151
|
Paradiso R, Borriello G, Bolletti Censi S, Salzano A, Cimmino R, Galiero G, Fusco G, De Carlo E, Campanile G. Different Non-Structural Carbohydrates/Crude Proteins (NCS/CP) Ratios in Diet Shape the Gastrointestinal Microbiota of Water Buffalo. Vet Sci 2021; 8:vetsci8060096. [PMID: 34073108 PMCID: PMC8229247 DOI: 10.3390/vetsci8060096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
The microbiota of the gastrointestinal tract (GIT) are crucial for host health and production efficiency in ruminants. Its microbial composition can be influenced by several endogenous and exogenous factors. In the beef and dairy industry, the possibility to manipulate gut microbiota by diet and management can have important health and economic implications. The aims of this study were to characterize the different GIT site microbiota in water buffalo and evaluate the influence of diet on GIT microbiota in this animal species. We characterized and compared the microbiota of the rumen, large intestine and feces of water buffaloes fed two different diets with different non-structural carbohydrates/crude proteins (NSC/CP) ratios. Our results indicated that Bacteroidetes, Firmicutes and Proteobacteria were the most abundant phyla in all the GIT sites, with significant differences in microbiota composition between body sites both within and between groups. This result was particularly evident in the large intestine, where beta diversity analysis displayed clear clustering of samples depending on the diet. Moreover, we found a difference in diet digestibility linked to microbiota modification at the GIT level conditioned by NSC/CP levels. Diet strongly influences GIT microbiota and can therefore modulate specific GIT microorganisms able to affect the health status and performance efficiency of adult animals.
Collapse
Affiliation(s)
- Rubina Paradiso
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (R.P.); (G.B.); (G.G.); (G.F.); (E.D.C.)
| | - Giorgia Borriello
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (R.P.); (G.B.); (G.G.); (G.F.); (E.D.C.)
| | | | - Angela Salzano
- Department of Veterinary Medicine, University of Naples “Federico II”, 80137 Naples, Italy;
- Correspondence: ; Tel.: +39-0812536215
| | | | - Giorgio Galiero
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (R.P.); (G.B.); (G.G.); (G.F.); (E.D.C.)
| | - Giovanna Fusco
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (R.P.); (G.B.); (G.G.); (G.F.); (E.D.C.)
| | - Esterina De Carlo
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (R.P.); (G.B.); (G.G.); (G.F.); (E.D.C.)
| | - Giuseppe Campanile
- Department of Veterinary Medicine, University of Naples “Federico II”, 80137 Naples, Italy;
| |
Collapse
|
152
|
Rajeswari G, Jacob S, Chandel AK, Kumar V. Unlocking the potential of insect and ruminant host symbionts for recycling of lignocellulosic carbon with a biorefinery approach: a review. Microb Cell Fact 2021; 20:107. [PMID: 34044834 PMCID: PMC8161579 DOI: 10.1186/s12934-021-01597-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Uprising fossil fuel depletion and deterioration of ecological reserves supply have led to the search for alternative renewable and sustainable energy sources and chemicals. Although first generation biorefinery is quite successful commercially in generating bulk of biofuels globally, the food versus fuel debate has necessitated the use of non-edible feedstocks, majorly waste biomass, for second generation production of biofuels and chemicals. A diverse class of microbes and enzymes are being exploited for biofuels production for a series of treatment process, however, the conversion efficiency of wide range of lignocellulosic biomass (LCB) and consolidated way of processing remains challenging. There were lot of research efforts in the past decade to scour for potential microbial candidate. In this context, evolution has developed the gut microbiota of several insects and ruminants that are potential LCB degraders host eco-system to overcome its host nutritional constraints, where LCB processed by microbiomes pretends to be a promising candidate. Synergistic microbial symbionts could make a significant contribution towards recycling the renewable carbon from distinctly abundant recalcitrant LCB. Several studies have assessed the bioprospection of innumerable gut symbionts and their lignocellulolytic enzymes for LCB degradation. Though, some reviews exist on molecular characterization of gut microbes, but none of them has enlightened the microbial community design coupled with various LCB valorization which intensifies the microbial diversity in biofuels application. This review provides a deep insight into the significant breakthroughs attained in enrichment strategy of gut microbial community and its molecular characterization techniques which aids in understanding the holistic microbial community dynamics. Special emphasis is placed on gut microbial role in LCB depolymerization strategies to lignocellulolytic enzymes production and its functional metagenomic data mining eventually generating the sugar platform for biofuels and renewable chemicals production.
Collapse
Affiliation(s)
- Gunasekaran Rajeswari
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist. , Kattankulathur, 603203, Tamil Nadu, India
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist. , Kattankulathur, 603203, Tamil Nadu, India.
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena, 12.602.810, Brazil
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| |
Collapse
|
153
|
Long-Term Effects of Dietary Supplementation with Olive Oil and Hydrogenated Vegetable Oil on the Rumen Microbiome of Dairy Cows. Microorganisms 2021; 9:microorganisms9061121. [PMID: 34067293 PMCID: PMC8224598 DOI: 10.3390/microorganisms9061121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
Dietary lipids increase energy density in dairy cow diets and in some cases can increase beneficial fatty acids (FA) in milk and dairy products. However, the degree of FA saturation may affect the rumen microbiome. The objective of this study was to determine the long-term effects of feeding saturated (hydrogenated vegetable oil; HVO) or unsaturated (olive oil; OO) fatty acid (FA) sources on the rumen microbiome of dairy cows. For 63 days, 15 mid-lactating cows were fed with either a basal diet (no fat supplement), or the basal diet supplemented with 3% dry matter (DM), either HVO or OO. Rumen contents were collected on days 21, 42 and 63 for 16S rRNA gene sequencing using the Illumina MiSeq platform. The results reveal dominance of the phyla Firmicutes (71.5%) and Bacteroidetes (26.2%), and their respective prevalent genera Succiniclasticum (19.4%) and Prevotella (16.6%). Succiniclasticum increased with both treatments at all time points. Prevotella was reduced on day 42 in both diets. Bacterial diversity alpha or beta were not affected by diets. Predicted bacterial functions by CowPI showed changes in energy and protein metabolism. Overall, 3% DM of lipid supplementation over 63 days can be used in dairy cow diets without major impacts on global bacterial community structure.
Collapse
|
154
|
Matthews C, Cotter PD, O’ Mahony J. MAP, Johne's disease and the microbiome; current knowledge and future considerations. Anim Microbiome 2021; 3:34. [PMID: 33962690 PMCID: PMC8105914 DOI: 10.1186/s42523-021-00089-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis is the causative agent of Johne's disease in ruminants. As an infectious disease that causes reduced milk yields, effects fertility and, eventually, the loss of the animal, it is a huge financial burden for associated industries. Efforts to control MAP infection and Johne's disease are complicated due to difficulties of diagnosis in the early stages of infection and challenges relating to the specificity and sensitivity of current testing methods. The methods that are available contribute to widely used test and cull strategies, vaccination programmes also in place in some countries. Next generation sequencing technologies have opened up new avenues for the discovery of novel biomarkers for disease prediction within MAP genomes and within ruminant microbiomes. Controlling Johne's disease in herds can lead to improved animal health and welfare, in turn leading to increased productivity. With current climate change bills, such as the European Green Deal, targeting livestock production systems for more sustainable practices, managing animal health is now more important than ever before. This review provides an overview of the current knowledge on genomics and detection of MAP as it pertains to Johne's disease.
