151
|
Yuan D, Ellis CM, Davis JJ. Mesoporous Silica Nanoparticles in Bioimaging. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3795. [PMID: 32867401 PMCID: PMC7504327 DOI: 10.3390/ma13173795] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
A biomedical contrast agent serves to enhance the visualisation of a specific (potentially targeted) physiological region. In recent years, mesoporous silica nanoparticles (MSNs) have developed as a flexible imaging platform of tuneable size/morphology, abundant surface chemistry, biocompatibility and otherwise useful physiochemical properties. This review discusses MSN structural types and synthetic strategies, as well as methods for surface functionalisation. Recent applications in biomedical imaging are then discussed, with a specific emphasis on magnetic resonance and optical modes together with utility in multimodal imaging.
Collapse
Affiliation(s)
| | | | - Jason J. Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK; (D.Y.); (C.M.E.)
| |
Collapse
|
152
|
M. Ways TM, Ng KW, Lau WM, Khutoryanskiy VV. Silica Nanoparticles in Transmucosal Drug Delivery. Pharmaceutics 2020; 12:E751. [PMID: 32785148 PMCID: PMC7465701 DOI: 10.3390/pharmaceutics12080751] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Transmucosal drug delivery includes the administration of drugs via various mucous membranes, such as gastrointestinal, nasal, ocular, and vaginal mucosa. The use of nanoparticles in transmucosal drug delivery has several advantages, including the protection of drugs against the harsh environment of the mucosal lumens and surfaces, increased drug residence time, and enhanced drug absorption. Due to their relatively simple synthetic methods for preparation, safety profile, and possibilities of surface functionalisation, silica nanoparticles are highly promising for transmucosal drug delivery. This review provides a description of silica nanoparticles and outlines the preparation methods for various core and surface-functionalised silica nanoparticles. The relationship between the functionalities of silica nanoparticles and their interactions with various mucous membranes are critically analysed. Applications of silica nanoparticles in transmucosal drug delivery are also discussed.
Collapse
Affiliation(s)
- Twana Mohammed M. Ways
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK;
- College of Pharmacy, University of Sulaimani, Sulaimani 46001, Iraq
| | - Keng Wooi Ng
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.W.N.); (W.M.L.)
| | - Wing Man Lau
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.W.N.); (W.M.L.)
| | | |
Collapse
|
153
|
Peyvand P, Vaezi Z, Sedghi M, Dalir N, Ma’mani L, Naderi-Manesh H. Imidazolium-based ionic liquid functionalized mesoporous silica nanoparticles as a promising nano-carrier: response surface strategy to investigate and optimize loading and release process for Lapatinib delivery. Pharm Dev Technol 2020; 25:1150-1161. [DOI: 10.1080/10837450.2020.1803909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Parvaneh Peyvand
- Department of Biophysics/Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Vaezi
- Department of Biophysics/Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mosslim Sedghi
- Department of Biophysics/Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Nima Dalir
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, Tehran, Iran
| | - Leila Ma’mani
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hossein Naderi-Manesh
- Department of Biophysics/Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
154
|
Lee JY, Kim MK, Nguyen TL, Kim J. Hollow Mesoporous Silica Nanoparticles with Extra-Large Mesopores for Enhanced Cancer Vaccine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34658-34666. [PMID: 32662625 DOI: 10.1021/acsami.0c09484] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Owing to the limitations of conventional cancer therapies, cancer immunotherapy has emerged for the prevention of cancer recurrence. To provoke adaptive immune responses that are antigen-specific, it is important to develop an efficient antigen delivery system that can enhance the activation and maturation of the dendritic cells (DCs) in the human body. In this study, we synthesize hollow mesoporous silica nanoparticles with extra-large mesopores (H-XL-MSNs) based on a single-step synthesis from core-shell mesoporous silica nanoparticles with a core composed of an assembly of iron oxide nanoparticles. The hollow void inside the mesoporous silica nanoparticles with large mesopores allows a high loading efficiency of various model proteins of different sizes. The H-XL-MSNs are coated with a poly(ethyleneimine) (PEI) solution to provide an immune adjuvant and change the surface charge of the particles for loading and slow release of a model antigen. An in vitro study using a cancer vaccine based on the PEI-coated H-XL-MSNs with the loading of the model antigen showed an enhanced activation of the DCs. An in vivo study demonstrated that the resulting cancer vaccine increased the antigen-specific cytotoxic T cells, enhanced the suppression of tumor growth, and improved the survival rate after challenging cancer to mice. These findings suggest that these hollow MSNs with extra-large pores can be used as excellent antigen carriers for immunotherapy.
Collapse
Affiliation(s)
- Jun Yup Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Min Kyung Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
155
|
Alyassin Y, Sayed EG, Mehta P, Ruparelia K, Arshad MS, Rasekh M, Shepherd J, Kucuk I, Wilson PB, Singh N, Chang MW, Fatouros DG, Ahmad Z. Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents. Drug Discov Today 2020; 25:1513-1520. [DOI: 10.1016/j.drudis.2020.06.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/14/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
|
156
|
Carvalho AM, Cordeiro RA, Faneca H. Silica-Based Gene Delivery Systems: From Design to Therapeutic Applications. Pharmaceutics 2020; 12:E649. [PMID: 32660110 PMCID: PMC7407166 DOI: 10.3390/pharmaceutics12070649] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Advances in gene therapy have been foreshadowing its potential for the treatment of a vast range of diseases involving genetic malfunctioning. However, its therapeutic efficiency and successful outcome are highly dependent on the development of the ideal gene delivery system. On that matter, silica-based vectors have diverted some attention from viral and other types of non-viral vectors due to their increased safety, easily modifiable structure and surface, high stability, and cost-effectiveness. The versatility of silane chemistry and the combination of silica with other materials, such as polymers, lipids, or inorganic particles, has resulted in the development of carriers with great loading capacities, ability to effectively protect and bind genetic material, targeted delivery, and stimuli-responsive release of cargos. Promising results have been obtained both in vitro and in vivo using these nanosystems as multifunctional platforms in different potential therapeutic areas, such as cancer or brain therapies, sometimes combined with imaging functions. Herein, the current advances in silica-based systems designed for gene therapy are reviewed, including their main properties, fabrication methods, surface modifications, and potential therapeutic applications.
Collapse
Affiliation(s)
| | | | - Henrique Faneca
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.M.C.); (R.A.C.)
| |
Collapse
|
157
|
Naghavi F, Morsali A, Bozorgmehr MR, Beyramabadi SA. Quantum molecular study of mesoporous silica nanoparticle as a delivery system for troxacitabine anticancer drug. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
158
|
Dou G, Tian R, Liu X, Yuan P, Ye Q, Liu J, Liu S, Zhou J, Deng Z, Chen X, Liu S, Jin Y. Chimeric apoptotic bodies functionalized with natural membrane and modular delivery system for inflammation modulation. SCIENCE ADVANCES 2020; 6:eaba2987. [PMID: 32832662 PMCID: PMC7439513 DOI: 10.1126/sciadv.aba2987] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/03/2020] [Indexed: 05/08/2023]
Abstract
Engineered extracellular vesicles (EVs) carrying therapeutic molecules are promising candidates for disease therapies. Yet, engineering EVs with optimal functions is a challenge that requires careful selection of functionally specific vesicles and a proper engineering strategy. Here, we constructed chimeric apoptotic bodies (cABs) for on-demand inflammation modulation by combining pure membrane from apoptotic bodies (ABs) as a bioconjugation/regulation module and mesoporous silica nanoparticles (MSNs) as a carrier module. MSNs were preloaded with anti-inflammatory agents (microRNA-21 or curcumin) and modified with stimuli-responsive molecules to achieve accurate cargo release at designated locations. The resulting cABs actively target macrophages in the inflammatory region and effectively promote M2 polarization of these macrophages to modulate inflammation due to the synergistic regulatory effects of AB membranes and the intracellular release of preloaded cargos. This work provides strategies to arbitrarily engineer modular EVs that integrate the advantages of natural EVs and synthetic materials for various applications.
Collapse
Affiliation(s)
- Geng Dou
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Ran Tian
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiao Tong University, Xi’an, Shaanxi 710049, China
| | - Xuemei Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002 China
| | - Pingyun Yuan
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiao Tong University, Xi’an, Shaanxi 710049, China
| | - Qianwen Ye
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Jin Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Siying Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Jun Zhou
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Zhihong Deng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiao Tong University, Xi’an, Shaanxi 710049, China
- Corresponding author. (Y.J.); (Sh.L.); (X.C.)
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Corresponding author. (Y.J.); (Sh.L.); (X.C.)
