151
|
Ridgway Z, Lee KH, Zhyvoloup A, Wong A, Eldrid C, Hannaberry E, Thalassinos K, Abedini A, Raleigh DP. Analysis of Baboon IAPP Provides Insight into Amyloidogenicity and Cytotoxicity of Human IAPP. Biophys J 2020; 118:1142-1151. [PMID: 32105649 DOI: 10.1016/j.bpj.2019.12.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
The polypeptide hormone islet amyloid polypeptide (IAPP) forms islet amyloid in type 2 diabetes, a process which contributes to pancreatic β-cell dysfunction and death. Not all species form islet amyloid, and the ability to do so correlates with the primary sequence. Humans form islet amyloid, but baboon IAPP has not been studied. The baboon peptide differs from human IAPP at three positions containing K1I, H18R, and A25T substitutions. The K1I substitution is a rare example of a replacement in the N-terminal region of amylin. The effect of this mutation on amyloid formation has not been studied, but it reduces the net charge, and amyloid prediction programs suggest that it should increase amyloidogenicity. The A25T replacement involves a nonconservative substitution in a region of IAPP that is believed to be important for aggregation, but the effects of this replacement have not been examined. The H18R point mutant has been previously shown to reduce aggregation in vitro. Baboon amylin forms amyloid on the same timescale as human amylin in vitro and exhibits similar toxicity toward cultured β-cells. The K1I replacement in human amylin slightly reduces toxicity, whereas the A25T substitution accelerates amyloid formation and enhances toxicity. Photochemical cross-linking reveals that the baboon amylin, like human amylin, forms low-order oligomers in the lag phase of amyloid formation. Ion-mobility mass spectrometry reveals broadly similar gas phase collisional cross sections for human and baboon amylin monomers and dimers, with some differences in the arrival time distributions. Preamyloid oligomers formed by baboon amylin, but not baboon amylin fibers, are toxic to cultured β-cells. The toxicity of baboon oligomers and lack of significantly detectable toxicity with exogenously added amyloid fibers is consistent with the hypothesis that preamyloid oligomers are the most toxic species produced during IAPP amyloid formation.
Collapse
Affiliation(s)
- Zachary Ridgway
- Department of Chemistry, Stony Brook University, Stony Brook, New York
| | - Kyung-Hoon Lee
- Department of Biology, Chowan University, Murfreesboro, North Carolina
| | - Alexander Zhyvoloup
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Amy Wong
- Department of Chemistry, Stony Brook University, Stony Brook, New York
| | - Charles Eldrid
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Eleni Hannaberry
- Department of Chemistry, Stony Brook University, Stony Brook, New York
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Andisheh Abedini
- Department of Chemistry, Stony Brook University, Stony Brook, New York.
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York; Institute of Structural and Molecular Biology, University College London, London, United Kingdom.
| |
Collapse
|
152
|
Computational prediction and redesign of aberrant protein oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:43-83. [DOI: 10.1016/bs.pmbts.2019.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
153
|
Gour S, Kumar V, Rana M, Yadav JK. Pheromone peptide cOB1 from native Enterococcus faecalis forms amyloid-like structures: A new paradigm for peptide pheromones. J Pept Sci 2019; 25:e3178. [PMID: 31317612 DOI: 10.1002/psc.3178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 12/19/2022]
Abstract
Pheromone peptides are an important component of bacterial quorum-sensing system. The pheromone peptide cOB1 (VAVLVLGA) of native commensal Enterococcus faecalis has also been identified as an antimicrobial peptide (AMP) and reported to kill the prototype clinical isolate strain of E. faecalis V583. In this study, the pheromone peptide cOB1 has shown to form amyloid-like structures, a characteristic which is never reported for a pheromone peptide so far. With in silico analysis, the peptide was predicted to be highly amyloidogenic. Further, under experimental conditions, cOB1 formed aggregates displaying characteristics of amyloid structures such as bathochromic shift in Congo red absorbance, enhancement in thioflavin T fluorescence, and fibrillar morphology under transmission electron microscopy. This novel property of pheromone peptide cOB1 may have some direct effects on the binding of the pheromone to the receptor cells and subsequent conjugative transfer, making this observation more important for the therapeutics, dealing with the generation of virulent and multidrug-resistant pathogenic strains.
Collapse
Affiliation(s)
- Shalini Gour
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, 305817, Rajasthan, India
| | - Vijay Kumar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, 305817, Rajasthan, India
| | - Monika Rana
- Department of Chemistry, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh Ajmer, 305817, Rajasthan, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, 305817, Rajasthan, India
| |
Collapse
|
154
|
Salazar Vazquez S, Blondeau B, Cattan P, Armanet M, Guillemain G, Khemtemourian L. The flanking peptides issue from the maturation of the human islet amyloid polypeptide (hIAPP) slightly modulate hIAPP-fibril formation but not hIAPP-induced cell death. Biochimie 2019; 170:26-35. [PMID: 31838129 DOI: 10.1016/j.biochi.2019.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/10/2019] [Indexed: 01/13/2023]
Abstract
Type 2 diabetes mellitus is a disease characterized by the formation of amyloid fibrillar deposits consisting mainly in human islet amyloid polypeptide (hIAPP), a peptide co-produced and co-secreted with insulin. hIAPP and insulin are synthesized by pancreatic β cells initially as prehormones resulting after sequential cleavages in the mature peptides as well as the two flanking peptides (N- and C-terminal) and the C-peptide, respectively. It has been suggested that in the secretory granules, the kinetics of hIAPP fibril formation could be modulated by some internal factors. Indeed, insulin is known to be a potent inhibitor of hIAPP fibril formation and hIAPP-induced cell toxicity. Here we investigate whether the flanking peptides could regulate hIAPP fibril formation and toxicity by combining biophysical and biological approaches. Our data reveal that both flanking peptides are not amyloidogenic. In solution and in the presence of phospholipid membranes, they are not able to totally inhibit hIAPP-fibril formation neither hIAPP-membrane damage. In the presence of INS-1 cells, a rat pancreatic β-cell line, the flanking peptides do not modulate hIAPP fibrillation neither hIAPP-induced cell death while in the presence of human islets, they have a slightly tendency to reduce hIAPP fibril formation but not its toxicity. These data demonstrate that the flanking peptides do not strongly contribute to reduce mature hIAPP amyloidogenesis in solution and in living cells, suggesting that other biochemical factors present in the cells must act on mature hIAPP fibril formation and hIAPP-induced cell death.
Collapse
Affiliation(s)
- Shadai Salazar Vazquez
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 Place Jussieu, F-75005, Paris, France
| | - Bertrand Blondeau
- Sorbonne Université, Inserm UMR_S938, Centre de Recherche de St-Antoine, Lipodystrophies, Adaptations Métaboliques et Hormonales, et Vieillissement, 27 Rue de Chaligny, 75012, Paris, France
| | - Pierre Cattan
- Cell Therapy Unit, Hospital Saint-Louis and University Paris-Diderot, Paris, France
| | - Mathieu Armanet
- Cell Therapy Unit, Hospital Saint-Louis and University Paris-Diderot, Paris, France
| | - Ghislaine Guillemain
- Sorbonne Université, Inserm UMR_S938, Centre de Recherche de St-Antoine, Lipodystrophies, Adaptations Métaboliques et Hormonales, et Vieillissement, 27 Rue de Chaligny, 75012, Paris, France.
| | - Lucie Khemtemourian
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 Place Jussieu, F-75005, Paris, France.
| |
Collapse
|
155
|
Orlando G, Silva A, Macedo-Ribeiro S, Raimondi D, Vranken W. Accurate prediction of protein beta-aggregation with generalized statistical potentials. Bioinformatics 2019; 36:2076-2081. [DOI: 10.1093/bioinformatics/btz912] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 01/04/2023] Open
Abstract
Abstract
Motivation
Protein beta-aggregation is an important but poorly understood phenomena involved in diseases as well as in beneficial physiological processes. However, while this task has been investigated for over 50 years, very little is known about its mechanisms of action. Moreover, the identification of regions involved in aggregation is still an open problem and the state-of-the-art methods are often inadequate in real case applications.
Results
In this article we present AgMata, an unsupervised tool for the identification of such regions from amino acidic sequence based on a generalized definition of statistical potentials that includes biophysical information. The tool outperforms the state-of-the-art methods on two different benchmarks. As case-study, we applied our tool to human ataxin-3, a protein involved in Machado–Joseph disease. Interestingly, AgMata identifies aggregation-prone residues that share the very same structural environment. Additionally, it successfully predicts the outcome of in vitro mutagenesis experiments, identifying point mutations that lead to an alteration of the aggregation propensity of the wild-type ataxin-3.
