time) between the strains appeared only in the groups fed on the uncontaminated diet. The control females laid almost two times more eggs than those from the cadmium strain, and the control ones had more than two times longer oviposition time than the females from the cadmium strain. The fluctuation was also noted in the size of eggs and the hatching success on the following days when both strains were compared, while the hatching success was higher for the insects from the cadmium strain. In conclusion, the insects from the cadmium strain are more resistant to cadmium contamination, as it is evidenced by the EC50 parameter. However, the females from the cadmium strain start laying eggs statistically later, have shorter telomeres and slightly reduced TERF1 gene expression, but hutching success in the strain is significantly higher when compared with the control individuals.
Collapse
Affiliation(s)
- Anna Płachetka-Bożek
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| | - Alina Kafel
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
157
|
Gutsch A, Keunen E, Guerriero G, Renaut J, Cuypers A, Hausman J, Sergeant K, Luo Z. Long-term cadmium exposure influences the abundance of proteins that impact the cell wall structure in Medicago sativa stems. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:1023-1035. [PMID: 29908008 PMCID: PMC6221066 DOI: 10.1111/plb.12865] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/12/2018] [Indexed: 05/05/2023]
Abstract
Cadmium (Cd) is a non-essential, toxic heavy metal that poses serious threats to both ecosystems and human health. Plants employ various cellular and molecular mechanisms to minimise the impact of Cd toxicity and cell walls function as a defensive barrier during Cd exposure. In this study, we adopted a quantitative gel-based proteomic approach (two-dimensional difference gel electrophoresis) to investigate changes in the abundance of cell wall and soluble proteins in stems of Medicago sativa L. upon long-term exposure to Cd (10 mg·Cd·kg-1 soil as CdSO4 ). Obtained protein data were complemented with targeted gene expression analyses. Plants were affected by Cd exposure at an early growth stage but seemed to recover at a more mature stage as no difference in biomass was observed. The accumulation of Cd was highest in roots followed by stems and leaves. Quantitative proteomics revealed a changed abundance for 179 cell wall proteins and 30 proteins in the soluble fraction upon long-term Cd exposure. These proteins are involved in cell wall remodelling, defence response, carbohydrate metabolism and promotion of the lignification process. The data indicate that Cd exposure alters the cell wall proteome and underline the role of cell wall proteins in defence against Cd stress. The identified proteins are linked to alterations in cell wall structure and lignification process in stems of M. sativa, underpinning the function of the cell wall as an effective barrier against Cd stress.
Collapse
Affiliation(s)
- A. Gutsch
- Environmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
- Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
| | - E. Keunen
- Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
| | - G. Guerriero
- Environmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - J. Renaut
- Environmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - A. Cuypers
- Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
| | - J.‐F. Hausman
- Environmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - K. Sergeant
- Environmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | | |
Collapse
|
158
|
Role of Phytoremediation in Reducing Cadmium Toxicity in Soil and Water. J Toxicol 2018; 2018:4864365. [PMID: 30425738 PMCID: PMC6218723 DOI: 10.1155/2018/4864365] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/24/2018] [Indexed: 12/05/2022] Open
Abstract
Heavy metals are a noxious form of pollutants present in soil and water. A new plant-based solar energy driven technology, phytoremediation, emerges as eco-friendly and cost-effective approach to remove heavy metal from various media with the help of hyperaccumulating plant species. This review paper aims to provide information on phytoremediation and its mechanisms for heavy metal removal especially to focus on Cadmium (Cd) metal and highlights the role of various hyperaccumulating plants for Cd metal remediation in soil and water. It complies various field case studies which play the important role in understanding the Cd removal through various plants. Additionally, it pinpoints several sources and the effects of Cd and other technologies used for Cd remediation. This paper provides the recent development in mechanisms of Cd hyperaccumulation by different plants, in order to motivate further research in this field.
Collapse
|
159
|
Ye W, Guo G, Wu F, Fan T, Lu H, Chen H, Li X, Ma Y. Absorption, translocation, and detoxification of Cd in two different castor bean (Ricinus communis L.) cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:28899-28906. [PMID: 30105674 DOI: 10.1007/s11356-018-2915-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Cadmium (Cd) is considered to be the most phytotoxic heavy metal pollutant. The selection of castor bean cultivars with Cd tolerance and the exploration of the physiological mechanisms involved in Cd tolerance are critical steps for improving phytoremediation performance. In this study, a hydroponic experiment was used to investigate variations in Cd transportation, chelation, and subcellular distribution in two different castor bean cultivars, namely JX-22 and ZB-9. Both cultivars had high tolerance index scores, indicating that both cultivars were tolerant to Cd. The findings of the present study indicate that Cd is significantly more mobile in JX-22 than in ZB-9 during xylem and phloem transportation, resulting in the accumulation of Cd in the shoots of JX-22 was 7.67 times that in ZB-9. Subcellular distribution assessment verified that more Cd was bound to the biologically detoxified metal fractions than the metal sensitive fractions in JX-22. The contents of the non-protein thiol pool and glutathione in the leaves were higher in JX-22 than ZB-9 when exposed to Cd. These results indicate that JX-22 has a greater ability to accumulate Cd, and well-coordinated physiological changes in JX-22 afford greater Cd tolerance in comparison to ZB-9 under Cd exposure, indicating that JX-22 is suitable for use in the remediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Wenling Ye
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, People's Republic of China
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture, Tianjin, 300191, People's Republic of China
| | - Guifeng Guo
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, People's Republic of China
| | - Fan Wu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, People's Republic of China
| | - Ting Fan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, People's Republic of China
| | - Hongjuan Lu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, People's Republic of China
| | - Haiyan Chen
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, People's Republic of China
| | - Xuede Li
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, People's Republic of China
| | - Youhua Ma
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, People's Republic of China.
| |
Collapse
|
160
|
Li X, Zhang X, Wu Y, Li B, Yang Y. Physiological and biochemical analysis of mechanisms underlying cadmium tolerance and accumulation in turnip. PLANT DIVERSITY 2018; 40:19-27. [PMID: 30159537 PMCID: PMC6091934 DOI: 10.1016/j.pld.2017.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 12/01/2017] [Accepted: 12/27/2017] [Indexed: 05/29/2023]
Abstract
The capacity of plants to accumulate cadmium (Cd) is significant for phytoremediation of Cd-polluted soils. Turnips cultivated in China include species featuring high Cd accumulation and some of these plants act as Cd hyperaccumulator landraces. These plants can accumulate over 100 mg Cd kg-1 dry weight in leaves without injury. Hence, studies that explore mechanisms underlying Cd detoxification and transport in turnip plants are essential. In the present study, we compared physiological and biochemical changes in turnip leaves treated with two Cd concentrations to controls. We discovered that Cd stress significantly increased the enzymatic activities or compound contents in the antioxidant system, including members of the glutathione-ascorbic acid cycle, whereas oxidation of reactive oxygen species (ROS) remained stable. Cd treatments also increased the contents of phytochelatins as well as a number of amino acids. Based on these results, we conclude that turnips initiate a series of response processes to manage Cd treatment. First, the antioxidant system maintaining ROS homeostasis and osmotic adjustment is excited to maintain stability of cell osmotic potential. Cd is chelated into its stable form to reduce its toxicity. Cd is possibly transported to vacuoles or non-protoplasts for isolation. Amino acid synthesis may directly and indirectly play an important role in these processes. This study partly revealed physiological and biochemical mechanisms underlying turnip response to Cd stress and provides information on artificially increasing or decreasing Cd accumulation in turnips and other plants.
Collapse
Key Words
- APX, ascorbate peroxidase
- Antioxidant system
- AsA, ascorbic acid
- CAT, catalase
- Cadmium
- Cd, cadmium
- DHAR, dehydroascorbate reductase
- DW, dry weight
- Detoxification
- FW, fresh weight
- GR, glutathione reductase
- GSH, glutathione
- GST, glutathione S-transferase
- H2O2, hydrogen peroxide
- HM, heavy metal
- MDA, malondialdehyde
- Ni, nickel
- O2-, superoxide anion
- PCs, phytochelatins
- POD, peroxidase
- Phytochelatin
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- TCA, trichloroacetic acid
- Turnip
- Zn, zinc
Collapse
Affiliation(s)
- Xiong Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaoming Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuansheng Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Boqun Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
161
|
Benáková M, Ahmadi H, Dučaiová Z, Tylová E, Clemens S, Tůma J. Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20705-20716. [PMID: 28714046 DOI: 10.1007/s11356-017-9697-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Clarifying the connection between metal exposure and anatomical changes represents an important challenge for a better understanding of plant phytoextraction potential. A hydroponic screening experiment was carried out to evaluate the effects of combined interactions of Cd and Zn on mineral uptake (Mg, K, Ca, Na) and on the physiological and anatomical characteristics of Brassica napus L cv. Cadeli, Viking, and Navajo. Plants were exposed to 5 μM Cd (CdCl2), 10 μM Zn (ZnSO4), or both Cd + Zn, for 14 days. Cadmium exposure led to a significant reduction in root growth, shoot biomass, and chlorophyll content. After Cd-only and Cd + Zn treatment, primary root tips became thicker and pericycle cells were enlarged compared to the control and Zn-only treatment. No differences between metals were observed under UV excitation, where all treatments showed more intensive autofluorescence connected with lignin/suberin accumulation compared to control conditions. The highest concentrations of Cd and Zn were found in the roots of all tested plants, and translocation factors did not exceed the threshold of 1.0. The root mineral composition was not affected by any treatment. In the shoots, the Mg concentration slightly increased after Cd-only and Cd + Zn treatments, whereas Zn-only treatment caused a sharp decrease in Ca content. Slight increases in K were seen after the addition of Zn. Significantly higher concentrations of Na were induced by Cd- or Zn-only treatment.
Collapse
Affiliation(s)
- Martina Benáková
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic.
| | - Hassan Ahmadi
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Zuzana Dučaiová
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Edita Tylová
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Jiří Tůma
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
162
|
Anwar S, Khan S, Ashraf MY, Noman A, Zafar S, Liu L, Ullah S, Fahad S. Impact of chelator-induced phytoextraction of cadmium on yield and ionic uptake of maize. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:505-513. [PMID: 27819494 DOI: 10.1080/15226514.2016.1254153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Enhanced phytoextraction uses soil chelators to increase the bioavailability of heavy metals. This study tested the effectiveness of ethylenediaminetetraacetic acid (EDTA) and citric acid in enhancing cadmium (Cd) phytoextraction and their effects on the growth, yield, and ionic uptake of maize (Zea mays). Maize seeds of two cultivars were sown in pots treated with 15 (Cd15) or 30 mg Cd kg-1 soil (Cd30). EDTA and citric acid at 0.5 g kg-1 each were applied 2 weeks after germination. Results demonstrated that the growth, yield per plant, and total grain weight were reduced by exposure to Cd. EDTA increased the uptake of Cd in shoots, roots, and grains of both maize varieties. Citric acid did not enhance the uptake of Cd, rather it ameliorated the toxicity of Cd, as shown by increased shoot and root length and biomass. Cadmium toxicity reduced the number of grains, rather than the grain size. The maize cultivar Sahiwal-2002 extracted 1.6% and 3.6% of Cd from soil in both Cd+ EDTA treatments. Hence, our study implies that maize can be used to successfully phytoremediate Cd from soil using EDTA, without reducing plant biomass or yield.
Collapse
Affiliation(s)
- Sumera Anwar
- a College of Plant Science and Technology , Huazhong Agriculture University , Wuhan , Hubei , China
- b Soil and Environmental Science Division , Nuclear Institutes for Agriculture and Biology (NIAB) , Faisalabad , Pakistan
| | - Shahbaz Khan
- a College of Plant Science and Technology , Huazhong Agriculture University , Wuhan , Hubei , China
| | - M Yasin Ashraf
- b Soil and Environmental Science Division , Nuclear Institutes for Agriculture and Biology (NIAB) , Faisalabad , Pakistan
| | - Ali Noman
- c Department of Botany , Government College University , Faisalabad , Pakistan
| | - Sara Zafar
- c Department of Botany , Government College University , Faisalabad , Pakistan
| | - Lijun Liu
- a College of Plant Science and Technology , Huazhong Agriculture University , Wuhan , Hubei , China
| | - Sana Ullah
- a College of Plant Science and Technology , Huazhong Agriculture University , Wuhan , Hubei , China
| | - Shah Fahad
- a College of Plant Science and Technology , Huazhong Agriculture University , Wuhan , Hubei , China
| |
Collapse
|
163
|
Bruno L, Pacenza M, Forgione I, Lamerton LR, Greco M, Chiappetta A, Bitonti MB. In Arabidopsis thaliana Cadmium Impact on the Growth of Primary Root by Altering SCR Expression and Auxin-Cytokinin Cross-Talk. FRONTIERS IN PLANT SCIENCE 2017; 8:1323. [PMID: 28798767 PMCID: PMC5529362 DOI: 10.3389/fpls.2017.01323] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/14/2017] [Indexed: 05/21/2023]
Abstract
Cadmium is one of the most widespread pollutant in both terrestrial and marine environment, and its inhibitory effect on plant growth has been largely demonstrated. However, the molecular mechanisms underlying Cd toxicity in plant and mainly in root, as the first organ sensing soil heavy metals, need to be better investigated. To this aim, in the present work we analyzed the growth and the organization of Arabidopsis thaliana primary root in seedlings exposed to Cd (25 and 50 μM) for 8 days starting from germination. Root length, root meristem size, and organization were evaluated together with the behavior of some of the major molecular players in root growth and patterning. In particular, by using different GFP transgenic lines, we monitored: (i) the expression pattern of WOX5 and SCR transcription factors involved in the establishment and maintenance of stem cell niche and in the control of meristem size; (ii) the expression pattern of the IAA-inducible pDR5::GFP reporter, PIN 1, 2, 3, 7 auxin carriers and TCSn::GFP cytokinin-sensitive sensor as relevant components of hormone circuit controlling root growth. We report that Cd exposure inhibits primary root growth via affecting RAM stem cell niche and root radial pattern. At the molecular level, an impairment of auxin maximum accumulation at the root tip, related to a down-regulation and mislocalisation of PIN proteins, and an enhancement of TCSn::GFP cytokinin-sensitive sensor signal is also detected under Cd treatment, thus suggesting an alteration in the homeostasis of auxin/cytokinin signaling. Moreover, and for the first time Cd toxicity on root growth and pattern has been related to a misexpression of SCR transcription factors which is known to interplay with auxin/cytokinin cross-talk in the control of RAM maintenance and activity.
Collapse
Affiliation(s)
- Leonardo Bruno
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaArcavacata di Rende, Italy
- *Correspondence: Leonardo Bruno,
| | - Marianna Pacenza
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaArcavacata di Rende, Italy
| | - Ivano Forgione
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaArcavacata di Rende, Italy
| | - Liam R. Lamerton
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaArcavacata di Rende, Italy
- School of Biosciences, University of CardiffCardiff, United Kingdom
| | - Maria Greco
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaArcavacata di Rende, Italy
| | - Adriana Chiappetta
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaArcavacata di Rende, Italy
| | - Maria B. Bitonti
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della CalabriaArcavacata di Rende, Italy
| |
Collapse
|
164
|
Shi X, Sun H, Chen Y, Pan H, Wang S. Transcriptome Sequencing and Expression Analysis of Cadmium (Cd) Transport and Detoxification Related Genes in Cd-Accumulating Salix integra. FRONTIERS IN PLANT SCIENCE 2016; 7:1577. [PMID: 27840630 PMCID: PMC5083712 DOI: 10.3389/fpls.2016.01577] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/06/2016] [Indexed: 05/27/2023]
Abstract
Salix integra is a shrub willow native to northeastern China, Japan, Korea, and Primorsky Krai in the far southeast of Russia, and has been identified as cadmium (Cd)-accumulating trees in recent years. Although many physiological studies have been conducted with these plants, little is known about the molecular basis underlying Cd response in this plant, and this is confirmed by the very few number of gene sequences (only 39 nucleotide sequences) available in public databases. Advances in genomics for Salix are promising for future improvement in identification of new candidate genes involved in metal tolerance and accumulation. Thus, high-throughput transcriptome sequencing is essential for generating enormous transcript sequences from S. integra, especially for the purpose of Cd toxicity-responsive genes discovery. Using Illumina paired-end sequencing, approximately 60.05 million high-quality reads were obtained. De novo assembly yielded 80,105 unigenes with an average length of 703 bp, A total of 50,221 (63%) unigenes were further functionally annotated by comparing their sequences to different proteins and functional domain databases. GO annotation reveals 1849 Cd responsive genes involving in Cd binding, transport, and detoxification and cellular Cd homeostasis, and these genes were highly enriched in plant response to Cd ion and Cd ion transport. By searching against the PlantCyc database, 509 unigenes were assigned to 14 PlantCyc pathways related to Cd transport and cellular detoxification, and many of them are genes encoding heavy metal ATPases (HMAs), nature resistance-associated with microphage proteins (NRAMPs), ATP-binding cassette (ABC) transporters, etc., Comprehensive RT-qPCR analysis of these selected genes in different tissues of S. integra under the control and Cd treatment revealed metallothionein-like protein (MT2A and MT2B), Metal tolerance protein (MTP1), ABCB25, NRAMP5, and ZIP1 may be involved in the Cd transport and detoxification in leaves, while NRAMP2, ZIP8, and NRAMP5 may be related to Cd transport in roots. Our study will enrich the sequence information of S. integra in public database, and would provide some new understanding of the molecular mechanisms of heavy metal tolerance and detoxification in willows.
Collapse
Affiliation(s)
- Xiang Shi
- Research Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang ProvinceHangzhou, China
| | - Haijing Sun
- Research Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang ProvinceHangzhou, China
| | - Yitai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, China
| | - Hongwei Pan
- Research Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang ProvinceHangzhou, China
| | - Shufeng Wang
- Research Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, China
- Key Laboratory of Tree Breeding of Zhejiang ProvinceHangzhou, China
| |
Collapse
|