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Corresponding author. (Y.J.); (Sh.L.); (X.C.)
| |
Collapse
|
159
|
Kuang G, Zhang Q, He S, Liu Y. Curcumin-loaded PEGylated mesoporous silica nanoparticles for effective photodynamic therapy. RSC Adv 2020; 10:24624-24630. [PMID: 35516169 PMCID: PMC9055143 DOI: 10.1039/d0ra04778c] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/23/2020] [Indexed: 01/02/2023] Open
Abstract
Curcumin (Cur) can be used as a photosensitizer in the photodynamic therapy (PDT) of cancer, but its low bioavailability limits further clinical application. A mesoporous silica-based drug delivery system (PEGylated mesoporous silica nanoparticles, MSN-PEG@Cur) was designed to solve the problem. The successful preparation of MSN-PEG@Cur was characterized by several physico-chemistry techniques. The endocytosis, ROS generation and in vitro anti-cancer efficacy of MSN-PEG@Cur were evaluated in detail step by step. The results indicated that MSN-PEG@Cur could be effectively endocytosed into cells and release Cur, which can promptly generate ROS upon irradiation, achieving effective PDT in cancer treatment. This MSNs-based drug delivery system provides an alternative strategy for Cur loading and PDT of cancer.
Collapse
Affiliation(s)
- Gaizhen Kuang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University Zhengzhou 450008 P. R. China
| | - Qingfei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457 Singapore
| | - Ying Liu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University Zhengzhou 450008 P. R. China
| |
Collapse
|
160
|
Barui S, Cauda V. Multimodal Decorations of Mesoporous Silica Nanoparticles for Improved Cancer Therapy. Pharmaceutics 2020; 12:E527. [PMID: 32521802 PMCID: PMC7355899 DOI: 10.3390/pharmaceutics12060527] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
The presence of leaky vasculature and the lack of lymphatic drainage of small structures by the solid tumors formulate nanoparticles as promising delivery vehicles in cancer therapy. In particular, among various nanoparticles, the mesoporous silica nanoparticles (MSN) exhibit numerous outstanding features, including mechanical thermal and chemical stability, huge surface area and ordered porous interior to store different anti-cancer therapeutics with high loading capacity and tunable release mechanisms. Furthermore, one can easily decorate the surface of MSN by attaching ligands for active targeting specifically to the cancer region exploiting overexpressed receptors. The controlled release of drugs to the disease site without any leakage to healthy tissues can be achieved by employing environment responsive gatekeepers for the end-capping of MSN. To achieve precise cancer chemotherapy, the most desired delivery system should possess high loading efficiency, site-specificity and capacity of controlled release. In this review we will focus on multimodal decorations of MSN, which is the most demanding ongoing approach related to MSN application in cancer therapy. Herein, we will report about the recently tried efforts for multimodal modifications of MSN, exploiting both the active targeting and stimuli responsive behavior simultaneously, along with individual targeted delivery and stimuli responsive cancer therapy using MSN.
Collapse
Affiliation(s)
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| |
Collapse
|
161
|
Quang Tran H, Bhave M, Yu A. Current Advances of Hollow Capsules as Controlled Drug Delivery Systems. ChemistrySelect 2020. [DOI: 10.1002/slct.201904598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huy Quang Tran
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| |
Collapse
|
162
|
Plasmon-Enhanced Controlled Drug Release from Ag-PMA Capsules. Molecules 2020; 25:molecules25092267. [PMID: 32403460 PMCID: PMC7248805 DOI: 10.3390/molecules25092267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/05/2022] Open
Abstract
Silver (Ag)-grafted PMA (poly-methacrylic acid, sodium salt) nanocomposite loaded with sorafenib tosylate (SFT), an anticancer drug, showed good capability as a drug carrier allowing on-demand control of the dose, timing and duration of the drug release by laser irradiation stimuli. In this study, the preparation of Ag-PMA capsules loaded with SFT by using sacrificial silica microparticles as templates was reported. A high drug loading (DL%) of ∼13% and encapsulation efficiency (EE%) of about 76% were obtained. The photo-release profiles were regulated via the adjustment of light wavelength and power intensity. A significant improvement of SFT release (14% vs. 21%) by comparing SFT-Ag-PMA capsules with Ag-PMA colloids under the same experimental conditions was observed. Moreover, an increase of drug release by up to 35% was reached by tuning the laser irradiation wavelength near to Ag nanoparticles’ surface plasmon resonance (SPR). These experimental results together with more economical use of the active component suggest the potentiality of SFT-Ag-PMA capsules as a smart drug delivery system.
Collapse
|
163
|
Xu Y, Xiao L, Chang Y, Cao Y, Chen C, Wang D. pH and Redox Dual-Responsive MSN-S-S-CS as a Drug Delivery System in Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1279. [PMID: 32178282 PMCID: PMC7143049 DOI: 10.3390/ma13061279] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 01/23/2023]
Abstract
In order to achieve a controlled release drug delivery system (DDS) for cancer therapy, a pH and redox dual-responsive mesoporous silica nanoparticles (MSN)-sulfur (S)-S- chitosan (CS) DDS was prepared via an amide reaction of dithiodipropionic acid with amino groups on the surface of MSN and amino groups on the surface of CS. Using salicylic acid (SA) as a model drug, SA@MSN-S-S-CS was prepared by an impregnation method. Subsequently, the stability, swelling properties and drug release properties of the DDS were studied by x-ray diffraction, scanning electron microscopy, Fourier transform infrared microspectroscopy, size and zeta potential as well as Brunauer-Emmett-Teller surface area. Pore size and volume of the composites decreased after drug loading but maintained a stable structure. The calculated drug loading rate and encapsulation efficiency were 8.17% and 55.64%, respectively. The in vitro drug release rate was 21.54% in response to glutathione, and the release rate showed a marked increase as the pH decreased. Overall, double response functions of MSN-S-S-CS had unique advantages in controlled drug delivery, and may be a new clinical application of DDS in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Yuan Cao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (Y.X.); (L.X.); (Y.C.)
| | - Changguo Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (Y.X.); (L.X.); (Y.C.)
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (Y.X.); (L.X.); (Y.C.)
| |
Collapse
|
164
|
Li H, Gascó C, Delalande A, Charnay C, Raehm L, Midoux P, Pichon C, Pleixats R, Durand JO. Periodic Mesoporous Organosilica Nanoparticles with BOC Group, towards HIFU Responsive Agents. Molecules 2020; 25:E974. [PMID: 32098283 PMCID: PMC7070328 DOI: 10.3390/molecules25040974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 11/29/2022] Open
Abstract
Periodic Mesoporous Organosilica Nanoparticles (PMONPs) are nanoparticles of high interest for nanomedicine applications. These nanoparticles are not composed of silica (SiO2). They belong to hybrid organic-inorganic systems. We considered using these nanoparticles for CO2 release as a contrast agent for High Intensity Focused Ultrasounds (HIFU). Three molecules (P1-P3) possessing two to four triethoxysilyl groups were synthesized through click chemistry. These molecules possess a tert-butoxycarbonyl (BOC) group whose cleavage in water at 90-100 °C releases CO2. Bis(triethoxysilyl)ethylene E was mixed with the molecules Pn (or not for P3) at a proportion of 90/10 to 75/25, and the polymerization triggered by the sol-gel procedure led to PMONPs. PMONPs were characterized by different techniques, and nanorods of 200-300 nm were obtained. These nanorods were porous at a proportion of 90/10, but non-porous at 75/25. Alternatively, molecules P3 alone led to mesoporous nanoparticles of 100 nm diameter. The BOC group was stable, but it was cleaved at pH 1 in boiling water. Molecules possessing a BOC group were successfully used for the preparation of nanoparticles for CO2 release. The BOC group was stable and we did not observe release of CO2 under HIFU at lysosomal pH of 5.5. The pH needed to be adjusted to 1 in boiling water to cleave the BOC group. Nevertheless, the concept is interesting for HIFU theranostic agents.
Collapse
Affiliation(s)
- Hao Li
- ICGM, Univ Montpellier, CNRS, case 1701, Place Eugène Bataillon, CEDEX 05, 34095 Montpellier, France; (H.L.); (C.C.); (L.R.)
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultat de Ciències, Universitat Autònoma de Barcelona, UAB Campus, C/dels Til.lers, 08193 Cerdanyola del Vallès (Barcelona), Spain;
| | - Carolina Gascó
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultat de Ciències, Universitat Autònoma de Barcelona, UAB Campus, C/dels Til.lers, 08193 Cerdanyola del Vallès (Barcelona), Spain;
| | - Anthony Delalande
- Center for Molecular Biophysics, (CBM, UPR 4301), Rue Charles Sadron, 45071 Orléans, France; (A.D.); (P.M.); (C.P.)
| | - Clarence Charnay
- ICGM, Univ Montpellier, CNRS, case 1701, Place Eugène Bataillon, CEDEX 05, 34095 Montpellier, France; (H.L.); (C.C.); (L.R.)
| | - Laurence Raehm
- ICGM, Univ Montpellier, CNRS, case 1701, Place Eugène Bataillon, CEDEX 05, 34095 Montpellier, France; (H.L.); (C.C.); (L.R.)
| | - Patrick Midoux
- Center for Molecular Biophysics, (CBM, UPR 4301), Rue Charles Sadron, 45071 Orléans, France; (A.D.); (P.M.); (C.P.)
| | - Chantal Pichon
- Center for Molecular Biophysics, (CBM, UPR 4301), Rue Charles Sadron, 45071 Orléans, France; (A.D.); (P.M.); (C.P.)
| | - Roser Pleixats
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultat de Ciències, Universitat Autònoma de Barcelona, UAB Campus, C/dels Til.lers, 08193 Cerdanyola del Vallès (Barcelona), Spain;
| | - Jean-Olivier Durand
- ICGM, Univ Montpellier, CNRS, case 1701, Place Eugène Bataillon, CEDEX 05, 34095 Montpellier, France; (H.L.); (C.C.); (L.R.)
| |
Collapse
|
165
|
Therapeutic Potential of Polymer-Coated Mesoporous Silica Nanoparticles. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app10010289] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) find tremendous applications in drug delivery due to several advantages such as their easy fabrication process, high drug loading, biodegradability, biocompatibility, and so forth. Nevertheless, despite several advantages, the use of this striking drug delivery carrier is restricted due to premature drug release owing to the porous structure. Coating of the pores using polymers has emerged as a great solution to this problem. Polymer coatings, which act as gatekeepers, avoid the premature release of loaded content from MSNs and offers the opportunity for controlled and targeted drug delivery. Therefore, in this review, we have compiled the polymer-based coating approaches used in recent years for improving the drug delivery capability of MSNs. This manuscript provides an insight into the research about the potential of polymer-coated MSNs, allowing the selection of right polymer for coating purposes according to the desired application.
Collapse
|
166
|
Caritá AC, Fonseca-Santos B, Shultz JD, Michniak-Kohn B, Chorilli M, Leonardi GR. Vitamin C: One compound, several uses. Advances for delivery, efficiency and stability. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102117. [PMID: 31676375 DOI: 10.1016/j.nano.2019.102117] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/03/2019] [Accepted: 10/18/2019] [Indexed: 11/20/2022]
Abstract
Vitamin C (Vit C) is a potent antioxidant with several applications in the cosmetic and pharmaceutical fields. However, the biggest challenge in the utilization of Vit C is to maintain its stability and improve its delivery to the active site. Several strategies have been developed such as: controlling the oxygen levels during formulation and storage, low pH, reduction of water content in the formulation and the addition of preservative agents. Additionally, the utilization of derivatives of Vit C and the development of micro and nanoencapsulated delivery systems have been highlighted. In this article, the multiple applications and mechanisms of action of vitamin C will be reviewed and discussed, as well as the new possibilities of delivery and improvement of stability.
Collapse
Affiliation(s)
- Amanda Costa Caritá
- Department of Translational Medicine-Federal University of São Paulo, Brazil.
| | - Bruno Fonseca-Santos
- Department of Drugs and Medicines - School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Jemima Daniela Shultz
- Department of Translational Medicine-Federal University of São Paulo, Brazil; Department of Drugs and Medicines - School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | - Marlus Chorilli
- Department of Drugs and Medicines - School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | | |
Collapse
|
167
|
Huang X, Nisar MF, Wang M, Wang W, Chen L, Lin M, Xu W, Diao Q, Zhong JL. UV-responsive AKBA@ZnO nanoparticles potential for polymorphous light eruption protection and therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110254. [PMID: 31761216 DOI: 10.1016/j.msec.2019.110254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 08/05/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022]
Abstract
Polymorphous light eruption (PLE) is one of the acquired idiopathic photodermatosis mainly induced by immoderate UV radiation. In order to realize UV protection and medicine administration simultaneously for polymorphous light eruption protection and therapy, Acetyl-11-keto-β-boswellic acid (AKBA) loaded Zinc Oxide (ZnO) nanoparticles of which drug release behavior is UV-controlled has been successfully synthesized. Such nanoparticles can not only reflect UV but also transfer the energy to release AKBA which presents an excellent antioxidant and anti-inflammatory effects. In addition, they are biocompatible to HaCaT cells. As a result, they have a great potential in combining UV protection and medicine administration simultaneously for PLE protection and therapy.
