151
|
Zhang J, Yun S, Du Y, Zannettino ACW, Zhang H. Fabrication of a Cartilage Patch by Fusing Hydrogel-Derived Cell Aggregates onto Electrospun Film. Tissue Eng Part A 2020; 26:863-871. [PMID: 32008467 DOI: 10.1089/ten.tea.2019.0318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Irregular defects at sites of degenerative cartilage often accompany osteoarthritis (OA). The development of novel cell-/biomaterial-based cartilage tissue engineering methods to address these defects may provide a durable approach to hinder the development of OA. In this study, we fabricated a neocartilage patch by fusing cell aggregates onto a biodegradable nanofiber film for degenerative cartilage repair. Human mesenchymal stem/stromal cell (MSC) aggregates were prepared and induced for chondrogenesis in a thermosensitive hydrogel, poly (N-isopropylacrylamide-co-acrylic acid (p(NIPAAm-AA)). Cell migration mediated the formation of cell aggregates in the thermosensitive hydrogel and led to a cell-dense hollow shell structure. The chondrocytes derived from MSC aggregates in the hydrogel were evidenced by the expression of chondrogenesis-related genes and extracellular matrices. They were fused onto an electrospun film by mechanical force and spatial confinement to generate a neo-cartilage patch. The fabricated neocartilage patches may be able to integrate into the irregular defects under compressive stresses and achieve cartilage regeneration in vivo. Impact statement The formation of human mesenchymal stem/stromal cells aggregates in thermosensitive hydrogels was mechanistically examined. These in situ formed cell aggregates with enhanced chondrogenesis were bioengineered into a neocartilage patch for regeneration of superficial irregular cartilage defects.
Collapse
Affiliation(s)
- Jiabin Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, Australia
| | - Seonho Yun
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, Australia
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | | | - Hu Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, Australia.,Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, USA
| |
Collapse
|
152
|
Udomluck N, Kim SH, Cho H, Park JY, Park H. Three-dimensional cartilage tissue regeneration system harnessing goblet-shaped microwells containing biocompatible hydrogel. Biofabrication 2019; 12:015019. [PMID: 31783391 DOI: 10.1088/1758-5090/ab5d3e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Differentiation of stem cells into chondrocytes has been studied for the engineering of cartilage tissue. However, stem cells cultured two-dimensionally have limited ability to differentiate into chondrocytes, which led to the development of three-dimensional culture systems. A recently developed microtechnological method uses microwells as a tool to form uniformly sized spheroids. In this study, we fabricated an array (10 × 10) of goblet-shaped microwells based on polydimethylsiloxane for spheroid culture. A central processing unit (CPU) was used to form holes, and metallic beads were used to form hemispherical microwell geometry. The holes were filled with Pluronic F-127 to prevent cells from sinking through the holes and allowing the cells to form spheroids. Viability and chondrogenic differentiation of human adipose-derived stem cells were assessed. The fabrication method using a micro-pin mold and metallic beads is easy and cost-effective. Our three-dimensional spheroid culture system optimizes the efficient differentiation of cells and has various applications, such as drug delivery, cell therapy, and tissue engineering.
Collapse
Affiliation(s)
- Nopphadol Udomluck
- School of Integrative Engineering, College of Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | | | | | | | | |
Collapse
|
153
|
Xia J, Tsai AC, Cheng W, Yuan X, Ma T, Guan J. Development of a microdevice-based human mesenchymal stem cell-mediated drug delivery system. Biomater Sci 2019; 7:2348-2357. [PMID: 30916669 DOI: 10.1039/c8bm01634h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell-mediated drug delivery systems utilize living cells as vehicles to achieve controlled delivery of drugs. One of the systems features integrating cells with disk-shaped microparticles termed microdevices into cell-microdevice complexes that possess some unique advantages over their counterparts. Human mesenchymal stem cells (hMSCs) have been extensively studied as therapeutic cells and used as carrier cells for drug-loaded nanoparticles or other functional nanoparticles. This article presents the development of a microdevice-based hMSC-mediated drug delivery system for the first time. This study revealed that the microdevices could be attached to the hMSCs in a controlled and versatile manner; the produced hMSC-microdevice complexes were stable over cultivation and trypsinization, and the microdevice attachment did not affect the viability and proliferation of the hMSCs. Moreover, cultured microdevice-bound hMSCs retained their abilities to migrate on a flat surface, form a spheroid, and actively dissociate from the spheroid. These results indicate that this microdevice-based hMSC-mediated system promises to be further developed into a clinically viable drug delivery system.
Collapse
Affiliation(s)
- Junfei Xia
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310-2870, USA.
| | | | | | | | | | | |
Collapse
|
154
|
Zarkesh I, Halvaei M, Ghanian MH, Bagheri F, Sayahpour FA, Azami M, Mohammadi J, Baharvand H, Baghaban Eslaminejad M. Scalable and cost-effective generation of osteogenic micro-tissues through the incorporation of inorganic microparticles within mesenchymal stem cell spheroids. Biofabrication 2019; 12:015021. [DOI: 10.1088/1758-5090/ab51ae] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
155
|
Kim EM, Lee YB, Kim SJ, Park J, Lee J, Kim SW, Park H, Shin H. Fabrication of core-shell spheroids as building blocks for engineering 3D complex vascularized tissue. Acta Biomater 2019; 100:158-172. [PMID: 31542503 DOI: 10.1016/j.actbio.2019.09.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Cell spheroids as building blocks for engineering micro-tissue should be able to mimic the complex structure of natural tissue. However, control of the distribution of multiple cell populations within cell spheroids is difficult to achieve with current spheroid-harvest methods such as hanging-drop and with the use of microwell plates. In this study, we report the fabrication of core-shell spheroids with the ultimate goal to form 3D complex micro-tissue. We used endothelial cells and two types of stem cells (human turbinate mesenchymal stem cells (hTMSCs)/adipose-derived stem cells (ADSCs)). The stem cells and endothelial cells formed layered micro-sized cell sheets (µCSs) on polydopamine micro-patterned temperature-responsive hydrogel surfaces by a sequential seeding method, and these layered µCSs self-assembled to form core-shell spheroids by expansion of the hydrogels. The co-cultured spheroids formed a core-shell structure irrespective of stem cell type. In addition, the size of the core-shell spheroids was controlled from 90 ± 1 to 144 ± 3 µm by changing pattern sizes (200, 300, and 400 µm). The shell thickness gradually increased from 12 ± 3 to 30 ± 6 µm by adjusting the endothelial cell seeding density. Finally, we fabricated the micro-tissue by fusion of the co-cultured spheroids, and the spheroids with the core-shell structure rapidly induced in vitro vessel-like network in 3 days. Thus, the position of endothelial cells in co-cultured spheroids may be an important factor for the modulation of the vascularization process, which can be useful for the production of 3D complex micro-tissues using spheroids as building blocks. STATEMENT OF SIGNIFICANCE: This manuscript describes our work on the fabrication of core-shell spheroids as building blocks to form 3D complex vascularized micro-tissue. Stem cells (human turbinate mesenchymal stem cells (hTMSCs) or adipose-derived stem cells (ADSCs)) and endothelial cells formed layered micro-sized cell sheets (µCSs) on micro-patterned temperature-responsive hydrogel surfaces by a sequential seeding method, and these layered µCSs self-assembled to form core-shell spheroids (core - stem cells, shell - endothelial cells), irrespective of stem cell type. In addition, the size and shell thickness of the core-shell spheroids were controlled by modifying pattern size and endothelial cell seeding density. We fabricated the vascularized micro-tissue by fusion of the spheroids and demonstrated that the spheroids with a core-shell structure rapidly induced vessel-like network.
Collapse
Affiliation(s)
- Eun Mi Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University
| | - Yu Bin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University
| | - Se-Jeong Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University
| | - Jaesung Park
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University
| | - Sung Won Kim
- Department of Pathology, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University.
| |
Collapse
|
156
|
Lotus seedpod-inspired hydrogels as an all-in-one platform for culture and delivery of stem cell spheroids. Biomaterials 2019; 225:119534. [DOI: 10.1016/j.biomaterials.2019.119534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/05/2019] [Accepted: 09/28/2019] [Indexed: 01/01/2023]
|
157
|
Bejoy J, Yuan X, Song L, Hua T, Jeske R, Sart S, Sang QXA, Li Y. Genomics Analysis of Metabolic Pathways of Human Stem Cell-Derived Microglia-Like Cells and the Integrated Cortical Spheroids. Stem Cells Int 2019; 2019:2382534. [PMID: 31827525 PMCID: PMC6885849 DOI: 10.1155/2019/2382534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022] Open
Abstract
Brain spheroids or organoids derived from human pluripotent stem cells (hiPSCs) are still not capable of completely recapitulating in vivo human brain tissue, and one of the limitations is lack of microglia. To add built-in immune function, coculture of the dorsal forebrain spheroids with isogenic microglia-like cells (D-MG) was performed in our study. The three-dimensional D-MG spheroids were analyzed for their transcriptome and compared with isogenic microglia-like cells (MG). Cortical spheroids containing microglia-like cells displayed different metabolic programming, which may affect the associated phenotype. The expression of genes related to glycolysis and hypoxia signaling was increased in cocultured D-MG spheroids, indicating the metabolic shift to aerobic glycolysis, which is in favor of M1 polarization of microglia-like cells. In addition, the metabolic pathways and the signaling pathways involved in cell proliferation, cell death, PIK3/AKT/mTOR signaling, eukaryotic initiation factor 2 pathway, and Wnt and Notch pathways were analyzed. The results demonstrate the activation of mTOR and p53 signaling, increased expression of Notch ligands, and the repression of NF-κB and canonical Wnt pathways, as well as the lower expression of cell cycle genes in the cocultured D-MG spheroids. This analysis indicates that physiological 3-D microenvironment may reshape the immunity of in vitro cortical spheroids and better recapitulate in vivo brain tissue function for disease modeling and drug screening.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Liqing Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Thien Hua
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
| | - Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Sébastien Sart
- Hydrodynamics Laboratory (LadHyX)-Department of Mechanics, Ecole Polytechnique, CNRS-UMR7646, 91128 Palaiseau, France
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
158
|
Serum-Free Culture of Human Mesenchymal Stem Cell Aggregates in Suspension Bioreactors for Tissue Engineering Applications. Stem Cells Int 2019; 2019:4607461. [PMID: 31814836 PMCID: PMC6878794 DOI: 10.1155/2019/4607461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/10/2019] [Accepted: 08/26/2019] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have the capacity to differentiate towards bone, fat, and cartilage lineages. The most widely used culture and differentiation protocols for MSCs are currently limited by their use of serum-containing media and small-scale static culture vessels. Suspension bioreactors have multiple advantages over static culture vessels (e.g., scalability, control, and mechanical forces). This study sought to compare the formation and culture of 3D aggregates of human synovial fluid MSCs within suspension bioreactors and static microwell plates. It also sought to elucidate the benefits of these techniques in terms of productivity, cell number, and ability to generate aggregates containing extracellular matrix deposition. MSCs in serum-free medium were either (1) inoculated as single cells into suspension bioreactors, (2) aggregated using static microwell plates prior to being inoculated in the bioreactor environment, or (3) aggregated using microwell plates and kept in the static environment. Preformed aggregates that were size-controlled at inoculation had a greater tendency to form large, irregular super aggregates after a few days of suspension culture. The single MSCs inoculated into suspension bioreactors formed a more uniform population of smaller aggregates after a definite culture period of 8 days. Both techniques showed initial deposition of extracellular matrix within the aggregates. When the relationship between aggregate size and ECM deposition was investigated in static culture, midsized aggregates (100-300 cells/aggregate) were found to most consistently maximize sGAG and collagen productivity. Thus, this study presents a 3D tissue culture method, which avoids the clinical drawbacks of serum-containing medium that can easily be scaled for tissue culture applications.
Collapse
|
159
|
Hoffecker IT, Arima Y, Iwata H. Tuning intercellular adhesion with membrane-anchored oligonucleotides. J R Soc Interface 2019; 16:20190299. [PMID: 31662069 DOI: 10.1098/rsif.2019.0299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adhesive interactions between cells play an integral role in development, differentiation and regeneration. Existing methods for controlling cell-cell cohesion and adhesion by manipulating protein expression are constrained by biological interdependencies, e.g. coupling of cadherins to actomyosin force-feedback mechanisms. We use oligonucleotides conjugated to PEGylated lipid anchors (ssDNAPEGDPPE) to introduce artificial cell-cell adhesion that is largely decoupled from the internal cytoskeleton. We describe cell-cell doublets with a mechanical model based on isotropic, elastic deformation of spheres to estimate the adhesion at the cell-cell interface. Physical manipulation of adhesion by modulating the PEG-lipid to ssDNAPEGDPPE ratio, and conversely treating with actin-depolymerizing cytochalasin D, resulted in decreases and increases in doublet contact area, respectively. Our data are relevant to the ongoing discussion over mechanisms of tissue surface tension and in agreement with models based on opposing cortical and cohesive forces. PEG-lipid modulation of doublet geometries resulted in a well-defined curve indicating continuity, enabling prescriptive calibration for controlling doublet geometry. Our study demonstrates tuning of basic doublet adhesion, laying the foundation for more complex multicellular adhesion control independent of protein expression.
Collapse
Affiliation(s)
- Ian T Hoffecker
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna väg 9, Solna 171 65, Sweden
| | - Yusuke Arima
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University CE41, 744 Motoka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Hiroo Iwata
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,The Compass to Healthy Life Research Complex Program, RIKEN, Kobe, Japan
| |
Collapse
|
160
|
Berry JL, Zhu W, Tang YL, Krishnamurthy P, Ge Y, Cooke JP, Chen Y, Garry DJ, Yang HT, Rajasekaran NS, Koch WJ, Li S, Domae K, Qin G, Cheng K, Kamp TJ, Ye L, Hu S, Ogle BM, Rogers JM, Abel ED, Davis ME, Prabhu SD, Liao R, Pu WT, Wang Y, Ping P, Bursac N, Vunjak-Novakovic G, Wu JC, Bolli R, Menasché P, Zhang J. Convergences of Life Sciences and Engineering in Understanding and Treating Heart Failure. Circ Res 2019; 124:161-169. [PMID: 30605412 DOI: 10.1161/circresaha.118.314216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
On March 1 and 2, 2018, the National Institutes of Health 2018 Progenitor Cell Translational Consortium, Cardiovascular Bioengineering Symposium, was held at the University of Alabama at Birmingham. Convergence of life sciences and engineering to advance the understanding and treatment of heart failure was the theme of the meeting. Over 150 attendees were present, and >40 scientists presented their latest work on engineering human functional myocardium for disease modeling, drug development, and heart failure research. The scientists, engineers, and physicians in the field of cardiovascular sciences met and discussed the most recent advances in their work and proposed future strategies for overcoming the major roadblocks of cardiovascular bioengineering and therapy. Particular emphasis was given for manipulation and using of stem/progenitor cells, biomaterials, and methods to provide molecular, chemical, and mechanical cues to cells to influence their identity and fate in vitro and in vivo. Collectively, these works are profoundly impacting and progressing toward deciphering the mechanisms and developing novel treatments for left ventricular dysfunction of failing hearts. Here, we present some important perspectives that emerged from this meeting.
Collapse
Affiliation(s)
- Joel L Berry
- From the Department of Biomedical Engineering (J.L.B., W.Z., P.K., G.Q., J.M.R., J.Z.), University of Alabama at Birmingham
| | - Wuqiang Zhu
- From the Department of Biomedical Engineering (J.L.B., W.Z., P.K., G.Q., J.M.R., J.Z.), University of Alabama at Birmingham
| | - Yao Liang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University (Y.T.)
| | - Prasanna Krishnamurthy
- From the Department of Biomedical Engineering (J.L.B., W.Z., P.K., G.Q., J.M.R., J.Z.), University of Alabama at Birmingham
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, (Y.G., T.J.K.)
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX (J.P.C.)
| | - Yabing Chen
- Department of Pathology (Y.C., N.S.R.), University of Alabama at Birmingham
| | - Daniel J Garry
- Lillehei Heart Institute, Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis (D.J.G.)
| | - Huang-Tian Yang
- Shanghai Institutes for Biological Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), China (H.-T.Y.)
| | | | - Walter J Koch
- Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Song Li
- Department of Bioengineering, University of California at Los Angeles (S.L.)
| | - Keitaro Domae
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Japan (K.D.)
| | - Gangjian Qin
- From the Department of Biomedical Engineering (J.L.B., W.Z., P.K., G.Q., J.M.R., J.Z.), University of Alabama at Birmingham
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (K.C.)
| | - Timothy J Kamp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, (Y.G., T.J.K.)
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore (L.Y.)
| | - Shijun Hu
- Institute for Cardiovascular Science, Medical College of Soochow University, Suzhou, China (S.H.)
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, MN (B.M.O.)
| | - Jack M Rogers
- From the Department of Biomedical Engineering (J.L.B., W.Z., P.K., G.Q., J.M.R., J.Z.), University of Alabama at Birmingham
| | - E Dale Abel
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine (E.D.A.)
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory University School of Medicine, Atlanta (M.E.D.)
| | - Sumanth D Prabhu
- Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, Department of Medicine (S.D.P.), University of Alabama at Birmingham
| | - Ronglih Liao
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, CA (R.L., J.C.W.)
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, MA (W.T.P.)
| | - Yibin Wang
- Department of Anesthesiology and Medicine (Y.W.), David Geffen School of Medicine, University of California, Los Angeles
| | - Peipei Ping
- Department of Physiology (P.P.), David Geffen School of Medicine, University of California, Los Angeles
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC (N.B.)
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering and Department of Medicine, Columbia University, New York City, NY (G.V.-N.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, CA (R.L., J.C.W.)
| | - Roberto Bolli
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY (R.B.)
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France (P.M.)
| | - Jianyi Zhang
- From the Department of Biomedical Engineering (J.L.B., W.Z., P.K., G.Q., J.M.R., J.Z.), University of Alabama at Birmingham
| |
Collapse
|
161
|
Žigon-Branc S, Markovic M, Van Hoorick J, Van Vlierberghe S, Dubruel P, Zerobin E, Baudis S, Ovsianikov A. Impact of Hydrogel Stiffness on Differentiation of Human Adipose-Derived Stem Cell Microspheroids. Tissue Eng Part A 2019; 25:1369-1380. [PMID: 30632465 PMCID: PMC6784494 DOI: 10.1089/ten.tea.2018.0237] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022] Open
Abstract
Hydrogels represent an attractive material platform for realization of three-dimensional (3D) tissue-engineered constructs, as they have tunable mechanical properties, are compatible with different types of cells, and resemble elements found in natural extracellular matrices. So far, numerous hydrogel-cartilage/bone tissue engineering (TE)-related studies were performed by utilizing a single cell encapsulation approach. Although multicellular spheroid cultures exhibit advantageous properties for cartilage or bone TE, the chondrogenic or osteogenic differentiation potential of stem cell microspheroids within hydrogels has not been investigated much. This study explores, for the first time, how stiffness of gelatin-based hydrogels (having a storage modulus of 538, 3584, or 7263 Pa) affects proliferation and differentiation of microspheroids formed from telomerase-immortalized human adipose-derived stem cells (hASC/hTERT). Confocal microscopy indicates that all tested hydrogels supported cell viability during their 3- to 5-week culture period in the control, chondrogenic, or osteogenic medium. Although in the softer hydrogels cells from neighboring microspheroids started outgrowing and interconnecting within a few days, their protrusion was slower or limited in stiffer hydrogels or those cultured in chondrogenic medium, respectively. High expressions of chondrogenic markers (SOX9, ACAN, COL2A1), detected in all tested hydrogels, proved that the chondrogenic differentiation of hASC/hTERT microspheroids was very successful, especially in the two softer hydrogels, where superior cartilage-specific properties were confirmed by Alcian blue staining. These chondrogenically induced samples also expressed COL10A1, a marker of chondrocyte hypertrophy. Interestingly, the hydrogel itself (with no differentiation medium) showed a slight chondrogenic induction. Regardless of the hydrogel stiffness, in the samples stimulated with osteogenic medium, the expression of selected markers RUNX2, BGLAP, ALPL, and COL1A1 was not conclusive. Nevertheless, the von Kossa staining confirmed the presence of calcium deposits in osteogenically stimulated samples in the two softer hydrogels, suggesting that these also favor osteogenesis. This observation was also confirmed by Alizarin red quantification assay, with which higher amounts of calcium were detected in the osteogenically induced hydrogels than in their controls. The presented data indicate that the encapsulation of adipose-derived stem cell microspheroids in gelatin-based hydrogels show promising potential for future applications in cartilage or bone TE. Impact Statement Osteochondral defects represent one of the leading causes of disability in the world. Although numerous tissue engineering (TE) approaches have shown success in cartilage and bone tissue regeneration, achieving native-like characteristics of these tissues remains challenging. This study demonstrates that in the presence of a corresponding differentiation medium, gelatin-based hydrogels support moderate osteogenic and excellent chondrogenic differentiation of photo-encapsulated human adipose-derived stem cell microspheroids, the extent of which depends on hydrogel stiffness. Because photosensitive hydrogels are a convenient material platform for creating stiffness gradients in three dimensions, the presented microspheroid-hydrogel encapsulation strategy holds promise for future strategies of cartilage or bone TE.
Collapse
Affiliation(s)
- Sara Žigon-Branc
- Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| | - Marica Markovic
- Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| | - Jasper Van Hoorick
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Brussels Photonics, Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Elsene, Belgium
| | - Sandra Van Vlierberghe
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Brussels Photonics, Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Elsene, Belgium
| | - Peter Dubruel
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Elise Zerobin
- Austrian Cluster for Tissue Regeneration, Austria
- Division of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Vienna, Austria
| | - Stefan Baudis
- Austrian Cluster for Tissue Regeneration, Austria
- Division of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Vienna, Austria
| | - Aleksandr Ovsianikov
- Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| |
Collapse
|
162
|
Alvarez-Paino M, Amer MH, Nasir A, Cuzzucoli Crucitti V, Thorpe J, Burroughs L, Needham D, Denning C, Alexander MR, Alexander C, Rose FRAJ. Polymer Microparticles with Defined Surface Chemistry and Topography Mediate the Formation of Stem Cell Aggregates and Cardiomyocyte Function. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34560-34574. [PMID: 31502820 DOI: 10.1021/acsami.9b04769] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-functionalized microparticles are relevant to fields spanning engineering and biomedicine, with uses ranging from cell culture to advanced cell delivery. Varying topographies of biomaterial surfaces are also being investigated as mediators of cell-material interactions and subsequent cell fate. To investigate competing or synergistic effects of chemistry and topography in three-dimensional cell cultures, methods are required to introduce these onto microparticles without modification of their underlying morphology or bulk properties. In this study, a new approach for surface functionalization of poly(lactic acid) (PLA) microparticles is reported that allows decoration of the outer shell of the polyesters with additional polymers via aqueous atom transfer radical polymerization routes. PLA microparticles with smooth or dimpled surfaces were functionalized with poly(poly(ethylene glycol) methacrylate) and poly[N-(3-aminopropyl)methacrylamide] brushes, chosen for their potential abilities to mediate cell adhesion. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry analysis indicated homogeneous coverage of the microparticles with polymer brushes while maintaining the original topographies. These materials were used to investigate the relative importance of surface chemistry and topography both on the formation of human immortalized mesenchymal stem cell (hiMSCs) particle-cell aggregates and on the enhanced contractility of cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs). The influence of surface chemistry was found to be more important on the size of particle-cell aggregates than topographies. In addition, surface chemistries that best promoted hiMSC attachment also improved hiPSC-CM attachment and contractility. These studies demonstrated a new route to obtain topo-chemical combinations on polyester-based biomaterials and provided clear evidence for the predominant effect of surface functionality over micron-scale dimpled topography in cell-microparticle interactions. These findings, thus, provide new guiding principles for the design of biomaterial interfaces to direct cell function.
Collapse
|
163
|
Yuan X, Rosenberg JT, Liu Y, Grant SC, Ma T. Aggregation of human mesenchymal stem cells enhances survival and efficacy in stroke treatment. Cytotherapy 2019; 21:1033-1048. [PMID: 31537468 DOI: 10.1016/j.jcyt.2019.04.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022]
Abstract
Human mesenchymal stem cells (hMSCs) have been shown to enhance stroke lesion recovery by mediating inflammation and tissue repair through secretion of trophic factors. However, low cell survival and reduced primitive stem cell function of culture-expanded hMSCs are the major challenges limiting hMSC therapeutic efficacy in stroke treatment. In this study, we report the effects of short-term preconditioning of hMSCs via three-dimensional (3D) aggregation on stroke lesion recovery after intra-arterial (IA) transplantation of 3D aggregate-derived hMSCs (Agg-D hMSCs) in a transient middle cerebral artery occlusion (MCAO) stroke model. Compared with two-dimensional (2D) monolayer culture, Agg-D hMSCs exhibited increased resistance to ischemic stress, secretory function and therapeutic outcome. Short-term preconditioning via 3D aggregation reconfigured hMSC energy metabolism and altered redox cycle, which activated the PI3K/AKT pathway and enhanced resistance to in vitro oxidative stress. Analysis of transplanted hMSCs in MCAO rats using ultra-high-field magnetic resonance imaging at 21.1 T showed increased hMSC persistence and stroke lesion reduction by sodium (23Na) imaging in the Agg-D hMSC group compared with 2D hMSC control. Behavioral analyses further revealed functional improvement in MCAO animal treated with Agg-D hMSCs compared with saline control. Together, the results demonstrated the improved outcome for Agg-D hMSCs in the MCAO model and suggest short-term 3D aggregation as an effective preconditioning strategy for hMSC functional enhancement in stroke treatment.
Collapse
Affiliation(s)
- Xuegang Yuan
- Department of Chemical and Biomedical Engineering; Florida State University, Tallahassee, Florida, USA
| | - Jens T Rosenberg
- Department of Chemical and Biomedical Engineering; Florida State University, Tallahassee, Florida, USA; The National High Magnetic Field Laboratory; Florida State University, Tallahassee, Florida, USA
| | - Yijun Liu
- Department of Chemical and Biomedical Engineering; Florida State University, Tallahassee, Florida, USA
| | - Samuel C Grant
- Department of Chemical and Biomedical Engineering; Florida State University, Tallahassee, Florida, USA; The National High Magnetic Field Laboratory; Florida State University, Tallahassee, Florida, USA.
| | - Teng Ma
- Department of Chemical and Biomedical Engineering; Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
164
|
Efficacy of 3D Culture Priming is Maintained in Human Mesenchymal Stem Cells after Extensive Expansion of the Cells. Cells 2019; 8:cells8091031. [PMID: 31491901 PMCID: PMC6770505 DOI: 10.3390/cells8091031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
The use of non-optimal preparations of mesenchymal stem cells (MSCs), such as extensively expanded cells, might be necessary to obtain the large numbers of cells needed for many clinical applications. We previously demonstrated that minimally expanded (early passage) MSCs can be pre-activated as spheroids to produce potentially therapeutic factors in 3D cultures. Here, we used extensively expanded (late passage) MSCs and studied their 3D-culture activation potential. MSCs were culture-expanded as 2D monolayers, and cells from various passages were activated by 3D culture in hanging drops with either fetal bovine serum (FBS)-containing media or a more clinically-applicable animal product-free (xeno-free) media. Gene expression analyses demonstrated that MSC spheroids prepared from passage 3, 5, and 7 cells were similar to each other but different from 2D MSCs. Furthermore, the expression of notable anti-inflammatory/immune-modulatory factors cyclooxygenase-2 (PTGS2), TNF alpha induced protein 6 (TNFAIP6), and stanniocalcin 1 (STC-1) were up-regulated in all spheroid preparations. This was confirmed by the detection of secreted prostaglandin E2 (PGE-2), tumor necrosis factor-stimulated gene 6 (TSG-6, and STC-1. This study demonstrated that extensively expanded MSCs can be activated in 3D culture through spheroid formation in both FBS-containing and xeno-free media. This work highlights the possibility of activating otherwise less useable MSC preparations through 3D culture generating large numbers of potentially therapeutic MSCs.
Collapse
|
165
|
The Role of Extracellular Matrix Expression, ERK1/2 Signaling and Cell Cohesiveness for Cartilage Yield from iPSCs. Int J Mol Sci 2019; 20:ijms20174295. [PMID: 31480758 PMCID: PMC6747490 DOI: 10.3390/ijms20174295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
Current therapies involving chondrocytes or mesenchymal stromal cells (MSCs) remain inefficient in restoring cartilage properties upon injury. The induced pluripotent stem-cell (iPSC)-derived mesenchymal progenitor cells (iMPCs) have been put forward as a promising alternative cell source due to their high proliferation and differentiation potential. However, the observed cell loss during in vitro chondrogenesis is currently a bottleneck in establishing articular chondrocyte generation from iPSCs. In a search for candidate mechanisms underlying the low iPSC-derived cartilage tissue yield, global transcriptomes were compared between iMPCs and MSCs and the cell properties were analyzed via a condensation assay. The iMPCs had a more juvenile mesenchymal gene signature than MSCs with less myofibroblast-like characteristics, including significantly lower ECM- and integrin-ligand-related as well as lower α-smooth-muscle-actin expression. This correlated with less substrate and more cell-cell adhesion, impaired aggregate formation and consequently inferior cohesive tissue properties of the iMPC-pellets. Along lower expression of pro-survival ECM molecules, like decorin, collagen VI, lumican and laminin, the iMPC populations had significantly less active ERK1/2 compared to MSCs. Overall, this study proposes that this ECM and integrin-ligand shortage, together with insufficient pro-survival ERK1/2-activity, explains the loss of a non-aggregating iMPC sub-fraction during pellet formation and reduced survival of cells in early pellets. Enhancing ECM production and related signaling in iMPCs may be a promising new means to enrich the instructive microenvironment with pro-survival cues allowing to improve the final cartilage tissue yield from iPSCs.
Collapse
|
166
|
Cao L, Zhang Y, Qian M, Wang X, Shuai Q, Gao C, Lang R, Yang J. Construction of multicellular aggregate by E-cadherin coated microparticles enhancing the hepatic specific differentiation of mesenchymal stem cells. Acta Biomater 2019; 95:382-394. [PMID: 30660779 DOI: 10.1016/j.actbio.2019.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 12/22/2022]
Abstract
The differentiation of human mesenchymal stem cells (hMSCs) into hepatocyte-like cells in vitroprovides a promising candidate for cell therapy of liver diseases, and cell aggregates have been proposed to improve the efficiency of expansion and differentiation. Previously, we engineered multicellular aggregates incorporating human E-cadherin fusion protein (hE-cad-Fc)-coated poly(lactic-co-glycolic acid) (PLGA) microparticles (hE-cad-PLGAs), and a significant improvement was obtained in both cellular proliferation of and cytokine secretion by hMSCs. In this study, hepatic differentiation of hMSCs was induced by a biomimetic microenvironment consisting of these engineered aggregates and a cocktail of specific cytokines. The ratio of hE-cad-PLGAs to hMSCs in engineered hMSCs aggregates was optimized to 1:3 for hepatic differentiation. The expressions of hepatic-specific markers were significantly promoted, and cell polarity and activated drug metabolism enzymes were established in MSC/hE-cad-PLGA aggregates compared with MSC and MSC/PLGA aggregates. Moreover, the expressions of stemness and definitive endoderm markers confirmed effectively induced endoderm differentiation in MSC/hE-cad-PLGA aggregates, which was consistent with the pattern of embryonic development. After pre-differentiation for 1 week, the MSC/hE-cad-PLGA aggregates continuously progressed the hepatic phenotype expression in healthy rat peritoneum. Therefore, the biomimetic microenvironment constructed by hE-cad-PLGAs in engineered multicellular aggregates was able to promote the process of endoderm differentiation and the subsequent hepatic differentiation of hMSCs. It would be appropriate for applied research in hepatotoxic drug screening and cell-based treatment of liver diseases. By optimizing with other cytokine cocktail, the engineered multicellular aggregates can be applied to the construction of other endoderm-derived organs. STATEMENT OF SIGNIFICANCE: The differentiation of mesenchymal stem cells (MSCs) into hepatocyte-like cells in vitroprovides a promising for cell therapy for liver diseases, and cell aggregates have been proposed to improve the expansion and differentiation efficiency. Here, engineered multicellular aggregates were constructed by E-cadherin modified microparticles (hE-cad-PLGAs) construct a biomimetic microenvironment to promote the process of endoderm differentiation and the subsequent hepatic differentiation of hMSCs. Furthermore, after pre-differentiation for 1 week, the MSC/hE-cad-PLGA aggregates continuously progressed the hepatic phenotype expression in healthy rat peritoneum. Therefore, engineered multicellular aggregates with hE-cad-PLGAs would be appropriate for applied research in hepatotoxic drug screening and cell-based treatment of liver diseases, and provide a promising method in the construction of other endoderm-derived organs.
Collapse
Affiliation(s)
- Lei Cao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Mengyuan Qian
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xueping Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Qizhi Shuai
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Chao Gao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
167
|
From 3D to 3D: isolation of mesenchymal stem/stromal cells into a three-dimensional human platelet lysate matrix. Stem Cell Res Ther 2019; 10:248. [PMID: 31399129 PMCID: PMC6688329 DOI: 10.1186/s13287-019-1346-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background Mesenchymal stem/stromal cells (MSCs) are considered an important candidate in cell therapy and tissue engineering approaches. The culture of stem cells in a 3D environment is known to better resemble the in vivo situation and to promote therapeutically relevant effects in isolated cells. Therefore, the aim of this study was to develop an approach for the direct isolation of MSCs from adipose tissue into a 3D environment, avoiding contact to a 2D plastic surface. Furthermore, the use of a cryoprotective medium for the cryopreservation of whole adipose tissue was evaluated. Materials and methods Cryopreservation of fresh adipose tissue with and without a cryoprotective medium was compared with regard to the viability and metabolic activity of cells. After thawing, the tissue was embedded in a novel human platelet lysate-based hydrogel for the isolation of MSCs. The migration, yield, viability, and metabolic activity of cells from the 3D matrix were compared to cells from 2D explant culture. Also, the surface marker profile and differentiation capacity of MSCs from the 3D matrix were evaluated and compared to MSCs from isolation by enzymatic treatment or 2D explant culture. Results The cryopreservation of whole adipose tissue was found to be feasible, and therefore, adipose tissue can be stored and is available for MSC isolation on demand. Also, we demonstrate the isolation of MSCs from adipose tissue into the 3D matrix. The cells derived from this isolation procedure display a similar phenotype and differentiation capacity like MSCs derived by traditional procedures. Conclusions The presented approach allows to cryopreserve adipose tissue. Furthermore, for the first time, MSCs were directly isolated from the tissue into a soft 3D hydrogel environment, avoiding any contact to a 2D plastic culture surface. Electronic supplementary material The online version of this article (10.1186/s13287-019-1346-2) contains supplementary material, which is available to authorized users.
Collapse
|
168
|
Joshi J, Abnavi MD, Kothapalli CR. Synthesis and secretome release by human bone marrow mesenchymal stem cell spheroids within three-dimensional collagen hydrogels: Integrating experiments and modelling. J Tissue Eng Regen Med 2019; 13:1923-1937. [PMID: 31350819 DOI: 10.1002/term.2943] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
Myocardial infarction results in loss of cardiac cell types, inflammation, extracellular matrix (ECM) degradation, and fibrotic scar. Transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) is being explored as they could differentiate into cardiomyocyte-like cells, integrate into host tissue, and enhance resident cell activity. The ability of these cells to restore lost ECM, remodel the inflammatory scar tissue, and repair the injured myocardium remains unexplored. We here elucidated the synthesis and deposition of ECM (e.g., elastin, sulfated glycosaminoglycans, hyaluronan, collagen type III, laminin, fibrillin, lysyl oxidase, and nitric oxide synthases), matrix metalloproteinases (MMPs) and their inhibitors (TIMPs), and other secretome (cytokines, chemokines, and growth factors) in adult human BM-MSC spheroid cultures within three-dimensional collagen gels. The roles of species-specific type I collagen and 5-azacytadine were assessed over a 28-day period. Results revealed that human collagen (but not rat-derived) suppressed MSC proliferation and survival, and MSCs synthesized and released a variety of ECM proteins and secretome over the 28 days. Matrix deposition is at least an order of magnitude lower than their release levels at every time point, most possibly due to elevated MMP levels and interleukins with a concomitant decrease in TIMPs. Matrix synthesis over the 28-day period was fitted to a competitive inhibition form of Michaelis-Menten kinetics, and the production and decay rates of ECM, MMPs, and TIMPs, along with the kinetic model parameters quantified. Such an integrated experimental and modelling approach would help elucidate the critical roles of various parameters (e.g., cell encapsulation and delivery vehicles) in stem cell-based transplantation therapies.
Collapse
Affiliation(s)
- Jyotsna Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA
| | | | | |
Collapse
|
169
|
Merlo B, Teti G, Lanci A, Burk J, Mazzotti E, Falconi M, Iacono E. Comparison between adult and foetal adnexa derived equine post-natal mesenchymal stem cells. BMC Vet Res 2019; 15:277. [PMID: 31375144 PMCID: PMC6679462 DOI: 10.1186/s12917-019-2023-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Little is known about the differences among adult and foetal equine mesenchymal stem cells (MSCs), and no data exist about their comparative ultrastructural morphology. The aim of this study was to describe and compare characteristics, immune properties, and ultrastructural morphology of equine adult (bone marrow: BM, and adipose tissue: AT) and foetal adnexa derived (umbilical cord blood: UCB, and Wharton’s jelly: WJ) MSCs. Results No differences were observed in proliferation during the first 3 passages. While migration ability was similar among cells, foetal MSCs showed a higher adhesion ability, forming smaller spheroids after hanging drop culture (P < 0.05). All MSCs differentiated toward adipogenic, chondrogenic and osteogenic lineages, only tenogenic differentiation was less evident for WJ-MSCs. Data obtained by PCR confirmed MHC1 expression and lack of MHC2 expression in all four cell types. Foetal adnexa MSCs were positive for genes specific for anti-inflammatory and angiogenic factors (IL6, IL8, ILβ1) and WJ-MSCs were the only positive for OCT4 pluripotency gene. At immunofluorescence all cells expressed typical mesenchymal markers (α-SMA, N-cadherin), except for BM-MSCs, which did not express N-cadherin. By transmission electron microscopy, it was observed that WJ-MSCs had a higher (P < 0.05) number of microvesicles compared to adult MSCs, and UCB-MSCs showed more microvesicles than BM-MSCs (P < 0.05). AT-MSCs had a lower number of mitochondria than WJ-MSCs (P < 0.05), and mitochondrial area was higher for WJ-MSCs compared to UCB and AT-MSCs (P < 0.05). Conclusions Results demonstrate that MSCs from adult and foetal tissues have different characteristics, and foetal MSCs, particularly WJ derived ones, seem to have some charactestics that warrant further investigation into potential advantages for clinical application.
Collapse
Affiliation(s)
- B Merlo
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy.,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy
| | - G Teti
- Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - A Lanci
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - J Burk
- Saxon Incubator for Clinical Translation, University of Leipzig, Leipzig, Germany.,Equine Clinic (Surgery), Justus Liebig University Giessen, Giessen, Germany
| | - E Mazzotti
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy
| | - M Falconi
- Department for Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - E Iacono
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy. .,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.
| |
Collapse
|
170
|
Talovic M, Patel K, Schwartz M, Madsen J, Garg K. Decellularized extracellular matrix gelloids support mesenchymal stem cell growth and function in vitro. J Tissue Eng Regen Med 2019; 13:1830-1842. [PMID: 31306568 DOI: 10.1002/term.2933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/10/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Volumetric muscle loss (VML) injuries are irrecoverable due to a significant loss of regenerative elements, persistent inflammation, extensive fibrosis, and functional impairment. When used in isolation, previous stem cell and biomaterial-based therapies have failed to regenerate skeletal muscle at clinically relevant levels. The extracellular matrix (ECM) microenvironment is crucial for the viability, stemness, and differentiation of stem cells. Decellularized-ECM (D-ECM) scaffolds are at the forefront of ongoing research to develop a viable therapy for VML. Due to the retention of key ECM components, D-ECM scaffolds provide an excellent substrate for the adhesion and migration of several cell types. Mesenchymal stem cells (MSCs) possess regenerative and immunomodulatory properties and are currently under investigation in clinical trials for a wide range of medical conditions. However, a major limitation to the use of MSCs in clinical applications is their poor viability at the site of transplantation. In this study, we have fabricated spherical scaffolds composed of gelatin and skeletal muscle D-ECM for the adhesion and delivery of MSCs to the site of VML injury. These spherical scaffolds termed "gelloids" supported MSC survival, expansion, trophic factor secretion, immunomodulation, and myogenic protein expression in vitro. Future studies would determine the therapeutic efficacy of this approach in a murine model of VML injury.
Collapse
Affiliation(s)
- Muhamed Talovic
- Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, MO
| | - Krishna Patel
- Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, MO
| | - Mark Schwartz
- Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, MO
| | - Josh Madsen
- Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, MO
| | - Koyal Garg
- Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, MO
| |
Collapse
|
171
|
Tendulkar G, Chen T, Ehnert S, Kaps HP, Nüssler AK. Intervertebral Disc Nucleus Repair: Hype or Hope? Int J Mol Sci 2019; 20:3622. [PMID: 31344903 PMCID: PMC6696292 DOI: 10.3390/ijms20153622] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/28/2022] Open
Abstract
Chronic back pain is a common disability, which is often accredited to intervertebral disc degeneration. Gold standard interventions such as spinal fusion, which are mainly designed to mechanically seal the defect, frequently fail to restore the native biomechanics. Moreover, artificial implants have limited success as a repair strategy, as they do not alter the underlying disease and fail to promote tissue integration and subsequent native biomechanics. The reported high rates of spinal fusion and artificial disc implant failure have pushed intervertebral disc degeneration research in recent years towards repair strategies. Intervertebral disc repair utilizing principles of tissue engineering should theoretically be successful, overcoming the inadequacies of artificial implants. For instance, advances in the development of scaffolds aided with cells and growth factors have opened up new possibilities for repair strategies. However, none has reached the stage of clinical trials in humans. In this review, we describe the hitches encountered in the musculoskeletal field and summarize recent advances in designing tissue-engineered constructs for promoting nucleus pulposus repair. Additionally, the review focuses on the effect of biomaterial aided with cells and growth factors on achieving effective functional reparative potency, highlighting the ways to enhance the efficacy of these treatments.
Collapse
Affiliation(s)
- Gauri Tendulkar
- Siegfried Weller Institute for Trauma Research at the BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstrasse 95, 72076 Tübingen, Germany
| | - Tao Chen
- Siegfried Weller Institute for Trauma Research at the BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstrasse 95, 72076 Tübingen, Germany
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research at the BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstrasse 95, 72076 Tübingen, Germany
| | - Hans-Peter Kaps
- Siegfried Weller Institute for Trauma Research at the BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstrasse 95, 72076 Tübingen, Germany
| | - Andreas K Nüssler
- Siegfried Weller Institute for Trauma Research at the BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstrasse 95, 72076 Tübingen, Germany.
| |
Collapse
|
172
|
Thaweekitphathanaphakdee S, Chanvorachote P, Prateepchinda S, Khongkow M, Sucontphunt A. Abalone Collagen Extracts Potentiate Stem Cell Properties of Human Epidermal Keratinocytes. Mar Drugs 2019; 17:E424. [PMID: 31330853 PMCID: PMC6669461 DOI: 10.3390/md17070424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cell activities in human tissues are critical for tissue integrity and function. Maintaining keratinocyte stem cells (KSCs) stemness helps sustain healthy skin by supporting keratinocyte renewal, involving the formation of epidermal barriers. In this study, abalone collagen (AC) extracts with molecular weights of 3 kDa (AC 1) and 300 kDa (AC 2) were compared to the epidermal growth factor (EGF) for their effects on cell proliferation, cell migration (wound healing), spheroid formation, and the expression level of stem cell markers on human keratinocytes (HaCaT cells). Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell proliferation was quantified by ATP and DNA content analysis and Sulforhodamine B (SRB) assays. Cell migration assay was determined using the scratch wound healing test. Spheroid formation was evaluated and the expression level of stem cell markers was investigated by western blot analysis. The results showed that AC 1 at the concentration of 100 µg/mL could stimulate HaCaT cell proliferation, migration, spheroid formation, and the expression level of stem cell markers (keratin 19, β-catenin, ALDH1A1) compared to the control. In conclusion, a smaller molecular weight of abalone collagen extract exhibits a better effect on keratinocytes proliferation, migration, and stemness, which could be a potential active ingredient in cosmeceutical products.
Collapse
Affiliation(s)
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sagaw Prateepchinda
- Nation Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Mattaka Khongkow
- Nation Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Apirada Sucontphunt
- The Herbal Medicinal Products Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand.
| |
Collapse
|
173
|
He H, He Q, Xu F, Zhou Y, Ye Z, Tan W. Dynamic formation of cellular aggregates of chondrocytes and mesenchymal stem cells in spinner flask. Cell Prolif 2019; 52:e12587. [PMID: 31206838 PMCID: PMC6669002 DOI: 10.1111/cpr.12587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/06/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Cellular aggregates are readily applicable in cell-based therapy. The effects of agitation and inoculation density on the aggregation of cells in spinner flask and the molecular mechanism of aggregation were investigated. MATERIALS AND METHODS The aggregation kinetics of cells in spinner flask was evaluated with bovine articular chondrocytes (bACs), rabbit bone marrow-derived mesenchymal stem cells (rMSCs) and their mixture. The morphology of cellular aggregates was studied with scanning electron microscopy and gene expression of cell adhesion-related molecules was analysed. RESULTS It was shown that suspension culture in spinner flask induced the aggregation of bACs and rMSCs. Both cells exhibited increased aggregation rate and aggregate size with decreasing agitation rate and increasing cell inoculation density. Additionally, aggregate size increased with extended culture time. By analysing gene expression of integrin β1 and cadherin, it was indicated that these molecules were potentially involved in the aggregation process of bACs and rMSCs, respectively. Aggregates composed of both bACs and rMSCs were also prepared, showing rMSCs in the core and bACs in the periphery. CONCLUSIONS Cellular aggregates were prepared in dynamic suspension culture using spinner flask, the key parameters to the aggregation process were identified, and the molecular mechanism of aggregation was revealed. This would lay a solid foundation for the large-scale production of cellular aggregates for cell-based therapy, such as cartilage regeneration.
Collapse
Affiliation(s)
- Huimin He
- The State Kay Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Qing He
- The State Kay Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Feiyue Xu
- The State Kay Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Yan Zhou
- The State Kay Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Zhaoyang Ye
- The State Kay Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Wen‐Song Tan
- The State Kay Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| |
Collapse
|
174
|
Damanik FFR, Spadolini G, Rotmans J, Farè S, Moroni L. Biological activity of human mesenchymal stromal cells on polymeric electrospun scaffolds. Biomater Sci 2019; 7:1088-1100. [PMID: 30633255 DOI: 10.1039/c8bm00693h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Electrospinning provides a simple robust method to manufacture scaffolds for tissue engineering applications. Though varieties of materials can be used, optimization and biocompatibility tests are required to provide functional tissue regeneration. Moreover, many studies are limited to 2D electrospun constructs rather than 3D templates due to the production of high density packed fibres, which result in poor cell infiltration. Here, we optimised electrospinning parameters for three different polymers: poly(ε-caprolactone) (PCL), polylactic acid (PLA) and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PA) copolymers. Human mesenchymal stromal cells (hMSCs) were cultured on scaffolds for 14 days to study the scaffolds' biocompatibility and their multi-lineage differentiation potential or maintenance of stemness in the absence of chemical stimuli. For all scaffolds, a high and stable metabolic activity was measured throughout the culture time with a high proliferation rate compared to day 1 (PCL 5.8-, PLA 4-, PA 4.9-fold). The metabolism of hMSCs was also measured through glucose and lactate concentrations, showing no cytotoxic levels up to 14 days. Total glycosaminoglycan (GAG) production was the highest in PA electrospun scaffolds. When normalized to DNA, GAG production was the highest in PLA and PA scaffolds. All scaffolds were prone to differentiate to an osteogenic lineage, with PCL providing the highest alkaline phosphatase and collagen type Ia gene upregulation. As PA had the most stable fibre formation, it was chosen as a template to further incorporate stromal cell-derived factor-1 (SDF-1) and granulocyte colony-stimulating factor (G-CSF), and stimulate higher hMSC infiltration. These scaffolds provided significantly higher hMSC infiltration than normal PA scaffolds. In conclusion, our optimized biocompatible electrospun scaffolds have shown promising regulation of hMSC fate. When combined with migratory stimulating cytokines, these scaffolds may overcome the known challenges of poor cellular infiltration typical of micro- and nano-fibrillary random meshes.
Collapse
Affiliation(s)
- Febriyani F R Damanik
- University of Twente, Drienerlolaan 5, Zuidhorst 145, 7522 NB Enschede, the Netherlands
| | | | | | | | | |
Collapse
|
175
|
Modern Concepts in Regenerative Therapy for Ischemic Stroke: From Stem Cells for Promoting Angiogenesis to 3D-Bioprinted Scaffolds Customized via Carotid Shear Stress Analysis. Int J Mol Sci 2019; 20:ijms20102574. [PMID: 31130624 PMCID: PMC6566983 DOI: 10.3390/ijms20102574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is associated with a tremendous economic and societal burden, and only a few therapies are currently available for the treatment of this devastating disease. The main therapeutic approaches used nowadays for the treatment of ischemic brain injury aim to achieve reperfusion, neuroprotection and neurorecovery. Therapeutic angiogenesis also seems to represent a promising tool to improve the prognosis of cerebral ischemia. This review aims to present the modern concepts and the current status of regenerative therapy for ischemic stroke and discuss the main results of major clinical trials addressing the effectiveness of stem cell therapy for achieving neuroregeneration in ischemic stroke. At the same time, as a glimpse into the future, this article describes modern concepts for stroke prevention, such as the implantation of bioprinted scaffolds seeded with stem cells, whose 3D geometry is customized according to carotid shear stress.
Collapse
|
176
|
Jamalpoor Z, Soleimani M, Taromi N, Asgari A. Comparative evaluation of morphology and osteogenic behavior of human Wharton's jelly mesenchymal stem cells on 2D culture plate and 3D biomimetic scaffold. J Cell Physiol 2019; 234:23123-23134. [DOI: 10.1002/jcp.28876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Zahra Jamalpoor
- Trauma Research Center Aja University of Medical Sciences Tehran Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Anatomy Iran University of Medical Sciences Tehran Iran
| | - Nafise Taromi
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Medical Biotechnology Faculty of Allied Medicine, Iran University of Medical Sciences Tehran Iran
| | - Alireza Asgari
- Aerospace Medicine Research Center Aja University of Medical Sciences Tehran Iran
| |
Collapse
|
177
|
Wong CW, Han HW, Tien YW, Hsu SH. Biomaterial substrate-derived compact cellular spheroids mimicking the behavior of pancreatic cancer and microenvironment. Biomaterials 2019; 213:119202. [PMID: 31132644 DOI: 10.1016/j.biomaterials.2019.05.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Pancreatic stromal cells especially pancreatic stellate cells (PSCs) play a critical role in the progression of human pancreatic ductal adenocarcinoma (PDAC). However, the exact interaction between cancer cells and PSCs remains to be elucidated in order to develop more effective therapeutic approaches to treat PDAC. The microenvironment of PDAC shows higher hyaluronan (HA) levels, which is associated with poor prognosis of PDAC patients. In the current study, an efficient three-dimensional tumor spheroid model for PDAC was established. The pancreatic cancer cells and PSCs were co-cultured on hyaluronan grafted chitosan (CS-HA) coated plates to generate 3D tumor-like co-spheroids. The pancreatic cancer cells and PSCs (1:9 ratio) co-cultured on CS-HA coated plates were assembled into tumor-like co-spheroids with 3D core-shell structure in 48 h. These spheroids displayed potent in vitro tumorigenicity such as up-regulated expression of stemness and migration markers. The migration rate of cancer cells in spheroids (from 1:9 cell ratio) was much faster (3.2-fold) than that of cancer cells alone. Meanwhile, this unique co-spheroidal cancer cell structure with the outer wrap of PSCs contributed to the chemo-resistance of pancreatic cancer cells to gemcitabine as well as sensitivity to the combined gemcitabine and Abraxane treatment in vitro. The metastatic nature of the spheroids was confirmed by the zebrafish xenograft model in vivo. The compact and dynamic pancreatic cancer-PSC co-spheroids generated by the unique 3D co-culture platform on CS-HA biomaterials can mimic the PSC-constituting microenvironment of PDAC and demonstrate the chemo-resistant, invasive, and metastatic phenotypes. They have potential applications in personalized and high-throughput drug screening.
Collapse
Affiliation(s)
- Chui-Wei Wong
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Hao-Wei Han
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan; Research and Development Center for Medical Devices, National Taiwan University, Taipei, Taiwan; Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
178
|
Yuan X, Logan TM, Ma T. Metabolism in Human Mesenchymal Stromal Cells: A Missing Link Between hMSC Biomanufacturing and Therapy? Front Immunol 2019; 10:977. [PMID: 31139179 PMCID: PMC6518338 DOI: 10.3389/fimmu.2019.00977] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are the most commonly-tested adult stem cells in cell therapy. While the initial focus for hMSC clinical applications was to exploit their multi-potentiality for cell replacement therapies, it is now apparent that hMSCs empower tissue repair primarily by secretion of immuno-regulatory and pro-regenerative factors. A growing trend in hMSC clinical trials is the use of allogenic and culture-expanded cells because they are well-characterized and can be produced in large scale from specific donors to compensate for the donor pathological condition(s). However, donor morbidity and large-scale expansion are known to alter hMSC secretory profile and reduce therapeutic potency, which are significant barriers in hMSC clinical translation. Therefore, understanding the regulatory mechanisms underpinning hMSC phenotypic and functional property is crucial for developing novel engineering protocols that maximize yield while preserving therapeutic potency. hMSC are heterogenous at the level of primary metabolism and that energy metabolism plays important roles in regulating hMSC functional properties. This review focuses on energy metabolism in regulating hMSC immunomodulatory properties and its implication in hMSC sourcing and biomanufacturing. The specific characteristics of hMSC metabolism will be discussed with a focus on hMSC metabolic plasticity and donor- and culture-induced changes in immunomodulatory properties. Potential strategies of modulating hMSC metabolism to enhance their immunomodulation and therapeutic efficacy in preclinical models will be reviewed.
Collapse
Affiliation(s)
- Xuegang Yuan
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, United States
| | - Timothy M Logan
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States.,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, United States
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
179
|
Park IS, Choi YJ, Kim HS, Park SH, Choi BH, Kim JH, Song BR, Min BH. Development of three-dimensional articular cartilage construct using silica nano-patterned substrate. PLoS One 2019; 14:e0208291. [PMID: 31048887 PMCID: PMC6497223 DOI: 10.1371/journal.pone.0208291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/26/2019] [Indexed: 01/23/2023] Open
Abstract
Current strategies for cartilage cell therapy are mostly based on the use of autologous chondrocytes. However, these cells have limitations of a small number of cells available and of low chondrogenic ability, respectively. Many studies now suggest that fetal stem cells are more plastic than adult stem cells and can therefore more efficiently differentiate into target tissues. This study introduces, efficiency chondrogenic differentiation of fetal cartilage-derived progenitor cells (FCPCs) to adult cells can be achieved using a three-dimensional (3D) spheroid culture method based on silica nanopatterning techniques. In evaluating the issue of silica nano-particle size (Diameter of 300, 750, 1200 nm), each particle size was coated into the well of a 6-well tissue culture plate. FCPCs (2 x 105 cells/well in 6-well plate) were seeded in each well with chondrogenic medium. In this study, the 300 nm substrate that formed multi-spheroids and the 1200 nm substrate that showed spreading were due to the cell-cell adhesion force(via N-cadherin) and cell-substrate(via Integrin) force, the 750 nm substrate that formed the mass-aggregation can be interpreted as the result of cell monolayer formation through cell-substrate force followed by cell-cell contact force contraction. We conclude that our 3D spheroid culture system contributes to an optimization for efficient differentiation of FCPC, offers insight into the mechanism of efficient differentiation of engineered 3D culture system, and has promise for wide applications in regeneration medicine and drug discovery fields.
Collapse
Affiliation(s)
- In-Su Park
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
| | - Ye Ji Choi
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
| | - Hyo-Sop Kim
- Department of Molecular Science & Technology, Ajou University, Suwon, Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan, Korea
| | - Byung Hyune Choi
- Department of Physiology, Inha University College of Medicine, Incheon, Korea
| | - Jae-Ho Kim
- Department of Molecular Science & Technology, Ajou University, Suwon, Korea
| | - Bo Ram Song
- Department of Molecular Science & Technology, Ajou University, Suwon, Korea
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
- Department of Molecular Science & Technology, Ajou University, Suwon, Korea
- Department of Orthopedic Surgery, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
180
|
Noronha NDC, Mizukami A, Caliári-Oliveira C, Cominal JG, Rocha JLM, Covas DT, Swiech K, Malmegrim KCR. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther 2019; 10:131. [PMID: 31046833 PMCID: PMC6498654 DOI: 10.1186/s13287-019-1224-y] [Citation(s) in RCA: 382] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSC) have been widely explored for cell-based therapy of immune-mediated, inflammatory, and degenerative diseases, due to their immunosuppressive, immunomodulatory, and regenerative potentials. Preclinical studies and clinical trials have demonstrated promising therapeutic results although these have been somewhat limited. Aspects such as low in vivo MSC survival in inhospitable disease microenvironments, requirements for ex vivo cell overexpansion prior to infusions, intrinsic differences between MSC and different sources and donors, variability of culturing protocols, and potency assays to evaluate MSC products have been described as limitations in the field. In recent years, priming approaches to empower MSC have been investigated, thereby generating cellular products with improved potential for different clinical applications. Herein, we review the current priming approaches that aim to increase MSC therapeutic efficacy. Priming with cytokines and growth factors, hypoxia, pharmacological drugs, biomaterials, and different culture conditions, as well as other diverse molecules, are revised from current and future perspectives.
Collapse
Affiliation(s)
- Nádia de Cássia Noronha
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Bioscience and Biotechnology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Amanda Mizukami
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Juçara Gastaldi Cominal
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Bioscience and Biotechnology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José Lucas M Rocha
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kamilla Swiech
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen C R Malmegrim
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, Ribeirão Preto, SP, 14010-903, Brazil.
| |
Collapse
|
181
|
Song L, Yuan X, Jones Z, Griffin K, Zhou Y, Ma T, Li Y. Assembly of Human Stem Cell-Derived Cortical Spheroids and Vascular Spheroids to Model 3-D Brain-like Tissues. Sci Rep 2019; 9:5977. [PMID: 30979929 PMCID: PMC6461701 DOI: 10.1038/s41598-019-42439-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/01/2019] [Indexed: 02/07/2023] Open
Abstract
Human cerebral organoids derived from induced pluripotent stem cells (iPSCs) provide novel tools for recapitulating the cytoarchitecture of human brain and for studying biological mechanisms of neurological disorders. However, the heterotypic interactions of neurovascular units, composed of neurons, pericytes, astrocytes, and brain microvascular endothelial cells, in brain-like tissues are less investigated. The objective of this study is to investigate the impacts of neural spheroids and vascular spheroids interactions on the regional brain-like tissue patterning in cortical spheroids derived from human iPSCs. Hybrid neurovascular spheroids were constructed by fusion of human iPSC-derived cortical neural progenitor cell (iNPC) spheroids, endothelial cell (iEC) spheroids, and the supporting human mesenchymal stem cells (MSCs). Single hybrid spheroids were constructed at different iNPC: iEC: MSC ratios of 4:2:0, 3:2:1 2:2:2, and 1:2:3 in low-attachment 96-well plates. The incorporation of MSCs upregulated the secretion levels of cytokines VEGF-A, PGE2, and TGF-β1 in hybrid spheroid system. In addition, tri-cultured spheroids had high levels of TBR1 (deep cortical layer VI) and Nkx2.1 (ventral cells), and matrix remodeling genes, MMP2 and MMP3, as well as Notch-1, indicating the crucial role of matrix remodeling and cell-cell communications on cortical spheroid and organoid patterning. Moreover, tri-culture system elevated blood-brain barrier gene expression (e.g., GLUT-1), CD31, and tight junction protein ZO1 expression. Treatment with AMD3100, a CXCR4 antagonist, showed the immobilization of MSCs during spheroid fusion, indicating a CXCR4-dependent manner of hMSC migration and homing. This forebrain-like model has potential applications in understanding heterotypic cell-cell interactions and novel drug screening in diseased human brain.
Collapse
Affiliation(s)
- Liqing Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Zachary Jones
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Kyle Griffin
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Yi Zhou
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA.
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
182
|
Studying Heterotypic Cell⁻Cell Interactions in the Human Brain Using Pluripotent Stem Cell Models for Neurodegeneration. Cells 2019; 8:cells8040299. [PMID: 30939814 PMCID: PMC6523455 DOI: 10.3390/cells8040299] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 02/08/2023] Open
Abstract
Human cerebral organoids derived from induced pluripotent stem cells (iPSCs) provide novel tools for recapitulating the cytoarchitecture of the human brain and for studying biological mechanisms of neurological disorders. However, the heterotypic interactions of neurovascular units, composed of neurons, pericytes (i.e., the tissue resident mesenchymal stromal cells), astrocytes, and brain microvascular endothelial cells, in brain-like tissues are less investigated. In addition, most cortical organoids lack a microglia component, the resident immune cells in the brain. Impairment of the blood-brain barrier caused by improper crosstalk between neural cells and vascular cells is associated with many neurodegenerative disorders. Mesenchymal stem cells (MSCs), with a phenotype overlapping with pericytes, have promotion effects on neurogenesis and angiogenesis, which are mainly attributed to secreted growth factors and extracellular matrices. As the innate macrophages of the central nervous system, microglia regulate neuronal activities and promote neuronal differentiation by secreting neurotrophic factors and pro-/anti-inflammatory molecules. Neuronal-microglia interactions mediated by chemokines signaling can be modulated in vitro for recapitulating microglial activities during neurodegenerative disease progression. In this review, we discussed the cellular interactions and the physiological roles of neural cells with other cell types including endothelial cells and microglia based on iPSC models. The therapeutic roles of MSCs in treating neural degeneration and pathological roles of microglia in neurodegenerative disease progression were also discussed.
Collapse
|
183
|
Flampouri E, Imar S, OConnell K, Singh B. Spheroid-3D and Monolayer-2D Intestinal Electrochemical Biosensor for Toxicity/Viability Testing: Applications in Drug Screening, Food Safety, and Environmental Pollutant Analysis. ACS Sens 2019; 4:660-669. [PMID: 30698007 DOI: 10.1021/acssensors.8b01490] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The rise of three-dimensional cell culture systems that provide in vivo-like environments for pharmaco-toxicological models has prompted the need for simple and robust viability assays suitable for complex cell architectural structures. This study addresses that challenge with the development of an in vitro enzyme based electrochemical sensor for viability/cytotoxicity assessment of two-dimensional (2D) monolayer and three-dimensional (3D) spheroid culture formats. The biosensor measures the cell viability/toxicity via electrochemical monitoring of the enzymatic activity of nonspecific esterases of viable cells, through the hydrolysis of 1-naphthyl acetate to 1-naphthol. The proposed sensor demonstrated strong correlation ( r = 0.979) with viable cell numbers. Furthermore, the model intestinal toxicants diclofenac (DFC, pharmaceutical), okadaic acid (OA, food-safety), and mancozeb (MZB, environmental) were used for the functional evaluation of the proposed sensor using 2D and 3D culture formats. Sensor performance showed high consistency with conventional cell viability/cytotoxicity assays (MTT/CFDA-AM) for all toxicants, with the sensor IC50 values matching the relevant viability LC50 values at the 95% confidence interval range for 2D (DCF: 1.19-1.26 mM, MZB: 10.28-14.18 μM, OA: 40.91-77.13 nM) and 3D culture formats (DCF: 1.02-4.78 mM, MZB: 11.26-15.16 μM, OA: 162.09-179.67 nM). The presented results demonstrate the feasibility of the proposed sensor as a robust endpoint screening tool for both 2D and 3D cytotoxicity assessment.
Collapse
Affiliation(s)
- Evangelia Flampouri
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin - Tallaght Campus), Tallaght, Dublin 24, D24 FKT9, Ireland
| | - Shahzad Imar
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin - Tallaght Campus), Tallaght, Dublin 24, D24 FKT9, Ireland
| | - Kieran OConnell
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin - Tallaght Campus), Tallaght, Dublin 24, D24 FKT9, Ireland
- Hothouse, Technological University Dublin, (TU Dublin − City Campus), Aungier Street, Dublin 2, D02 HW71, Ireland
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin - Tallaght Campus), Tallaght, Dublin 24, D24 FKT9, Ireland
- Hothouse, Technological University Dublin, (TU Dublin − City Campus), Aungier Street, Dublin 2, D02 HW71, Ireland
| |
Collapse
|
184
|
Jamalpoor Z, Taromi N, Soleimani M, Koudehi MF, Asgari A. In vitro interaction of human Wharton's jelly mesenchymal stem cells with biomimetic 3D scaffold. J Biomed Mater Res A 2019; 107:1166-1175. [DOI: 10.1002/jbm.a.36608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Zahra Jamalpoor
- Trauma Research CenterAja University of Medical Sciences Tehran Iran
| | - Nafise Taromi
- Department of Medical Biotechnology, Faculty of Allied MedicineIran University of Medical Sciences Tehran Iran
- Cellular and Molecular Research CenterIran University of Medical Sciences Tehran Iran
| | - Mansooreh Soleimani
- Cellular and Molecular Research CenterIran University of Medical Sciences Tehran Iran
- Department of AnatomyIran University of Medical Sciences Tehran Iran
| | | | - Alireza Asgari
- Aerospace Medicine Research CenterAja University of Medical Sciences Tehran Iran
| |
Collapse
|
185
|
Morphological and Molecular Analysis of In Vitro Tubular Structures from Bovine Yolk Sac-Derived MSCs. Stem Cells Int 2019; 2019:5073745. [PMID: 30956669 PMCID: PMC6431375 DOI: 10.1155/2019/5073745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/11/2018] [Accepted: 12/24/2018] [Indexed: 11/18/2022] Open
Abstract
The yolk sac is an extraembryonic membrane, of saccular form, connected to the ventral region of the embryo. It is the main source of nutrition for the embryo during the period when the placenta is not fully formed. The aim of this study was to generate tubular structures using mesenchymal stem cells from the bovine yolk sac (bYS-MSCs) and determine if these structures can be a model for in vitro vasculogenesis. The evaluation of this tissue by histochemistry revealed a strong marking of collagen fibers and PAS technique negativity. In transmission electron microscopy, cytoplasmic organelles with large nuclei were observed. The vessel formation assay on a Matrigel substrate showed that the mesenchymal cells of the yolk sac without growth factors (VEGF) are capable of forming branches, sprouting cells, and tubular structures similar to capillary blood. These tubular structures were xenotransplanted subcutaneously into the mesentery of BALB/c/nude mice; after 45 days, vascularized tissue and extensions of blood vessels around the tubular structures could be observed. Real-time PCR (qPCR) demonstrated an expression of the VEGF gene in different gestational age groups. No difference in distribution or expression was detected among groups. Our results suggest that the spontaneous formation of tubules from the yolk sac can be an experimental model to elucidate initial organogenesis and the possible formation of blood capillaries from in vitro mesenchymal cells and possible route of organoid production.
Collapse
|
186
|
Szojka ARA, Lyons BD, Moore CN, Liang Y, Kunze M, Idrees E, Mulet-Sierra A, Jomha NM, Adesida AB. Hypoxia and TGF-β3 Synergistically Mediate Inner Meniscus-Like Matrix Formation by Fibrochondrocytes. Tissue Eng Part A 2019; 25:446-456. [PMID: 30343640 DOI: 10.1089/ten.tea.2018.0211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The interactions of hypoxia and TGF-β3 in aggregates of human meniscus fibrochondrocytes are synergistic in nature, suggesting combinatorial strategies using these factors are promising for tissue engineering the inner meniscus regions. Hypoxia alone in the absence of TGF-β supplementation may be insufficient to initiate an inner meniscus-like extracellular matrix-forming response in this model.
Collapse
Affiliation(s)
- Alexander R A Szojka
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Brayden D Lyons
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Colleen N Moore
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Yan Liang
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
- 2 Division of Burn and Reconstructive Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, People's Republic of China
| | - Melanie Kunze
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Enaam Idrees
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Aillette Mulet-Sierra
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Nadr M Jomha
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Adetola B Adesida
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
187
|
Miceli V, Pampalone M, Vella S, Carreca AP, Amico G, Conaldi PG. Comparison of Immunosuppressive and Angiogenic Properties of Human Amnion-Derived Mesenchymal Stem Cells between 2D and 3D Culture Systems. Stem Cells Int 2019; 2019:7486279. [PMID: 30911299 PMCID: PMC6397962 DOI: 10.1155/2019/7486279] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
The secretion of potential therapeutic factors by mesenchymal stem cells (MSCs) has aroused much interest given the benefits that it can bring in the field of regenerative medicine. Indeed, the in vitro multipotency of these cells and the secretive capacity of both angiogenic and immunomodulatory factors suggest a role in tissue repair and regeneration. However, during culture, MSCs rapidly lose the expression of key transcription factors associated with multipotency and self-renewal, as well as the ability to produce functional paracrine factors. In our study, we show that a three-dimensional (3D) culture method is effective to induce MSC spheroid formation, to maintain the multipotency and to improve the paracrine activity of a specific population of human amnion-derived MSCs (hAMSCs). The regenerative potential of both 3D culture-derived conditioned medium (3D CM) and their exosomes (EXO) was assessed against 2D culture products. In particular, tubulogenesis assays revealed increased capillary maturation in the presence of 3D CM compared with both 2D CM and 2D EXO. Furthermore, 3D CM had a greater effect on inhibition of PBMC proliferation than both 2D CM and 2D EXO. To support this data, hAMSC spheroids kept in our 3D culture system remained viable and multipotent and secreted considerable amounts of both angiogenic and immunosuppressive factors, which were detected at lower levels in 2D cultures. This work reveals the placenta as an important source of MSCs that can be used for eventual clinical applications as cell-free therapies.
Collapse
Affiliation(s)
- Vitale Miceli
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Mariangela Pampalone
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- Ri.MED Foundation, Palermo, Italy
| | | | | | - Giandomenico Amico
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- Ri.MED Foundation, Palermo, Italy
| | | |
Collapse
|
188
|
Kim EM, Lee YB, Byun H, Chang HK, Park J, Shin H. Fabrication of Spheroids with Uniform Size by Self-Assembly of a Micro-Scaled Cell Sheet (μCS): The Effect of Cell Contraction on Spheroid Formation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2802-2813. [PMID: 30586277 DOI: 10.1021/acsami.8b18048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell spheroid culture can be an effective approach for providing an engineered microenvironment similar to an in vivo environment. Our group had recently developed a method for harvesting uniformly sized multicellular spheroids via self-assembly of micro-scaled cell sheets (μCSs) induced by the expansion of temperature-sensitive hydrogels. However, the μCS assembly process was not fully understood. In this study, we investigated the effects of cell number, pattern shape, and contractile force of cells on spheroid formation from micropatterned (width of square pattern from 100-300 μm) hydrogels. We used human dermal fibroblasts (HDFBs) as a model cell type and cultured them for 24 and 72 h. The self-assembly of μCSs cultured on square micropatterns for 72 h rapidly occurred within 4 min after reducing the temperature from 37 to 4 °C. In addition, the size distribution of spheroids was narrower with μCSs from a 72 h culture. Treatment with a ROCK1 inhibitor disrupted cytoskeletal actin fibers and the corresponding μCSs were not detached from the hydrogel. The assembly of the μCS was also affected by the micropattern shape, and the spheroid harvest efficiency was decreased to 60% when using a circular micropattern, which was explained by the stress direction on the circular versus square micropattern upon hydrogel expansion. Therefore, we confirmed that the factors controlling cell-cell interactions are important for spheroid formation using micropatterned hydrogel systems. Finally, the μCSs with dual layers of HDFBs labeled with DiD and DiO dyes resulted in the formation of spheroids with discretely localized colors within the core and shell, respectively, which suggests an outside-in assembly of detached μCSs. In consideration of these complex environmental factors, our system could be utilized in various applications as a three-dimensional culture system to fabricate cell spheroids.
Collapse
Affiliation(s)
| | | | | | - Hyung-Kwan Chang
- Department of Mechanical Engineering , Sogang University , 35 Baekbeom-ro , Mapo-gu, Seoul 04107 , Republic of Korea
| | - Jungyul Park
- Department of Mechanical Engineering , Sogang University , 35 Baekbeom-ro , Mapo-gu, Seoul 04107 , Republic of Korea
| | | |
Collapse
|
189
|
Iwasaki K, Nagata M, Akazawa K, Watabe T, Morita I. Changes in characteristics of periodontal ligament stem cells in spheroid culture. J Periodontal Res 2018; 54:364-373. [PMID: 30597545 DOI: 10.1111/jre.12637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/01/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The periodontal ligament (PDL) has important roles in maintaining homeostasis, wound healing, and regeneration of periodontal tissues by supplying stem/progenitor cells. Periodontal ligament stem cells (PDLSCs) have mesenchymal stem cell (MSC)-like characteristics and can be isolated from periodontal tissues. The aim of this study was to examine the effect of three-dimensional spheroid culture on the characteristics of PDLSCs. MATERIAL AND METHODS Periodontal ligament stem cells were isolated and cultured from healthy teeth, and PDLSC spheroids were formed by pellet culture in polypropylene tubes. The proliferation of PDLSCs in spheroids and conventional two-dimensional (2D) cultures were examined by immunostaining for Ki67. Cell death and cell size were analyzed using flow cytometry. Gene expression changes were investigated by quantitative real time PCR. RESULTS Periodontal ligament stem cells spontaneously formed spheroid masses in pellet culture. The size of PDLSC spheroids was inversely proportional to the culture period. Fewer Ki67-positive cells were detected in PDLSC spheroids compared to those in 2D culture. Flow cytometry revealed an increase in dead cells and a decrease in cell size in PDLSC spheroids. The expression levels of genes related to anti-inflammation (TSG6, COX2, MnSOD) and angiogenesis (VEGF, bFGF, HGF) were drastically increased by spheroid culture compared to 2D culture. TSG6 gene expression was inhibited in PDLSC spheroids in the presence of the apoptosis signal inhibitor, Z-VAD-FMK. Additionally, PDLSC spheroid transplantation into rat periodontal defects did not induce the regeneration of periodontal tissues. CONCLUSIONS We found that spheroid culture of PDLSCs affected several characteristics of PDLSCs, including the expression of genes related to anti-inflammation and angiogenesis; apoptosis signaling may be involved in these changes. Our results revealed the characteristics of PDLSCs in spheroid culture and have provided new information to the field of stem cell research.
Collapse
Affiliation(s)
- Kengo Iwasaki
- Institute of Dental Research, Osaka Dental University, Osaka, Japan.,Department of Nanomedicine (DNP), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mizuki Nagata
- Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiko Akazawa
- Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuro Watabe
- Biochemistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | |
Collapse
|
190
|
Merlo B, Teti G, Mazzotti E, Ingrà L, Salvatore V, Buzzi M, Cerqueni G, Dicarlo M, Lanci A, Castagnetti C, Iacono E. Wharton's Jelly Derived Mesenchymal Stem Cells: Comparing Human and Horse. Stem Cell Rev Rep 2018; 14:574-584. [PMID: 29508214 DOI: 10.1007/s12015-018-9803-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Wharton's jelly (WJ) is an important source of mesenchymal stem cells (MSCs) both in human and other animals. The aim of this study was to compare human and equine WJMSCs. Human and equine WJMSCs were isolated and cultured using the same protocols and culture media. Cells were characterized by analysing morphology, growth rate, migration and adhesion capability, immunophenotype, differentiation potential and ultrastructure. Results showed that human and equine WJMSCs have similar ultrastructural details connected with intense synthetic and metabolic activity, but differ in growth, migration, adhesion capability and differentiation potential. In fact, at the scratch assay and transwell migration assay, the migration ability of human WJMSCs was higher (P < 0.05) than that of equine cells, while the volume of spheroids obtained after 48 h of culture in hanging drop was larger than the volume of equine ones (P < 0.05), demonstrating a lower cell adhesion ability. This can also revealed in the lower doubling time of equine cells (3.5 ± 2.4 days) as compared to human (6.5 ± 4.3 days) (P < 0.05), and subsequently in the higher number of cell doubling after 44 days of culture observed for the equine (20.3 ± 1.7) as compared to human cells (8.7 ± 2.4) (P < 0.05), and to the higher (P < 0.05) ability to form fibroblast colonies at P3. Even if in both species tri-lineage differentiation was achieved, equine cells showed an higher chondrogenic and osteogenic differentiation ability (P < 0.05). Our findings indicate that, although the ultrastructure demonstrated a staminal phenotype in human and equine WJMSCs, they showed different properties reflecting the different sources of MSCs.
Collapse
Affiliation(s)
- Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy.
| | - Gabriella Teti
- Department for Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, BO, Italy
| | - Eleonora Mazzotti
- Department of Comparative Biomedical Sciences, University of Teramo, via R. Balzarini 1, 64100, Teramo, TE, Italy
| | - Laura Ingrà
- Department for Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, BO, Italy
| | - Viviana Salvatore
- An2H Discovery Limited, National Institute for Cellular Bioetchnology (NICB), Dublin City University Campus, Glasnevin, Dublin 9, Ireland
| | - Marina Buzzi
- Banca dei Tessuti, del Sangue cordonale e Biobanca Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Giorgia Cerqueni
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Manuela Dicarlo
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Aliai Lanci
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Carolina Castagnetti
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| |
Collapse
|
191
|
Komatsu N, Kajiya M, Motoike S, Takewaki M, Horikoshi S, Iwata T, Ouhara K, Takeda K, Matsuda S, Fujita T, Kurihara H. Type I collagen deposition via osteoinduction ameliorates YAP/TAZ activity in 3D floating culture clumps of mesenchymal stem cell/extracellular matrix complexes. Stem Cell Res Ther 2018; 9:342. [PMID: 30526677 PMCID: PMC6286508 DOI: 10.1186/s13287-018-1085-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/10/2018] [Accepted: 11/20/2018] [Indexed: 01/30/2023] Open
Abstract
Background Three-dimensional (3D) floating culture clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. Previous studies have demonstrated that C-MSCs can be transplanted into bony lesions without an artificial scaffold to induce bone regeneration. Moreover, osteoinductive medium (OIM)-treated C-MSCs (OIM-C-MSCs) have shown rapid and increased new bone formation in vivo. To apply OIM-C-MSCs for novel bone regenerative cell therapy, their cellular properties at the molecular level must be elucidated. The transcriptional co-activators yes-associated protein/transcriptional co-activator with PDZ-binding motif (YAP/TAZ) have been recognized as key players in the mechanotransduction cascade, controlling cell lineage commitment in MSCs. It is plausible that 3D C-MSCs/OIM-C-MSCs cultured in floating conditions could provide distinct microenvironments compared to conventional 2D culture systems and thereby induce unique mechanotransduction cascades. Therefore, this study investigated the YAP/TAZ activity in 3D-cultured C-MSCs/OIM-C-MSCs in floating conditions. Methods Human bone marrow-derived MSCs were cultured in growth medium supplemented with ascorbic acid. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and were then torn off. The sheet was rolled to make round clumps of cells. Then, YAP/TAZ activity, filamentous actin (F-actin) integrity, collagen type I (COL1) production, and the differentiation potency in 3D floating culture C-MSCs/OIM-C-MSCs were analyzed. Results C-MSCs cultured in floating conditions lost their actin cytoskeleton to downregulate YAP/TAZ activity, which directed cells to undergo adipogenesis/chondrogenesis. OIM treatment induced abundant COL1 deposition, which facilitated Intβ1-dependent actin fiber formation and YAP/TAZ activity to elevate the expression levels of osteogenic master transcriptional factor runt-related transcription factor 2 (RUNX2) mRNA in C-MSCs. Importantly, elevation of YAP/TAZ activity via OIM was associated with COL1 deposition and F-actin integrity, suggesting a positive feedback loop in OIM-C-MSCs. Conclusion These findings suggest that OIM-C-MSCs, which form a unique microenvironment that maintains high YAP/TAZ activity, can serve as better candidates for bone regenerative cell therapy than C-MSCs. Electronic supplementary material The online version of this article (10.1186/s13287-018-1085-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nao Komatsu
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan.
| | - Souta Motoike
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Manabu Takewaki
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Susumu Horikoshi
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| |
Collapse
|
192
|
Luo C, Fang H, Li J, Hou J, Yang J, Yuan Q, Guo L, Zhong A, Wang J, Sun J, Wang Z. An in vivo comparative study of the gelatin microtissue-based bottom-up strategy and top-down strategy in bone tissue engineering application. J Biomed Mater Res A 2018; 107:678-688. [PMID: 30474182 DOI: 10.1002/jbm.a.36587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Tissue-engineered bone grafts (TEBGs) represent a promising treatment for bone defects. Nevertheless, drawbacks of the current construction strategy (top-down [TD] strategy) such as limited transmission of nutrients and nonuniform distribution of seeded cells, result in an unsatisfied therapeutic effect on large segmental bone defects. Theoretically, tissue-engineered microtissue (TEMT)-based bottom-up (BU) strategy is effective in preserving seed cells and vascularization, thus being regarded as a better alternative for TEBGs. Yet, there are few studies focusing on the comparison of the in vivo performance of TEBGs fabricated by TD or BU strategy. Here, we developed an ectopic bone formation rat model to compare the performance of these two construction strategies in vivo. TEBGs made from gelatin TEMT (BU strategy) and bulk tissue (BT; TD strategy) were seeded with equal number of rat bone marrow-derived mesenchymal stem cells and fabricated in 5 mm polydimethylsiloxane chambers. The grafts were implanted into subcutaneous pockets in the same rat. Four weeks after implantation, microcomputed tomography and hematoxylin and eosin staining results demonstrated that more bony tissue was formed in the microtissue (MT) group than in the BT group. CD31 staining further confirmed that there were more blood vessels in the MT group, indicating that the BU strategy was superior in inducing angiogenesis. This comparative study provides evidence that the BU construction strategy is more effective for in vivo application and bone defect treatment by bone tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 678-688, 2019.
Collapse
Affiliation(s)
- Chao Luo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huimin Fang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jialun Li
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinfei Hou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Quan Yuan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Aimei Zhong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
193
|
Wu Y, Hospodiuk M, Peng W, Gudapati H, Neuberger T, Koduru S, Ravnic DJ, Ozbolat IT. Porous tissue strands: avascular building blocks for scalable tissue fabrication. Biofabrication 2018; 11:015009. [PMID: 30468153 DOI: 10.1088/1758-5090/aaec22] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The scalability of cell aggregates such as spheroids, strands, and rings has been restricted by diffusion of nutrient and oxygen into their core. In this study, we introduce a novel concept in generating tissue building blocks with micropores, which represents an alternative solution for vascularization. Sodium alginate porogens were mixed with human adipose-derived stem cells, and loaded into tubular alginate capsules, followed by de-crosslinking of the capsules. The resultant cellular structure exhibited a porous morphology and formed cell aggregates in the form of strands, called 'porous tissue strands (pTSs).' Three-dimensional reconstructions show that pTSs were able to maintain ∼25% porosity with a high pore interconnectivity (∼85%) for 3 weeks. Owing to the porous structure, pTSs showed up-regulated cell viability and proliferation rate as compared to solid counterparts throughout the culture period. pTSs also demonstrated self-assembly capability through tissue fusion yielding larger-scale patches. In this paper, chondrogenesis and osteogenesis of pTSs were also demonstrated, where the porous microstructure up-regulated both chondrogenic and osteogenic functionalities indicated by cartilage- and bone-specific immunostaining, quantitative biochemical assessment and gene expression. These findings indicated the functionality of pTSs, which possessed controllable porosity and self-assembly capability, and had great potential to be utilized as tissue building blocks in distinct applications such as cartilage and bone regeneration.
Collapse
Affiliation(s)
- Yang Wu
- Engineering Science and Mechanics Department, The Pennsylvania State University, State College, PA, United States of America. The Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Gamble A, Pawlick R, Pepper AR, Bruni A, Adesida A, Senior PA, Korbutt GS, Shapiro AMJ. Improved islet recovery and efficacy through co-culture and co-transplantation of islets with human adipose-derived mesenchymal stem cells. PLoS One 2018; 13:e0206449. [PMID: 30419033 PMCID: PMC6231609 DOI: 10.1371/journal.pone.0206449] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/13/2018] [Indexed: 02/07/2023] Open
Abstract
Islet transplantation is an established clinical procedure for select patients with type 1 diabetes and severe hypoglycemia to stabilize glycemic control. Post-transplant, substantial beta cell mass is lost, necessitating multiple donors to maintain euglycemia. A potential strategy to augment islet engraftment is the co-transplantation of islets with multipotent mesenchymal stem cells to capitalize upon their pro-angiogenic and anti-inflammatory properties. Herein, we examine the in vitro and in vivo effect of co-culturing murine islets with human adipose-derived mesenchymal stem cells (Ad-MSCs). Islets co-cultured with Ad-MSCs for 48 hours had decreased cell death, superior viability as measured by membrane integrity, improved glucose stimulated insulin secretion and reduced apoptosis compared to control islets. These observations were recapitulated with human islets, albeit tested in a limited capacity. Recipients of marginal mouse islet mass grafts, co-transplanted with Ad-MSCs without a co-culture period, did not reverse to normoglycemia as efficiently as islets alone. However, utilizing a 48-hour co-culture period, marginal mouse islets grafts with Ad-MSCs achieved a superior percent euglycemia rate when compared to islets cultured and transplanted alone. A co-culture period of human islets with human Ad-MSCs may have a clinical benefit improving engraftment outcomes.
Collapse
Affiliation(s)
- Anissa Gamble
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Edmonton, AB, Canada
| | - Rena Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Antonio Bruni
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Adetola Adesida
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Peter A. Senior
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory S. Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - A. M. James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Members of the Canadian National Transplant Research Project (CNTRP), Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
195
|
Biologically produced silver chloride nanoparticles from B. megaterium modulate interleukin secretion by human adipose stem cell spheroids. Cytotechnology 2018; 70:1655-1669. [PMID: 30386942 DOI: 10.1007/s10616-018-0257-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/15/2018] [Indexed: 12/22/2022] Open
Abstract
Stem cell tissue constructs are likely to come into contact with silver-based nanoparticles-such as silver chloride nanoparticles (AgCl-NPs)-used as microbicidals at the implant site or in cosmetics. However, the effect of silver-based nanoparticles on 3D cell cultures with potential for tissue engineering has received little attention. Here, we examined the effect of sub-lethal doses (5, 10 and 25 µg/mL, for 1, 7 and 21 days) of AgCl-NPs produced by 'green' bacterial-based synthesis on spheroid 3D cultures of human adipose tissue stem cells (ASCs). Light microscopy analysis revealed that the shape and diameter of ASC spheroids remained largely unchanged after AgCl-NP treatment. Flow cytometry analysis with 7-AAD and 2',7'-dichlorofluorescein diacetate revealed no statistically significant differences in cell death but showed an increase of ROS levels for the untreated group and significant differences for the groups treated with 5 and 10 µg/mL at day 7 (p = 0.0395, p = 0.0266, respectively). Electron microscopy analysis showed limited cell damage in the periphery of AgCl-NP-treated spheroids. However, treatment with AgCl-NP had statistically significant effects on the secretion of IL-6, IL-8, IL-1β and IL-10 by spheroids, at specific treatment periods and concentrations, and particularly for IL-6, IL-8 and IL-1β. TGF-β1 and -β2 secretion also changed significantly throughout the treatment period. Our results indicate that, despite having little effect on cell viability and morphology, sub-lethal AgCL-NP doses modulate ROS production at day 7 for the groups treated with 5 and 10 µg/mL and also modulate the secretory profile of ASC spheroids. Thus, the use of skin implants or products containing Ag-NPs may promote long-term disturbances in subcutaneous adipose tissue homeostasis.
Collapse
|
196
|
Kim SJ, Park J, Byun H, Park YW, Major LG, Lee DY, Choi YS, Shin H. Hydrogels with an embossed surface: An all-in-one platform for mass production and culture of human adipose-derived stem cell spheroids. Biomaterials 2018; 188:198-212. [PMID: 30368228 DOI: 10.1016/j.biomaterials.2018.10.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 01/01/2023]
Abstract
Stem cell spheroids have been studied extensively in organoid culture and therapeutic transplantation. Herein, hydrogels with an embossed surface (HES) were developed as an all-in-one platform that can enable the rapid formation and culture of a large quantity of size-controllable stem cell spheroids. The embossed structure on the hydrogel was adjustable according to the grit designation of the sandpaper. Human adipose-derived stem cells (hADSCs) were rapidly assembled into spheroids on the hydrogel, with their size distribution precisely controlled from 95 ± 6 μm to 181 ± 15 μm depending on surface roughness. The hADSC spheroids prepared from the HES demonstrated expression of stemness markers and differentiation capacity. In addition, HES-based spheroids showed significantly greater VEGF secretion than spheroids grown on a commercially available low-attachment culture plate. Exploiting those advantages, the HES-based spheroids were used for 3D bioprinting, and the spheroids within the 3D-printed construct showed improved retention and VEGF secretion compared to the same 3D structure containing single cell suspension. Collectively, HES would offer a useful platform for mass fabrication and culture of stem cell spheroids with controlled sizes for a variety of biomedical applications.
Collapse
Affiliation(s)
- Se-Jeong Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jaesung Park
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Young-Woo Park
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Luke G Major
- School of Human Science, University of Western Australia, Perth, WA 6009, Australia
| | - Dong Yun Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Institute of Nano Science & Technology (INST), Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Yu Suk Choi
- School of Human Science, University of Western Australia, Perth, WA 6009, Australia
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Institute of Nano Science & Technology (INST), Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
197
|
Kim TH, Choi JH, Jun Y, Lim SM, Park S, Paek JY, Lee SH, Hwang JY, Kim GJ. 3D-cultured human placenta-derived mesenchymal stem cell spheroids enhance ovary function by inducing folliculogenesis. Sci Rep 2018; 8:15313. [PMID: 30333505 PMCID: PMC6193033 DOI: 10.1038/s41598-018-33575-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Placenta-derived mesenchymal stem cells (PD-MSCs) have numerous advantages over other adult MSCs that make them an attractive cell source for regenerative medicine. Here, we demonstrate the therapeutic effect of PD-MSCs in ovariectomized (Ovx) rats and compare their efficacy when generated via a conventional monolayer culture system (2D, naïve) and a spheroid culture system (3D, spheroid). PD-MSC transplantation significantly increased the estradiol level in Ovx rats compared with the non-transplantation (NTx) group. In particular, the estradiol level in the Spheroid group was significantly higher than that in the Naïve group at 2 weeks. Spheroid PD-MSCs exhibited a significantly higher efficiency of engraftment onto ovarian tissues at 2 weeks. The mRNA and protein expression levels of Nanos3, Nobox, and Lhx8 were also significantly increased in the Spheroid group compared with those in the NTx group at 1 and 2 weeks. These results suggest that PD-MSC transplantation can restore ovarian function in Ovx rats by increasing estrogen production and enhancing folliculogenesis-related gene expression levels and further indicate that spheroid-cultured PD-MSCs have enhanced therapeutic potential via increased engraftment efficiency. These findings improve our understanding of stem-cell-based therapies for reproductive systems and may suggest new avenues for developing efficient therapies using 3D cultivation systems.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon-si, Gyunggi-do, Republic of Korea
| | - Jong Ho Choi
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si, Gyunggi-do, Republic of Korea
| | - Yesl Jun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
| | - Seung Mook Lim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si, Gyunggi-do, Republic of Korea
| | - Sohae Park
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si, Gyunggi-do, Republic of Korea
| | - Jin-Young Paek
- Department of Clinical Pathology, CHA Gangnam Medical Center, CHA University, School of Medicine, 566 Nonhyun-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Sang-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
| | - Ji-Young Hwang
- Department of Biomedical Engineering, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea.
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, 689, Sampyeong-dong, Bundang-gu, Seongnam-si, Gyunggi-do, Republic of Korea.
| |
Collapse
|
198
|
Joshi J, Brennan D, Beachley V, Kothapalli CR. Cardiomyogenic differentiation of human bone marrow-derived mesenchymal stem cell spheroids within electrospun collagen nanofiber mats. J Biomed Mater Res A 2018; 106:3303-3312. [PMID: 30242963 DOI: 10.1002/jbm.a.36530] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/26/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022]
Abstract
Collagen is the major structural protein in myocardium and contributes to tissue strength and integrity, cellular orientation, and cell-cell and cell-matrix interactions. Significant post-myocardial infarction related loss of cardiomyocytes and cardiac tissue, and their subsequent replacement with fibrous scar tissue, negatively impacts endogenous tissue repair and regeneration capabilities. To overcome such limitations, tissue engineers are working toward developing a 3D cardiac patch which not only mimics the structural, functional, and biological hierarchy of the native cardiac tissue, but also could deliver autologous stem cells and encourage their homing and differentiation. In this study, we examined the utility of electrospun, randomly-oriented, type-I collagen nanofiber (dia = 789 ± 162 nm) mats on the cardiomyogenic differentiation of human bone marrow-derived mesenchymal stem cells (BM-MSC) spheroids, in the presence or absence of 10 μM 5-azacytidine (aza). Results showed that these scaffolds are biocompatible and enable time-dependent evolution of early (GATA binding protein 4: GATA4), late (cardiac troponin I: cTnI), and mature (myosin heavy chain: MHC) cardiomyogenic markers, with a simultaneous reduction in CD90 (stemness) expression, independent of aza-treatment. Aza-exposure improved connexin-4 expression and sustained sarcomeric α-actin expression, but provided only transient improvement in cardiac troponin T (cTnT) expression. Cell orientation and alignment significantly improved in these nanofiber scaffolds over time and with aza-exposure. Although further quantitative in vitro and in vivo studies are needed to establish the clinical applicability of such stem-cell laden collagen nanofiber mats as cardiac patches for cardiac tissue regeneration, our results underscore the benefits of 3D milieu provided by electrospun collagen nanofiber mats, aza, and spheroids on the survival, cardiac differentiation and maturation of human BM-MSCs. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3303-3312, 2018.
Collapse
Affiliation(s)
- Jyotsna Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, 44115
| | - David Brennan
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, 08028
| | - Vince Beachley
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, 08028
| | | |
Collapse
|
199
|
Towards Three-Dimensional Dynamic Regulation and In Situ Characterization of Single Stem Cell Phenotype Using Microfluidics. Mol Biotechnol 2018; 60:843-861. [DOI: 10.1007/s12033-018-0113-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
200
|
Hsieh HY, Young TH, Yao CC, Chen YJ. Aggregation of human dental pulp cells into 3D spheroids enhances their migration ability after reseeding. J Cell Physiol 2018; 234:976-986. [PMID: 30132855 DOI: 10.1002/jcp.26927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Multicellular three-dimensional (3D) spheroids allow intimate cell-cell communication and cell-extracellular matrix interaction. Thus, 3D cell spheroids better mimic microenvironment in vivo than two-dimensional (2D) monolayer cultures. The purpose of this study was to evaluate the behaviors of human dental pulp cells (DPCs) cultured on chitosan and polyvinyl alcohol (PVA) membranes. The protein expression of hypoxia-inducible factor 1-α (HIF-1α) and vascular endothelial growth factor (VEGF), and the migration ability of the DPCs from 2D versus 3D environments were investigated. The results showed that both chitosan and PVA membranes support DPCs aggregation to form multicellular spheroids. In comparison to 2D cultures on tissue culture polystyrene, DPC spheroids exhibited higher protein expression of HIF-1α and VEGF. The treatment with YC-1 (inhibitor to HIF-1α) blocked the upregulation of VEGF, indicating a downstream event to HIF-1α expression. When DPC spheroids were collected and subjected to the transwell assay, the cells growing outward from 3D spheroids showed greater migration ability than those from 2D cultures. Moreover, DPCs aggregation and spheroid formation on chitosan membrane were abolished by Y-27632 (inhibitor to Rho-associated kinases), whereas the inhibitory effect did not exist on PVA membrane. This suggests that the mechanism regulating DPCs aggregation and spheroid formation on chitosan membrane is involved with the Rho-associated kinase signaling pathway. In summary, the multicellular spheroid structure was beneficial to the protein expression of HIF-1α and VEGF in DPCs and enhanced the migration ability of the cells climbing from spheroids. This study showed a new perspective in exploring novel strategies for DPC-based research and application.
Collapse
Affiliation(s)
- Hao-Ying Hsieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Chen Yao
- School of Dentistry, College of Medicine, National Taiwan University, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Jane Chen
- School of Dentistry, College of Medicine, National Taiwan University, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|