Availability and implementation
A python implementation of the tool is available at https://bitbucket.org/bio2byte/agmata.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gabriele Orlando
- Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Triomflaan, Brussels 1050, Belgium
- Structural Biology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Alexandra Silva
- IBMC-Instituto de Biologia Molecular e Celular
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC-Instituto de Biologia Molecular e Celular
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
| | | | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Triomflaan, Brussels 1050, Belgium
- Structural Biology, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Centre for Structural Biology, VIB, Brussels 1050, Belgium
| |
Collapse
|
156
|
Dubreuil B, Matalon O, Levy ED. Protein Abundance Biases the Amino Acid Composition of Disordered Regions to Minimize Non-functional Interactions. J Mol Biol 2019; 431:4978-4992. [PMID: 31442477 PMCID: PMC6941228 DOI: 10.1016/j.jmb.2019.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023]
Abstract
In eukaryotes, disordered regions cover up to 50% of proteomes and mediate fundamental cellular processes. In contrast to globular domains, where about half of the amino acids are buried in the protein interior, disordered regions show higher solvent accessibility, which makes them prone to engage in non-functional interactions. Such interactions are exacerbated by the law of mass action, prompting the question of how they are minimized in abundant proteins. We find that interaction propensity or "stickiness" of disordered regions negatively correlates with their cellular abundance, both in yeast and human. Strikingly, considering yeast proteins where a large fraction of the sequence is disordered, the correlation between stickiness and abundance reaches R=-0.55. Beyond this global amino-acid composition bias, we identify three rules by which amino-acid composition of disordered regions adjusts with high abundance. First, lysines are preferred over arginines, consistent with the latter amino acid being stickier than the former. Second, compensatory effects exist, whereby a sticky region can be tolerated if it is compensated by a distal non-sticky region. Third, such compensation requires a lower average stickiness at the same abundance when compared to a scenario where stickiness is homogeneous throughout the sequence. We validate these rules experimentally, employing them as different strategies to rescue an otherwise sticky protein fragment from aggregation. Our results highlight that non-functional interactions represent a significant constraint in cellular systems and reveal simple rules by which protein sequences adapt to that constraint. Data from this work are deposited in Figshare, at https://doi.org/10.6084/m9.figshare.8068937.v3.
Collapse
Affiliation(s)
- Benjamin Dubreuil
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Or Matalon
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Emmanuel D Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
157
|
Abstract
When protein/peptides aggregate, they usually form the amyloid state consisting of cross β-sheet structure built by repetitively stacked β-strands forming long fibrils. Amyloids are usually associated with disease including Alzheimer's. However, amyloid has many useful features. It efficiently transforms protein from the soluble to the insoluble state in an essentially two-state process, while its repetitive structure provides high stability and a robust prion-like replication mechanism. Accordingly, amyloid is used by nature in multifaceted and ingenious ways of life, ranging from bacteria and fungi to mammals. These include (1) Structure: Templating for small chemical molecules (Pmel17), biofilm formation in bacteria (curli), assisting aerial hyphae formation in streptomycetes (chaplins) or monolayer formation at a surface (hydrophobins). (2) Reservoirs: A storage state for peptide/proteins to protect them from their surroundings or vice versa (storage of peptide hormones in mammalian secretory granules or major basic protein in eosinophils). (3) Information carriers: The fungal immune system (HET-s prion in Podospora anserina, yeast prions) or long-term memory (e.g., mnemons in yeast, cytoplasmic polyadenylation element-binding protein in aplysia). Aggregation is also used to (4) "suppress" the function of the soluble protein (e.g., Cdc19 in yeast stress granules), or (5) "signaling" through formation of oligomers (e.g., HET-s prion, necroptosis-related proteins RIP1/RIP3). This review summarizes current knowledge on functional amyloids with a focus on the amyloid systems curli in bacteria, HET-s prion in P. anserina, and peptide hormone storage in mammals together with an attempt to highlight differences between functional and disease-associated amyloids.
Collapse
Affiliation(s)
- Daniel Otzen
- iNANO, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Roland Riek
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland
| |
Collapse
|
158
|
Behzadipour Y, Hemmati S. Considerations on the Rational Design of Covalently Conjugated Cell-Penetrating Peptides (CPPs) for Intracellular Delivery of Proteins: A Guide to CPP Selection Using Glucarpidase as the Model Cargo Molecule. Molecules 2019; 24:E4318. [PMID: 31779220 PMCID: PMC6930620 DOI: 10.3390/molecules24234318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/26/2022] Open
Abstract
Access of proteins to their intracellular targets is limited by a hydrophobic barrier called the cellular membrane. Conjugation with cell-penetrating peptides (CPPs) has been shown to improve protein transduction into the cells. This conjugation can be either covalent or non-covalent, each with its unique pros and cons. The CPP-protein covalent conjugation may result in undesirable structural and functional alterations in the target protein. Therefore, we propose a systematic approach to evaluate different CPPs for covalent conjugations. This guide is presented using the carboxypeptidase G2 (CPG2) enzyme as the target protein. Seventy CPPs -out of 1155- with the highest probability of uptake efficiency were selected. These peptides were then conjugated to the N- or C-terminus of CPG2. Translational efficacy of the conjugates, robustness and thermodynamic properties of the chimera, aggregation possibility, folding rate, backbone flexibility, and aspects of in vivo administration such as protease susceptibility were predicted. The effect of the position of conjugation was evaluated using unpaired t-test (p < 0.05). It was concluded that N-terminal conjugation resulted in higher quality constructs. Seventeen CPP-CPG2/CPG2-CPP constructs were identified as the most promising. Based on this study, the bioinformatics workflow that is presented may be universally applied to any CPP-protein conjugate design.
Collapse
Affiliation(s)
- Yasaman Behzadipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran;
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran;
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| |
Collapse
|
159
|
Cryo-EM structure of a transthyretin-derived amyloid fibril from a patient with hereditary ATTR amyloidosis. Nat Commun 2019; 10:5008. [PMID: 31676763 PMCID: PMC6825171 DOI: 10.1038/s41467-019-13038-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022] Open
Abstract
ATTR amyloidosis is one of the worldwide most abundant forms of systemic amyloidosis. The disease is caused by the misfolding of transthyretin protein and the formation of amyloid deposits at different sites within the body. Here, we present a 2.97 Å cryo electron microscopy structure of a fibril purified from the tissue of a patient with hereditary Val30Met ATTR amyloidosis. The fibril consists of a single protofilament that is formed from an N-terminal and a C-terminal fragment of transthyretin. Our structure provides insights into the mechanism of misfolding and implies the formation of an early fibril state from unfolded transthyretin molecules, which upon proteolysis converts into mature ATTR amyloid fibrils. Systemic amyloidosis of the ATTR is one of the most abundant forms of systemic amyloidosis and caused by misfolding of the circulating blood protein transthyretin (TTR). Here the authors present the cryo-EM structure of patient-derived Val30Met ATTR amyloid fibrils which reveals that the protofilament consists of an N-terminal and a C-terminal TTR fragment and discuss implications for the mechanism of misfolding.
Collapse
|
160
|
Skeletal development in the sea urchin relies upon protein families that contain intrinsic disorder, aggregation-prone, and conserved globular interactive domains. PLoS One 2019; 14:e0222068. [PMID: 31574084 PMCID: PMC6771980 DOI: 10.1371/journal.pone.0222068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/21/2019] [Indexed: 12/02/2022] Open
Abstract
The formation of the sea urchin spicule skeleton requires the participation of hydrogel-forming protein families that regulate mineral nucleation and nanoparticle assembly processes that give rise to the spicule. However, the structure and molecular behavior of these proteins is not well established, and thus our ability to understand this process is hampered. We embarked on a study of sea urchin spicule proteins using a combination of biophysical and bioinformatics techniques. Our biophysical findings indicate that recombinant variants of the two most studied spicule matrix proteins, SpSM50 and SpSM30B/C (S. purpuratus) have a conformational landscape that include a C-terminal random coil/intrinsically disordered MAPQG sequence coupled to a conserved, folded N-terminal C-type lectin-like (CTLL) domain, with SpSM50 > SpSM30B/C with regard to intrinsic disorder. Both proteins possess solvent-accessible unfolded MAQPG sequence regions where Asn, Gln, and Arg residues may be accessible for protein hydrogel interactions with water molecules. Our bioinformatics study included seven other spicule matrix proteins where we note similarities between these proteins and rare, unusual proteins that possess folded and unfolded traits. Moreover, spicule matrix proteins possess three types of sequences: intrinsically disordered, amyloid-like, and folded protein-protein interactive. Collectively these reactive domains would be capable of driving protein assembly and hydrogel formation. Interestingly, three types of global conformations are predicted for the nine member protein set, wherein we note variations in the arrangement of intrinsically disordered and interactive globular domains. These variations may reflect species-specific requirements for spiculogenesis. We conclude that the molecular landscape of spicule matrix protein families enables them to function as hydrogelators, nucleators, and assemblers of mineral nanoparticles.