Collapse
Affiliation(s)
- Chloe Matthews
- Cork Institute of Technology, Bishopstown, Co. Cork, Ireland
- Teagasc, Food Research Centre, Food Biosciences Department, Fermoy, Co. Cork, Ireland
| | - Paul D. Cotter
- Teagasc, Food Research Centre, Food Biosciences Department, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - Jim O’ Mahony
- Cork Institute of Technology, Bishopstown, Co. Cork, Ireland
| |
Collapse
|
155
|
Wu X, Huang S, Huang J, Peng P, Liu Y, Han B, Sun D. Identification of the Potential Role of the Rumen Microbiome in Milk Protein and Fat Synthesis in Dairy Cows Using Metagenomic Sequencing. Animals (Basel) 2021; 11:ani11051247. [PMID: 33926012 PMCID: PMC8146572 DOI: 10.3390/ani11051247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The rumen is the main digestive and absorption organ of dairy cows. It contains abundant microorganisms and can effectively use human-indigestible plant mass. Therefore, we used metagenomics to explore the role of rumen microbes in the regulation of milk protein and fat in dairy cows. This study showed that Prevotella species and Neocallimastix californiae in the rumen of cows are related to the synthesis of milk components due to their important functions in carbohydrate, amino acid, pyruvate, insulin, and lipid metabolism and transportation metabolic pathways. Abstract The rumen contains abundant microorganisms that aid in the digestion of lignocellulosic feed and are associated with host phenotype traits. Cows with extremely high milk protein and fat percentages (HPF; n = 3) and low milk protein and fat percentages (LPF; n = 3) were selected from 4000 lactating Holstein cows under the same nutritional and management conditions. We found that the total concentration of volatile fatty acids, acetate, butyrate, and propionate in the rumen fluid was significantly higher in the HPF group than in the LPF group. Moreover, we identified 38 most abundant species displaying differential richness between the two groups, in which Prevotella accounted for 68.8% of the species, with the highest abundance in the HPF group. Functional annotation based on the Kyoto Encyclopedia of Gene and Genome (KEGG), evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG), and Carbohydrate-Active enzymes (CAZy) databases showed that the significantly more abundant species in the HPF group are enriched in carbohydrate, amino acid, pyruvate, insulin, and lipid metabolism and transportation. Furthermore, Spearman’s rank correlation analysis revealed that specific microbial taxa (mainly the Prevotella species and Neocallimastix californiae) are positively correlated with total volatile fatty acids (VFA). Collectively, we found that the HPF group was enriched with several Prevotella species related to the total VFA, acetate, and amino acid synthesis. Thereby, these fulfilled the host’s needs for energy, fat, and rumen microbial protein, which can be used for increased biosynthesis of milk fat and milk protein. Our findings provide novel information for elucidation of the regulatory mechanism of the rumen in the formation of milk composition.
Collapse
Affiliation(s)
- Xin Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.W.); (J.H.); (P.P.); (Y.L.); (B.H.)
| | - Shuai Huang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jinfeng Huang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.W.); (J.H.); (P.P.); (Y.L.); (B.H.)
| | - Peng Peng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.W.); (J.H.); (P.P.); (Y.L.); (B.H.)
| | - Yanan Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.W.); (J.H.); (P.P.); (Y.L.); (B.H.)
| | - Bo Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.W.); (J.H.); (P.P.); (Y.L.); (B.H.)
| | - Dongxiao Sun
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.W.); (J.H.); (P.P.); (Y.L.); (B.H.)
- Correspondence:
| |
Collapse
|
156
|
Diet and gut microbiome enterotype are associated at the population level in African buffalo. Nat Commun 2021; 12:2267. [PMID: 33859184 PMCID: PMC8050287 DOI: 10.1038/s41467-021-22510-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Studies in humans and laboratory animals link stable gut microbiome “enterotypes” with long-term diet and host health. Understanding how this paradigm manifests in wild herbivores could provide a mechanistic explanation of the relationships between microbiome dynamics, changes in dietary resources, and outcomes for host health. We identify two putative enterotypes in the African buffalo gut microbiome. The enterotype prevalent under resource-abundant dietary regimes, regardless of environmental conditions, has high richness, low between- and within-host beta diversity, and enrichment of genus Ruminococcaceae-UCG-005. The second enterotype, prevalent under restricted dietary conditions, has reduced richness, elevated beta diversity, and enrichment of genus Solibacillus. Population-level gamma diversity is maintained during resource restriction by increased beta diversity between individuals, suggesting a mechanism for population-level microbiome resilience. We identify three pathogens associated with microbiome variation depending on host diet, indicating that nutritional background may impact microbiome-pathogen dynamics. Overall, this study reveals diet-driven enterotype plasticity, illustrates ecological processes that maintain microbiome diversity, and identifies potential associations between diet, enterotype, and disease. There are stable relationships between diet and microbiome in humans and lab animals. A study on African buffalo finds that diet influences microbiome variation and enterotype formation. Three pathogens may associate with microbiome depending on host diet, suggesting nutrition impacts relationships between gut microbiome and host health.
Collapse
|
157
|
Bailoni L, Carraro L, Cardin M, Cardazzo B. Active Rumen Bacterial and Protozoal Communities Revealed by RNA-Based Amplicon Sequencing on Dairy Cows Fed Different Diets at Three Physiological Stages. Microorganisms 2021; 9:754. [PMID: 33918504 PMCID: PMC8066057 DOI: 10.3390/microorganisms9040754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Seven Italian Simmental cows were monitored during three different physiological stages, namely late lactation (LL), dry period (DP), and postpartum (PP), to evaluate modifications in their metabolically-active rumen bacterial and protozoal communities using the RNA-based amplicon sequencing method. The bacterial community was dominated by seven phyla: Proteobacteria, Bacteroidetes, Firmicutes, Spirochaetes, Fibrobacteres, Verrucomicrobia, and Tenericutes. The relative abundance of the phylum Proteobacteria decreased from 47.60 to 28.15% from LL to DP and then increased to 33.24% in PP. An opposite pattern in LL, DP, and PP stages was observed for phyla Verrucomicrobia (from 0.96 to 4.30 to 1.69%), Elusimicrobia (from 0.32 to 2.84 to 0.25%), and SR1 (from 0.50 to 2.08 to 0.79%). The relative abundance of families Succinivibrionaceae and Prevotellaceae decreased in the DP, while Ruminococcaceae increased. Bacterial genera Prevotella and Treponema were least abundant in the DP as compared to LL and PP, while Ruminobacter and Succinimonas were most abundant in the DP. The rumen eukaryotic community was dominated by protozoal phylum Ciliophora, which showed a significant decrease in relative abundance from 97.6 to 93.9 to 92.6 in LL, DP, and PP, respectively. In conclusion, the physiological stage-dependent dietary changes resulted in a clear shift in metabolically-active rumen microbial communities.
Collapse
Affiliation(s)
- Lucia Bailoni
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Universitá 16, 35020 Legnaro, PD, Italy; (L.C.); (M.C.); (B.C.)
| | | | | | | |
Collapse
|
158
|
Novel Crabtree negative yeast from rumen fluids can improve rumen fermentation and milk quality. Sci Rep 2021; 11:6236. [PMID: 33737628 PMCID: PMC7973541 DOI: 10.1038/s41598-021-85643-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
Upgrading the nutritive value of rice straw (RS) is necessary to increase its contribution to enhancing meat and milk production. Present work verified whether novel Crabtree negative yeast inoculant could promote RS utilization, rumen fermentation, and milk quality in tropical crossbred lactating Holstein cows. The new stain of Crabtree negative yeasts (Pichia kudriavzevii KKU20 and Candida tropicalis KKU20) was isolated from the rumen of dairy cattle. This study used 6 multiparous crossbreds between Holstein Frisian × Zebu dairy cows in their mid-lactation period. Dairy cows were randomly allocated to three ensiled RS with various yeast stains including Saccharomyces cerevisiae, P. kudriavzevii KKU20, and C. tropicalis KKU20 according to a 3 × 3 replicated Latin square design. Crabtree-negative yeast (P. kudriavzevii and C. tropicalis) increased the apparent digestibility of dry matter by about 6.9% when compared with Crabtree-positive yeast (S. cerevisiae). Bacterial populations were highest with ensiled RS by C. tropicalis KKU20. Ensiled RS with Crabtree-negative yeasts were significantly increased with total volatile fatty acids, but they did not affect volatile fatty acid profiles. Milk protein precentage was highest at 35.6 g/kg when C. tropicalis was fed, and lowest when applied with S. cerevisiae and P. kudriavzevii KKU20 in ensiled RS at 34.5 and 34.1 g/kg, respectively. Thus, feeding ensiled RS with novel Crabtree negative yeast could improve RS digestion, rumen fermentation, and milk protein content in dairy cows.