Collapse
Affiliation(s)
- Xiao Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China; Institute of Nanomedicine and Biomaterials, School of Sports and Health Science, Tongren University, Tongren, 554300, China; Guizhou Provincical College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563003, China.
| | - Muhammad Farrukh Nisar
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Mei Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Wenhong Wang
- Institute of Nanomedicine and Biomaterials, School of Sports and Health Science, Tongren University, Tongren, 554300, China; Guizhou Provincical College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563003, China
| | - Long Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Mao Lin
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China
| | - Wei Xu
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China
| | - Qingchun Diao
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China
| | - Julia Li Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China; Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China.
| |
Collapse
|
168
|
Huang C, Zhang Z, Guo Q, Zhang L, Fan F, Qin Y, Wang H, Zhou S, Ou‐Yang W, Sun H, Leng X, Pan X, Kong D, Zhang L, Zhu D. A Dual-Model Imaging Theragnostic System Based on Mesoporous Silica Nanoparticles for Enhanced Cancer Phototherapy. Adv Healthc Mater 2019; 8:e1900840. [PMID: 31512403 DOI: 10.1002/adhm.201900840] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/15/2019] [Indexed: 01/01/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) show great promise to be exploited as versatile multifunctional nanocarriers for effective cancer diagnosis and treatment. In this work, perfluorohexane (PFH)-encapsulated MSNs with indocyanine green (ICG)-polydopamine (PDA) layer and poly(ethylene glycol)-folic acid coating (designated as MSNs-PFH@PDA-ICG-PEG-FA) are successfully fabricated to achieve tumor ultrasonic (US)/near-infrared fluorescence (NIRF) imaging as well as photothermal therapy (PTT)/photodynamic therapy (PDT). MSNs-PFH@PDA-ICG-PEG-FA exhibits good monodispersity with high ICG loading, significantly enhances ICG photostability, and greatly improves cellular uptake. Upon single 808 nm NIR irradiation, the nanocarrier not only efficiently generates hyperthermia to realize PTT, but also produces reactive oxygen species (ROS) for effective PDT. Meanwhile, NIR irradiation can trigger PFH to undergo vaporization and provide a super-resolution US image. Thus, the PTT/PDT combination therapy can be dually guided by PFH-induced US imaging and ICG-induced NIRF imaging. In vivo antitumor studies demonstrate that PTT/PDT from MSNs-PFH@PDA-ICG-PEG-FA significantly inhibits tumor growth and achieves a cure rate of 60% (three out of five mice are completely cured). Hence, the multifunctional MSNs appear to be a promising theragnostic nanoplatform for multimodal cancer imaging and therapy.