Collapse
|
161
|
Pallarés I, Ventura S. Advances in the Prediction of Protein Aggregation Propensity. Curr Med Chem 2019; 26:3911-3920. [DOI: 10.2174/0929867324666170705121754] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 12/29/2022]
Abstract
Background:
Protein aggregation into β-sheet-enriched insoluble assemblies is being
found to be associated with an increasing number of debilitating human pathologies, such as Alzheimer’s
disease or type 2 diabetes, but also with premature aging. Furthermore, protein aggregation
represents a major bottleneck in the production and marketing of proteinbased therapeutics.
Thus, the development of methods to accurately forecast the aggregation propensity of a certain
protein is of much value.
Methods/Results:
A myriad of in vitro and in vivo aggregation studies have shown that the aggregation
propensity of a certain polypeptide sequence is highly dependent on its intrinsic properties
and, in most cases, driven by specific short regions of high aggregation propensity. These observations
have fostered the development of a first generation of algorithms aimed to predict protein
aggregation propensities from the protein sequence. A second generation of programs able to map
protein aggregation on protein structures is emerging. Herein, we review the most representative
online accessible predictive tools, emphasizing their main distinctive features and the range of
applications.
Conclusion:
In this review, we describe representative biocomputational approaches to evaluate
the aggregation properties of protein sequences and structures, while illustrating how they can
become very useful tools to target protein aggregation in biomedicine and biotechnology.
Collapse
Affiliation(s)
- Irantzu Pallarés
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, 08193-Bellaterra (Barcelona), Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, 08193-Bellaterra (Barcelona), Spain
| |
Collapse
|
162
|
Hu Z, Yu C, Furutsuki M, Andreoletti G, Ly M, Hoskins R, Adhikari AN, Brenner SE. VIPdb, a genetic Variant Impact Predictor Database. Hum Mutat 2019; 40:1202-1214. [PMID: 31283070 PMCID: PMC7288905 DOI: 10.1002/humu.23858] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 12/30/2022]
Abstract
Genome sequencing identifies vast number of genetic variants. Predicting these variants' molecular and clinical effects is one of the preeminent challenges in human genetics. Accurate prediction of the impact of genetic variants improves our understanding of how genetic information is conveyed to molecular and cellular functions, and is an essential step towards precision medicine. Over one hundred tools/resources have been developed specifically for this purpose. We summarize these tools as well as their characteristics, in the genetic Variant Impact Predictor Database (VIPdb). This database will help researchers and clinicians explore appropriate tools, and inform the development of improved methods. VIPdb can be browsed and downloaded at https://genomeinterpretation.org/vipdb.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Changhua Yu
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Department of Bioengineering, University of California, Berkeley, California 94720, USA
| | - Mabel Furutsuki
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Gaia Andreoletti
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Melissa Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Division of Data Sciences, University of California, Berkeley, California 94720, USA
| | - Roger Hoskins
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Aashish N. Adhikari
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Steven E. Brenner
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
163
|
Kaus K, Biester A, Chupp E, Lu J, Visudharomn C, Olson R. The 1.9 Å crystal structure of the extracellular matrix protein Bap1 from Vibrio cholerae provides insights into bacterial biofilm adhesion. J Biol Chem 2019; 294:14499-14511. [PMID: 31439670 DOI: 10.1074/jbc.ra119.008335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/16/2019] [Indexed: 01/09/2023] Open
Abstract
Growth of the cholera bacterium Vibrio cholerae in a biofilm community contributes to both its pathogenicity and survival in aquatic environmental niches. The major components of V. cholerae biofilms include Vibrio polysaccharide (VPS) and the extracellular matrix proteins RbmA, RbmC, and Bap1. To further elucidate the previously observed overlapping roles of Bap1 and RbmC in biofilm architecture and surface attachment, here we investigated the structural and functional properties of Bap1. Soluble expression of Bap1 was possible only after the removal of an internal 57-amino-acid-long hydrophobic insertion sequence. The crystal structure of Bap1 at 1.9 Å resolution revealed a two-domain assembly made up of an eight-bladed β-propeller interrupted by a β-prism domain. The structure also revealed metal-binding sites within canonical calcium blade motifs, which appear to have structural rather than functional roles. Contrary to results previously observed with RbmC, the Bap1 β-prism domain did not exhibit affinity for complex N-glycans, suggesting an altered role of this domain in biofilm-surface adhesion. Native polyacrylamide gel shift analysis did suggest that Bap1 exhibits lectin activity with a preference for anionic or linear polysaccharides. Our results suggest a model for V. cholerae biofilms in which Bap1 and RbmC play dominant but differing adhesive roles in biofilms, allowing bacterial attachment to diverse environmental or host surfaces.
Collapse
Affiliation(s)
- Katherine Kaus
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Alison Biester
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Ethan Chupp
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Jianyi Lu
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Charlie Visudharomn
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Rich Olson
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| |
Collapse
|
164
|
Galzitskaya O. New Mechanism of Amyloid Fibril Formation. Curr Protein Pept Sci 2019; 20:630-640. [PMID: 30686252 DOI: 10.2174/1389203720666190125160937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/18/2022]
Abstract
Polymorphism is a specific feature of the amyloid structures. We have studied the amyloid structures and the process of their formation using the synthetic and recombinant preparations of Aβ peptides and their three fragments. The fibrils of different morphology were obtained for these peptides. We suppose that fibril formation by Aβ peptides and their fragments proceeds according to the simplified scheme: destabilized monomer → ring-like oligomer → mature fibril that consists of ringlike oligomers. We are the first who did 2D reconstruction of amyloid fibrils provided that just a ringlike oligomer is the main building block in fibril of any morphology, like a cell in an organism. Taking this into account it is easy to explain the polymorphism of fibrils as well as the splitting of mature fibrils under different external actions, the branching and inhomogeneity of fibril diameters. Identification of regions in the protein chains that form the backbone of amyloid fibril is a direction in the investigation of amyloid formation. It has been demonstrated for Aβ(1-42) peptide and its fragments that their complete structure is inaccessible for the action of proteases, which is an evidence of different ways of association of ring-like oligomers with the formation of fibrils. Based on the electron microscopy and mass spectrometry data, we have proposed a molecular model of the fibril formed by both Aβ peptide and its fragments. In connection with this, the unified way of formation of fibrils by oligomers, which we have discovered, could facilitate the development of relevant fields of medicine of common action.
Collapse
Affiliation(s)
- Oxana Galzitskaya
- Group of Bioinformatics, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| |
Collapse
|
165
|
Austerberry JI, Thistlethwaite A, Fisher K, Golovanov AP, Pluen A, Esfandiary R, van der Walle CF, Warwicker J, Derrick JP, Curtis R. Arginine to Lysine Mutations Increase the Aggregation Stability of a Single-Chain Variable Fragment through Unfolded-State Interactions. Biochemistry 2019; 58:3413-3421. [DOI: 10.1021/acs.biochem.9b00367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- James I. Austerberry
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Angela Thistlethwaite
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Karl Fisher
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Alexander P. Golovanov
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Alain Pluen
- Manchester Pharmacy School, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Reza Esfandiary
- Dosage Form Design & Development, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | | | - Jim Warwicker
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Jeremy P. Derrick
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Robin Curtis
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
166
|
Wang W, Navarro S, Azizyan RA, Baño-Polo M, Esperante SA, Kajava AV, Ventura S. Prion soft amyloid core driven self-assembly of globular proteins into bioactive nanofibrils. NANOSCALE 2019; 11:12680-12694. [PMID: 31237592 DOI: 10.1039/c9nr01755k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Amyloids have been exploited to build amazing bioactive materials. In most cases, short synthetic peptides constitute the functional components of such materials. The controlled assembly of globular proteins into active amyloid nanofibrils is still challenging, because the formation of amyloids implies a conformational conversion towards a β-sheet-rich structure, with a concomitant loss of the native fold and the inactivation of the protein. There is, however, a remarkable exception to this rule: yeast prions. They are singular proteins able to switch between a soluble and an amyloid state. In both states, the structure of their globular domains remains essentially intact. The transit between these two conformations is encoded in prion domains (PrDs): long and disordered sequences to which the active globular domains are appended. PrDs are much larger than typical self-assembling peptides. This seriously limits their use for nanotechnological applications. We have recently shown that these domains contain soft amyloid cores (SACs) that suffice to nucleate their self-assembly reaction. Here we genetically fused a model SAC with different globular proteins. We demonstrate that this very short sequence acts as a minimalist PrD, driving the selective and slow assembly of the initially soluble fusion proteins into amyloid fibrils in which the globular proteins retain their native structure and display high activity. Overall, we provide here a novel, modular and straightforward strategy to build active protein-based nanomaterials at a preparative scale.