Collapse
|
159
|
Lange L, Barrett K, Meyer AS. New Method for Identifying Fungal Kingdom Enzyme Hotspots from Genome Sequences. J Fungi (Basel) 2021; 7:jof7030207. [PMID: 33799907 PMCID: PMC8000046 DOI: 10.3390/jof7030207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 11/23/2022] Open
Abstract
Fungal genome sequencing data represent an enormous pool of information for enzyme discovery. Here, we report a new approach to identify and quantitatively compare biomass-degrading capacity and diversity of fungal genomes via integrated function-family annotation of carbohydrate-active enzymes (CAZymes) encoded by the genomes. Based on analyses of 1932 fungal genomes the most potent hotspots of fungal biomass processing CAZymes are identified and ranked according to substrate degradation capacity. The analysis is achieved by a new bioinformatics approach, Conserved Unique Peptide Patterns (CUPP), providing for CAZyme-family annotation and robust prediction of molecular function followed by conversion of the CUPP output to lists of integrated “Function;Family” (e.g., EC 3.2.1.4;GH5) enzyme observations. An EC-function found in several protein families counts as different observations. Summing up such observations allows for ranking of all analyzed genome sequenced fungal species according to richness in CAZyme function diversity and degrading capacity. Identifying fungal CAZyme hotspots provides for identification of fungal species richest in cellulolytic, xylanolytic, pectinolytic, and lignin modifying enzymes. The fungal enzyme hotspots are found in fungi having very different lifestyle, ecology, physiology and substrate/host affinity. Surprisingly, most CAZyme hotspots are found in enzymatically understudied and unexploited species. In contrast, the most well-known fungal enzyme producers, from where many industrially exploited enzymes are derived, are ranking unexpectedly low. The results contribute to elucidating the evolution of fungal substrate-digestive CAZyme profiles, ecophysiology, and habitat adaptations, and expand the knowledge base for novel and improved biomass resource utilization.
Collapse
Affiliation(s)
- Lene Lange
- BioEconomy, Research & Advisory, Copenhagen, 2500 Valby, Denmark;
| | - Kristian Barrett
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| | - Anne S. Meyer
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
- Correspondence: ; Tel.: +45-4525-2600
| |
Collapse
|
160
|
Ominski K, McAllister T, Stanford K, Mengistu G, Kebebe EG, Omonijo F, Cordeiro M, Legesse G, Wittenberg K. Utilization of by-products and food waste in livestock production systems: a Canadian perspective. Anim Front 2021; 11:55-63. [PMID: 35586782 PMCID: PMC8127648 DOI: 10.1093/af/vfab004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Affiliation(s)
- Kim Ominski
- Department of Animal Science, University of Manitoba and the National Centre for Livestock and the Environment, Winnipeg, MB, Canada
| | - Tim McAllister
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Genet Mengistu
- Department of Animal Science, University of Manitoba and the National Centre for Livestock and the Environment, Winnipeg, MB, Canada
| | - E G Kebebe
- Department of Animal Science, University of Manitoba and the National Centre for Livestock and the Environment, Winnipeg, MB, Canada
| | - Faith Omonijo
- Department of Animal Science, University of Manitoba and the National Centre for Livestock and the Environment, Winnipeg, MB, Canada
| | - Marcos Cordeiro
- Department of Animal Science, University of Manitoba and the National Centre for Livestock and the Environment, Winnipeg, MB, Canada
| | - Getahun Legesse
- Manitoba Agriculture and Resource Development, Winnipeg, MB, Canada
| | - Karin Wittenberg
- Department of Animal Science, University of Manitoba and the National Centre for Livestock and the Environment, Winnipeg, MB, Canada
| |
Collapse
|
161
|
Petrič D, Mravčáková D, Kucková K, Kišidayová S, Cieslak A, Szumacher-Strabel M, Huang H, Kolodziejski P, Lukomska A, Slusarczyk S, Čobanová K, Váradyová Z. Impact of Zinc and/or Herbal Mixture on Ruminal Fermentation, Microbiota, and Histopathology in Lambs. Front Vet Sci 2021; 8:630971. [PMID: 33585621 PMCID: PMC7876273 DOI: 10.3389/fvets.2021.630971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
We investigated the effect of diets containing organic zinc and a mixture of medicinal herbs on ruminal microbial fermentation and histopathology in lambs. Twenty-eight lambs were divided into four groups: unsupplemented animals (Control), animals supplemented with organic zinc (Zn, 70 mg Zn/kg diet), animals supplemented with a mixture of dry medicinal herbs (Herbs, 100 g dry matter (DM)/d) and animals supplemented with both zinc and herbs (Zn+Herbs). Each lamb was fed a basal diet composed of meadow hay (700 g DM/d) and barley (300 g DM/d). The herbs Fumaria officinalis L. (FO), Malva sylvestris L. (MS), Artemisia absinthium L. (AA) and Matricaria chamomilla L. (MC) were mixed in equal proportions. The lambs were slaughtered after 70 d. The ruminal contents were used to determine the parameters of fermentation in vitro and in vivo and to quantify the microbes by molecular and microscopic methods. Samples of fresh ruminal tissue were used for histopathological evaluation. Quantitative analyses of the bioactive compounds in FO, MS, AA, and MC identified 3.961, 0.654, 6.482, and 12.084 g/kg DM phenolic acids and 12.211, 6.479, 0.349, and 2.442 g/kg DM flavonoids, respectively. The alkaloid content in FO was 6.015 g/kg DM. The diets affected the levels of total gas, methane and n-butyrate in vitro (P < 0.046, < 0.001, and < 0.001, respectively). Relative quantification by real-time PCR indicated a lower total ruminal bacterial population in the lambs in the Zn and Zn+Herbs groups than the Control group (P < 0.05). The relative abundances of Ruminococcus albus, R. flavefaciens, Streptococcus bovis, and Butyrivibrio proteoclasticus shifted in the Zn group. Morphological observation found a focally mixed infiltration of inflammatory cells in the lamina propria of the rumen in the Zn+Herbs group. The effect of the organic zinc and the herbal mixture on the parameters of ruminal fermentation in vitro was not confirmed in vivo, perhaps because the ruminal microbiota of the lambs adapted to the zinc-supplemented diets. Long-term supplementation of a diet combining zinc and medicinal herbs, however, may negatively affect the health of the ruminal epithelium of lambs.