Collapse
Affiliation(s)
- Chenlu Huang
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Zhiming Zhang
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Qing Guo
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Li Zhang
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Fan Fan
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Yu Qin
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Hai Wang
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Sheng Zhou
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Wenbin Ou‐Yang
- State Key Laboratory of Translational Cardiovascular MedicineFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical College Beijing 100037 China
| | - Hongfan Sun
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Xigang Leng
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Xiangbin Pan
- State Key Laboratory of Translational Cardiovascular MedicineFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical College Beijing 100037 China
| | - Deling Kong
- The Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesNankai University Tianjin 300071 China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical University Xuzhou 221004 Jiangsu China
| | - Linhua Zhang
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| |
Collapse
|
169
|
Fang Z, Li X, Xu Z, Du F, Wang W, Shi R, Gao D. Hyaluronic acid-modified mesoporous silica-coated superparamagnetic Fe 3O 4 nanoparticles for targeted drug delivery. Int J Nanomedicine 2019; 14:5785-5797. [PMID: 31440047 PMCID: PMC6679701 DOI: 10.2147/ijn.s213974] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/06/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction: The targeted delivery of anti-cancer drugs to tumor tissue has been recognized as a promising strategy to increase their therapeutic efficacy and reduce side effects. Mesoporous silica-coated superparamagnetic Fe3O4 nanoparticles (NH2-MSNs), a kind of nanocarrier, can passively enter tumor tissues to enhance the permeability and retention of drugs. However, NH2-MSNs do not specifically bind to cancer cells. This drawback encouraged us to develop a more efficient nanocarrier for cancer therapy. Methods: Herein, we describe the development of an effective nanocarrier based on NH2-MSNs, which were modified with hyaluronic acid on their surface (HA-MSNs) and loaded with doxorubicin (DOX). We have successfully fabricated uniform spherical HA-MSNs nanocarriers. The targeting ability of this delivery system was evaluated through specific uptake by cells and IVIS imaging. Results: DOX-HA-MSNs nanocarriers displayed more dramatic cytotoxic activity against 4T1 breast cancer cells compared to GES-1 gastric mucosa cells. In vivo results revealed that once DOX-HA-MSNs nanocarriers are exposed to an external magnetic field, they could be rapidly attracted to the magnet and effectively cross the cytoplasmic membrane via CD44 receptor-mediated transcytosis. This allows them to access the cancer cell cytoplasm and release DOX based on changes in the physiological environment. Both in vitro and in vivo results demonstrated that the HA-MSNs nanocarriers provided better therapeutic efficacy. Conclusion: The HA-MSNs nanocarriers represent an effective new paradigm to treat cancers due to active targeting to the tumor cells. Moreover, the specific uptake by the tumor effectively protects normal tissues to reduce off-target side effects. The reported findings support further investigation of HA-MSNs for cancer therapy.
Collapse
Affiliation(s)
- Zhengzou Fang
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing210009, People’s Republic of China
| | - Xinyuan Li
- Department of Clinical Laboratory, Huai’an Hospital Affiliated to Xuzhou Medical College and Huai’an Second Hospital, Huai’an, Jiangsu, People’s Republic of China
| | - Zeyan Xu
- Department of Gastroenterology, Jiangsu University, School of Medicine, Zhenjiang212013, People’s Republic of China
| | - Fengyi Du
- Department of Gastroenterology, Jiangsu University, School of Medicine, Zhenjiang212013, People’s Republic of China
| | - Wendi Wang
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing210009, People’s Republic of China
| | - Ruihua Shi
- Department of Gastroenterology, Affiliated Zhongda Hospital, Southeast University, Nanjing210009, People’s Republic of China
| | - Daqing Gao
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing210009, People’s Republic of China
| |
Collapse
|
170
|
Sábio RM, Meneguin AB, Ribeiro TC, Silva RR, Chorilli M. New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery. Int J Pharm 2019; 564:379-409. [PMID: 31028801 DOI: 10.1016/j.ijpharm.2019.04.067] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) displays interesting properties for biomedical applications such as high chemical stability, large surface area and tunable pores diameters and volumes, allowing the incorporation of large amounts of drugs, protecting them from deactivation and degradation processes acting as an excellent nanoplatform for drug delivery. However, the functional MSNs do not present the ability to transport the therapeutics without any leakage until reach the targeted cells causing side effects. On the other hand, the hydroxyls groups available on MSNs surface allows the conjugation of specific molecules which can binds to the overexpressed Enhanced Growth Factor Receptor (EGFR) in many tumors, representing a potential strategy for the cancer treatment. Beyond that, the targeting molecules conjugate onto mesoporous surface increase its cell internalization and act as gatekeepers blocking the mesopores controlling the drug release. In this context, multifunctional MSNs emerge as stimuli-responsive controlled drug delivery systems (CDDS) to overcome drawbacks as low internalization, premature release before to reach the region of interest, several side effects and low effectiveness of the current treatments. This review presents an overview of MSNs fabrication methods and its properties that affects drug delivery as well as stimuli-responsive CDDS for cancer treatment.
Collapse
Affiliation(s)
- Rafael M Sábio
- São Carlos Institute of Physics - University of São Paulo (USP), 13566-590 São Carlos, Brazil.
| | - Andréia B Meneguin
- São Carlos Institute of Physics - University of São Paulo (USP), 13566-590 São Carlos, Brazil
| | - Taís C Ribeiro
- School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Robson R Silva
- Department of Chemistry and Chemical Engineering - Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Marlus Chorilli
- School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, Brazil.
| |
Collapse
|