151
|
Identification and characterization of posttranslational modification-specific binding proteins in vivo by mammalian tethered catalysis. Proc Natl Acad Sci U S A 2009; 106:14808-13. [PMID: 19706462 DOI: 10.1073/pnas.0907799106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence indicates that an important consequence of protein posttranslational modification (PTM) is the creation of a high affinity binding site for the selective interaction with a PTM-specific binding protein (BP). This PTM-mediated interaction is typically required for downstream signaling propagation and corresponding biological responses. Because the vast majority of mammalian proteins contain PTMs, there is an immediate need to discover and characterize previously undescribed PTMBPs. To this end, we developed and validated an innovative in vivo approach called mammalian tethered catalysis (MTeC). By using methylated histones and methyl-specific histone binding proteins as the proof-of-principle, we determined that the new MTeC approach can compliment existing in vitro binding methods, and can also provide unique in vivo insights into PTM-dependent interactions. For example, we confirmed previous in vitro findings that endogenous HP1 preferentially binds H3K9me3. However, in contrast to recent in vitro observations, MTeC revealed that the tandem tudor domain-containing proteins, JMJD2A and 53BP1, display no preferential H4K20 methyl-selectivity in vivo. Last, by using MTeC in an unbiased manner to identify H3K9 methyl-specific PTMBPs, we determined that endogenous G9a binds methylated H3K9 in vivo. Further use of MTeC to characterize this interaction revealed that G9a selectively binds H3K9me1 in vivo, but not H3K9me2, contrary to recent in vitro findings. Although this study focused solely on methylated histones, we demonstrate how the innovative MTeC approach could be used to identify and characterize any PTMBP that binds any PTM on any protein in vivo.
Collapse
|
152
|
Shevchenko AI, Pavlova SV, Dementyeva EV, Zakian SM. Mosaic heterochromatin of the inactive X chromosome in vole Microtus rossiaemeridionalis. Mamm Genome 2009; 20:644-53. [PMID: 19629595 DOI: 10.1007/s00335-009-9201-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 06/22/2009] [Indexed: 11/24/2022]
Abstract
During early development in female mammals, one of the two X chromosomes recruits a variety of protein complexes that establish repressive chromatin modifications and thus becomes transcriptionally silenced. This process is termed X chromosome inactivation (XCI). Imprinted XCI of the paternal X chromosome occurs in the extraembryonic lineages of some eutherian species (e.g., rodents). In the cells of the embryo proper, the choice of the X chromosome for XCI is random. In this study we compared the distribution of some histone modifications on metaphase spreads from extraembryonic endoderm and fibroblast cell lines in vole Microtus rossiaemeridionalis, which are examples of imprinted and random XCI, respectively. The X chromosome of M. rossiaemeridionalis bears a large constitutive heterochromatic block enriched with repeated DNA, making this species a useful model for studying chromatin structure. In vole fibroblasts and the majority of extraembryonic endoderm cells, the silencing of the inactive X chromosome appears to involve two types of facultative heterochromatin. The first is defined by H3K27 trimethylation and H2A ubiquitylation and colocalizes with previously described Xist RNA banding, whereas the second is associated with H3K9 trimethylation and the heterochromatic protein HP1. The block of constitutive heterochromatin on the M. rossiaemeridionalis X chromosome has the same pattern of chromatin modifications as the second type of facultative heterochromatin. The distribution of histone modifications, HP1 protein, and Xist RNA on vole inactive X chromosome is the same during both the imprinted and the random XCI.
Collapse
Affiliation(s)
- Alexander I Shevchenko
- Siberian Department, Institute of Cytology and Genetics, Russian Academy of Sciences, ac. Lavrentyev Avenue 10, Novosibirsk 630090, Russia
| | | | | | | |
Collapse
|
153
|
Silent chromatin at the middle and ends: lessons from yeasts. EMBO J 2009; 28:2149-61. [PMID: 19629038 PMCID: PMC2722250 DOI: 10.1038/emboj.2009.185] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 06/15/2009] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic centromeres and telomeres are specialized chromosomal regions that share one common characteristic: their underlying DNA sequences are assembled into heritably repressed chromatin. Silent chromatin in budding and fission yeast is composed of fundamentally divergent proteins tat assemble very different chromatin structures. However, the ultimate behaviour of silent chromatin and the pathways that assemble it seem strikingly similar among Saccharomyces cerevisiae (S. cerevisiae), Schizosaccharomyces pombe (S. pombe) and other eukaryotes. Thus, studies in both yeasts have been instrumental in dissecting the mechanisms that establish and maintain silent chromatin in eukaryotes, contributing substantially to our understanding of epigenetic processes. In this review, we discuss current models for the generation of heterochromatic domains at centromeres and telomeres in the two yeast species.