Collapse
Affiliation(s)
- Daniel Petrič
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| | - Dominika Mravčáková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| | - Katarína Kucková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| | - Svetlana Kišidayová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| | - Adam Cieslak
- Department of Animal Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | | | - Haihao Huang
- Department of Animal Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | - Pawel Kolodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Anna Lukomska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Poznan, Poland
| | - Sylwester Slusarczyk
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Wroclaw, Poland
| | - Klaudia Čobanová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| | - Zora Váradyová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| |
Collapse
|
162
|
Wang B, Wang Y, Zuo S, Peng S, Wang Z, Zhang Y, Luo H. Untargeted and Targeted Metabolomics Profiling of Muscle Reveals Enhanced Meat Quality in Artificial Pasture Grazing Tan Lambs via Rescheduling the Rumen Bacterial Community. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:846-858. [PMID: 33405917 DOI: 10.1021/acs.jafc.0c06427] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tan is a local fat-tail sheep that is famous for its great eating quality but with little attention to its meat metabolome. The aim of this study was to investigate Tan-lamb meat metabolome as well as the key rumen bacteria related to the beneficial compound deposition in the muscle using untargeted and targeted metabolomics under different feeding regimes: indoor feeding (F), artificial pasture grazing with indoor feeding (GF), and pure artificial pasture grazing (G). The untargeted metabolome was detected by ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Ruminal bacterial communities were detected by 16S rRNA sequencing. Using untargeted metabolomics, the main three altered metabolic pathways in the lamb, including amino acid, lipid, and nucleotide metabolisms, were found in the G group compared to the GF and F groups. Increased N-acetyl-l-aspartic acid, N-acetylaspartylglutamate, acetylcarnitine, and l-carnitine, but decreased carnosine and creatinine, were the main newly found G group-associated metabolites, which might contribute to the improved lamb meat functional quality. Compared to the F group, the G group feeding increased the contents of sweet amino acids (e.g., glycine, alanine, serine, and threonine) and umami amino acids (e.g., glutamic acid and aspartic acid) in the muscle, and G and GF groups increased the level of meat polyunsaturated fatty acid (PUFA), especially the concentration of n3 PUFA, and reduced n6/n3 in the muscle by targeted metabolomics. The abundance of ruminal Moryella was decreased, and Schwartzia and Anaeroplasma were increased in the G group, which were both strongly correlated with the n3 PUFA and other functional compounds in the muscle of lambs. In conclusion, artificial pasture grazing modified the meat amino acid and fatty acid composition as well as the related biological pathways through rescheduling the rumen bacterial community, which would be a better selection for production of healthier lamb meat products.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Yuejun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Shuxian Zuo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Sijia Peng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Zhanjun Wang
- Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, P. R. China
| | - Yingjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
163
|
Simultaneous Synergy in CH4 Yield and Kinetics: Criteria for Selecting the Best Mixtures during Co-Digestion of Wastewater and Manure from a Bovine Slaughterhouse. ENERGIES 2021. [DOI: 10.3390/en14020384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Usually, slaughterhouse wastewater has been considered as a single substrate whose anaerobic digestion can lead to inhibition problems and low biodegradability. However, the bovine slaughter process generates different wastewater streams with particular physicochemical characteristics: slaughter wastewater (SWW), offal wastewater (OWW) and paunch wastewater (PWW). Therefore, this research aims to assess the anaerobic co-digestion (AcoD) of SWW, OWW, PWW and bovine manure (BM) through biochemical methane potential tests in order to reduce inhibition risk and increase biodegradability. A model-based methodology was developed to assess the synergistic effects considering CH4 yield and kinetics simultaneously. The AcoD of PWW and BM with OWW and SWW enhanced the extent of degradation (0.64–0.77) above both PWW (0.34) and BM (0.46) mono-digestion. SWW Mono-digestion showed inhibition risk by NH3, which was reduced by AcoD with PWW and OWW. The combination of low CH4 potential streams (PWW and BM) with high potential streams (OWW and SWW) presented stronger synergistic effects than BM-PWW and SWW-OWW mixtures. Likewise, the multicomponent mixtures performed overall better than binary mixtures. Furthermore, the methodology developed allowed to select the best mixtures, which also demonstrated energy and economic advantages compared to mono-digestions.
Collapse
|
164
|
Cholewińska P, Górniak W, Wojnarowski K. Impact of selected environmental factors on microbiome of the digestive tract of ruminants. BMC Vet Res 2021; 17:25. [PMID: 33419429 PMCID: PMC7796543 DOI: 10.1186/s12917-021-02742-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/01/2021] [Indexed: 12/12/2022] Open
Abstract
Ruminants are an important part of world animal production. The main factors affecting their production rates are age, diet, physiological condition and welfare. Disorders related to low level of welfare can significantly affect the microbiological composition of the digestive system, which is essential to maintain high production rates. The microbiology of the ruminant gastrointestinal tract may be significantly affected by inappropriate keeping system (especially in juveniles), psychological stress (e.g. transport), or heat stress. This results in an increased risk of metabolic diseases, reduced fertility and systemic diseases. Therefore, the paper focuses on selected disorders i.e., aforementioned inappropriate maintenance system, psychological stress, heat stress and their effects on the microbiome of the digestive system.
Collapse
Affiliation(s)
- Paulina Cholewińska
- Institute of Animal Breeding, Wrocław University of Enviromental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland
| | - Wanda Górniak
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Enviromental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland
| | - Konrad Wojnarowski
- Institute of Animal Breeding, Wrocław University of Enviromental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland
| |
Collapse
|
165
|
Cotozzolo E, Cremonesi P, Curone G, Menchetti L, Riva F, Biscarini F, Marongiu ML, Castrica M, Castiglioni B, Miraglia D, Luridiana S, Brecchia G. Characterization of Bacterial Microbiota Composition along the Gastrointestinal Tract in Rabbits. Animals (Basel) 2020; 11:ani11010031. [PMID: 33375259 PMCID: PMC7824689 DOI: 10.3390/ani11010031] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
The microbiota is extremely important for the animal's health, but, to date, knowledge on the intestinal microbiota of the rabbit is very limited. This study aimed to describe bacterial populations that inhabit the different gastrointestinal compartments of the rabbit: stomach, duodenum, jejunum, ileum, caecum, and colon. Samples of the luminal content from all compartments of 14 healthy New White Zealand rabbits were collected at slaughter and analyzed using next generation 16S rRNA Gene Sequencing. The findings uncovered considerable differences in the taxonomic levels among the regions of the digestive tract. Firmicutes were the most abundant phylum in all of the sections (45.9%), followed by Bacteroidetes in the large intestine (38.9%) and Euryarchaeota in the foregut (25.9%). Four clusters of bacterial populations were observed along the digestive system: (i) stomach, (ii) duodenum and jejunum, (iii) ileum, and (iv) large intestine. Caecum and colon showed the highest richness and diversity in bacterial species, while the highest variability was found in the upper digestive tract. Knowledge of the physiological microbiota of healthy rabbits could be important for preserving the health and welfare of the host as well as for finding strategies to manipulate the gut microbiota in order to also promote productive performance.
Collapse
Affiliation(s)
- Elisa Cotozzolo
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy;
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology (IBBA)—National Research Council (CNR), U.O.S. di Lodi, Via Einstein, 26900 Lodi, Italy; (P.C.); (F.B.); (B.C.)
| | - Giulio Curone
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (M.C.)
| | - Laura Menchetti
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40137 Bologna, Italy;
| | - Federica Riva
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (M.C.)
- Correspondence: (F.R.); (G.B.); Tel.: +39-02503-34519 (F.R.); Tel.: +39-02-50334583 (G.B.)
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology (IBBA)—National Research Council (CNR), U.O.S. di Lodi, Via Einstein, 26900 Lodi, Italy; (P.C.); (F.B.); (B.C.)
| | - Maria Laura Marongiu
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy; (M.L.M.); (S.L.)
| | - Marta Castrica
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (M.C.)
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology (IBBA)—National Research Council (CNR), U.O.S. di Lodi, Via Einstein, 26900 Lodi, Italy; (P.C.); (F.B.); (B.C.)
| | - Dino Miraglia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Sebastiano Luridiana
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy; (M.L.M.); (S.L.)
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (M.C.)
- Correspondence: (F.R.); (G.B.); Tel.: +39-02503-34519 (F.R.); Tel.: +39-02-50334583 (G.B.)
| |
Collapse
|
166
|
Impact of protein on the composition and metabolism of the human gut microbiota and health. Proc Nutr Soc 2020; 80:173-185. [PMID: 33349284 DOI: 10.1017/s0029665120008022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The composition and metabolic activity of the bacteria that inhabit the large intestine can have a major impact on health. Despite considerable inter-individual variation across bacterial species, the dominant phyla are generally highly conserved. There are several exogenous and gut environmental factors that play a role in modulating the composition and activities of colonic bacteria including diet with intakes of different macronutrients, including protein, accounting for approximately 20% of the microbial variation. Certain bacterial species tend to be considered as generalists and can metabolise a broad range of substrates, including both carbohydrate- and protein-derived substrates, whilst other species are specialists with a rather limited metabolic capacity. Metabolism of peptides and amino acids by gut bacteria can result in the formation of a wide range of metabolites several of which are considered deleterious to health including nitrosamines, heterocyclic amines and hydrogen sulphide as some of these products are genotoxic and have been linked to colonic disease. Beneficial metabolites however include SCFA and certain species can use amino acids to form butyrate which is the major energy source for colonocytes. The impact on health may however depend on the source of these products. In this review, we consider the impact of diet, particularly protein diets, on modulating the composition of the gut microbiota and likely health consequences and the potential impact of climate change and food security.
Collapse
|
167
|
Guerre P. Mycotoxin and Gut Microbiota Interactions. Toxins (Basel) 2020; 12:E769. [PMID: 33291716 PMCID: PMC7761905 DOI: 10.3390/toxins12120769] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
The interactions between mycotoxins and gut microbiota were discovered early in animals and explained part of the differences in susceptibility to mycotoxins among species. Isolation of microbes present in the gut responsible for biotransformation of mycotoxins into less toxic metabolites and for binding mycotoxins led to the development of probiotics, enzymes, and cell extracts that are used to prevent mycotoxin toxicity in animals. More recently, bioactivation of mycotoxins into toxic compounds, notably through the hydrolysis of masked mycotoxins, revealed that the health benefits of the effect of the gut microbiota on mycotoxins can vary strongly depending on the mycotoxin and the microbe concerned. Interactions between mycotoxins and gut microbiota can also be observed through the effect of mycotoxins on the gut microbiota. Changes of gut microbiota secondary to mycotoxin exposure may be the consequence of the antimicrobial properties of mycotoxins or the toxic effect of mycotoxins on epithelial and immune cells in the gut, and liberation of antimicrobial peptides by these cells. Whatever the mechanism involved, exposure to mycotoxins leads to changes in the gut microbiota composition at the phylum, genus, and species level. These changes can lead to disruption of the gut barrier function and bacterial translocation. Changes in the gut microbiota composition can also modulate the toxicity of toxic compounds, such as bacterial toxins and of mycotoxins themselves. A last consequence for health of the change in the gut microbiota secondary to exposure to mycotoxins is suspected through variations observed in the amount and composition of the volatile fatty acids and sphingolipids that are normally present in the digesta, and that can contribute to the occurrence of chronic diseases in human. The purpose of this work is to review what is known about mycotoxin and gut microbiota interactions, the mechanisms involved in these interactions, and their practical application, and to identify knowledge gaps and future research needs.
Collapse
Affiliation(s)
- Philippe Guerre
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, F-31076 Toulouse, France
| |
Collapse
|
168
|
Aguilar-Marin SB, Betancur-Murillo CL, Isaza GA, Mesa H, Jovel J. Lower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalos. BMC Microbiol 2020; 20:364. [PMID: 33246412 PMCID: PMC7694292 DOI: 10.1186/s12866-020-02037-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/05/2020] [Indexed: 01/27/2023] Open
Abstract
Background Ruminants burp massive amounts of methane into the atmosphere and significantly contribute to the deposition of greenhouse gases and the consequent global warming. It is therefore urgent to devise strategies to mitigate ruminant’s methane emissions to alleviate climate change. Ruminal methanogenesis is accomplished by a series of methanogen archaea in the phylum Euryarchaeota, which piggyback into carbohydrate fermentation by utilizing residual hydrogen to produce methane. Abundance of methanogens, therefore, is expected to affect methane production. Furthermore, availability of hydrogen produced by cellulolytic bacteria acting upstream of methanogens is a rate-limiting factor for methane production. The aim of our study was to identify microbes associated with the production of methane which would constitute the basis for the design of mitigation strategies. Results Moderate differences in the abundance of methanogens were observed between groups. In addition, we present three lines of evidence suggesting an apparent higher abundance of a consortium of Prevotella species in animals with lower methane emissions. First, taxonomic classification revealed increased abundance of at least 29 species of Prevotella. Second, metagenome assembly identified increased abundance of Prevotella ruminicola and another species of Prevotella. Third, metabolic profiling of predicted proteins uncovered 25 enzymes with homology to Prevotella proteins more abundant in the low methane emissions group. Conclusions We propose that higher abundance of ruminal Prevotella increases the production of propionic acid and, in doing so, reduces the amount of hydrogen available for methanogenesis. However, further experimentation is required to ascertain the role of Prevotella on methane production and its potential to act as a methane production mitigator. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02037-6.
Collapse
Affiliation(s)
| | | | - Gustavo A Isaza
- Departamento de Sistemas e Informática - Facultad de Ingenierías, Universidad de Caldas, Caldas, Colombia
| | - Henry Mesa
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Caldas, Colombia.
| | - Juan Jovel
- Office of Research. Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
169
|
The Duration of Increased Grain Feeding Affects the Microbiota throughout the Digestive Tract of Yearling Holstein Steers. Microorganisms 2020; 8:microorganisms8121854. [PMID: 33255574 PMCID: PMC7761415 DOI: 10.3390/microorganisms8121854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 01/12/2023] Open
Abstract
Effects of the duration of moderate grain feeding on the taxonomic composition of gastrointestinal microbiota were determined in 15 Holstein yearling steers. Treatments included feeding a diet of 92% dry matter (DM) hay (D0), and feeding a 41.5% barley grain diet for 7 (D7) or 21 d (D21) before slaughter. At slaughter, digesta samples were collected from six regions, i.e., the rumen, jejunum, ileum, cecum, colon, and rectum. Extracted DNA from these samples was analyzed using MiSeq Illumina sequencing of the V4 region of the 16S rRNA gene. Three distinct PCoA clusters existed, i.e., the rumen, the jejunum/ileum, and the cecum/colon/rectum. Feeding the grain diet for 7 d reduced microbial diversity in all regions, except the ileum. Extending the duration of grain feeding from 7 to 21 d did not affect this diversity further. Across regions, treatment changed the relative abundances of 89 genera. Most of the changes between D0 and D7 and between D7 and D21 were opposite, demonstrating the resilience of gastrointestinal microbiota to a moderate increase in grain feeding. Results show that the duration of a moderate increase in grain feeding affects how gastrointestinal microbiota respond to this increase.
Collapse
|
170
|
Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects. ENERGIES 2020. [DOI: 10.3390/en13226058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although cow manure is a valuable natural fertilizer, it is also a source of extreme greenhouse gas emissions, mainly methane. For this reason, this study aims to determine the impact of investments in a biogas plant on the energy and economic aspects of the operation of a dairy farm. A farm with a breeding size of 600 livestock units (LSU) was adopted for the analysis. In order to reach the paper’s aim, the analysis of two different scenarios of dairy farm functioning (conventional–only milk production, and modern–with biogas plant exploitation) was conducted. The analysis showed that the investment in biogas plant operations at a dairy farm and in using cow manure as one of the main substrates is a more profitable scenario compared to traditional dairy farming. Taking into account the actual Polish subsidies for electricity produced by small biogas plants, the scenario with a functioning biogas plant with a capacity of 500 kW brings €332,000/a more profit compared to the conventional scenario, even when taking into account additional costs, including the purchase of straw to ensure a continuous operation of the installation. Besides, in the traditional scenario, building a biogas plant allows for an almost complete reduction of greenhouse gas emissions during manure storage.
Collapse
|
171
|
Zhao L, Caro E, Holman DB, Gzyl KE, Moate PJ, Chaves AV. Ozone Decreased Enteric Methane Production by 20% in an in vitro Rumen Fermentation System. Front Microbiol 2020; 11:571537. [PMID: 33224114 PMCID: PMC7667233 DOI: 10.3389/fmicb.2020.571537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Ozone (O3) is volatile, highly oxidative, and has theoretical potential to reduce ruminant enteric methanogenesis by interactions between archaea and bacteria, and substrate and oxygen. The effects of O3 on the rumen microbiota, fermentation parameters, and CH4 emissions were studied through in vitro fermentation using a RUSITEC apparatus with O3 dissolved in the salivary buffer. The substrate consisted of maize silage or grain concentrates, and the treatments were (1) control (no O3) and (2) O3 at 0.07 ± 0.022 mg/L in the buffer. A 4-day adaptation period followed by a 6-day experimental period was used for measuring gas production and composition, as well as fermentation characteristics, which included ruminal volatile fatty acids (VFA) and liquid- and solid-associated microbial communities. Ozone treatment decreased total gas production by 15.4%, most notably CH4 production by 20.4%, and CH4 gas concentration by 5.8%, without compromising dry matter digestibility (DMD) of either maize silage or grain concentrates. There were no significant effects of O3 treatment on VFA production or pH. Ozone treatment reduced the relative abundance of methanogens, particularly Methanomicrobium. This study demonstrates the potential use of O3 as a method to reduce ruminant enteric methanogenesis.
Collapse
Affiliation(s)
- Lucy Zhao
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Eleonora Caro
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia.,Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Katherine E Gzyl
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Peter J Moate
- Agriculture Victoria Research, Ellinbank, VIC, Australia.,Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Alex V Chaves
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
172
|
Osman OA, Elkhair NM, Abdoun KA. Effects of dietary supplementation with different concentration of molasses on growth performance, blood metabolites and rumen fermentation indices of Nubian goats. BMC Vet Res 2020; 16:411. [PMID: 33121481 PMCID: PMC7596932 DOI: 10.1186/s12917-020-02636-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/22/2020] [Indexed: 11/23/2022] Open
Abstract
Background Molasses is a potential energy supplement; extensively used to improve growth performance, milk and meat characteristics in goats at relatively low concentrations of 5–40% of the diet. Few data are available concerning feeding molasses to goat kids; therefore, the current study aimed to investigate the effects of dietary supplementation with higher concentrations of molasses on growth performance, blood metabolites and rumen fermentation indices. Twenty male Nubian goat kids (4–6 months old; 9–10 kg BW) were randomly assigned to 4 groups receiving different concentration of molasses: 0% (M-0), 30% (M-30), 40% (M-40) and 45% (M-45) for 5 weeks. Feed (DFI) and water intake (DWI) were measured daily, while the blood and rumen liquor samples were collected weekly. Results The DFI increased and feed conversion ratio (FCR) decreased in all molasses-supplemented groups (P ≤ 0.05), whereas DWI increased in M-30 and decreased in M-45 (P ≤ 0.05). The final BW and average daily gain (ADG) increased (P < 0.0001) in groups M-30 and M-40 compared to the control and M-45. Blood pH was significantly influenced by dietary molasses concentration (MC) and the duration of molasses supplementation (MD), where it decreased in groups M-30 and M-45 compared to the control and M-40 (P < 0.05). The MC had no significant effect on blood Hb, HCT, TLC, albumin, [K+], AST, ALT and total protozoa count (TPC), as well as ruminal-[Na+], [K+], strong ion difference concentration ([SID3]) and [NH3]; however, only [NH3] was significantly affected by MD and the interaction between MC and MD (MC × MD). Serum TP, globulins, [Na+] and [Cl−] increased (P ≤ 0.05) in all supplemented groups, while A/G ratio and [SID3] decreased (P ≤ 0.05). Ruminal pH decreased (P < 0.0001) in M-40 and M-45 compared to the control and M-30. However, [VFAs] increased (P < 0.04) in M-30 and M-40 compared to the control and M-45, while osmolality increased (P ≤ 0.05) in M-30 compared to the other groups. Conclusions Dietary supplementation with molasses at a concentration of 30% for 3 weeks improved growth performance, protein metabolism and rumen fermentation without compromising animal health, immunity, and electrolytes and acid-base homeostasis.
Collapse
Affiliation(s)
- Osman A Osman
- Department of Physiology, Faculty of Veterinary Science, University of West Kordofan, Al-Fulah, Sudan
| | - Nawal M Elkhair
- Department of Physiology, Faculty of Veterinary Medicine, University of Khartoum, 13314, Shambat, Sudan. .,Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
| | - Khalid A Abdoun
- Department of Animal Production, Faculty of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
173
|
Wang M, Wang H, Zheng H, Dewhurst RJ, Roehe R. A heat diffusion multilayer network approach for the identification of functional biomarkers in rumen methane emissions. Methods 2020; 192:57-66. [PMID: 33068740 DOI: 10.1016/j.ymeth.2020.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
A better understanding of rumen microbial interactions is crucial for the study of rumen metabolism and methane emissions. Metagenomics-based methods can explore the relationship between microbial genes and metabolites to clarify the effect of microbial function on the host phenotype. This study investigated the rumen microbial mechanisms of methane metabolism in cattle by combining metagenomic data and network-based methods. Based on the relative abundance of 1461 rumen microbial genes and the main volatile fatty acids (VFAs), a multilayer heterogeneous network was constructed, and the functional modules associated with metabolite-microbial genes were obtained by heat diffusion algorithm. The PLS model by integrating data from VFAs and microbial genes explained 72.98% variation of methane emissions. Compared with single-layer networks, more previously reported biomarkers of methane prediction can be captured by the multilayer network. More biomarkers with the rank of top 20 topological centralities were from the PLS models of diffusion subsets. The heat diffusion algorithm is different from the strategy used by the microbial metabolic system to understand methane phenotype. It inferred 24 novel biomarkers that were preferentially affected by changes in specific VFAs. Results showed that the heat diffusion multilayer network approach improved the understanding of the microbial patterns of VFAs affecting methane emissions which represented by the functional microbial genes.
Collapse
Affiliation(s)
- Mengyuan Wang
- School of Computing, Ulster University, United Kingdom
| | - Haiying Wang
- School of Computing, Ulster University, United Kingdom
| | - Huiru Zheng
- School of Computing, Ulster University, United Kingdom.
| | | | - Rainer Roehe
- Scotland's Rural College, Edinburgh, United Kingdom
| |
Collapse
|
174
|
Mote RS, Filipov NM. Use of Integrative Interactomics for Improvement of Farm Animal Health and Welfare: An Example with Fescue Toxicosis. Toxins (Basel) 2020; 12:toxins12100633. [PMID: 33019560 PMCID: PMC7600642 DOI: 10.3390/toxins12100633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Rapid scientific advances are increasing our understanding of the way complex biological interactions integrate to maintain homeostatic balance and how seemingly small, localized perturbations can lead to systemic effects. The ‘omics movement, alongside increased throughput resulting from statistical and computational advances, has transformed our understanding of disease mechanisms and the multi-dimensional interaction between environmental stressors and host physiology through data integration into multi-dimensional analyses, i.e., integrative interactomics. This review focuses on the use of high-throughput technologies in farm animal research, including health- and toxicology-related papers. Although limited, we highlight recent animal agriculture-centered reports from the integrative multi-‘omics movement. We provide an example with fescue toxicosis, an economically costly disease affecting grazing livestock, and describe how integrative interactomics can be applied to a disease with a complex pathophysiology in the pursuit of novel treatment and management approaches. We outline how ‘omics techniques have been used thus far to understand fescue toxicosis pathophysiology, lay out a framework for the fescue toxicosis integrome, identify some challenges we foresee, and offer possible means for addressing these challenges. Finally, we briefly discuss how the example with fescue toxicosis could be used for other agriculturally important animal health and welfare problems.
Collapse
|
175
|
McLoughlin S, Spillane C, Claffey N, Smith PE, O’Rourke T, Diskin MG, Waters SM. Rumen Microbiome Composition Is Altered in Sheep Divergent in Feed Efficiency. Front Microbiol 2020; 11:1981. [PMID: 32983009 PMCID: PMC7477290 DOI: 10.3389/fmicb.2020.01981] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Rumen microbiome composition and functionality is linked to animal feed efficiency, particularly for bovine ruminants. To investigate this in sheep, we compared rumen bacterial and archaeal populations (and predicted metabolic processes) of sheep divergent for the feed efficiency trait feed conversion ratio (FCR). In our study 50 Texel cross Scottish Blackface (TXSB) ram lambs were selected from an original cohort of 200 lambs. From these, 26 were further selected for experimentation based on their extreme FCR (High Feed Efficiency, HFE = 13; Low Feed Efficiency, LFE = 13). Animals were fed a 95% concentrate diet ad libitum over 36 days. 16S rRNA amplicon sequencing was used to investigate the rumen bacterial and archaeal communities in the liquid and solid rumen fractions of sheep divergent for FCR. Weighted UniFrac distances separated HFE and LFE archaea communities from the liquid rumen fraction (Permanova, P < 0.05), with greater variation observed for the LFE cohort (Permdisp, P < 0.05). LFE animals exhibited greater Shannon and Simpson diversity indices, which was significant for the liquid rumen fraction (P < 0.05). Methanobrevibacter olleyae (in liquid and solid fractions) and Methanobrevibacter millerae (liquid fraction) were differentially abundant, and increased in the LFE cohort (P.adj < 0.05), while Methanobrevibacter wolinii (liquid fraction) was increased in the HFE cohort (P.adj < 0.05). This suggests that methanogenic archaea may be responsible for a potential loss of energy for the LFE cohort. Bacterial community composition (Permanova, P > 0.1) and diversity (P > 0.1) was not affected by the FCR phenotype. Only the genus Prevotella 1 was differentially abundant between HFE and LFE cohorts. Although no major compositional shifts of bacterial populations were identified amongst the feed efficient cohorts (FDR > 0.05), correlation analysis identified putative drivers of feed efficiency with Ruminococcaceae UCG-014 (liquid, rho = -0.53; solid, rho = -0.56) and Olsenella (solid, rho = -0.40) exhibiting significant negative association with FCR (P < 0.05). Bifidobacterium and Megasphaera showed significant positive correlations with ADG. Major cellulolytic bacteria Fibrobacter (liquid, rho = 0.43) and Ruminococcus 1 (liquid, rho = 0.41; solid, rho = 41) correlated positively with FCR (P < 0.05). Our study provides evidence that feed efficiency in sheep is likely influenced by compositional changes to the archaeal community, and abundance changes of specific bacteria, rather than major overall shifts within the rumen microbiome.
Collapse
Affiliation(s)
- Steven McLoughlin
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Athenry, Ireland
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Noel Claffey
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Athenry, Ireland
| | - Paul E. Smith
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Athenry, Ireland
| | - Tommy O’Rourke
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Athenry, Ireland
| | - Michael G. Diskin
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Athenry, Ireland
| | - Sinéad M. Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Athenry, Ireland
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
176
|
Pinto ACJ, Bertoldi GP, Felizari LD, Dias EFF, Demartini BL, Nunes ABCP, Squizatti MM, Silvestre AM, Oliveira LFR, Skarlupka JH, Rodrigues PHM, Cruz GD, Suen G, Millen DD. Ruminal Fermentation Pattern, Bacterial Community Composition, and Nutrient Digestibility of Nellore Cattle Submitted to Either Nutritional Restriction or Intake of Concentrate Feedstuffs Prior to Adaptation Period. Front Microbiol 2020; 11:1865. [PMID: 32849453 PMCID: PMC7412545 DOI: 10.3389/fmicb.2020.01865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Beef cattle are key contributors to meat production and represent critical drivers of the global agricultural economy. In Brazil, beef cattle are reared in tropical pastures and finished in feedlot systems. The introduction of cattle into a feedlot includes a period where they adapt to high-concentrate diets. This adaptation period is critical to the success of incoming cattle, as they must adjust to both a new diet and environment. Incoming animals are typically reared on a variety of diets, ranging from poor quality grasses to grazing systems supplemented with concentrate feedstuffs. These disparate pre-adaptation diets present a challenge, and here, we sought to understand this process by evaluating the adaptation of Nellore calves raised on either grazing on poor quality grasses (restriction diet) or grazing systems supplemented with concentrate (concentrate diet). Given that nutrient provisioning from the diet is the sole responsibility of the ruminal microbial community, we measured the impact of this dietary shift on feeding behavior, ruminal fermentation pattern, ruminal bacterial community composition (BCC), and total tract digestibility. Six cannulated Nellore bulls were randomly assigned to two 3 × 3 Latin squares, and received a control, restriction, or concentrate diet. All cohorts were then fed the same adaptation diet to mimic a standard feedlot. Ruminal BCC was determined using Illumina-based 16S rRNA amplicon community sequencing. We found that concentrate-fed cattle had greater dry matter intake (P < 0.01) than restricted animals. Likewise, cattle fed concentrate had greater (P = 0.02) propionate concentration during the adaptation phase than control animals and a lower Shannon’s diversity (P = 0.02), relative to the restricted animals. We also found that these animals had lower (P = 0.04) relative abundances of Fibrobacter succinogenes when compared to control animals during the pre-adaptation phase and lower abundances of bacteria within the Succinivibrio during the finishing phase, when compared to the control animals (P = 0.05). Finally, we found that animals previously exposed to concentrate were able to better adapt to high-concentrate diets when compared to restricted animals. Our study presents the first investigation of the impact of pre-adaptation diet on ruminal BCC and metabolism of bulls during the adaptation period. We suggest that these results may be useful for planning adaptation protocols of bulls entering the feedlot system and thereby improve animal production.
Collapse
Affiliation(s)
- Ana C J Pinto
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Gustavo P Bertoldi
- College of Technology and Agricultural Sciences, São Paulo State University (UNESP), Dracena, Brazil
| | - Luana D Felizari
- College of Technology and Agricultural Sciences, São Paulo State University (UNESP), Dracena, Brazil
| | - Evandro F F Dias
- College of Technology and Agricultural Sciences, São Paulo State University (UNESP), Dracena, Brazil
| | - Breno L Demartini
- College of Technology and Agricultural Sciences, São Paulo State University (UNESP), Dracena, Brazil
| | - Ana B C P Nunes
- College of Technology and Agricultural Sciences, São Paulo State University (UNESP), Dracena, Brazil
| | - Mariana M Squizatti
- College of Technology and Agricultural Sciences, São Paulo State University (UNESP), Dracena, Brazil
| | - Antonio M Silvestre
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Lucas F R Oliveira
- College of Technology and Agricultural Sciences, São Paulo State University (UNESP), Dracena, Brazil
| | - Joseph H Skarlupka
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Paulo H M Rodrigues
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Gustavo D Cruz
- Purina Animal Nutrition LLC, Arden Hills, MN, United States
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Danilo D Millen
- College of Technology and Agricultural Sciences, São Paulo State University (UNESP), Dracena, Brazil
| |
Collapse
|
177
|
Bu D, Zhang X, Ma L, Park T, Wang L, Wang M, Xu J, Yu Z. Repeated Inoculation of Young Calves With Rumen Microbiota Does Not Significantly Modulate the Rumen Prokaryotic Microbiota Consistently but Decreases Diarrhea. Front Microbiol 2020; 11:1403. [PMID: 32670244 PMCID: PMC7326819 DOI: 10.3389/fmicb.2020.01403] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/29/2020] [Indexed: 12/25/2022] Open
Abstract
The complex rumen microbiota exhibits some degree of host specificity. The undeveloped simple rumen microbiota is hypothetically more amendable. The objective of this study was to investigate if the rumen prokaryotic microbial assemblage of young calves can be reprogrammed by oral inoculation with rumen microbiota of adult cows. Twenty newborn male calves were randomly assigned to four groups (n = 5 per group), with two groups being orally inoculated with rumen microbiota (fresh rumen fluid) collected from two lactating dairy cows, while the other two groups receiving autoclaved rumen fluid collected from another two donor cows. Each calf was orally drenched with 100, 200, 300, 400, and 500 mL of the rumen fluid at d3, d7, d21, d42, and d50, respectively, after birth. The inoculation with rumen microbiota did not affect (P > 0.05) feed intake, average daily gain (ADG), heart girth, or feed conversion ratio but significantly (P < 0.01) lowered instance of diarrhea. At the age of 77 days (27 days post-weaning), all the calves were slaughtered for the sampling of rumen content and determination of empty rumen weight. Rumen fermentation characteristics were not affected (P > 0.05) by the inoculation. Rumen prokaryotic microbiota analysis using metataxonomics (targeting the V4 region of the 16S rRNA genes) showed that the calf rumen prokaryotic microbiota differed from that of the donors. Two Succinivibrionaceae OTUs, two Prevotella OTUs, and one Succiniclasticum OTU were predominant (relative abundance > 2%) in the donors, but only one Succinivibrionaceae OTU was found in the calves. On the other hand, five other Prevotella OTUs were predominant (>3%) in the calves, but none of them was a major OTU in the donors. No correlation was observed in relative abundance of major OTUs or genera between the donor and the calves. Principal coordinates analysis (PCoA) based on weighted UniFrac distance showed no significant (P > 0.05) difference in the overall rumen prokaryotic microbiota profiles among the four calf groups, and principal component analysis (PCA) based on Bray-Curtis dissimilarity showed no significant (P > 0.05) difference in functional features predicted from the detected taxa. Nor the calf rumen microbiota showed any clustering with their donor's. Repeated oral inoculation with rumen microbiota probably has a limited effect on the development of rumen microbiota, and the rumen microbiota seems to develop following a program determined by the host and other factors.
Collapse
Affiliation(s)
- Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, Beijing, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tansol Park
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Lingling Wang
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianchu Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
178
|
Sapountzis P, Segura A, Desvaux M, Forano E. An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli. Microorganisms 2020; 8:microorganisms8060877. [PMID: 32531983 PMCID: PMC7355788 DOI: 10.3390/microorganisms8060877] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023] Open
Abstract
For approximately 10,000 years, cattle have been our major source of meat and dairy. However, cattle are also a major reservoir for dangerous foodborne pathogens that belong to the Shiga toxin-producing Escherichia coli (STEC) group. Even though STEC infections in humans are rare, they are often lethal, as treatment options are limited. In cattle, STEC infections are typically asymptomatic and STEC is able to survive and persist in the cattle GIT by escaping the immune defenses of the host. Interactions with members of the native gut microbiota can favor or inhibit its persistence in cattle, but research in this direction is still in its infancy. Diet, temperature and season but also industrialized animal husbandry practices have a profound effect on STEC prevalence and the native gut microbiota composition. Thus, exploring the native cattle gut microbiota in depth, its interactions with STEC and the factors that affect them could offer viable solutions against STEC carriage in cattle.
Collapse
Affiliation(s)
- Panagiotis Sapountzis
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
- Correspondence:
| | - Audrey Segura
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
- Chr. Hansen Animal Health & Nutrition, 2970 Hørsholm, Denmark
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
| |
Collapse
|
179
|
McMullen C, Alexander TW, Léguillette R, Workentine M, Timsit E. Topography of the respiratory tract bacterial microbiota in cattle. MICROBIOME 2020; 8:91. [PMID: 32522285 PMCID: PMC7288481 DOI: 10.1186/s40168-020-00869-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Bacterial bronchopneumonia (BP) is the leading cause of morbidity and mortality in cattle. The nasopharynx is generally accepted as the primary source of pathogenic bacteria that cause BP. However, it has recently been shown in humans that the oropharynx may act as the primary reservoir for pathogens that reach the lung. The objective was therefore to describe the bacterial microbiota present along the entire cattle respiratory tract to determine which upper respiratory tract (URT) niches may contribute the most to the composition of the lung microbiota. METHODS Seventeen upper and lower respiratory tract locations were sampled from 15 healthy feedlot steer calves. Samples were collected using a combination of swabs, protected specimen brushes, and saline washes. DNA was extracted from each sample and the 16S rRNA gene (V3-V4) was sequenced. Community composition, alpha-diversity, and beta-diversity were compared among sampling locations. RESULTS Microbiota composition differed across sampling locations, with physiologically and anatomically distinct locations showing different relative abundances of 1137 observed sequence variants (SVs). An analysis of similarities showed that the lung was more similar to the nasopharynx (R-statistic = 0.091) than it was to the oropharynx (R-statistic = 0.709) or any other URT sampling location. Five distinct metacommunities were identified across all samples after clustering at the genus level using Dirichlet multinomial mixtures. This included a metacommunity found primarily in the lung and nasopharynx that was dominated by Mycoplasma. Further clustering at the SV level showed a shared metacommunity between the lung and nasopharynx that was dominated by Mycoplasma dispar. Other metacommunities found in the nostrils, tonsils, and oral microbiotas were dominated by Moraxella, Fusobacterium, and Streptococcus, respectively. CONCLUSIONS The nasopharyngeal bacterial microbiota is most similar to the lung bacterial microbiota in healthy cattle and therefore may serve as the primary source of bacteria to the lung. This finding indicates that the nasopharynx is likely the most important location that should be targeted when doing bovine respiratory microbiota research. Video abstract.
Collapse
Affiliation(s)
| | - Trevor W. Alexander
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, Alberta Canada
| | - Renaud Léguillette
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta Canada
| | - Matthew Workentine
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta Canada
| | - Edouard Timsit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta Canada
- Simpson Ranch Chair in Beef Cattle Health and Wellness, University of Calgary, Calgary, Alberta Canada
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| |
Collapse
|
180
|
Kumari S, Fagodiya RK, Hiloidhari M, Dahiya RP, Kumar A. Methane production and estimation from livestock husbandry: A mechanistic understanding and emerging mitigation options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136135. [PMID: 31927428 DOI: 10.1016/j.scitotenv.2019.136135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Globally, livestock is an important contributor to methane (CH4) emissions. This paper reviewed the various CH4 measurement and estimation techniques and mitigation approaches for the livestock sector. Two approaches for enteric livestock CH4 emission estimation are the top-down and bottom-up. The combination of both could further improve our understanding of enteric CH4 emission and possible mitigation measures. We discuss three mitigation approaches: reducing emissions, avoiding emissions, and enhancing the removal of emissions from livestock. Dietary management, livestock management, and breeding management are viable reducing emissions pathways. Dietary manipulation is easily applicable and can bring an immediate response. Economic incentive policies can help the livestock farmers to opt for diet, breeding, and livestock management mitigation approaches. Carbon pricing creates a better option to achieve reduction targets in a given period. A combination of carbon pricing, feeding management, breeding management, and livestock management is more feasible and sustainable CH4 emissions mitigation strategy rather than a single approach.
Collapse
Affiliation(s)
- Shilpi Kumari
- Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi - 110 016, India.
| | - R K Fagodiya
- Division of Irrigation and Drainage Engineering, ICAR - Central Soil Salinity Research Institute, Karnal - 132 001, India
| | - Moonmoon Hiloidhari
- IDP in Climate Studies, Indian Institute of Technology Bombay, Mumbai - 400 076, India
| | - R P Dahiya
- Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi - 110 016, India
| | - Amit Kumar
- Department of Botany, Dayalbagh Educational Institute, Agra - 282 005, India
| |
Collapse
|
181
|
Elghandour MMY, Khusro A, Adegbeye MJ, Tan Z, Abu Hafsa SH, Greiner R, Ugbogu EA, Anele UY, Salem AZM. Dynamic role of single-celled fungi in ruminal microbial ecology and activities. J Appl Microbiol 2019; 128:950-965. [PMID: 31463982 DOI: 10.1111/jam.14427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
In ruminants, high fermentation capacity is necessary to develop more efficient ruminant production systems. Greater level of production depends on the ability of the microbial ecosystem to convert organic matter into precursors of milk and meat. This has led to increased interest by animal nutritionists, biochemists and microbiologists in evaluating different strategies to manipulate the rumen biota to improve animal performance, production efficiency and animal health. One of such strategies is the use of natural feed additives such as single-celled fungi yeast. The main objectives of using yeasts as natural additives in ruminant diets include; (i) to prevent rumen microflora disorders, (ii) to improve and sustain higher production of milk and meat, (iii) to reduce rumen acidosis and bloat which adversely affect animal health and performance, (iv) to decrease the risk of ruminant-associated human pathogens and (v) to reduce the excretion of nitrogenous-based compounds, carbon dioxide and methane. Yeast, a natural feed additive, has the potential to enhance feed degradation by increasing the concentration of volatile fatty acids during fermentation processes. In addition, microbial growth in the rumen is enhanced in the presence of yeast leading to the delivery of a greater amount of microbial protein to the duodenum and high nitrogen retention. Single-celled fungi yeast has demonstrated its ability to increase fibre digestibility and lower faecal output of organic matter due to improved digestion of organic matter, which subsequently improves animal productivity. Yeast also has the ability to alter the fermentation process in the rumen in a way that reduces methane formation. Furthermore, yeast inclusion in ruminant diets has been reported to decrease toxins absorption such as mycotoxins and promote epithelial cell integrity. This review article provides information on the impact of single-celled fungi yeast as a feed supplement on ruminal microbiota and its function to improve the health and productive longevity of ruminants.
Collapse
Affiliation(s)
- M M Y Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Estado de México, México
| | - A Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, Tamil Nadu, India
| | - M J Adegbeye
- Department of Animal Science, College of Agriculture and Natural Sciences, Joseph Ayo Babalola University, Ikeji-Arakeji, Ilesha, Nigeria
| | - Z Tan
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Hunan, P.R. China
| | - S H Abu Hafsa
- Department of Livestock Research, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, Egypt
| | - R Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - E A Ugbogu
- Department of Biochemistry, Abia State University, Uturu, Abia State, Nigeria
| | - U Y Anele
- North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - A Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Estado de México, México
| |
Collapse
|
182
|
|
183
|
da Silva J, Ítavo CC, Ítavo LC, Morais M, da Silva PC, Ferelli KL, de Souza Arco TF. Dietary addition of crude form or ethanol extract of brown propolis as nutritional additive on behaviour, productive performance and carcass traits of lambs in feedlot. JOURNAL OF ANIMAL AND FEED SCIENCES 2019. [DOI: 10.22358/jafs/105442/2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|