Collapse
Affiliation(s)
- Weiqiang Wang
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Rafayel A Azizyan
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France
| | - Manuel Baño-Polo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Sebastian A Esperante
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
167
|
Identification of amyloidogenic peptides via optimized integrated features space based on physicochemical properties and PSSM. Anal Biochem 2019; 583:113362. [PMID: 31310738 DOI: 10.1016/j.ab.2019.113362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 01/08/2023]
Abstract
At present, the identification of amyloid becomes more and more essential and meaningful. Because its mis-aggregation may cause some diseases such as Alzheimer's and Parkinson's diseases. This paper focus on the classification of amyloidogenic peptides and a novel feature representation called PhyAve_PSSMDwt is proposed. It includes two parts. One is based on physicochemical properties involving hydrophilicity, hydrophobicity, aggregation tendency, packing density and H-bonding which extracts 15-dimensional features in total. And the other is 60-dimensional features through recursive feature elimination from PSSM by discrete wavelet transform. In this period, sliding window is introduced to reconstruct PSSM so that the evolutionary information of short sequences can still be extracted. At last, the support vector machine is adopted as a classifier. The experimental result on Pep424 dataset shows that PSSM's information makes a great contribution on performance. And compared with other existing methods, our results after cross-validation increase by 3.1%, 3.3%, 0.136 and 0.007 in accuracy, specificity, Matthew's correlation coefficient and AUC value, respectively. It indicates that our method is effective and competitive.
Collapse
|
168
|
Navarro S, Ventura S. Computational re-design of protein structures to improve solubility. Expert Opin Drug Discov 2019; 14:1077-1088. [DOI: 10.1080/17460441.2019.1637413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Susanna Navarro
- Institut de Biotecnologia i de Biomedicina, Parc de Recerca UAB, Mòdul B, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Parc de Recerca UAB, Mòdul B, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
169
|
Palumbo E, Zhao B, Xue B, Uversky VN, Davé V. Analyzing aggregation propensities of clinically relevant PTEN mutants: a new culprit in pathogenesis of cancer and other PTENopathies. J Biomol Struct Dyn 2019; 38:2253-2266. [PMID: 31232187 DOI: 10.1080/07391102.2019.1630005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While studies on pathological protein aggregation are largely limited to neurodegenerative disease, emerging evidence suggests that other diseases are also associated with pathogenic protein aggregation. For example, tumor suppressor protein p53, and its mutant conformers, undergo protein aggregation, exacerbating the cancer phenotype. These findings raise the possibility that inactivation of tumor suppressors via protein aggregation may participate in cancer and other disease pathologies. Since tumor suppressor protein PTEN has similar functions to p53, and is mutated in multiple diseases, we examined the aggregation propensity of PTEN wild-type and 1523 clinically relevant PTEN mutants. Applying computational tools to PTEN mutation databases revealed that PTEN wild-type protein can aggregate under physiological conditions, and 274 distinct PTEN mutants had increased aggregation propensity. To understand the mechanism underlying PTEN conformer aggregation, we analyzed the physicochemical properties of these 274 PTEN mutants and defined their aggregation potential. We conclude that increased aggregation propensity of select PTEN mutants may contribute to disease phenotypes. Our studies have built the foundation for interrogating the aggregation potential of these select mutants in cancers and in PTENopathies. Elucidating the pathogenic mechanisms associated with aggregation-prone PTEN conformers will aid in developing therapies that target PTEN-aggregates in multiple diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Emily Palumbo
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Bi Zhao
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
170
|
|
171
|
In Silico Insights into HIV-1 Vpu-Tetherin Interactions and Its Mutational Counterparts. Med Sci (Basel) 2019; 7:medsci7060074. [PMID: 31234536 PMCID: PMC6631454 DOI: 10.3390/medsci7060074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022] Open
Abstract
Tetherin, an interferon-induced host protein encoded by the bone marrow stromal antigen 2 (BST2/CD317/HM1.24) gene, is involved in obstructing the release of many retroviruses and other enveloped viruses by cross-linking the budding virus particles to the cell surface. This activity is antagonized in the case of human immunodeficiency virus (HIV)-1 wherein its accessory protein Viral Protein U (Vpu) interacts with tetherin, causing its downregulation from the cell surface. Vpu and tetherin connect through their transmembrane (TM) domains, culminating into events leading to tetherin degradation by recruitment of β-TrCP2. However, mutations in the TM domains of both proteins are reported to act as a resistance mechanism to Vpu countermeasure impacting tetherin's sensitivity towards Vpu but retaining its antiviral activity. Our study illustrates the binding aspects of blood-derived, brain-derived, and consensus HIV-1 Vpu with tetherin through protein-protein docking. The analysis of the bound complexes confirms the blood-derived Vpu-tetherin complex to have the best binding affinity as compared to other two. The mutations in tetherin and Vpu are devised computationally and are subjected to protein-protein interactions. The complexes are tested for their binding affinities, residue connections, hydrophobic forces, and, finally, the effect of mutation on their interactions. The single point mutations in tetherin at positions L23Y, L24T, and P40T, and triple mutations at {L22S, F44Y, L37I} and {L23T, L37T, T45I}, while single point mutations in Vpu at positions A19H and W23Y and triplet of mutations at {V10K, A11L, A19T}, {V14T, I18T, I26S}, and {A11T, V14L, A15T} have revealed no polar contacts with minimal hydrophobic interactions between Vpu and tetherin, resulting in reduced binding affinity. Additionally, we have explored the aggregation potential of tetherin and its association with the brain-derived Vpu protein. This work is a possible step toward an understanding of Vpu-tetherin interactions.
Collapse
|
172
|
Selivanova OM, Rogachevsky VV, Syrin AK, Galzitskaya OV. [Molecular mechanism of amyloid formation by Ab peptide: review of own works]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:94-109. [PMID: 29460839 DOI: 10.18097/pbmc20186401094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
TA characteristic feature of amyloid structures is polymorphism. The study of amyloid structures and their formation process was carried out for synthetic and recombinant Ab(1-40) and Ab(1-42) peptide preparations. In the study of these peptides, we recognized fibrils of different morphologies. We observed fibrillar formations in the form of single fibrils, ribbons, bundles, bunches, and clusters. Polymorphism of fibrils was observed not only when the environmental conditions changed, but under the same conditions and this was a common characteristics of all amyloid formations. Fibrils of Ab(1-40) peptides tended to form aggregates of fibrils in the form of ribbons, while Ab(1-42) peptide under the same conditions polymerized in the form of rough fibrils of different diameters and tends to branch. We assume that the formation of fibrils of Ab(1-40) and Ab(1-42) peptides occurs according to a simplified scheme: a destabilized monomer ® a ring oligomer ® a mature fibril consisting of ring oligomers. Proceeding from the proposition that the ring oligomer is the main building block of amyloid fibril (similar to the cell in the body), it is easy to explain fibril polymorphism, as well as fragmentation of mature fibrils under various external influences, branching and irregularity of diameter (surface roughness) of fibrils. One aspect of the study of amyloidogenesis is the determination of the regions of the protein chain forming the core of the amyloid fibril. We theoretically predicted amyloidogenic regions for two isoforms of Ab peptides capable of forming an amyloid structure: 16-21 and 32-36 residues. Using the method of tandem mass spectrometry, these regions were determined experimentally. It was shown that the regions of Ab(1-40) peptide from 16 to 22 and from 28 to 40 residues were resistant to the action of proteases, i.e. its formed the core of the amyloid fibril. For Ab(1-42) peptide the whole sequence is not available for the action of proteases, which indicates a different way of associating ring oligomers in the formation of fibrils. Based on electron microscopy and mass spectrometry data we proposed a molecular model of the fibril formed by Ab(1-40) and Ab(1-42) peptides.