Collapse
|
154
|
Friis RMN, Schultz MC. Untargeted tail acetylation of histones in chromatin: lessons from yeast. Biochem Cell Biol 2009; 87:107-16. [PMID: 19234527 DOI: 10.1139/o08-097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dynamic acetylation of lysine residues in the amino-terminal tails of the core histones is functionally important for the regulation of diverse DNA-dependent processes in the nucleus, including replication, transcription, and DNA repair. The targeted and untargeted activities of histone lysine acetylases (KATs) and deacetylases (HDACs) both contribute to the dynamics of chromatin acetylation. While the mechanisms and functional consequences of targeted on histone acetylation are well understood, relatively little is known about untargeted histone acetylation. Here, we review the current understanding of the mechanisms by which untargeted KAT and HDAC activities modulate the acetylation state of nucleosomal histones, focusing on results obtained for H3 and H4 in budding yeast. We also highlight unresolved problems in this area, including the question of how a particular steady-state level of untargeted acetylation is set in the absence of cis-dependent mechanisms that instruct the activity of KATs and HDACs.
Collapse
Affiliation(s)
- R Magnus N Friis
- Department of Biochemistry, University of Alberta, Edmonton, ABT6G2H7, Canada
| | | |
Collapse
|
155
|
Domains of heterochromatin protein 1 required for Drosophila melanogaster heterochromatin spreading. Genetics 2009; 182:967-77. [PMID: 19487560 DOI: 10.1534/genetics.109.105338] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centric regions of eukaryotic genomes are packaged into heterochromatin, which possesses the ability to spread along the chromosome and silence gene expression. The process of spreading has been challenging to study at the molecular level due to repetitious sequences within centric regions. A heterochromatin protein 1 (HP1) tethering system was developed that generates "ectopic heterochromatin" at sites within euchromatic regions of the Drosophila melanogaster genome. Using this system, we show that HP1 dimerization and the PxVxL interaction platform formed by dimerization of the HP1 chromo shadow domain are necessary for spreading to a downstream reporter gene located 3.7 kb away. Surprisingly, either the HP1 chromo domain or the chromo shadow domain alone is sufficient for spreading and silencing at a downstream reporter gene located 1.9 kb away. Spreading is dependent on at least two H3K9 methyltransferases, with SU(VAR)3-9 playing a greater role at the 3.7-kb reporter and dSETDB1 predominately acting at the 1.9 kb reporter. These data support a model whereby HP1 takes part in multiple mechanisms of silencing and spreading.
Collapse
|
156
|
Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast. Proc Natl Acad Sci U S A 2009; 106:8998-9003. [PMID: 19443688 DOI: 10.1073/pnas.0813063106] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Conserved chromosomal HP1 proteins capable of binding to histone H3 methylated at lysine 9 are believed to provide a dynamic platform for the recruitment and/or spreading of various regulatory proteins involved in diverse chromosomal processes. The fission yeast Schizosaccharomyces pombe HP1 family members Chp2 and Swi6 are important for heterochromatin assembly and transcriptional silencing, but their precise roles are not fully understood. Here, we show that Swi6 and Chp2 associate with histone deacetylase (HDAC) protein complexes containing class I HDAC Clr6 and class II HDAC Clr3 (a component of Snf2/HDAC repressor complex), which are critical for transcriptional silencing of centromeric repeats targeted by the heterochromatin machinery. Mapping of RNA polymerase (Pol) II distribution in single and double mutant backgrounds revealed that Swi6 and Chp2 proteins and their associated HDAC complexes have overlapping functions in limiting Pol II occupancy across pericentromeric heterochromatin domains. The purified Swi6 fraction also contains factors involved in various chromosomal processes such as chromatin remodeling and DNA replication. Also, Swi6 copurifies with Mis4 protein, a cohesin loading factor essential for sister chromatid cohesion, and with centromere-specific histone H3 variant CENP-A, which is incorporated into chromatin in a heterochromatin-dependent manner. These analyses suggest that among other functions, HP1 proteins associate with chromatin-modifying factors that in turn cooperate to assemble repressive chromatin; thus, precluding accessibility of underlying DNA sequences to transcriptional machinery.
Collapse
|
157
|
Li H, Motamedi MR, Yip CK, Wang Z, Walz T, Patel DJ, Moazed D. An alpha motif at Tas3 C terminus mediates RITS cis spreading and promotes heterochromatic gene silencing. