151
|
Liu J, Tan Y, Cheng H, Zhang D, Feng W, Peng C. Functions of Gut Microbiota Metabolites, Current Status and Future Perspectives. Aging Dis 2022; 13:1106-1126. [PMID: 35855347 PMCID: PMC9286904 DOI: 10.14336/ad.2022.0104] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota, a collection of microorganisms that live within gastrointestinal tract, provides crucial signaling metabolites for the physiological of hosts. In healthy state, gut microbiota metabolites are helpful for maintaining the basic functions of hosts, whereas disturbed production of these metabolites can lead to numerous diseases such as metabolic diseases, cardiovascular diseases, gastrointestinal diseases, neurodegenerative diseases, and cancer. Although there are many reviews about the specific mechanisms of gut microbiota metabolites on specific diseases, there is no comprehensive summarization of the functions of these metabolites. In this Opinion, we discuss the knowledge of gut microbiota metabolites including the types of gut microbiota metabolites and their ways acting on targets. In addition, we summarize their physiological and pathologic functions in health and diseases, such as shaping the composition of gut microbiota and acting as nutrition. This paper can be helpful for understanding the roles of gut microbiota metabolites and thus provide guidance for developing suitable therapeutic strategies to combat microbial-driven diseases and improve health.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
152
|
Mechanisms for Bile Acids CDCA- and DCA-Stimulated Hepatic Spexin Expression. Cells 2022; 11:cells11142159. [PMID: 35883602 PMCID: PMC9316865 DOI: 10.3390/cells11142159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Spexin (SPX) is a novel peptide involved in glucose and lipid metabolism and suppresses hepatic total bile acid levels by inhibiting hepatic cholesterol 7α-hydroxylase 1 expression. As important mediators for glycolysis/gluconeogenesis and lipid metabolism, the effects of bile acids on SPX expression is yet to be understood. By using SMMC7721 and BEL-7402 cell lines, we screened the effects of bile acids and found that chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA) can stimulate SPX gene transcription. Both CDCA and DCA were able to stimulate SPX mRNA expression in the liver but not colon and ileum in mice. In SMMC7721 and BEL-7402 cells, CDCA- and DCA-induced SPX promoter activity was mimicked by bile acid receptor FXR and TGR5 activation and suppressed by FXR and TGR5 silencing. Adenylate cyclase (AC)/cyclic adenosine monophosphate (cAMP) activators significantly increased SPX promoter activity whereas the inhibitors for AC/CAMP/protein kinase A (PKA) and mitogen-activated protein kinases (MAPK) pathway attenuated CDCA- and DCA-induced SPX transcription. Thus, CDCA and DCA stimulate SPX expression at the hepatic level through FXR and TGR5 mediated AC/cAMP/PKA and MAPK cascades.
Collapse
|
153
|
Münzker J, Haase N, Till A, Sucher R, Haange SB, Nemetschke L, Gnad T, Jäger E, Chen J, Riede SJ, Chakaroun R, Massier L, Kovacs P, Ost M, Rolle-Kampczyk U, Jehmlich N, Weiner J, Heiker JT, Klöting N, Seeger G, Morawski M, Keitel V, Pfeifer A, von Bergen M, Heeren J, Krügel U, Fenske WK. Functional changes of the gastric bypass microbiota reactivate thermogenic adipose tissue and systemic glucose control via intestinal FXR-TGR5 crosstalk in diet-induced obesity. MICROBIOME 2022; 10:96. [PMID: 35739571 PMCID: PMC9229785 DOI: 10.1186/s40168-022-01264-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/25/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bariatric surgery remains the most effective therapy for adiposity reduction and remission of type 2 diabetes. Although different bariatric procedures associate with pronounced shifts in the gut microbiota, their functional role in the regulation of energetic and metabolic benefits achieved with the surgery are not clear. METHODS To evaluate the causal as well as the inherent therapeutic character of the surgery-altered gut microbiome in improved energy and metabolic control in diet-induced obesity, an antibiotic cocktail was used to eliminate the gut microbiota in diet-induced obese rats after gastric bypass surgery, and gastric bypass-shaped gut microbiota was transplanted into obese littermates. Thorough metabolic profiling was combined with omics technologies on samples collected from cecum and plasma to identify adaptions in gut microbiota-host signaling, which control improved energy balance and metabolic profile after surgery. RESULTS In this study, we first demonstrate that depletion of the gut microbiota largely reversed the beneficial effects of gastric bypass surgery on negative energy balance and improved glucolipid metabolism. Further, we show that the gastric bypass-shaped gut microbiota reduces adiposity in diet-induced obese recipients by re-activating energy expenditure from metabolic active brown adipose tissue. These beneficial effects were linked to improved glucose homeostasis, lipid control, and improved fatty liver disease. Mechanistically, these effects were triggered by modulation of taurine metabolism by the gastric bypass gut microbiota, fostering an increased abundance of intestinal and circulating taurine-conjugated bile acid species. In turn, these bile acids activated gut-restricted FXR and systemic TGR5 signaling to stimulate adaptive thermogenesis. CONCLUSION Our results establish the role of the gut microbiome in the weight loss and metabolic success of gastric bypass surgery. We here identify a signaling cascade that entails altered bile acid receptor signaling resulting from a collective, hitherto undescribed change in the metabolic activity of a cluster of bacteria, thereby readjusting energy imbalance and metabolic disease in the obese host. These findings strengthen the rationale for microbiota-targeted strategies to improve and refine current therapies of obesity and metabolic syndrome. Video Abstract Bariatric Surgery (i.e. RYGB) or the repeated fecal microbiota transfer (FMT) from RYGB donors into DIO (diet-induced obesity) animals induces shifts in the intestinal microbiome, an effect that can be impaired by oral application of antibiotics (ABx). Our current study shows that RYGB-dependent alterations in the intestinal microbiome result in an increase in the luminal and systemic pool of Taurine-conjugated Bile acids (TCBAs) by various cellular mechanisms acting in the intestine and the liver. TCBAs induce signaling via two different receptors, farnesoid X receptor (FXR, specifically in the intestines) and the G-protein-coupled bile acid receptor TGR5 (systemically), finally resulting in metabolic improvement and advanced weight management. BSH, bile salt hydrolase; BAT brown adipose tissue.
Collapse
Affiliation(s)
- Julia Münzker
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Nadine Haase
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Andreas Till
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, University Medical Center Bonn, Bonn, Germany
| | - Robert Sucher
- Department of Visceral-, Transplant-, Thoracic- and Vascular Surgery, University of Leipzig, Leipzig, Germany
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research Leipzig-UFZ, Leipzig, Germany
| | - Linda Nemetschke
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Elisabeth Jäger
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
- Department for Pathology, Cedars-Sinai Medical Center Los Angeles, Los Angeles, USA
| | - Jiesi Chen
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Sjaak J Riede
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Rima Chakaroun
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Lucas Massier
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Mario Ost
- Department of Neuropathology, University of Leipzig, Leipzig, Germany
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research Leipzig-UFZ, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research Leipzig-UFZ, Leipzig, Germany
| | - Juliane Weiner
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Gudrun Seeger
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research Leipzig-UFZ, Leipzig, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Wiebke K Fenske
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, University Medical Center Bonn, Bonn, Germany.
| |
Collapse
|
154
|
Sun M, Li D, Hua M, Miao X, Su Y, Chi Y, Li Y, Sun R, Niu H, Wang J. Black bean husk and black rice anthocyanin extracts modulated gut microbiota and serum metabolites for improvement in type 2 diabetic rats. Food Funct 2022; 13:7377-7391. [PMID: 35730792 DOI: 10.1039/d2fo01165d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Black rice and black bean have not yet been fully investigated as healthy foods for their therapeutic effects on type 2 diabetes mellitus (T2DM). In this study, we aimed to evaluate the antidiabetic effects of black rice, black bean husk anthocyanin extracts, and their combination on glycolipid metabolism, gut microbiota, and serum metabolites in T2DM rats. Black bean husk and black rice anthocyanin extracts were administered to T2DM rats by gavage for 4 weeks. The results showed that black rice and black bean husk anthocyanin extracts significantly improved blood glucose, insulin resistance, serum oxidative stress state, lipid metabolism and inflammatory cytokines levels in rats, and alleviated liver damage. Black rice and black bean husk anthocyanin extracts increased the abundance of short-chain fatty acid (SCFA) producing bacteria Akkermansia spp., Phascolarctobacterium spp., Bacteroides spp., and Coprococcus spp., changed the gut microbiota structure; activated AMPK, PI3K, and AKT; inhibited HMGCR, G6pase and PEPCK expression; and inhibited hepatic gluconeogenesis. Moreover, by adjusting the levels of urea, deoxycytidine, L-citrulline, pseudouridine, and other serum metabolites in T2DM rats, the arginine biosynthesis and pyrimidine metabolism pathways were downregulated. The above results indicated that black rice and black bean husk anthocyanin extracts had a significant impact on the development of T2DM.
Collapse
Affiliation(s)
- Mubai Sun
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Da Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Mei Hua
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Xinyu Miao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Ying Su
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Yanping Chi
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Yueqiao Li
- Department of International Cooperation, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China
| | - Ruiyue Sun
- Department of Food Science and Engineering, College of Agriculture, Yanbian University, Yanji, 133000, Jilin, China
| | - Honghong Niu
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| | - Jinghui Wang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, 130033, Changchun, Jilin, China.
| |
Collapse
|
155
|
Fang X, Wu H, Wang X, Lian F, Li M, Miao R, Wei J, Tian J. Modulation of Gut Microbiota and Metabolites by Berberine in Treating Mice With Disturbances in Glucose and Lipid Metabolism. Front Pharmacol 2022; 13:870407. [PMID: 35721198 PMCID: PMC9204213 DOI: 10.3389/fphar.2022.870407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction: Glucose and lipid metabolism disturbances has become the third major disease after cancer and cardio-cerebrovascular diseases. Emerging evidence shows that berberine can effectively intervene glucose and lipid metabolism disturbances, but the underlying mechanisms of this remain unclear. To investigate this issue, we performed metagenomic and metabolomic analysis in a group of normal mice (the NC group), mice with disturbances in glucose and lipid metabolism (the MC group) and mice with disturbances in glucose and lipid metabolism after berberine intervention (the BER group). Result: Firstly, analysis of the clinical indicators revealed that berberine significantly improved the blood glucose and blood lipid of the host. The fasting blood glucose level decreased by approximately 30% in the BER group after 8 weeks and the oral glucose tolerance test showed that the blood glucose level of the BER group was lower than that of the MC group at any time. Besides, berberine significantly reduced body weight, total plasma cholesterol and triglyceride. Secondly, compared to the NC group, we found dramatically decreased microbial richness and diversity in the MC group and BER group. Thirdly, LDA effect size suggested that berberine significantly altered the overall gut microbiota structure and enriched many bacteria, including Akkermansia (p < 0.01), Eubacterium (p < 0.01) and Ruminococcus (p < 0.01). Fourthly, the metabolomic analysis suggested that there were significant differences in the metabolomics signature of each group. For example, isoleucine (p < 0.01), phenylalanine (p < 0.05), and arbutin (p < 0.05) significantly increased in the MC group, and berberine intervention significantly reduced them. The arbutin content in the BER group was even lower than that in the NC group. Fifthly, by combined analysis of metagenomics and metabolomics, we observed that there were significantly negative correlations between the reduced faecal metabolites (e.g., arbutin) in the BER group and the enriched gut microbiota (e.g., Eubacterium and Ruminococcus) (p < 0.05). Finally, the correlation analysis between gut microbiota and clinical indices indicated that the bacteria (e.g., Eubacterium) enriched in the BER group were negatively associated with the above-mentioned clinical indices (p < 0.05). Conclusion: Overall, our results describe that the changes of gut microbiota and metabolites are associated with berberine improving glucose and lipid metabolism disturbances.
Collapse
Affiliation(s)
- Xinyi Fang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xinmiao Wang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runyu Miao
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jiaxing Tian,
| |
Collapse
|
156
|
Lu X, Deng DF, Huang F, Casu F, Kraco E, Newton RJ, Zohn M, Teh SJ, Watson AM, Shepherd B, Ma Y, Dawood MA, Rios Mendoza LM. Chronic exposure to high-density polyethylene microplastic through feeding alters the nutrient metabolism of juvenile yellow perch ( Perca flavescens). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:143-158. [PMID: 35573095 PMCID: PMC9079722 DOI: 10.1016/j.aninu.2022.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/30/2021] [Accepted: 01/30/2022] [Indexed: 01/02/2023]
Abstract
Microplastics are emergent contaminants threatening aquatic organisms including aquacultured fish. This study investigated the effects of high-density polyethylene (HDPE, 100 to 125 μm) on yellow perch (Perca flavescens) based on integrative evaluation including growth performance, nutritional status, nutrient metabolism, fish health, and gut microbial community. Five test diets (0, 1, 2, 4, or 8 g HDPE/100 g diet) containing 41% protein and 10.5% lipid were fed to juvenile perch (average body weight, 25.9 ± 0.2 g; n = 15) at a feeding rate of 1.5% to 2.0% body weight daily. The feeding trial was conducted in a flow-through water system for 9 wk with 3 tanks per treatment and 15 yellow perch per tank. No mortality or HDPE accumulation in the fish was found in any treatments. Weight gain and condition factor of fish were not significantly impacted by HDPE (P > 0.05). Compared to the control group, fish fed the 8% HDPE diet had significantly decreased levels of protein and ash (P < 0.05). In response to the increasing levels of HDPE exposure, the hepatosomatic index value, hepatocyte size, and liver glycogen level were increased, but lipid content was reduced in the liver tissues. Compared to the control treatment, fish fed the 8% HDPE diet had significant accumulations of total bile acids and different metabolism pathways such as bile acid biosynthesis, pyruvate metabolism, and carnitine synthesis. Significant enterocyte necrosis was documented in the foregut of fish fed the 2% or 8% HDPE diet; and significant cell sloughing was observed in the midgut and hindgut of fish fed the 8% HDPE diet. Fish fed the 2% HDPE diet harbored different microbiota communities compared to the control fish. This study demonstrates that HDPE ranging from 100 to 125 μm in feed can be evacuated by yellow perch with no impact on growth. However, dietary exposure to HDPE decreased whole fish nutrition quality, altered nutrient metabolism and the intestinal histopathology as well as microbiota community of yellow perch. The results indicate that extended exposure may pose a risk to fish health and jeopardize the nutrition quality of aquacultured end product. This hypothesis remains to be investigated further.
Collapse
Affiliation(s)
- Xing Lu
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Dong-Fang Deng
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
- Corresponding author.
| | - Fei Huang
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Fabio Casu
- South Carolina Department of Natural Resources, Charleston, SC, 29412, USA
| | - Emma Kraco
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Merry Zohn
- USDA/ARS/School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Swee J. Teh
- School of Veterinary Medicine, Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, 95616, USA
| | - Aaron M. Watson
- South Carolina Department of Natural Resources, Charleston, SC, 29412, USA
| | - Brian Shepherd
- USDA/ARS/School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Ying Ma
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Mahmound A.O. Dawood
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Lorena M. Rios Mendoza
- Department of Natural Sciences, Marine Resources Research Institute, University of Wisconsin, Superior, WI, 54880, USA
| |
Collapse
|
157
|
Liu H, Zhang Z, Li J, Liu W, Warda M, Cui B, Abd El-Aty AM. Oligosaccharides derived from Lycium barbarum ameliorate glycolipid metabolism and modulate the gut microbiota community and the faecal metabolites in a type 2 diabetes mouse model: metabolomic bioinformatic analysis. Food Funct 2022; 13:5416-5429. [PMID: 35475434 DOI: 10.1039/d1fo02667d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we assessed the effects of Lycium barbarum oligosaccharides (LBO) on the intestinal microenvironment of a type 2 diabetes (T2D) mouse model through gut microbiome and metabolomics analysis. We set high (300 mg kg-1), medium (200 mg kg-1), and low (100 mg kg-1) doses of LBO for intervention once a day for 4 weeks. The results showed that the intervention effect of the medium-dose group was the most significant. It reduced the symptoms of hyperglycemia, inflammation, insulin resistance, and lipid accumulation in the T2D mouse model. It restored the structure of damaged tissues and cells, such as the pancreas, liver, and kidneys. LBO increased the relative abundance of beneficial bacteria, such as Lactobacillus, Bacteroides, Prevotella, and Akkermansia, and maintained intestinal barrier integrity. The faecal metabolic map showed that the contents of glycogen amino acids, such as proline, serine, and leucine, increased. The contents of cholic, capric, and dodecanoic acid decreased. In summary, we may suggest that LBO can be used as a prebiotic for treating T2D.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Wei Liu
- Yucheng People's Hospital, Dezhou, 251200, China
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza-12211, Egypt
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza-12211, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
158
|
Yang Y, Lin L, Zhao M, Yang X. The hypoglycemic and hypolipemic potentials of Moringa oleifera leaf polysaccharide and polysaccharide-flavonoid complex. Int J Biol Macromol 2022; 210:518-529. [PMID: 35523361 DOI: 10.1016/j.ijbiomac.2022.04.206] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 01/06/2023]
Abstract
In this study, Moringa oleifera leaf (MOL) flavonoids (MOLF) with strong α-glucosidase inhibitory activity and MOL polysaccharides (MOLP) with strong cholic acid-binding capacity were efficiently prepared by two-stage extraction method and mixed in a certain proportion for development of MOL highly-processed products with hypoglycemic and hypolipemic potentials. Quercetin-3-O-glucoside (6.86%) and kaempferol-3-O-glucoside (4.02%) were identified as the main components of MOLF. MOLP constructed by galactose, arabinose, rhamnose and galacturonic acid possessed the strongest effects on delaying glucose diffusion and dialysis, delaying starch digestion, binding bile acids and inhibiting cholesterol micelle solubility, being the best MOL highly-processed products for regulating carbohydrate and lipid digestion and absorption. MOLF and MOLP had synergistic effect on delaying glucose diffusion and dialysis, delaying starch digestion and binding bile acids, while MOLF impaired the inhibitory effect of MOLP on cholesterol micelle solubility. Compared with MOL primary-processed products including MOL powder and de-phenolic MOL powder, MOL highly-processed products including MOLP and MOLF-MOLP complex possessed stronger hypoglycemic/hypolipemic potentials.
Collapse
Affiliation(s)
- Yanqing Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, South China University of Technology, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, South China University of Technology, Guangzhou 510641, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, South China University of Technology, Guangzhou 510641, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Xinyi Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
159
|
Du L, Li Q, Yi H, Kuang T, Tang Y, Fan G. Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus. Biomed Pharmacother 2022; 149:112839. [PMID: 35325852 DOI: 10.1016/j.biopha.2022.112839] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/01/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most risk factors threatening human health. Although genetic and environmental factors contribute to the development of T2DM, gut microbiota has also been found to be involved. Gut microbiota-derived metabolites are a key factor in host-microbe crosstalk, and have been revealed to play a central role in the physiology and physiopathology of T2DM. In this review, we provide a timely and comprehensive summary of the microbial metabolites that are protective or causative for T2DM, including some amino acids-derived metabolites, short-chain fatty acids, trimethylamine N-oxide, and bile acids. The mechanisms by which metabolites affect T2DM have been elaborated. Knowing more about these processes will increase our understanding of the causal relationship between gut microbiota and T2DM. Moreover, some frontier therapies that target gut microbes and their metabolites to improve T2DM, including dietary intervention, fecal microbiota transplantation, probiotics, prebiotics or synbiotics intervention, and drugging microbial metabolism, have been critically discussed. This review may provide novel insights for the development of targeted and personalized treatments for T2DM based on gut microbial metabolites. More high-quality clinical trials are needed to accelerate the clinical translation of gut-targeted therapies for T2DM.
Collapse
Affiliation(s)
- Leilei Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huan Yi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Kuang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Tang
- Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu 611130, China.
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
160
|
Acrylamide induced glucose metabolism disorder in rats involves gut microbiota dysbiosis and changed bile acids metabolism. Food Res Int 2022; 157:111405. [DOI: 10.1016/j.foodres.2022.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 11/18/2022]
|
161
|
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, Chen ZS. Microbiota in health and diseases. Signal Transduct Target Ther 2022; 7:135. [PMID: 35461318 PMCID: PMC9034083 DOI: 10.1038/s41392-022-00974-4] [Citation(s) in RCA: 1218] [Impact Index Per Article: 406.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
The role of microbiota in health and diseases is being highlighted by numerous studies since its discovery. Depending on the localized regions, microbiota can be classified into gut, oral, respiratory, and skin microbiota. The microbial communities are in symbiosis with the host, contributing to homeostasis and regulating immune function. However, microbiota dysbiosis can lead to dysregulation of bodily functions and diseases including cardiovascular diseases (CVDs), cancers, respiratory diseases, etc. In this review, we discuss the current knowledge of how microbiota links to host health or pathogenesis. We first summarize the research of microbiota in healthy conditions, including the gut-brain axis, colonization resistance and immune modulation. Then, we highlight the pathogenesis of microbiota dysbiosis in disease development and progression, primarily associated with dysregulation of community composition, modulation of host immune response, and induction of chronic inflammation. Finally, we introduce the clinical approaches that utilize microbiota for disease treatment, such as microbiota modulation and fecal microbial transplantation.
Collapse
Affiliation(s)
- Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xuan-Yu Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Dongya Zhang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd, Guangzhou, 510535, China
| | - Chuanxing Xiao
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Jagadish B Koya
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jilin Li
- Department of Cardiovascular, The Second Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| |
Collapse
|
162
|
Hao Y, Zhou P, Zhu YJ, Zou S, Zhao Q, Yu J, Hu Y, Li J. Gut Microbiota Dysbiosis and Altered Bile Acid Catabolism Lead to Metabolic Disorder in Psoriasis Mice. Front Microbiol 2022; 13:853566. [PMID: 35495722 PMCID: PMC9048827 DOI: 10.3389/fmicb.2022.853566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with psoriasis tend to have significant comorbidities, such as hyperlipemia, diabetes mellitus, and obesity, which belong to metabolic disorders. The specific mechanism through which psoriasis increases the metabolic disorder risk is uncertain. In this study, we demonstrated that the dysbiotic gut microbiota of 6-month-old psoriasis-like model mice (K14-VEGF-A-transgenic) exacerbated psoriasis disease and induced metabolic disorder when transferred into 2-month-old mice. By 16S rRNA gene sequencing, we confirmed that the Parabacteroides distasonis decreased with age in K14-VEGF mice, and P. distasonis also decreased in the transferred mice. Metabolomic screening identified an altered bile acid profile, including a decrease in chenodeoxycholic acid (CDCA) in the feces of transferred mice. Additionally, CDCA supplements prevented metabolic disorders in K14-VEGF-A-transgenic mice. Consequently, we found that aberrant bile acid metabolism may contribute to metabolic disorder in K14-VEGF-A-transgenic mice, indicating the possibility to prevent and treat the metabolic disorder in psoriasis mice by targeting gut microbial metabolites.
Collapse
Affiliation(s)
- Yan Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ya-juan Zhu
- Department of Biotherapy and Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Song Zou
- Department of Cardiology West China Hospital, Sichuan University, Chengdu, China
| | - Qixiang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- *Correspondence: Jiong Li
| |
Collapse
|
163
|
Garrido A, Kim E, Teijeiro A, Sánchez Sánchez P, Gallo R, Nair A, Matamala Montoya M, Perna C, Vicent GP, Muñoz J, Campos-Olivas R, Melms JC, Izar B, Schwabe RF, Djouder N. Histone acetylation of bile acid transporter genes plays a critical role in cirrhosis. J Hepatol 2022; 76:850-861. [PMID: 34958836 PMCID: PMC8934297 DOI: 10.1016/j.jhep.2021.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Owing to the lack of genetic animal models that adequately recreate key clinical characteristics of cirrhosis, the molecular pathogenesis of cirrhosis has been poorly characterized, and treatments remain limited. Hence, we aimed to better elucidate the pathological mechanisms of cirrhosis using a novel murine model. METHODS We report on the first murine genetic model mimicking human cirrhosis induced by hepatocyte-specific elimination of microspherule protein 1 (MCRS1), a member of non-specific lethal (NSL) and INO80 chromatin-modifier complexes. Using this genetic tool with other mouse models, cell culture and human samples, combined with quantitative proteomics, single nuclei/cell RNA sequencing and chromatin immunoprecipitation assays, we investigated mechanisms of cirrhosis. RESULTS MCRS1 loss in mouse hepatocytes modulates the expression of bile acid (BA) transporters - with a pronounced downregulation of Na+-taurocholate cotransporting polypeptide (NTCP) - concentrating BAs in sinusoids and thereby activating hepatic stellate cells (HSCs) via the farnesoid X receptor (FXR), which is predominantly expressed in human and mouse HSCs. Consistently, re-expression of NTCP in mice reduces cirrhosis, and genetic ablation of FXR in HSCs suppresses fibrotic marks in mice and in vitro cell culture. Mechanistically, deletion of a putative SANT domain from MCRS1 evicts histone deacetylase 1 from its histone H3 anchoring sites, increasing histone acetylation of BA transporter genes, modulating their expression and perturbing BA flow. Accordingly, human cirrhosis displays decreased nuclear MCRS1 and NTCP expression. CONCLUSIONS Our data reveal a previously unrecognized function of MCRS1 as a critical histone acetylation regulator, maintaining gene expression and liver homeostasis. MCRS1 loss induces acetylation of BA transporter genes, perturbation of BA flow, and consequently, FXR activation in HSCs. This axis represents a central and universal signaling event in cirrhosis, which has significant implications for cirrhosis treatment. LAY SUMMARY By genetic ablation of MCRS1 in mouse hepatocytes, we generate the first genetic mouse model of cirrhosis that recapitulates human features. Herein, we demonstrate that the activation of the bile acid/FXR axis in liver fibroblasts is key in cirrhosis development.
Collapse
Affiliation(s)
- Amanda Garrido
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Eunjeong Kim
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Ana Teijeiro
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Paula Sánchez Sánchez
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Rosa Gallo
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Ajay Nair
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - María Matamala Montoya
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, 28034, Spain
| | - Guillermo P Vicent
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, 08028, Spain
| | - Javier Muñoz
- Biotechnology Programme, Proteomics Core Unit, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain; Present address: Biocruces Bizkaia Health Research Institute. Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Ramón Campos-Olivas
- Structural Biology Programme, Spectroscopyand Nuclear Magnetic Resonance Unit, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Johannes C Melms
- Department of Medicine, Division of Hematology and Oncology, Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Benjamin Izar
- Department of Medicine, Division of Hematology and Oncology, Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain.
| |
Collapse
|
164
|
Peng A, Liu S, Fang L, Zhu Z, Zhou Y, Yue S, Ma Z, Liu X, Xue S, Qiu Y, Qi R. Inonotus obliquus and its bioactive compounds alleviate non-alcoholic fatty liver disease via regulating FXR/SHP/SREBP-1c axis. Eur J Pharmacol 2022; 921:174841. [PMID: 35278405 DOI: 10.1016/j.ejphar.2022.174841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease worldwide. However, there is still lack of specific drugs for treating NAFLD in clinic. Inonotus obliquus (IO), a folk medicinal fungus, has long been used to prevent against metabolic syndrome related diseases, such as hypertension and diabetes, etc. However, the study of IO anti-NAFLD effect has been reported rarely. This study aimed to investigate whether IO has an inhibitory effect on NAFLD, identify the active compounds in IO and clarify the underlying mechanisms of its anti-NAFLD effects. The results of Oil Red O(ORO) and Hematoxylin-Eosin (HE) staining, lipid extraction and determination showed that IO and its extracts, including inotodiol (Ino), lanosterol (Lan) and trametenolic acid (TA), could remarkably ameliorate lipid accumulation in MCD diet-induced mouse livers or OA-induced LO2 hepatocytes. Moreover, qPCR analysis revealed that IO and its compounds significantly downregulated the mRNA levels of lipogenic genes, such as SREBP-1c, ACC1 and FASN, and upregulated the mRNA levels of FXR and SHP. We found that the administration of guggulsterone (GS), a FXR inhibitor, abolished the inhibitory effect of Ino on lipid deposition in OA-induced LO2 cells. In conclusion, IO and its compounds attenuate hepatic lipid accumulation in NAFLD by inhibiting liver lipogenesis. The anti-NAFLD effects of Ino, a bioactive compound in IO, are through regulating FXR/SHP/SREBP-1c pathway. Our results suggested that IO and its bioactive compound Ino may become promising drugs to treat NAFLD.
Collapse
Affiliation(s)
- Ankang Peng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, China
| | - Shunzhi Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China
| | - Lu Fang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, China
| | - Zixing Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shanshan Yue
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, China
| | - Zejiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, China
| | - Xiaoang Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, China
| | - Shilin Xue
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, China
| | - Yingkun Qiu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, China; Fujian Provincial Key Laboratory of Hepatic Drug Research, Fuzhou, China.
| |
Collapse
|
165
|
Kriaa A, Mariaule V, Jablaoui A, Rhimi S, Mkaouar H, Hernandez J, Korkmaz B, Lesner A, Maguin E, Aghdassi A, Rhimi M. Bile Acids: Key Players in Inflammatory Bowel Diseases? Cells 2022; 11:cells11050901. [PMID: 35269523 PMCID: PMC8909766 DOI: 10.3390/cells11050901] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) have emerged as a public health problem worldwide with a limited number of efficient therapeutic options despite advances in medical therapy. Although changes in the gut microbiota composition are recognized as key drivers of dysregulated intestinal immunity, alterations in bile acids (BAs) have been shown to influence gut homeostasis and contribute to the pathogenesis of the disease. In this review, we explore the interactions involving BAs and gut microbiota in IBDs, and discuss how the gut microbiota–BA–host axis may influence digestive inflammation.
Collapse
Affiliation(s)
- Aicha Kriaa
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (A.K.); (V.M.); (A.J.); (S.R.); (H.M.); (E.M.)
| | - Vincent Mariaule
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (A.K.); (V.M.); (A.J.); (S.R.); (H.M.); (E.M.)
| | - Amin Jablaoui
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (A.K.); (V.M.); (A.J.); (S.R.); (H.M.); (E.M.)
| | - Soufien Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (A.K.); (V.M.); (A.J.); (S.R.); (H.M.); (E.M.)
| | - Hela Mkaouar
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (A.K.); (V.M.); (A.J.); (S.R.); (H.M.); (E.M.)
| | - Juan Hernandez
- Oniris, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, University of Nantes, 101 Route de Gachet, 44300 Nantes, France;
| | - Brice Korkmaz
- INSERM UMR-1100, “Research Center for Respiratory Diseases”, University of Tours, 37032 Tours, France;
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Uniwersytet Gdanski, Chemistry, Wita Stwosza 63, PL80-308 Gdansk, Poland;
| | - Emmanuelle Maguin
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (A.K.); (V.M.); (A.J.); (S.R.); (H.M.); (E.M.)
| | - Ali Aghdassi
- Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany;
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (A.K.); (V.M.); (A.J.); (S.R.); (H.M.); (E.M.)
- Correspondence:
| |
Collapse
|
166
|
Zhao Y, Li M, Wang Y, Geng R, Fang J, Liu Q, Kang SG, Zeng WC, Huang K, Tong T. Understanding the mechanism underlying the anti-diabetic effect of dietary component: a focus on gut microbiota. Crit Rev Food Sci Nutr 2022; 63:7378-7398. [PMID: 35243943 DOI: 10.1080/10408398.2022.2045895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes has become one of the biggest non-communicable diseases and threatens human health worldwide. The management of diabetes is a complex and multifaceted process including drug therapy and lifestyle interventions. Dietary components are essential for both diabetes management and health and survival of trillions of the gut microbiota (GM). Herein, we will discuss the relationship between diets and GM, the mechanism linking diabetes and gut dysbiosis, and the effects of dietary components (nutrients, phytochemicals, probiotics, food additives, etc.) on diabetes from the perspective of modulating GM. The GM of diabetic patients differs from that of health individuals and GM disorder contributes to the onset and maintenance of diabetes. Studies in humans and animal models consolidate that dietary component is a key regulator of diabetes and increasing evidence suggests that the alteration of GM plays a salient role in dietary interventions for diabetes. Given that diabetes is a major public health issue, especially that diabetes is linked with a high risk of mortality from COVID-19, this review provides compelling evidence for that targeting GM by dietary components is a promising strategy, and offers new insights into potential preventive or therapeutic approaches (dietary and pharmacological intervention) for the clinical management of diabetes.
Collapse
Affiliation(s)
- Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qing Liu
- Jilin Green Food Engineering Research Institute, Changchun, China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Chungkyemyon, Muangun, Jeonnam, Korea
| | - Wei Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| |
Collapse
|
167
|
Camastra S, Palumbo M, Santini F. Nutrients handling after bariatric surgery, the role of gastrointestinal adaptation. Eat Weight Disord 2022; 27:449-461. [PMID: 33895917 PMCID: PMC8933374 DOI: 10.1007/s40519-021-01194-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/10/2021] [Indexed: 01/19/2023] Open
Abstract
Bariatric surgery determines a rearrangement of the gastrointestinal tract that influences nutrient handling and plays a role in the metabolic changes observed after surgery. Most of the changes depend on the accelerated gastric emptying observed in Roux-en-Y gastric bypass (RYGB) and, to a lesser extent, in sleeve gastrectomy (SG). The rapid delivery of meal into the jejunum, particularly after RYGB, contributes to the prompt appearance of glucose in peripheral circulation. Glucose increase is the principal determinant of GLP-1 increase with the consequent stimulation of insulin secretion, the latter balanced by a paradoxical glucagon increase that stimulates EGP to prevent hypoglycaemia. Protein digestion and amino acid absorption appear accelerated after RYGB but not after SG. After RYGB, the adaptation of the gut to the new condition participates to the metabolic change. The intestinal transit is delayed, the gut microbioma is changed, the epithelium becomes hypertrophic and increases the expression of glucose transporter and of the number of cell secreting hormones. These changes are not observed after SG. After RYGB-less after SG-bile acids (BA) increase, influencing glucose metabolism probably modulating FXR and TGR5 with an effect on insulin sensitivity. Muscle, hepatic and adipose tissue insulin sensitivity improve, and the gut reinforces the recovery of IS by enhancing glucose uptake and through the effect of the BA. The intestinal changes observed after RYGB result in a light malabsorption of lipid but not of carbohydrate and protein. In conclusion, functional and morphological adaptations of the gut after RYGB and SG activate inter-organs cross-talk that modulates the metabolic changes observed after surgery.Level of evidence Level V, narrative literature review.
Collapse
Affiliation(s)
- Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy. .,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| | - Maria Palumbo
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | - Ferruccio Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
168
|
Perez N, Chambert K, Ribadeneira M, Currie MG, Chen Y, Kessler MM. Differential Bile Acid Detection in Refractory GERD Patient Saliva Using a Simple and Sensitive Liquid Chromatography Tandem Mass Spectrometry Approach. J Clin Gastroenterol 2022; 56:218-223. [PMID: 33731598 DOI: 10.1097/mcg.0000000000001525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/02/2021] [Indexed: 12/10/2022]
Abstract
GOALS The aim was to measure bile acids in human saliva using a sensitive ultraperformance liquid chromatography tandem mass spectrometry analysis method to distinguish quantitative differences in refractory gastroesophageal reflux disease (GERD) patients as compared with proton pump inhibitor (PPI) controlled GERD patients and healthy volunteers. STUDY Human saliva samples were analyzed from 2 separate studies. The first a meal-controlled pilot, in which premeal and postmeal saliva samples were analyzed from 20 healthy subjects and 20 patients with GERD symptoms controlled by PPIs. In a subsequent exploratory study, saliva was collected from 34 patients with continuing GERD symptoms despite PPI treatment (refractory GERD), 30 healthy subjects, and 30 PPI-controlled GERD patients at ≥4 hours postmeal. RESULTS In the meal-controlled pilot study, both healthy subjects and patients with PPI-controlled GERD, had total saliva bile acid increase for the first hour after consumption of a meal and returned to baseline levels 4 hours later. There was no difference in bile acid levels between the 2 groups. In the exploratory study, the saliva from patients with refractory GERD had statistically significant higher levels of total bile acid concentration compared with those of healthy volunteers and patients with PPI-controlled GERD (P=0.0181). CONCLUSIONS Bile acids can be detected and accurately quantitated in human saliva using a sensitive ultraperformance liquid chromatography tandem mass spectrometry assay. Increases above threshold could indicate an underlying disease.This method could potentially be used to evaluate biliary reflux as an underlying pathophysiology of refractory GERD.
Collapse
|
169
|
Xiao R, Lei K, Kuok H, Deng W, Zhuang Y, Tang Y, Guo Z, Qin H, Bai L, Li T. Synthesis and identification of lithocholic acid 3‐sulfate as RORγt ligand to inhibit Th17 cell differentiation. J Leukoc Biol 2022; 112:835-843. [DOI: 10.1002/jlb.1ma0122-513r] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
- Riping Xiao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| | - Kawai Lei
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| | - Hioha Kuok
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| | - Wende Deng
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| | - Yuxin Zhuang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| | - Yanqing Tang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| | - Zhengyang Guo
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| | - Hongyan Qin
- Department of Pharmacy First Hospital of Lanzhou University Lanzhou China
| | - Li‐Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease Macau University of Science and Technology Macau China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease Macau University of Science and Technology Macau China
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China Macau University of Science and Technology Macau China
| |
Collapse
|
170
|
Xu S, Jia P, Fang Y, Jin J, Sun Z, Zhou W, Li J, Zhang Y, Wang X, Ren T, Zou Z, Ding X. Nuclear farnesoid X receptor attenuates acute kidney injury through fatty acid oxidation. Kidney Int 2022; 101:987-1002. [DOI: 10.1016/j.kint.2022.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022]
|
171
|
Fu J, Yu M, Xu W, Yu S. Research Progress of Bile Acids in Cancer. Front Oncol 2022; 11:778258. [PMID: 35127481 PMCID: PMC8810494 DOI: 10.3389/fonc.2021.778258] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
Bile acids (BAs) were originally known as detergents to facilitate the digestion and absorption of lipids. And our current knowledge of BAs has been extended to potential carcinogenic or cancer suppressor factors due to constant research. In fact, BAs were regarded as a tumor promoters as early as the 1940s. Differential bile acid signals emitted by various bile acid profiles can produce distinct pathophysiological traits, thereby participating in the occurrence and development of tumors. Nevertheless, in recent years, more and more studies have noticed the value of BAs as therapeutic targets. And several studies have applied BAs as a therapeutic agent for various diseases including cancer. Based on the above evidence, we acknowledge that the role of BAs in cancer has yet to be exploited, although considerable efforts have been made to probe the functions of BAs. In this review, we describe the characteristics of BAs as a double-edged sword in cancer, hoping to provide references for future cancer treatments.
Collapse
Affiliation(s)
- Junhao Fu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Min Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shian Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- *Correspondence: Shian Yu,
| |
Collapse
|
172
|
Shi W, Deng Y, Zhao C, Xiao W, Wang Z, Xiong Z, Zhao L. Integrative serum metabolomic analysis for preventive effects of Yaobitong capsule in adjuvant-induced rheumatoid arthritis rat based on RP/HILIC-UHPLC-Q-TOF MS. Anal Biochem 2022; 637:114474. [PMID: 34801482 DOI: 10.1016/j.ab.2021.114474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
Yaobitong capsule (YBTC) has been used for the prevention and treatment of inflammation-related lumbago and leg pain. However, its intervention mechanism still remains unclear. This study was aimed to evaluate the control efficiency of YBTC on adjuvant-induced rheumatoid arthritis (RA) rats by metabonomic method and to explore its possible anti-arthritis mechanism. Taking into account the complexity of endogenous metabolites in serum samples, an integrated metabolomics method based on RP/HILIC-UHPLC-Q-TOF MS was developed, to overcome the limitations of a single chromatographic in this study. The results showed that 32 potential biomarkers of arthritis were identified, primarily related to amino acid metabolism, glucose metabolism, lipid metabolism and nucleotide metabolism. Further receiver operating characteristic analysis revealed that the area under the curve of two down-regulated metabolites (3-Hydroxy-hexadecanoic acid, 2-Oxoarginine) and one up-regulated metabolite (l-Glutamic acid) among 32 biomarkers were 0.906, 0.969 and 1.000, respectively, indicating that high predictive ability of this method for RA. In this study, an integrated serum metabolomics method based on high-resolution mass spectrometry was successfully established for the first time to study the intervention mechanism of YBTC in RA, providing evidence regarding the clinical application of YBTC and a new insight for the prevention of RA in the future.
Collapse
Affiliation(s)
- Wei Shi
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, China
| | - Yajie Deng
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, China
| | - Chenyang Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Zhenzhong Wang
- Jiangsu Kanion Parmaceutical CO. LTD, Lianyungang, Jiangsu, 222001, China
| | - Zhili Xiong
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, China.
| | - Longshan Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, 110016, Shenyang, Liaoning Province, China.
| |
Collapse
|
173
|
Li Y, Hou H, Wang X, Dai X, Zhang W, Tang Q, Dong Y, Yan C, Wang B, Li Z, Cao H. Diammonium Glycyrrhizinate Ameliorates Obesity Through Modulation of Gut Microbiota-Conjugated BAs-FXR Signaling. Front Pharmacol 2022; 12:796590. [PMID: 34992541 PMCID: PMC8724542 DOI: 10.3389/fphar.2021.796590] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a worldwide epidemic metabolic disease. Gut microbiota dysbiosis and bile acids (BAs) metabolism disorder are closely related to obesity. Farnesoid X-activated receptor (FXR), served as a link between gut microbiota and BAs, is involved in maintaining metabolic homeostasis and regulating glucose and lipid metabolism. We previously reported that diammonium glycyrrhizinate (DG) could alter gut microbiota and prevent non-alcoholic fatty liver disease. However, it remains ambiguous how DG affects the gut microbiota to regulate host metabolism. In this present study, 16S rRNA Illumina NovaSeq and metabolomic analysis revealed that DG treatment suppressed microbes associated with bile-salt hydrolase (BSH) activity, which, in turn, increased the levels of taurine-conjugated BAs accompanied by inhibition of ileal FXR-FGF15 signaling. As a result, several obesity-related metabolism were improved, like lower serum glucose and insulin levels, increased insulin sensitivity, few hepatic steatosis and resistance to weight gain. Additionally, decreased level of serum lipopolysaccharide was observed, which contributed to a strengthened intestinal barrier. The effect of DG on weight loss was slightly enhanced in the antibiotics-treated obese mice. Collectively, the efficacy of DG in the treatment of obesity might depend on gut microbiota-conjugated BAs-FXR axis. Hence, it will provide a potential novel approach for the treatment of obesity.
Collapse
Affiliation(s)
- Yun Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Huiqin Hou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xianglu Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xin Dai
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Qiang Tang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yue Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Chen Yan
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zhengxiang Li
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
174
|
He Q, Dong H, Guo Y, Gong M, Xia Q, Lu F, Wang D. Multi-target regulation of intestinal microbiota by berberine to improve type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:1074348. [PMID: 36465656 PMCID: PMC9715767 DOI: 10.3389/fendo.2022.1074348] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its complications are major public health problems that seriously affect the quality of human life. The modification of intestinal microbiota has been widely recognized for the management of diabetes. The relationship between T2DM, intestinal microbiota, and active ingredient berberine (BBR) in intestinal microbiota was reviewed in this paper. First of all, the richness and functional changes of intestinal microbiota disrupt the intestinal environment through the destruction of the intestinal barrier and fermentation/degradation of pathogenic/protective metabolites, targeting the liver, pancreas, visceral adipose tissue (VAT), etc., to affect intestinal health, blood glucose, and lipids, insulin resistance and inflammation. Then, we focus on BBR, which protects the composition of intestinal microbiota, the changes of intestinal metabolites, and immune regulation disorder of the intestinal environment as the therapeutic mechanism as well as its current clinical trials. Further research can analyze the mechanism network of BBR to exert its therapeutic effect according to its multi-target compound action, to provide a theoretical basis for the use of different phytochemical components alone or in combination to prevent and treat T2DM or other metabolic diseases by regulating intestinal microbiota.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minmin Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingsong Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Fuer Lu, ; Dingkun Wang,
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Fuer Lu, ; Dingkun Wang,
| |
Collapse
|
175
|
Chu N, Chan JCN, Chow E. Pharmacomicrobiomics in Western Medicine and Traditional Chinese Medicine in Type 2 Diabetes. Front Endocrinol (Lausanne) 2022; 13:857090. [PMID: 35600606 PMCID: PMC9114736 DOI: 10.3389/fendo.2022.857090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Pharmacomicrobiomics refers to the interactions between foreign compounds and the gut microbiome resulting in heterogeneous efficacy, side effects, and toxicity of the compound concerned. Glucose lowering drugs reduce blood glucose by modulating insulin secretion and its actions as well as redistributing energy disposal. Apart from genetic, ecological, and lifestyle factors, maintaining an equilibrium of the whole gut microbiome has been shown to improve human health. Microbial fingerprinting using faecal samples indicated an 'invisible phenotype' due to different compositions of microbiota which might orchestrate the interactions between patients' phenotypes and their responses to glucose-lowering drugs. In this article, we summarize the current evidence on differences in composition of gut microbiota between individuals with type 2 diabetes (T2D) and healthy individuals, the disruption of the balance of beneficial and pathogenic microbiota was shown in patients with T2D and how Western Medicine (WM) and Traditional Chinese Medicine (TCM) might re-shape the gut microbiota with benefits to the host immunity and metabolic health. We particularly highlighted the effects of both WM and TCM increase the relative abundance of health promoting bacteria, such as, Akkermansia muciniphila, Blautia, and Bifidobacterium adolescentis, and which have been implicated in type 2 diabetes (T2D). Several lines of evidence suggested that TCM might complement the efficacy of WM through alteration of microbiota which warrants further investigation in our pursuit of prevention and control of T2D.
Collapse
Affiliation(s)
- Natural Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
- *Correspondence: Elaine Chow,
| |
Collapse
|
176
|
Mukherjee D, Berovic M, Mulholland N, Peters AM. Gamma camera imaging in hepatobiliary diseases. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
177
|
Zhou Y, Ye D, Yuan X, Zhou Y, Xia J. Serum Bile Acid Profiles in Latent Autoimmune Diabetes in Adults and Type 2 Diabetes Patients. J Diabetes Res 2022; 2022:2391188. [PMID: 35242878 PMCID: PMC8888061 DOI: 10.1155/2022/2391188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Impaired bile acid (BA) metabolism has been associated with the progression of type 2 diabetes (T2D). However, the contribution of BAs to the pathogenesis of latent autoimmune diabetes in adults (LADA) remains unclear. This study was aimed at investigating the association of serum BAs with different diabetes types and analyzing its correlation with main clinical and laboratory parameters. METHODS Patients with LADA, patients with T2D, and healthy controls (HCs) were enrolled. Serum BA profiles and inflammatory cytokines were measured. The correlation of BA species with different indicators was assessed by Spearman's correlation method. RESULTS Patients with diabetes (LADA and T2D) had significantly higher serum BAs, especially conjugated BAs, compared with those in HCs. Nevertheless, serum BA profiles had no special role in the progression of LADA, because no significant differences in BAs were observed between LADA and T2D patients. Interestingly, HbA1c levels and HOMA-β were found to be correlated with a series of BA species. Proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and anti-inflammatory cytokine (IL-10) were all positively associated with several BA species, especially the conjugated secondary BAs. CONCLUSION Serum BAs regulate glucose homeostasis, but have no special value in the pathogenesis of LADA patients. Our study adds further information about the potential value of serum BAs in different types of diabetes.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, 310014 Hangzhou, China
| | - Deli Ye
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, 310014 Hangzhou, China
| | - Xiaofen Yuan
- Hangzhou Calibra Diagnostics Co., Ltd, Gene Town, Zijin Park, 859 Shixiang West Road, Xihu District, Hangzhou, Zhejiang, China
| | - Yonglie Zhou
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, 310014 Hangzhou, China
| | - Jun Xia
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, 310014 Hangzhou, China
| |
Collapse
|
178
|
Hamzehzadeh Alamdari A, Ahrabi S, Khoshbaten M, Roustaei S, Araqchin Ahrabi S, Asghari Jafarabadi M. Effect of Oral and parenteral routes of vitamin D supplementation on serum 25(OH) vitamin D levels in patients with non-alcoholic fatty liver disease. CASPIAN JOURNAL OF INTERNAL MEDICINE 2022; 13:23-28. [PMID: 35178204 PMCID: PMC8797815 DOI: 10.22088/cjim.13.1.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 03/13/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Due to the interruption of the EHC pathway in NAFLD patients, we hypothesized that parenteral vitamin D supplementation is superior to oral in vitamin D insufficient patients with NAFLD. Therefore, this study aimed to compare the efficacy of oral and parenteral routes of vitamin D supplementation on serum 25(OH) vitamin D levels in patients with NAFLD. METHODS In this prospective randomized trial, 66 NAFLD cases with vitamin D deficiency were studied. For 33 cases, oral vitamin D was supplemented, whereas the other 33 patients were given an intramuscular injection of vitamin D. Laboratory tests and liver ultrasound were performed at the beginning and the end of the trial for each subject. RESULTS Regardless of the drug administration route, at the end of this trial the mean of serum 25-hydroxy vitamin D level increased from 8.74±2.47 to 33.16±17.61 (P=0.00), and the mean±SD for serum triglyceride decreased from 191.46±92.79 to 166.00±68.30 (P=0.02), both were statistically significant. Liver ultrasound reported statistically significant changes in the grade of fatty liver disease (P=0.003). In the comparison between the two groups, serum 25-hydroxy vitamin D level changes were not statistically significant (P=0.788). CONCLUSION The intramuscular method of supplementation was not better than the oral route in improving serum 25(OH) vitamin D levels in NAFLD patients. In this study, the impaired EHC and vitamin D absorption inhibitor factors in NAFLD patients did not affect the final result of serum vitamin D levels significantly.
Collapse
Affiliation(s)
- Arezou Hamzehzadeh Alamdari
- Gastroenterology and Liver Diseases Research Center, Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Ahrabi
- Gastroenterology and Liver Diseases Research Center, Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Khoshbaten
- Gastroenterology and Liver Diseases Research Center, Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Correspondence: Manouchehr Khoshbaten, Gastroenterology and Liver Diseases Research Center, Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. E-mail: , Tel: 0098 4133357310, Fax: 0098 4133359680
| | - Shahram Roustaei
- Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Araqchin Ahrabi
- Gastroenterology and Liver Diseases Research Center, Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asghari Jafarabadi
- Department of Statistics and Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran,Center for the development of interdisciplinary research in Islamic sciences and health sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
179
|
Intestinal microbiota and their metabolic contribution to type 2 diabetes and obesity. J Diabetes Metab Disord 2021; 20:1855-1870. [PMID: 34900829 PMCID: PMC8630233 DOI: 10.1007/s40200-021-00858-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are common, chronic metabolic disorders with associated significant long-term health problems at global epidemic levels. It is recognised that gut microbiota play a central role in maintaining host homeostasis and through technological advances in both animal and human models it is becoming clear that gut microbiota are heavily involved in key pathophysiological roles in the aetiology and progression of both conditions. This review will focus on current knowledge regarding microbiota interactions with short chain fatty acids, the host inflammatory response, signaling pathways, integrity of the intestinal barrier, the interaction of the gut-brain axis and the subsequent impact on the metabolic health of the host.
Collapse
|
180
|
Marchianò S, Biagioli M, Roselli R, Zampella A, Di Giorgio C, Bordoni M, Bellini R, Morretta E, Monti MC, Distrutti E, Fiorucci S. Atorvastatin protects against liver and vascular damage in a model of diet induced steatohepatitis by resetting FXR and GPBAR1 signaling. FASEB J 2021; 36:e22060. [PMID: 34862975 DOI: 10.1096/fj.202101397r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Farnesoid-x-receptor (FXR) agonists, currently trialed in patients with non-alcoholic steatosis (NAFLD), worsen the pro-atherogenic lipid profile and might require a comedication with statin. Here we report that mice feed a high fat/high cholesterol diet (HFD) are protected from developing a pro-atherogenic lipid profile because their ability to dispose cholesterol through bile acids. This protective mechanism is mediated by suppression of FXR signaling in the liver by muricholic acids (MCAs) generated in mice from chenodeoxycholic acid (CDCA). In contrast to CDCA, MCAs are FXR antagonists and promote a CYP7A1-dependent increase of bile acids synthesis. In mice feed a HFD, the treatment with obeticholic acid, a clinical stage FXR agonist, failed to improve the liver histopathology while reduced Cyp7a1 and Cyp8b1 genes expression and bile acids synthesis and excretion. In contrast, treating mice with atorvastatin mitigated liver and vascular injury caused by the HFD while increased the bile acids synthesis and excretion. Atorvastatin increased the percentage of 7α-dehydroxylase expressing bacteria in the intestine promoting the formation of deoxycholic acid and litocholic acid, two GPBAR1 agonists, along with the expression of GPBAR1-regulated genes in the white adipose tissue and colon. In conclusion, present results highlight the central role of bile acids in regulating lipid and cholesterol metabolism in response to atorvastatin and provide explanations for limited efficacy of FXR agonists in the treatment of NAFLD.
Collapse
Affiliation(s)
- Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | | | | | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
181
|
Fiorucci S, Distrutti E. Linking liver metabolic and vascular disease via bile acid signaling. Trends Mol Med 2021; 28:51-66. [PMID: 34815180 DOI: 10.1016/j.molmed.2021.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder affecting over one quarter of the global population. Liver fat accumulation in NAFLD is promoted by increased de novo lipogenesis leading to the development of a proatherosclerotic lipid profile and atherosclerotic cardiovascular disease (CVD). The CVD component of NAFLD is the main determinant of patient outcome. The farnesoid X receptor (FXR) and the G protein bile acid-activated receptor 1 (GPBAR1) are bile acid-activated receptors that modulate inflammation and lipid and glucose metabolism in the liver and CV system, and are thus potential therapeutic targets. We review bile acid signaling in liver, metabolic tissues, and the CV system, and we propose the development of dual FXR/GPBAR1 ligands, intestine-restricted FXR ligands, or statin combinations to limit side effects and effectively manage the liver and CV components of NAFLD.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Eleonora Distrutti
- Struttura Complessa di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| |
Collapse
|
182
|
Yan Q, Zhang S, Li S, Wang G, Zhang A, Jin T, Zhang Y, Lv Q, Xiao M, Sun Y, Li X, Cui S, Li R, Ma X, Wang C, Tian X, Duan X, Xin Y, Mao X, Ma Y. Cultivation and Genomic Characterization of the Bile Bacterial Species From Cholecystitis Patients. Front Microbiol 2021; 12:739621. [PMID: 34790179 PMCID: PMC8591784 DOI: 10.3389/fmicb.2021.739621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
The microbes in human bile are closely related to gallbladder health and other potential disorders. Although the bile microbial community has been investigated by recent studies using amplicon or metagenomic sequencing technologies, the genomic information of the microbial species resident in bile is rarely reported. Herein, we isolated 138 bacterial colonies from the fresh bile specimens of four cholecystitis patients using a culturome approach and genomically characterized 35 non-redundant strains using whole-genome shotgun sequencing. The bile bacterial isolates spanned 3 classes, 6 orders, 10 families, and 14 genera, of which the members of Enterococcus, Escherichia-Shigella, Lysinibacillus, and Enterobacter frequently appeared. Genomic analysis identified three species, including Providencia sp. D135, Psychrobacter sp. D093, and Vibrio sp. D074, which are not represented in existing reference genome databases. Based on the genome data, the functional capacity between bile and gut isolates was compared. The bile strains encoded 5,488 KEGG orthologs, of which 4.9% were specific to the gut strains, including the enzymes involved in biofilm formation, two-component systems, and quorum-sensing pathways. A total of 472 antibiotic resistance genes (ARGs) were identified from the bile genomes including multidrug resistance proteins (42.6%), fluoroquinolone resistance proteins (12.3%), aminoglycoside resistance proteins (9.1%), and β-lactamase (7.2%). Moreover, in vitro experiments showed that some bile bacteria have the capabilities for bile salt deconjugation or biotransformation (of primary bile acids into secondary bile acids). Although the physiological or pathological significance of these bacteria needs further exploration, our works expanded knowledge about the genome, diversity, and function of human bile bacteria.
Collapse
Affiliation(s)
- Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Siyi Zhang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | | | - Guangyang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | | | - Taiyang Jin
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Qingbo Lv
- Puensum Genetech Institute, Wuhan, China
| | - Manchun Xiao
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yuanyuan Sun
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiang Li
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Song Cui
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Rui Li
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaochi Ma
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiangge Tian
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaohui Duan
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xianhai Mao
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yufang Ma
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
183
|
Fling RR, Zacharewski TR. Aryl Hydrocarbon Receptor (AhR) Activation by 2,3,7,8-Tetrachlorodibenzo- p-Dioxin (TCDD) Dose-Dependently Shifts the Gut Microbiome Consistent with the Progression of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:12431. [PMID: 34830313 PMCID: PMC8625315 DOI: 10.3390/ijms222212431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Gut dysbiosis with disrupted enterohepatic bile acid metabolism is commonly associated with non-alcoholic fatty liver disease (NAFLD) and recapitulated in a NAFLD-phenotype elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice. TCDD induces hepatic fat accumulation and increases levels of secondary bile acids, including taurolithocholic acid and deoxycholic acid (microbial modified bile acids involved in host bile acid regulation signaling pathways). To investigate the effects of TCDD on the gut microbiota, the cecum contents of male C57BL/6 mice orally gavaged with sesame oil vehicle or 0.3, 3, or 30 µg/kg TCDD were examined using shotgun metagenomic sequencing. Taxonomic analysis identified dose-dependent increases in Lactobacillus species (i.e., Lactobacillus reuteri). Increased species were also associated with dose-dependent increases in bile salt hydrolase sequences, responsible for deconjugation reactions in secondary bile acid metabolism. Increased L. reuteri levels were further associated with mevalonate-dependent isopentenyl diphosphate (IPP) biosynthesis and o-succinylbenzoate synthase, a menaquinone biosynthesis associated gene. Analysis of the gut microbiomes from cirrhosis patients identified an increased abundance of genes from the mevalonate-dependent IPP biosynthesis as well as several other menaquinone biosynthesis genes, including o-succinylbenzoate synthase. These results extend the association of lactobacilli with the AhR/intestinal axis in NAFLD progression and highlight the similarities between TCDD-elicited phenotypes in mice to human NAFLD.
Collapse
Affiliation(s)
- Russell R. Fling
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Timothy R. Zacharewski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
184
|
Bile acid-permeation enhancement for inner ear cochlear drug - pharmacological uptake: bio-nanotechnologies in chemotherapy-induced hearing loss. Ther Deliv 2021; 12:807-819. [PMID: 34761700 DOI: 10.4155/tde-2021-0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ototoxicity is the damage to inner ear sensory epithelia due to exposure to certain medications and chemicals. This occurs when toxins enter the tightly controlled inner ear environment inducing hair cell death, resulting in hearing loss. Recent studies have explored hydrogel-based bio-nanotechnologies and new drug delivery formulations to prevent drug-induced hearing loss, with much attention given to administration of antioxidant drugs. Bile acids have been recognized as promising excipients due to their biocompatibility and unique physiochemical properties. As yet bile acids have not been explored in improving drug delivery to the inner ear despite improving drug stability and delivery in other systems and demonstrating positive biological effects in their own right.
Collapse
|
185
|
Wang Z, Chen WD, Wang YD. Nuclear receptors: a bridge linking the gut microbiome and the host. Mol Med 2021; 27:144. [PMID: 34740314 PMCID: PMC8570027 DOI: 10.1186/s10020-021-00407-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background The gut microbiome is the totality of microorganisms, bacteria, viruses, protozoa, and fungi within the gastrointestinal tract. The gut microbiome plays key roles in various physiological and pathological processes through regulating varieties of metabolic factors such as short-chain fatty acids, bile acids and amino acids. Nuclear receptors, as metabolic mediators, act as a series of intermediates between the microbiome and the host and help the microbiome regulate diverse processes in the host. Recently, nuclear receptors such as farnesoid X receptor, peroxisome proliferator-activated receptors, aryl hydrocarbon receptor and vitamin D receptor have been identified as key regulators of the microbiome-host crosstalk. These nuclear receptors regulate metabolic processes, immune activity, autophagy, non-alcoholic and alcoholic fatty liver disease, inflammatory bowel disease, cancer, obesity, and type-2 diabetes. Conclusion In this review, we have summarized the functions of the nuclear receptors in the gut microbiome-host axis in different physiological and pathological conditions, indicating that the nuclear receptors may be the good targets for treatment of different diseases through the crosstalk with the gut microbiome.
Collapse
Affiliation(s)
- Zixuan Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Wei-Dong Chen
- Key Laboratory of Molecular Pathology, Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People's Republic of China. .,School of Medicine, Key Laboratory of Receptors-Mediated Gene Regulation, The People' Hospital of Hebi, Henan University, Henan, People's Republic of China.
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
186
|
Zhai Z, Niu KM, Liu H, Lin C, Tu Y, Liu Y, Cai L, Ouyang K, Liu J. Policosanol alleviates hepatic lipid accumulation by regulating bile acids metabolism in C57BL6/mice through AMPK-FXR-TGR5 cross-talk. J Food Sci 2021; 86:5466-5478. [PMID: 34730235 DOI: 10.1111/1750-3841.15951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022]
Abstract
Policosanol exhibits a lipid accumulation alleviating effect, but the underlying mechanisms remains unclear. Bile acids are a significant factor in regulating cholesterol and lipid metabolism homeostasis in mammals. This study was aimed to elucidate the alleviating effect and underlying mechanisms of policosanol on hepatic lipid accumulation through bile acid (BA) metabolism. Policosanol supplementation significantly reduced hepatic triglycerides (19.29%), cholesterol (30.38%) in high fat diet (HFD) induced obese mice (P < 0.05). Furthermore, compared with the control group, HFD decreased the levels of total BAs (TBAs, 37.67%) and cholic acid (CA, 62.74%) in the serum of mice (P < 0.05). Meanwhile, compared to HFD group, policosanol also increased the level of secondary BAs (SBAs) and muricholic acids (MCAs, P < 0.05). qRT-PCR combined with protein level analysis revealed that policosanol significantly decreased sterol regulatory element-binding protein (SREBP-1c) and CD36, and increased the expression level of cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and cytochrome P450 Family 27 Subfamily A Member 1 (CYP27A1, P < 0.05). Additionally, in the liver, policosanol was found downregulated the expression of farnesoid X receptor (FXR)-small heterodimer partner (SHP), and activate the Takeda G-coupled protein receptor 5 (TGR5)-adenosine-monophosphate-activated protein kinase (APMK) signaling pathway (P < 0.05). Peroxisome proliferator activated receptor (PPAR)-α, hormone sensitive lipase (HSL), and carnitine palmitoyltransferase (CPT)-1α also significantly increased in HP group (P < 0.05). The aforementioned results reveal that the potential mechanism of policosanol in alleviating liver lipid accumulation is to promote BA synthesis and lipolysis through regulating the cross-talk of the AMPK-FXR-TGR5. New insight for the application of policosanol as an anti-fatty liver functional food ingredient or supplement is also provided. PRACTICAL APPLICATION: Policosanol is an important active component of cereals and insect waxes (15-80%). However, almost no policosanol in refined foods such as clear corn germ oil and wheat flour. This study showed that oral administration of policosanol can significantly reduce triglyceride and cholesterol levels in the liver through affecting AMPK-TGR5-FXR cross-talk, whereas no significant toxicological effect is reported in human and mouse models. This study may provide theoretical support for the theory of dietary structure and the development of dietary supplements to improve lipid metabolism targeting the "bile acid-AMPK-TGR5" pathway.
Collapse
Affiliation(s)
- Zhenya Zhai
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China.,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Kai-Min Niu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China.,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Huiping Liu
- Era Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China
| | - Chong Lin
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China
| | - Yue Tu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China
| | - Yichun Liu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China
| | - Lichuang Cai
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China
| | - Kexian Ouyang
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China
| | - Jianping Liu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China
| |
Collapse
|
187
|
Zhao C, Qu Q, Yang F, Li Z, Yang P, Han L, Shi X. Monascus ruber fermented Panax ginseng ameliorates lipid metabolism disorders and modulate gut microbiota in rats fed a high-fat diet. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114300. [PMID: 34098018 DOI: 10.1016/j.jep.2021.114300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng Meyer) is rich in a variety of biologically active ingredients, which shows good effect in the treatment of metabolic diseases. Monascus has lipid-lowering activity and one of its metabolites, lovastatin, is widely used in clinical practice. AIM OF THE STUDY The main purpose of this study was to clarify the effects of fermented Panax ginseng by Monascus ruber (PM) on lipid metabolism and gut microbiota in rats fed a high-fat diet. MATERIALS AND METHODS SPF Sprague-Dawley rats were randomly divided into 5 groups, the therapeutic effect of PM on HFD-induced obesity, hyperlipidemia, hepatic steatosis, and disordered gut microbiota were determined in rats. RESULTS PM could attenuate features of obesity in rats, decrease serum TC, LDL-C and IgA levels, increase excretion of bile acids in feces. Hepatic histopathologic analysis revealed that PM decrease lipid accumulation in hepatocytes. Consistently, mRNA expression levels of cholesterol metabolism-related genes were regulated in the livers of HFD-fed rats administered with PM. In addition, PM could enhance the diversity and relative abundance of gut microbiota, reduce the Firmicutes/Bacteroidetes (F/B) ratio, increase significantly the relative abundance of Prevotella_9, and decrease these of Muribaculaceae. CONCLUSIONS PM could regulate lipid metabolism and the structure of the gut microbiota in the HFD rats. Our findings provide valuable experience for the development of ginseng. PM could be a potentially effective strategy to prevent and treat metabolic diseases and alleviate the gut microbiota disturbance caused by it.
Collapse
Affiliation(s)
- Chongyan Zhao
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Fang Yang
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Zhixun Li
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Pengshuo Yang
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Lu Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| |
Collapse
|
188
|
He F, Zhang T, Xue K, Fang Z, Jiang G, Huang S, Li K, Gu Z, Shi H, Zhang Z, Zhu H, Lin L, Li J, Xiao F, Shan H, Yan R, Li X, Yan Z. Fecal multi-omics analysis reveals diverse molecular alterations of gut ecosystem in COVID-19 patients. Anal Chim Acta 2021; 1180:338881. [PMID: 34538334 PMCID: PMC8310733 DOI: 10.1016/j.aca.2021.338881] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
Gut ecosystem has profound effects on host physiology and health. Gastrointestinal (GI) symptoms were frequently observed in patients with COVID-19. Compared with other organs, gut antiviral response can result in more complicated immune responses because of the interactions between the gut microbiota and host immunity. However, there are still large knowledge gaps in the impact of COVID-19 on gut molecular profiles and commensal microbiome, hindering our comprehensive understanding of the pathogenesis of SARS-CoV-2 and the treatment of COVID-19. We performed longitudinal stool multi-omics profiling to systemically investigate the molecular phenomics alterations of gut ecosystem in COVID-19. Gut proteomes of COVID-19 were characterized by disturbed immune, proteolysis and redox homeostasis. The expression and glycosylation of proteins involved in neutrophil degranulation and migration were suppressed, while those of proteases were upregulated. The variable domains of Ig heavy chains were downregulated and the overall glycosylation of IgA heavy chain constant regions, IgGFc-binding protein, and J chain were suppressed with glycan-specific variations. There was a reduction of beneficial gut bacteria and an enrichment of bacteria derived deleterious metabolites potentially associated with multiple types of diseases (such as ethyl glucuronide). The reduction of Ig heave chain variable domains may contribute to the increase of some Bacteroidetes species. Many bacteria ceramide lipids with a C17-sphingoid based were downregulated in COVID-19. In many cases, the gut phenome did not restore two months after symptom onset. Our study indicates widely disturbed gut molecular profiles which may play a role in the development of symptoms in COVID-19. Our findings also emphasis the need for ongoing investigation of the long-term gut molecular and microbial alterations during COVID-19 recovery process. Considering the gut ecosystem as a potential target could offer a valuable approach in managing the disease.
Collapse
Affiliation(s)
- Feixiang He
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Ting Zhang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Kewen Xue
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Zhaoxiong Fang
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Siwen Huang
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Kexue Li
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Zhiqiang Gu
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Honggang Shi
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Zhenyi Zhang
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Huijin Zhu
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Lu Lin
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Jialin Li
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Fei Xiao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China,Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao,Corresponding author
| | - Xiaofeng Li
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China,Corresponding author
| | - Zhixiang Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China,Corresponding author
| |
Collapse
|
189
|
Herz CT, Kulterer OC, Prager M, Langer FB, Prager G, Marculescu R, Fauler G, Hacker M, Kautzky-Willer A, Trauner M, Haug AR, Kiefer FW. Characterization of endogenous bile acid composition in individuals with cold-activated brown adipose tissue. Mol Cell Endocrinol 2021; 536:111403. [PMID: 34332024 DOI: 10.1016/j.mce.2021.111403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Bile acid signaling has been suggested to promote BAT activity in various experimental models. However, little is known if and how physiologic bile acid metabolism is linked to BAT function in humans. Here we investigated the association between BAT activity and circulating bile acid concentrations in lean and obese individuals. METHODS BAT 18F-fluorodeoxyglucose uptake was measured after a standardized cooling protocol by positron emission tomography/computed tomography. Cold-induced thermogenesis was assessed by indirect calorimetry. Fasting bile acid concentrations were determined by high performance liquid chromatography-high-resolution mass spectrometry. RESULTS In a cohort of 24 BAT-negative and 20 BAT-positive individuals matched by age, sex, and body mass index, circulating bile acid levels were similar between groups except for higher ursodeoxycholic acid and a trend towards a lower 12α-OH/non-12α-OH bile acid ratio in lean participants with active BAT compared to those without. Moreover, the 12α-OH/non-12α-OH ratio, a marker of CYP8B1 activity, correlated negatively with BAT volume and activity. CONCLUSION Fasting concentrations of major bile acids are not associated with cold-induced BAT activity in humans. However, the inverse association between BAT activity and 12α-OH/non-12α-OH ratio may suggest CYP8B1 as a potential new target in BAT function and warrants additional investigation.
Collapse
Affiliation(s)
- Carsten T Herz
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Oana C Kulterer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marlene Prager
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Felix B Langer
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Prager
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Division of Medical-Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alexander R Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - Florian W Kiefer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
190
|
Ohira M, Watanabe Y, Yamaguchi T, Saiki A, Nakamura S, Tanaka S, Shimizu N, Nabekura T, Oshiro T, Tatsuno I. Determinants of type 2 diabetes remission after bariatric surgery in obese Japanese patients: a retrospective cohort study. Diabetol Int 2021; 12:379-388. [PMID: 34567920 DOI: 10.1007/s13340-021-00493-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 01/06/2023]
Abstract
Objective Bariatric surgery (BS) improves glycemic control in type 2 diabetes; however, some patients show insufficient improvement. Understanding the pathophysiology of type 2 diabetes in obese patients can facilitate appropriate treatment for type 2 diabetes after BS. The homeostatic model assessment (HOMA) 2 enables the calculation of the values from C-peptide data and evaluation of insulin users. We aimed to evaluate the pathophysiology of type 2 diabetes using pre- and postoperative parameters and HOMA2 in obese patients who underwent BS. Methods We retrospectively reviewed data from 45 obese patients with type 2 diabetes who underwent BS. They were followed-up for 12 months. The relationship between the HOMA2 score and complete remission (CR) of type 2 diabetes after BS was analyzed. Patients with and without CR were assigned to the CR and non-CR groups, respectively. Multiple regression analysis was used to identify factors associated with improvement in type 2 diabetes after BS. Results BS significantly improved body weight and glucose metabolism. The preoperative glycosylated hemoglobin A1c level and insulin secretion (HOMA2-%B) significantly differed between the CR and non-CR groups. Postoperative weight reduction and improved insulin sensitivity correlated significantly with CR; multiple regression showed that the preoperative HOMA 2-%B independently predicted CR of type 2 diabetes after BS. Conclusion Preoperative insulin secretion, improvement in insulin sensitivity, and weight reduction after BS are related to CR of type 2 diabetes after BS. The results better reveal the pathophysiology of and treatment for type 2 diabetes in obese patients who undergo BS.
Collapse
Affiliation(s)
- Masahiro Ohira
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba 285-0841 Japan
| | - Yasuhiro Watanabe
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba 285-0841 Japan
| | - Takashi Yamaguchi
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba 285-0841 Japan
| | - Atsuhito Saiki
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba 285-0841 Japan
| | - Shoko Nakamura
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba 285-0841 Japan
| | - Shou Tanaka
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba 285-0841 Japan
| | - Naomi Shimizu
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba 285-0841 Japan
| | - Taiki Nabekura
- Department of Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba 285-0841 Japan
| | - Takashi Oshiro
- Department of Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba 285-0841 Japan
| | - Ichiro Tatsuno
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba 285-0841 Japan
| |
Collapse
|
191
|
Dalton GD, Oh SH, Tang L, Zhang S, Brown AL, Varadharajan V, Baleanu-Gogonea C, Gogonea V, Pathak P, Brown JM, Diehl AM. Hepatocyte activity of the cholesterol sensor smoothened regulates cholesterol and bile acid homeostasis in mice. iScience 2021; 24:103089. [PMID: 34568800 PMCID: PMC8449244 DOI: 10.1016/j.isci.2021.103089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular cholesterol is regulated by at least two transcriptional mechanisms involving sterol-regulatory-element-binding proteins (SREBPs) and liver X receptors (LXRs). Although SREBP and LXR pathways are the predominant mechanisms that sense cholesterol in the endoplasmic reticulum and nucleus to alter sterol-regulated gene expression, evidence suggests cholesterol in plasma membrane can be sensed by proteins in the Hedgehog (Hh) pathway which regulate organ self-renewal and are a morphogenic driver during embryonic development. Cholesterol interacts with the G-protein-coupled receptor Smoothened (Smo), which impacts downstream Hh signaling. Although evidence suggests cholesterol influences Hh signaling, it is not known whether Smo-dependent sterol sensing impacts cholesterol homeostasis in vivo. We examined dietary-cholesterol-induced reorganization of whole-body sterol and bile acid (BA) homeostasis in adult mice with inducible hepatocyte-specific Smo deletion. These studies demonstrate Smo in hepatocytes plays a regulatory role in sensing and feedback regulation of cholesterol balance driven by excess dietary cholesterol.
Collapse
Affiliation(s)
- George D. Dalton
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Seh-Hoon Oh
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Linda Tang
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Stephanie Zhang
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Amanda L. Brown
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Preeti Pathak
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
192
|
Meteorin-Like Protein (Metrnl) in Obesity, during Weight Loss and in Adipocyte Differentiation. J Clin Med 2021; 10:jcm10194338. [PMID: 34640356 PMCID: PMC8509786 DOI: 10.3390/jcm10194338] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/05/2022] Open
Abstract
Meteorin-like protein (Metrnl) is an adipo-myokine with pleiotropic effects in adipose tissue (AT). Its systemic regulation in obesity and under weight loss is unclear. Circulating Metrnl concentrations were analyzed by ELISA in severely obese patients undergoing bariatric surgery (BS) or low calorie diet (LCD). Metrnl mRNA expression was analyzed in human and murine tissues and cell lines by quantitative real-time PCR. About 312 morbidly obese individuals underwent BS (n = 181; BMI 53.4 + 6.8 kg/m2) or LCD (n = 131; BMI 43.5 + 6.7 kg/m2). Serum samples were obtained at baseline and 3, 6, and 12 months after intervention. AT specimen from subcutaneous and visceral adipose tissue were resected during BS. Serum Metrnl levels were lower in type 2 diabetic patients and negatively correlated with HbA1c. In BS and LCD patients, Metrnl concentrations significantly increased after 3 months and returned to baseline levels after 12 months. There was no gender-specific effect. Metrnl mRNA expression did not differ between visceral and subcutaneous AT in n = 130 patients. In contrast, Metrnl gene expression in mice was highest in intra-abdominal AT followed by subcutaneous, peri-renal, and brown AT. In the murine 3T3-L1 cell line, Metrnl expression was high in pre-adipocytes and mature adipocytes with a transient downregulation during adipocyte differentiation. Metrnl expression remained unaffected upon treatment with glucose, insulin, fatty acids, bile acids, and incretins. Polyunsaturated omega-3 and omega-6 fatty acids downregulated Metrnl expression. Systemic Metrnl is transiently upregulated during massive weight loss and gene expression in adipocytes is differentially regulated.
Collapse
|
193
|
Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep 2021; 36:109726. [PMID: 34551302 DOI: 10.1016/j.celrep.2021.109726] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota-mediated secondary bile acids (BAs) play an important role in energy balance and host metabolism via G protein-coupled receptors and/or nuclear receptors. Emerging evidence suggests that BAs are important for maintaining innate immune responses via these receptors. However, the effect of BAs on autoimmune uveitis is still unknown. Here, we demonstrate decreased microbiota-related secondary BA concentration in feces and serum of animals with experimental autoimmune uveitis (EAU). Restoration of the gut BAs pool attenuates severity of EAU in association with inhibition of nuclear factor κB (NF-κB)-related pro-inflammatory cytokines in dendritic cells (DCs). TGR5 deficiency partially reverses the inhibitory effect of deoxycholic acid (DCA) on DCs. TGR5 signaling also inhibits NF-κB activation via the cyclic AMP (cAMP)-protein kinase A (PKA) pathway in DCs. Additionally, both DCA and TGR5 agonists inhibit human monocyte-derived DC activation. Taken together, our results suggest that BA metabolism plays an important role in adaptive immune responses and might be a therapeutic target in autoimmune uveitis.
Collapse
|
194
|
Lyu J, Li H, Yin D, Zhao M, Sun Q, Guo M. Analysis of eight bile acids in urine of gastric cancer patients based on covalent organic framework enrichment coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1653:462422. [PMID: 34348207 DOI: 10.1016/j.chroma.2021.462422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Gastric carcinoma is one of the most common and deadly forms of cancer. Early detection is critical for successful treatment of gastric cancer, and examination of BAs in urine may provide a critical diagnostic tool for identifying gastric cancer at stages when it can still be cured. Bile acids (BAs) are a crucial toxic factor correlated with the injury of gastric mucosa and as such, quantifying the amount of BA in patient's urine could provide a new means to quickly and non-invasively identify the presence of gastric cancer in the early stages. Here, a covalent organic framework (COF) material synthesized on the basis of 1,3,5-tris(4-nitrophenyl)benzene (TAPB) and pyromellitic dianhydride (PMDA) was used as stationary phase for SPE column that was coupled to LC-MS/MS for quantitative analysis of eight BAs in human urine, including cholic acid (CA), deoxycholic acid (DCA), glycochenodeoxycholic acid (GCDCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), lithocholic acid (LCA), hyodeoxycholic acid (HDCA), and chenodeoxycholic acid (CDCA). The enrichment effect of synthesized COF material was better than commercial SPE and HLB column. The sensitivity can increase 9.37- to 54.30- fold (calculated by the ratio of peak area between before and after enrichment). The probable mechanism is due to the great porosity and the similar polarity with BAs of the COF material. By compared with previous literatures, our method had the minimum limit of detection, which achieved 46.40, 25.75, 47.40, 47.37, 30.42, and 33.92 pg /mL, respectively, for GCA, GCDCA, CA, CDCA, HDCA and DCA after enrichment. These eight BAs also accomplished excellent linearity from 0.34 to 10,000 ng/mL. This material was successfully applied in the measurements of these six BAs in human urine from 76 gastric cancer patients and 32 healthy people. Compared to healthy people, levels of CA, CDCA, DCA, and HDCA were significantly elevated and levels of GCDCA were depressed, respectively, in gastric cancer patients. Our work suggests that these acids may act as potential biomarkers for gastric cancer and our framework provides a method for "non-invasive" diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Jinxiu Lyu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Haijuan Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Dengyang Yin
- Jingjiang People's Hospital, Taizhou, Jiangsu, 214500, China
| | - Meng Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Qiang Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
195
|
Zhuang P, Li H, Jia W, Shou Q, Zhu Y, Mao L, Wang W, Wu F, Chen X, Wan X, Wu Y, Liu X, Li Y, Zhu F, He L, Chen J, Zhang Y, Jiao J. Eicosapentaenoic and docosahexaenoic acids attenuate hyperglycemia through the microbiome-gut-organs axis in db/db mice. MICROBIOME 2021; 9:185. [PMID: 34507608 PMCID: PMC8434703 DOI: 10.1186/s40168-021-01126-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/08/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been suggested to prevent the development of metabolic disorders. However, their individual role in treating hyperglycemia and the mechanism of action regarding gut microbiome and metabolome in the context of diabetes remain unclear. RESULTS Supplementation of DHA and EPA attenuated hyperglycemia and insulin resistance without changing body weight in db/db mice while the ameliorative effect appeared to be more pronounced for EPA. DHA/EPA supplementation reduced the abundance of the lipopolysaccharide-containing Enterobacteriaceae whereas elevated the family Coriobacteriaceae negatively correlated with glutamate level, genera Barnesiella and Clostridium XlVa associated with bile acids production, beneficial Bifidobacterium and Lactobacillus, and SCFA-producing species. The gut microbiome alterations co-occurred with the shifts in the metabolome, including glutamate, bile acids, propionic/butyric acid, and lipopolysaccharide, which subsequently relieved β cell apoptosis, suppressed hepatic gluconeogenesis, and promoted GLP-1 secretion, white adipose beiging, and insulin signaling. All these changes appeared to be more evident for EPA. Furthermore, transplantation with DHA/EPA-mediated gut microbiota mimicked the ameliorative effect of DHA/EPA on glucose homeostasis in db/db mice, together with similar changes in gut metabolites. In vitro, DHA/EPA treatment directly inhibited the growth of Escherichia coli (Family Enterobacteriaceae) while promoted Coriobacterium glomerans (Family Coriobacteriaceae), demonstrating a causal effect of DHA/EPA on featured gut microbiota. CONCLUSIONS DHA and EPA dramatically attenuated hyperglycemia and insulin resistance in db/db mice, which was mediated by alterations in gut microbiome and metabolites linking gut to adipose, liver and pancreas. These findings shed light into the gut-organs axis as a promising target for restoring glucose homeostasis and also suggest a better therapeutic effect of EPA for treating diabetes. Video abstract.
Collapse
Affiliation(s)
- Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Haoyu Li
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wei Jia
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qiyang Shou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310005, Zhejiang, China
| | - Ya'er Zhu
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Lei Mao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Wenqiao Wang
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Fei Wu
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaoqian Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xuzhi Wan
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yuqi Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaohui Liu
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yin Li
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Fanghuan Zhu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Lilin He
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingnan Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
196
|
Wei YX, Zheng KY, Wang YG. Gut microbiota-derived metabolites as key mucosal barrier modulators in obesity. World J Gastroenterol 2021; 27:5555-5565. [PMID: 34588751 PMCID: PMC8433617 DOI: 10.3748/wjg.v27.i33.5555] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/24/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
A significant breakthrough in the field of obesity research was the demonstration that an obese phenotype could be manipulated by modulating the gut microbiota. An important next step is to elucidate a human-relevant “map’’ of microbiota-host interactions that regulate the metabolic health of the host. An improved understanding of this crosstalk is a prerequisite for optimizing therapeutic strategies to combat obesity. Intestinal mucosal barrier dysfunction is an important contributor to metabolic diseases and has also been found to be involved in a variety of other chronic inflammatory conditions, including cancer, neurodegeneration, and aging. The mechanistic basis for intestinal barrier dysfunction accompanying metabolic disorders remains poorly understood. Understanding the molecular and cellular modulators of intestinal barrier function will help devise improved strategies to counteract the detrimental systemic consequences of gut barrier breakage. Changes in the composition and function of the gut microbiota, i.e., dysbiosis, are thought to drive obesity-related pathogenesis and may be one of the most important drivers of mucosal barrier dysfunction. Many effects of the microbiota on the host are mediated by microbiota-derived metabolites. In this review, we focus on several relatively well-studied microbial metabolites that can influence intestinal mucosal homeostasis and discuss how they might affect metabolic diseases. The design and use of microbes and their metabolites that are locally active in the gut without systemic side effects are promising novel and safe therapeutic modalities for metabolic diseases.
Collapse
Affiliation(s)
- Yan-Xia Wei
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Kui-Yang Zheng
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yu-Gang Wang
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| |
Collapse
|
197
|
McClave SA. Can feeding strategies alter immune signaling and gut sepsis in critical illness? JPEN J Parenter Enteral Nutr 2021; 45:66-73. [PMID: 34477220 DOI: 10.1002/jpen.2260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 11/06/2022]
Abstract
The insult necessitating admission to the intensive care unit propels the patient along a course involving increasing oxidative stress, immune dysregulation, and adverse outcomes. As the largest immune organ with the greatest microbial burden, the gastrointestinal tract may change the speed and direction the patient follows along this pathway. The gut's influence is mediated by a complex process of cross-talk immune signaling between the intestinal epithelium, the liver, and the microbiome. Agents which invoke this response vary from mitochondrial DNA, inflammatory cytokines, and bacterial organisms to short chain fatty acids and bile salts. The site of action of these agents again varies widely from Pattern Recognition Receptors, G protein receptors, and Farnesoid X receptors in the gut and liver to transcriptional factors in epithelial cells, hepatocytes, macrophages, and neutrophils. While the initial focus of response may be local within the gastrointestinal tract and liver, the process extends in a systemic manner to affect immune tissue and various organs at distant sites. The gut can modulate this cross-talk signaling through numerous strategies in design of nutritional therapy. The physiologic response to luminal nutrients and short chain fatty acids, and more novel approaches like use phosphorylated polyethylene glycol, bovine serum-derived immunoglobulin, and specialized pro-resolving molecules may help slow disease progression and even reverse the patient's course toward one of health and recovery. The optimal benefit to be derived from nutritional therapy may have more to do with the degree to which immune cross-talk signaling can be modified by such innovative strategies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Stephen A McClave
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine
| |
Collapse
|
198
|
Biagioli M, Fiorucci S. Bile acid activated receptors: Integrating immune and metabolic regulation in non-alcoholic fatty liver disease. LIVER RESEARCH 2021; 5:119-141. [PMID: 39957845 PMCID: PMC11791866 DOI: 10.1016/j.livres.2021.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023]
Abstract
Bile acids are a family of atypical steroids generated at the interface of liver-intestinal microbiota acting on a ubiquitously expressed family of membrane and nuclear receptors known as bile acid activated receptors. The two best characterized receptors of this family are the nuclear receptor, farnesoid X receptor (FXR) and the G protein-coupled receptor, G protein-coupled bile acid receptor 1 (GPBAR1). FXR and GPBAR1 regulate major aspects of lipid and glucose metabolism, energy balance, autophagy and immunity and have emerged as potential pharmaceutical targets for the treatment of metabolic and inflammatory disorders. Clinical trials in non-alcoholic fatty liver disease (NAFLD), however, have shown that selective FXR agonists cause side effects while their efficacy is partial. Because FXR and GPBAR1 exert additive effects, dual FXR/GPBAR1 ligands have been developed for the treatment of metabolic disorders and are currently advanced to clinical trials. Here, we will review the role of FXR and GPBAR1 agonism in NAFLD and how the two receptors could be exploited to target multiple components of the disease.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
199
|
Zhou Q, Wang Y, Gu Y, Li J, Wang H, Leng J, Li W, Yu Z, Hu G, Ma RCW, Fang ZZ, Yang X, Jiang G. Genetic variants associated with beta-cell function and insulin sensitivity potentially influence bile acid metabolites and gestational diabetes mellitus in a Chinese population. BMJ Open Diabetes Res Care 2021; 9:9/1/e002287. [PMID: 34518156 PMCID: PMC8438732 DOI: 10.1136/bmjdrc-2021-002287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/17/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION To investigate associations between genetic variants related to beta-cell (BC) dysfunction or insulin resistance (IR) in type 2 diabetes (T2D) and bile acids (BAs), as well as the risk of gestational diabetes mellitus (GDM). RESEARCH DESIGN AND METHODS We organized a case-control study of 230 women with GDM and 217 without GDM nested in a large prospective cohort of 22 302 Chinese women in Tianjin, China. Two weighted genetic risk scores (GRSs), namely BC-GRS and IR-GRS, were established by combining 39 and 23 single nucleotide polymorphisms known to be associated with BC dysfunction and IR, respectively. Regression and mediation analyses were performed to evaluate the relationship of GRSs with BAs and GDM. RESULTS We found that the BC-GRS was inversely associated with taurodeoxycholic acid (TDCA) after adjustment for confounders (Beta (SE)=-0.177 (0.048); p=2.66×10-4). The BC-GRS was also associated with the risk of GDM (OR (95% CI): 1.40 (1.10 to 1.77); p=0.005), but not mediated by TDCA. Compared with individuals in the low tertile of BC-GRS, the OR for GDM was 2.25 (95% CI 1.26 to 4.01) in the high tertile. An interaction effect of IR-GRS with taurochenodeoxycholic acid (TCDCA) on the risk of GDM was evidenced (p=0.005). Women with high IR-GRS and low concentration of TCDCA had a markedly higher OR of 14.39 (95% CI 1.59 to 130.16; p=0.018), compared with those with low IR-GRS and high TCDCA. CONCLUSIONS Genetic variants related to BC dysfunction and IR in T2D potentially influence BAs at early pregnancy and the development of GDM. The identification of both modifiable and non-modifiable risk factors may facilitate the identification of high-risk individuals to prevent GDM.
Collapse
Affiliation(s)
- Qiulun Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Ying Wang
- The Second School of Clinical Medicine, Key Laboratory of 3D Printing Technology in Stomatology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yuqin Gu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Junhong Leng
- Project Office, Tianjin Women and Children's Health Center, Tianjin, China
| | - Weiqin Li
- Project Office, Tianjin Women and Children's Health Center, Tianjin, China
| | - Zhijie Yu
- Population Cancer Research Program and Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Ronald Ching Wan Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xilin Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Guozhi Jiang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
200
|
Gut Microbiota and Type 2 Diabetes Mellitus: Association, Mechanism, and Translational Applications. Mediators Inflamm 2021; 2021:5110276. [PMID: 34447287 PMCID: PMC8384524 DOI: 10.1155/2021/5110276] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota has attracted widespread attention due to its crucial role in disease pathophysiology, including type 2 diabetes mellitus (T2DM). Metabolites and bacterial components of gut microbiota affect the initiation and progression of T2DM by regulating inflammation, immunity, and metabolism. Short-chain fatty acids, secondary bile acid, imidazole propionate, branched-chain amino acids, and lipopolysaccharide are the main molecules related to T2DM. Many studies have investigated the role of gut microbiota in T2DM, particularly those butyrate-producing bacteria. Increasing evidence has demonstrated that fecal microbiota transplantation and probiotic capsules are useful strategies in preventing diabetes. In this review, we aim to elucidate the complex association between gut microbiota and T2DM inflammation, metabolism, and immune disorders, the underlying mechanisms, and translational applications of gut microbiota. This review will provide novel insight into developing individualized therapy for T2DM patients based on gut microbiota immunometabolism.
Collapse
|