Collapse
Affiliation(s)
- O M Selivanova
- Institute of Protein Research, Pushchino, Moscow Region, Russia
| | - V V Rogachevsky
- Institute of Cell Biophysics, Pushchino, Moscow Region, Russia
| | - A K Syrin
- Institute of Protein Research, Pushchino, Moscow Region, Russia; State Scientific Center of Applied Microbiology and biotechnology, Village Obolensk, Moscow Region, Serpukhov District, Russia
| | - O V Galzitskaya
- Institute of Protein Research, Pushchino, Moscow Region, Russia
| |
Collapse
|
173
|
Surin AK, Grishin SY, Galzitskaya OV. Identification of Amyloidogenic Regions in the Spine of Insulin Fibrils. BIOCHEMISTRY (MOSCOW) 2019; 84:47-55. [PMID: 30927525 DOI: 10.1134/s0006297919010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To reveal conformational changes resulting in the formation of insulin fibrils, it is necessary to identify amyloidogenic regions in the structure of protein monomers. Different models of insulin fibrillogenesis have been proposed previously. However, precise regions responsible for the formation of amyloid fibrils have not been identified. Using bioinformatics programs for predicting amyloidogenic regions, we have determined some common amyloidogenic sequences in the structure of insulin monomers. The use of limited proteolysis and mass spectrometry analysis of the obtained protein fragments resistant to the action of proteases allowed us to identify amino acid sequences in the insulin structure that can form the spine of the insulin fibrils. The obtained results are in agreement with the earlier proposed model of fibril formation from the ring-like oligomers and can be used for designing insulin analogs resistant to amyloidogenesis.
Collapse
Affiliation(s)
- A K Surin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia.,Gamaleya Research Center of Epidemiology and Microbiology, Moscow, 123098, Russia
| | - S Yu Grishin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,Lomonosov Moscow State University, Moscow, 119991, Russia
| | - O V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
174
|
Rashno F, Khajeh K, Dabirmanesh B, Sajedi RH, Chiti F. Insight into the aggregation of lipase from Pseudomonas sp. using mutagenesis: protection of aggregation prone region by adoption of α-helix structure. Protein Eng Des Sel 2019; 31:419-426. [DOI: 10.1093/protein/gzz003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/07/2019] [Accepted: 03/19/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Fatemeh Rashno
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fabrizio Chiti
- Department of Biomedical, Experimental and Clinical Sciences, Section of Biochemistry, University of Florence, Viale Morgagni 50, Florence, Italy
| |
Collapse
|
175
|
Carija A, Pinheiro F, Pujols J, Brás IC, Lázaro DF, Santambrogio C, Grandori R, Outeiro TF, Navarro S, Ventura S. Biasing the native α-synuclein conformational ensemble towards compact states abolishes aggregation and neurotoxicity. Redox Biol 2019; 22:101135. [PMID: 30769283 PMCID: PMC6375061 DOI: 10.1016/j.redox.2019.101135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/18/2018] [Accepted: 02/04/2019] [Indexed: 01/07/2023] Open
Abstract
The aggregation of α-synuclein (α-syn) into amyloid fibrils is a major pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. The mechanisms underlying the structural transition of soluble and innocuous α-syn to aggregated neurotoxic forms remains largely unknown. The disordered nature of α-syn has hampered the use of structure-based protein engineering approaches to elucidate the molecular determinants of this transition. The recent 3D structure of a pathogenic α-syn fibril provides a template for this kind of studies. The structure supports the NAC domain being a critical element in fibril formation, since it constitutes the core of the fibril, delineating a Greek-key motif. Here, we stapled the ends of this motif with a designed disulfide bond and evaluated its impact on the conformation, aggregation and toxicity of α-syn in different environments. The new covalent link biases the native structural ensemble of α-syn toward compact conformations, reducing the population of fully unfolded species. This conformational bias results in a strongly reduced fibril formation propensity both in the absence and in the presence of lipids and impedes the formation of neurotoxic oligomers. Our study does not support the Greek-key motif being already imprinted in early α-syn assemblies, discarding it as a druggable interface to prevent the initiation of fibrillation. In contrast, it suggests the stabilization of native, compact ensembles as a potential therapeutic strategy to avoid the formation of toxic species and to target the early stages of PD.
Collapse
Affiliation(s)
- Anita Carija
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Inês C Brás
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Diana Fernandes Lázaro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Waldweg 33, 37073 Göttingen, Germany; Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany; Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
176
|
Chiritoiu M, Brouwers N, Turacchio G, Pirozzi M, Malhotra V. GRASP55 and UPR Control Interleukin-1β Aggregation and Secretion. Dev Cell 2019; 49:145-155.e4. [DOI: 10.1016/j.devcel.2019.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/10/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
|
177
|
Radamaker L, Lin YH, Annamalai K, Huhn S, Hegenbart U, Schönland SO, Fritz G, Schmidt M, Fändrich M. Cryo-EM structure of a light chain-derived amyloid fibril from a patient with systemic AL amyloidosis. Nat Commun 2019; 10:1103. [PMID: 30894526 PMCID: PMC6427026 DOI: 10.1038/s41467-019-09032-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Amyloid fibrils derived from antibody light chains are key pathogenic agents in systemic AL amyloidosis. They can be deposited in multiple organs but cardiac amyloid is the major risk factor of mortality. Here we report the structure of a λ1 AL amyloid fibril from an explanted human heart at a resolution of 3.3 Å which we determined using cryo-electron microscopy. The fibril core consists of a 91-residue segment presenting an all-beta fold with ten mutagenic changes compared to the germ line. The conformation differs substantially from natively folded light chains: a rotational switch around the intramolecular disulphide bond being the crucial structural rearrangement underlying fibril formation. Our structure provides insight into the mechanism of protein misfolding and the role of patient-specific mutations in pathogenicity.
Collapse
Affiliation(s)
- Lynn Radamaker
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Yin-Hsi Lin
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | | | - Stefanie Huhn
- Medical Department V, Section of Multiple Myeloma, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Stefan O Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Günter Fritz
- Institute of Microbiology, University of Hohenheim, 70599, Stuttgart, Germany
- Institute for Neuropathology, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
178
|
An Expanded Conformation of an Antibody Fab Region by X-Ray Scattering, Molecular Dynamics, and smFRET Identifies an Aggregation Mechanism. J Mol Biol 2019; 431:1409-1425. [PMID: 30776431 DOI: 10.1016/j.jmb.2019.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 11/20/2022]
Abstract
Protein aggregation is the underlying cause of many diseases, and also limits the usefulness of many natural and engineered proteins in biotechnology. Better mechanistic understanding and characterization of aggregation-prone states is needed to guide protein engineering, formulation, and drug-targeting strategies that prevent aggregation. While several final aggregated states-notably amyloids-have been characterized structurally, very little is known about the native structural conformers that initiate aggregation. We used a novel combination of small-angle x-ray scattering (SAXS), atomistic molecular dynamic simulations, single-molecule Förster resonance energy transfer, and aggregation-prone region predictions, to characterize structural changes in a native humanized Fab A33 antibody fragment, that correlated with the experimental aggregation kinetics. SAXS revealed increases in the native state radius of gyration, Rg, of 2.2% to 4.1%, at pH 5.5 and below, concomitant with accelerated aggregation. In a cutting-edge approach, we fitted the SAXS data to full MD simulations from the same conditions and located the conformational changes in the native state to the constant domain of the light chain (CL). This CL displacement was independently confirmed using single-molecule Förster resonance energy transfer measurements with two dual-labeled Fabs. These conformational changes were also found to increase the solvent exposure of a predicted APR, suggesting a likely mechanism through which they promote aggregation. Our findings provide a means by which aggregation-prone conformational states can be readily determined experimentally, and thus potentially used to guide protein engineering, or ligand binding strategies, with the aim of stabilizing the protein against aggregation.
Collapse
|
179
|
Gour S, Kumar V, Singh A, Gadhave K, Goyal P, Pandey J, Giri R, Yadav JK. Mammalian antimicrobial peptide protegrin‐4 self assembles and forms amyloid‐like aggregates: Assessment of its functional relevance. J Pept Sci 2019; 25:e3151. [DOI: 10.1002/psc.3151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/18/2018] [Accepted: 01/13/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Shalini Gour
- Department of BiotechnologyCentral University of Rajasthan Ajmer India
| | - Vijay Kumar
- Department of BiotechnologyCentral University of Rajasthan Ajmer India
| | - Ashutosh Singh
- School of Basic SciencesIndian Institute of Technology Mandi Kamand India
| | - Kundlik Gadhave
- School of Basic SciencesIndian Institute of Technology Mandi Kamand India
| | - Pankaj Goyal
- Department of BiotechnologyCentral University of Rajasthan Ajmer India
| | - Janmejay Pandey
- Department of BiotechnologyCentral University of Rajasthan Ajmer India
| | - Rajanish Giri
- School of Basic SciencesIndian Institute of Technology Mandi Kamand India
| | - Jay Kant Yadav
- Department of BiotechnologyCentral University of Rajasthan Ajmer India
| |
Collapse
|
180
|
Proline functionalized gold nanoparticles modulates lysozyme fibrillation. Colloids Surf B Biointerfaces 2019; 174:401-408. [PMID: 30476794 DOI: 10.1016/j.colsurfb.2018.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 11/20/2022]
|
181
|
Coskuner-Weber O, Uversky VN. Alanine Scanning Effects on the Biochemical and Biophysical Properties of Intrinsically Disordered Proteins: A Case Study of the Histidine to Alanine Mutations in Amyloid-β42. J Chem Inf Model 2019; 59:871-884. [DOI: 10.1021/acs.jcim.8b00926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
182
|
Bacterial Amyloids: Biogenesis and Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:113-159. [DOI: 10.1007/978-981-13-9791-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
183
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
184
|
Musil M, Konegger H, Hon J, Bednar D, Damborsky J. Computational Design of Stable and Soluble Biocatalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03613] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Milos Musil
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment (RECETOX), and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 612 66 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Hannes Konegger
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment (RECETOX), and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Hon
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment (RECETOX), and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 612 66 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment (RECETOX), and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment (RECETOX), and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
185
|
Karmakar S, Sharma LG, Roy A, Patel A, Pandey LM. Neuronal SNARE complex: A protein folding system with intricate protein-protein interactions, and its common neuropathological hallmark, SNAP25. Neurochem Int 2018; 122:196-207. [PMID: 30517887 DOI: 10.1016/j.neuint.2018.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/08/2018] [Accepted: 12/01/2018] [Indexed: 12/26/2022]
Abstract
SNARE (Soluble NSF(N-ethylmaleimide-sensitive factor) Attachment Receptor) complex is a trimeric supramolecular organization of SNAP25, syntaxin, and VAMP which mediates fusion of synaptic vesicles with the presynaptic plasma membrane. The functioning of this entire protein assembly is dependent on its tetrahelical coiled coil structure alongside its interaction with a large spectrum of regulatory proteins like synaptotagmin, complexin, intersectin, etc. Defects arising in SNARE complex assembly due to mutations or faulty post-translational modifications are associated to severe synaptopathies like Schizophrenia and also proteopathies like Alzheimer's disease. The review primarily focuses on SNAP25, which is the prime contributor in the complex assembly. It is conceptualized that the network of protein interactions of this helical protein assists as a chaperoning system for attaining functional structure. Additionally, the innate disordered nature of SNAP25 and its amyloidogenic propensities have been highlighted employing computational methods. The intrinsic nature of SNAP25 is anticipated to form higher-order aggregates due to its cysteine rich domain, which is also a target for several post-translational modifications. Furthermore, the aberrations in the structure and expression profile of the protein display common patterns in the pathogenesis of a diverse synaptopathies and proteopathies. This work of SNARE literature aims to provide a new comprehensive outlook and research directions towards SNARE complex and presents SNAP25 as a common neuropathological hallmark which can be a diagnostic or therapeutic target.
Collapse
Affiliation(s)
- Srijeeb Karmakar
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Laipubam Gayatri Sharma
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Abhishek Roy
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Anjali Patel
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Lalit Mohan Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
186
|
Golovko AO, Koroleva ON, Tolstova AP, Kuz'mina NV, Dubrovin EV, Drutsa VL. Aggregation of Influenza A Virus Nuclear Export Protein. BIOCHEMISTRY (MOSCOW) 2018; 83:1411-1421. [PMID: 30482152 DOI: 10.1134/s0006297918110111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Influenza A virus nuclear export protein (NEP) plays an important role in the viral life cycle. Recombinant NEP proteins containing (His)6-tag at either N- or C-terminus were obtained by heterologous expression in Escherichia coli cells and their high propensity for aggregation was demonstrated. Dynamic light scattering technique was used to study the kinetics and properties of NEP aggregation in solutions under different conditions (pH, ionic strength, presence of low-molecular-weight additives and organic solvents). Using atomic force microscopy, the predominance of spherical aggregates in all examined NEP preparations was shown, with some amyloid-like structures being observed in the case of NEP-C protein. A number of structure prediction programs were used to identify aggregation-prone regions in the NEP structure. All-atom molecular dynamics simulations indicate a high rate of NEP molecule aggregation and reveal the regions preferentially involved in the intermolecular contacts that are located at the edges of the rod-like protein molecule. Our results suggest that NEP aggregation is determined by different types of interactions and represents an intrinsic property of the protein that appears to be necessary for its functioning in vivo.
Collapse
Affiliation(s)
- A O Golovko
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119991, Russia.
| | - O N Koroleva
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | - A P Tolstova
- Lomonosov Moscow State University, Department of Physics, Moscow, 119991, Russia.
| | - N V Kuz'mina
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia. .,Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - E V Dubrovin
- Lomonosov Moscow State University, Department of Physics, Moscow, 119991, Russia.
| | - V L Drutsa
- Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| |
Collapse
|
187
|
RETRACTED: Peptide-induced formation of protein aggregates and amyloid fibrils in human and guinea pig αA-crystallins under physiological conditions of temperature and pH. Exp Eye Res 2018; 179:193-205. [PMID: 30448341 DOI: 10.1016/j.exer.2018.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/17/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the authors. The senior author contacted the journal in a forthright manner, in an effort to preserve the scientific integrity of the literature, after discovering a significant error in the results reported in the article. The authors were recently made aware of a paper by Kim et al. (Nature Commun. 2019) which shows a spirosome structure (the enzyme aldehyde-alcohol dehydrogenase) present in E. coli (Fig. 5a) that is very similar to the structure the authors thought formed when synthetic alpha A crystallin (66-80) peptide was incubated for 24 h with recombinant guinea pig alpha A insert crystallin (see Kumarasamy et al., Figs. 7C and F, and Fig. 9). Subsequent to publication of their report, the authors later found a number of images that showed what appeared to be the same structure present in samples of their presumably purified recombinant guinea pig alpha A insert crystallin which had been incubated without peptide for 24 h. Hence, the authors now conclude that the structures shown in Figs. 7C and F, and Fig. 9 of their article published in this journal are actually due to E. coli contaminant aldehyde-alcohol dehydrogenase. The authors deeply regret this error and any inconvenience it may have caused.
Collapse
|
188
|
Galzitskaya OV, Lobanov MY. Proteome-scale understanding of relationship between homo-repeat enrichments and protein aggregation properties. PLoS One 2018; 13:e0206941. [PMID: 30399196 PMCID: PMC6219797 DOI: 10.1371/journal.pone.0206941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023] Open
Abstract
Expansion of homo-repeats is a molecular basis for human neurological diseases. We are the first who studied the influence of homo-repeats with lengths larger than four amino acid residues on the aggregation properties of 1449683 proteins across 122 eukaryotic and bacterial proteomes. Only 15% of proteins (215481) include homo-repeats of such length. We demonstrated that RNA-binding proteins with a prion-like domain are enriched with homo-repeats in comparison with other non-redundant protein sequences and those in the PDB. We performed a bioinformatics analysis for these proteins and found that proteins with homo-repeats are on average two times longer than those in the whole database. Moreover, we are first to discover that as a rule, homo-repeats appear in proteins not alone but in pairs: hydrophobic and aromatic homo-repeats appear with similar ones, while homo-repeats with small, polar and charged amino acids appear together with different preferences. We elaborated a new complementary approach to demonstrate the influence of homo-repeats on their host protein aggregation properties. We have shown that addition of artificial homo-repeats to natural and random proteins results in intensification of aggregation properties of the proteins. The maximal effect is observed for the insertion of artificial homo-repeats with 5–6 residues, which is consistent with the minimal length of an amyloidogenic region. We have also demonstrated that the ability of proteins with homo-repeats to aggregate cannot be explained only by the presence of long homo-repeats in them. There should be other characteristics of proteins intensifying the aggregation property including such as the appearance of homo-repeats in pairs in the same protein. We are the first who elaborated a new approach to study the influence of homo-repeats present in proteins on their aggregation properties and performed an appropriate analysis of the large number of proteomes and proteins.
Collapse
Affiliation(s)
- Oxana V. Galzitskaya
- Group of Bioinformatics, Institute of Protein Research, Russian Academy of Science, Pushchino, Moscow Region, Russia
- * E-mail:
| | - Miсhail Yu. Lobanov
- Group of Bioinformatics, Institute of Protein Research, Russian Academy of Science, Pushchino, Moscow Region, Russia
| |
Collapse
|
189
|
Prasanna G, Jing P. Spectroscopic and molecular modelling studies on glycation modified bovine serum albumin with cyanidin-3-O-glucoside. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:708-716. [PMID: 29982163 DOI: 10.1016/j.saa.2018.06.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/16/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
In this study, we report the glycation mediated effect of bovine serum albumin (BSA) on the molecular interaction mechanism of cyanidin-3-O-glucoside (C3G) by molecular modelling, Uv-visible spectroscopy, transmission electron microscopy (TEM), fluorescence spectroscopy, and circular dichroism spectroscopy studies. The structures of advanced glycation end-products (AGEs) modified BSA were modelled, energy minimized and analyzed for binding affinity by molecular docking studies using Autodock Vina. Glycation experiments are carried out using glucose and methylglyoxal to validate the molecular modelling results on the interaction of modified BSA with C3G. The modified structures were characterized by reduction in the binding pocket volume, surface, depth, hydrophobicity, and hydrogen bond donors/acceptors. Arg-194, Arg-196, Arg-198, Arg-217, Arg-409, Lys-114, Lys-116, Lys-204, Lys 221, and Lys-439 were found to be crucial in the context of glycation of BSA. TEM images represented the formation of unique globular aggregates in the event of glycation. Uv-visible spectroscopic studies showed the formation of new chromophores between 300 and 400 nm in the event of glycation. Fluorescence quenching was observed in a differential manner in the presence of C3G on glycation modified BSA. Circular dichroism studies suggested the loss of helical structure and formation of β-sheeted structure upon glycation, but subsequent C3G binding has resulted in the increase towards helical structure. Our findings suggested that drug binding affinity has been certainly impaired due to glycation and subsequent AGE modification. Arg-p modification has more austere impact on the structure and would affect the binding properties. We conclude that C3G had differential modulation of binding properties on glycated BSA which can help to protect the stability and bioavailability that has been impaired due to glycation mediated structural changes.
Collapse
Affiliation(s)
- Govindarajan Prasanna
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
190
|
Kumari B, Kumar R, Chauhan V, Kumar M. Comparative functional analysis of proteins containing low-complexity predicted amyloid regions. PeerJ 2018; 6:e5823. [PMID: 30397544 PMCID: PMC6214233 DOI: 10.7717/peerj.5823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 09/25/2018] [Indexed: 11/20/2022] Open
Abstract
Background In both prokaryotic and eukaryotic proteins, repeated occurrence of a single or a group of few amino acids are found. These regions are termed as low complexity regions (LCRs). It has been observed that amino acid bias in LCR is directly linked to their uncontrolled expansion and amyloid formation. But a comparative analysis of the behavior of LCR based on their constituent amino acids and their association with amyloidogenic propensity is not available. Methods Firstly we grouped all LCRs on the basis of their composition: homo-polymers, positively charged amino acids, negatively charged amino acids, polar amino acids and hydrophobic amino acids. We analyzed the compositional pattern of LCRs in each group and their propensity to form amyloids. The functional characteristics of proteins containing different groups of LCRs were explored using DAVID. In addition, we also analyzed the classes, pathways and functions of human proteins that form amyloids in LCRs. Results Among homopolymeric LCRs, the most common was Gln repeats. LCRs composed of repeats of Met and aromatic amino acids were amongst the least occurring. The results revealed that LCRs composed of negatively charged and polar amino acids were more common in comparison to LCRs formed by positively charged and hydrophobic amino acids. We also noted that generally proteins with LCRs were involved in transcription but those with Gly repeats were associated to translational activities. Our analysis suggests that proteins in which LCR is composed of hydrophobic residues are more prone toward amyloid formation. We also found that the human proteins with amyloid forming LCRs were generally involved in binding and catalytic activity. Discussion The presented analysis summarizes the most common and least occurring LCRs in proteins. Our results show that though repeats of Gln are the most abundant but Asn repeats make longest stretch of low complexity. The results showed that potential of LCRs to form amyloids varies with their amino acid composition.
Collapse
Affiliation(s)
- Bandana Kumari
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Ravindra Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Vipin Chauhan
- Department of Genetics, University of Delhi South Campus, New Delhi, India.,Current affiliation: Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
191
|
Galzitskaya OV, Surin AK, Glyakina AV, Rogachevsky VV, Selivanova OM. Should the Treatment of Amyloidosis Be Personified? Molecular Mechanism of Amyloid Formation by Aβ Peptide and Its Fragments. J Alzheimers Dis Rep 2018; 2:181-199. [PMID: 30480261 PMCID: PMC6218156 DOI: 10.3233/adr-180063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Aβ40 and Aβ42 peptides are believed to be associated with Alzheimer's disease. Aggregates (plaques) of Aβ fibrils are found in the brains of humans affected with this disease. The mechanism of formation of Aβ fibrils has not been studied completely, which hinders the development of a correct strategy for therapeutic prevention of this neurodegenerative disorder. It has been found that the most toxic samples upon generation of fibrils are different oligomeric formations. Based on different research methods used for studying amyloidogenesis of Aβ40 and Aβ42 peptides and its amyloidogenic fragments, we have proposed a new mechanism of formation of amyloid fibrils. In accord with this mechanism, the main building unit for fibril generation is a ring-like oligomer. Association of ring-like oligomers results in the formation of fibrils of different morphologies. Our model implies that to prevent development of Alzheimer's disease a therapeutic intervention is required at the earliest stages of amyloidogenesis-at the stage of formation of ring-like oligomers. Therefore, the possibility of a personified approach for prevention not only of Alzheimer's disease development but also of other neurodegenerative diseases associated with the formation of fibrils is argued.
Collapse
Affiliation(s)
- Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Science, Pushchino, Moscow Region, Russia
| | - Alexey K Surin
- Institute of Protein Research, Russian Academy of Science, Pushchino, Moscow Region, Russia.,State Scientific Center of Applied Microbiology and Biotechnology, Moscow Region, Serpukhov District, Obolensk, Russia.,Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Anna V Glyakina
- Institute of Protein Research, Russian Academy of Science, Pushchino, Moscow Region, Russia.,Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Russia
| | - Vadim V Rogachevsky
- Institute of Cell Biophysics, Russian Academy of Science, Pushchino, Moscow Region, Russia
| | - Olga M Selivanova
- Institute of Protein Research, Russian Academy of Science, Pushchino, Moscow Region, Russia
| |
Collapse
|
192
|
Tikhomirova TS, Galzitskaya OV. Functionally Significant Amino Acid Motifs of Heat Shock Proteins: Structural and Bioinformatics Analyses of Hsp60/Hsp10 in Five Classes of Chordata. Mol Biol 2018. [DOI: 10.1134/s0026893318050138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
193
|
An in-silico method for identifying aggregation rate enhancer and mitigator mutations in proteins. Int J Biol Macromol 2018; 118:1157-1167. [DOI: 10.1016/j.ijbiomac.2018.06.102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022]
|
194
|
Kaur G, Kapoor S, Thakur KG. Bacillus subtilis HelD, an RNA Polymerase Interacting Helicase, Forms Amyloid-Like Fibrils. Front Microbiol 2018; 9:1934. [PMID: 30186259 PMCID: PMC6111841 DOI: 10.3389/fmicb.2018.01934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022] Open
Abstract
HelD, an RNA polymerase binding protein from Bacillus subtilis, stimulates transcription and helps in timely adaptation of cells under diverse environmental conditions. At present, no structural information is available for HelD. In the current study, we performed size exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS) which suggests that HelD is predominantly monomeric and globular in solution. Using combination of size exclusion chromatography and analytical ultracentrifugation, we also show that HelD has a tendency to form higher order oligomers in solution. CD experiments suggest that HelD has both α-helical (∼35%) and β sheet (∼26%) secondary structural elements. Thermal melting experiments suggest that even at 90°C, there is only about 30% loss in secondary structural contents with Tm of 44°C. However, with the increase in temperature, there was a gain in the β-sheet content and significant irreversible loss of α-helical content. Using a combination of X-ray fiber diffraction analysis, and dye based assays including Thioflavin-T based fluorescence and Congo red binding assays, we discovered that HelD forms amyloid-like fibrils at physiologically relevant conditions in vitro. Using confocal imaging, we further show that HelD forms amyloid inclusions in Escherichia coli. Bioinformatics-based sequence analysis performed using three independent web-based servers suggests that HelD has more than 20 hot-spots spread across the sequence that may aid the formation of amyloid-like fibrils. This discovery adds one more member to the growing list of amyloid or amyloid-like fibril forming cytosolic proteins in bacteria. Future studies aimed at resolving the function of amyloid-like fibrils or amyloid inclusions may help better understand their role, if any, in the bacterial physiology.
Collapse
Affiliation(s)
- Gundeep Kaur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Srajan Kapoor
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Krishan G Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
195
|
Sneha P, Panda PK, Gharemirshamlu FR, Bamdad K, Balaji S. Structural discordance in HIV-1 Vpu from brain isolate alarms amyloid fibril forming behavior- a computational perspective. J Theor Biol 2018; 451:35-45. [PMID: 29705491 DOI: 10.1016/j.jtbi.2018.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/14/2018] [Accepted: 04/25/2018] [Indexed: 11/15/2022]
Abstract
HIV-1 being the most widespread type worldwide, its accounts for almost 95% of all infections including HIV associated dementia (HAD) that triggers neurological dysfunction and neurodegeneration in patients. The common features associated with HAD and other neurodegenerative diseases are accumulation of amyloid plaques, neuronal loss and deterioration of cognitive abilities, amongst which amyloid fibrillation is considered to be a hallmark. The success of effective therapeutics lies in the understanding of mechanisms leading to neurotoxicity. Few viral proteins like gp-120 are known to be involved in aggregation and enhancement of viral infectivity while comprehending the neurotoxic role of some other proteins is still underway. In the current study, amyloidogenic potential of HIV-1 Vpu protein from brain isolate is investigated through computational approaches. The aggregation propensity of brain derived HIV-1 Vpu was assessed by several amyloid prediction servers that projected the region 4-35 to be amyloidogenic. The protein structure was modeled and subjected to 70 ns molecular dynamics (MD) simulation to investigate the transformation of α-helical conformation of the predicted aggregate region into β-sheet, proposing the protein's ability to initiate fibril formation that is central to amyloidogenic proteins. The structural features of brain derived HIV-1 Vpu were consistent with the in silico amyloid prediction results that depicts the conformational change in the region 8-28 of which residues Ala8, Ile9, Val10, Ala19, Ile20 and Val21 constitutes β-sheet formation. The α-helix/β-sheet discordance of the predicted region was reflected in the simulation study highlighting the possible structural transition associated with HIV-1 Vpu protein of brain isolate.
Collapse
Affiliation(s)
- Patil Sneha
- School of Biotechnology and Bioinformatics, D.Y. Patil deemed to be University, CBD Belapur, Sector 15, Navi Mumbai, Maharashtra 400614, India; Research and Development Centre, Bharathiar University, Coimbatore 641046 India
| | - Pritam Kumar Panda
- School of Biotechnology and Bioinformatics, D.Y. Patil deemed to be University, CBD Belapur, Sector 15, Navi Mumbai, Maharashtra 400614, India
| | | | - Kourosh Bamdad
- Faculty of Science(,) Payame Noor University, 19395-4697 Iran
| | - Seetharaman Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 Karnataka, India.
| |
Collapse
|
196
|
Niu M, Li Y, Wang C, Han K. RFAmyloid: A Web Server for Predicting Amyloid Proteins. Int J Mol Sci 2018; 19:ijms19072071. [PMID: 30013015 PMCID: PMC6073578 DOI: 10.3390/ijms19072071] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
Amyloid is an insoluble fibrous protein and its mis-aggregation can lead to some diseases, such as Alzheimer’s disease and Creutzfeldt–Jakob’s disease. Therefore, the identification of amyloid is essential for the discovery and understanding of disease. We established a novel predictor called RFAmy based on random forest to identify amyloid, and it employed SVMProt 188-D feature extraction method based on protein composition and physicochemical properties and pse-in-one feature extraction method based on amino acid composition, autocorrelation pseudo acid composition, profile-based features and predicted structures features. In the ten-fold cross-validation test, RFAmy’s overall accuracy was 89.19% and F-measure was 0.891. Results were obtained by comparison experiments with other feature, classifiers, and existing methods. This shows the effectiveness of RFAmy in predicting amyloid protein. The RFAmy proposed in this paper can be accessed through the URL http://server.malab.cn/RFAmyloid/.
Collapse
Affiliation(s)
- Mengting Niu
- School of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Yanjuan Li
- School of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150040, China.
| | - Ke Han
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150040, China.
| |
Collapse
|
197
|
Zhao J, Nussinov R, Wu WJ, Ma B. In Silico Methods in Antibody Design. Antibodies (Basel) 2018; 7:E22. [PMID: 31544874 PMCID: PMC6640671 DOI: 10.3390/antib7030022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/10/2023] Open
Abstract
Antibody therapies with high efficiency and low toxicity are becoming one of the major approaches in antibody therapeutics. Based on high-throughput sequencing and increasing experimental structures of antibodies/antibody-antigen complexes, computational approaches can predict antibody/antigen structures, engineering the function of antibodies and design antibody-antigen complexes with improved properties. This review summarizes recent progress in the field of in silico design of antibodies, including antibody structure modeling, antibody-antigen complex prediction, antibody stability evaluation, and allosteric effects in antibodies and functions. We listed the cases in which these methods have helped experimental studies to improve the affinities and physicochemical properties of antibodies. We emphasized how the molecular dynamics unveiled the allosteric effects during antibody-antigen recognition and antibody-effector recognition.
Collapse
Affiliation(s)
- Jun Zhao
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
- Interagency Oncology Task Force (IOTF) Fellowship: Oncology Product Research/Review Fellow, National Cancer Institute, Bethesda, MD 20892, USA.
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Wen-Jin Wu
- Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
198
|
Yagi H, Fujise A, Itabashi N, Ohshiro T. Characterization of a novel endo-type alginate lyase derived from Shewanella sp. YH1. J Biochem 2018; 163:341-350. [PMID: 29319800 DOI: 10.1093/jb/mvy001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Alginate, which is an anionic polysaccharide, is widely distributed in the cell wall of brown algae. Alginate and the products of its degradation (oligosaccharides) are used in stabilizers, thickeners and gelling agents, especially in the food industry. The degradation of alginate generally involves a combination of several alginate lyases (exo-type, endo-type and oligoalginate lyase). Enhancing the efficiency of the production of alginate degradation products may require the identification of novel alginate lyases with unique characteristics. In this study, we isolated an alginate-utilizing bacterium, Shewanella sp. YH1, from seawater collected off the coast of Tottori prefecture, Japan. The detected novel alginate lyase was named AlgSI-PL7, and was classified in polysaccharide lyase family 7. The enzyme was purified from Shewanella sp. YH1 and a recombinant AlgSI-PL7 was produced in Escherichia coli. The optimal temperature and pH for enzyme activity were around 45°C and 8, respectively. Interestingly, we observed that AlgSI-PL7 was not thermotolerant, but could refold to its active form following an almost complete denaturation at approximately 60°C. Moreover, the degradation of alginate by AlgSI-PL7 produced two to five oligosaccharides, implying this enzyme was an endo-type lyase. Our findings suggest that AlgSI-PL7 may be useful as an industrial enzyme.
Collapse
Affiliation(s)
- Hisashi Yagi
- Center for Research on Green Sustainable Chemistry
| | - Asako Fujise
- Department of Chemistry and Biotechnology, Graduate School of Engineering
| | - Narumi Itabashi
- Department of Biotechnology, Faculty of Engineering, Tottori University, Tottori, Japan
| | - Takashi Ohshiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering
| |
Collapse
|
199
|
Chen M, Schafer NP, Zheng W, Wolynes PG. The Associative Memory, Water Mediated, Structure and Energy Model (AWSEM)-Amylometer: Predicting Amyloid Propensity and Fibril Topology Using an Optimized Folding Landscape Model. ACS Chem Neurosci 2018; 9:1027-1039. [PMID: 29241326 DOI: 10.1021/acschemneuro.7b00436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Amyloids are fibrillar protein aggregates with simple repeated structural motifs in their cores, usually β-strands but sometimes α-helices. Identifying the amyloid-prone regions within protein sequences is important both for understanding the mechanisms of amyloid-associated diseases and for understanding functional amyloids. Based on the crystal structures of seven cross-β amyloidogenic peptides with different topologies and one recently solved cross-α fiber structure, we have developed a computational approach for identifying amyloidogenic segments in protein sequences using the Associative memory, Water mediated, Structure and Energy Model (AWSEM). The AWSEM-Amylometer performs favorably in comparison with other predictors in predicting aggregation-prone sequences in multiple data sets. The method also predicts well the specific topologies (the relative arrangement of β-strands in the core) of the amyloid fibrils. An important advantage of the AWSEM-Amylometer over other existing methods is its direct connection with an efficient, optimized protein folding simulation model, AWSEM. This connection allows one to combine efficient and accurate search of protein sequences for amyloidogenic segments with the detailed study of the thermodynamic and kinetic roles that these segments play in folding and aggregation in the context of the entire protein sequence. We present new simulation results that highlight the free energy landscapes of peptides that can take on multiple fibril topologies. We also demonstrate how the Amylometer methodology can be straightforwardly extended to the study of functional amyloids that have the recently discovered cross-α fibril architecture.
Collapse
|
200
|
Wen L, Lyu M, Xiao H, Lan H, Zuo Z, Yin Z. Protein Aggregation and Performance Optimization Based on Microconformational Changes of Aromatic Hydrophobic Regions. Mol Pharm 2018; 15:2257-2267. [PMID: 29694051 DOI: 10.1021/acs.molpharmaceut.8b00115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lili Wen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, People’s Republic of China
| | - Man Lyu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, People’s Republic of China
| | - Huashuai Xiao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, People’s Republic of China
| | - Hairong Lan
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, People’s Republic of China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zongning Yin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, People’s Republic of China
| |
Collapse
|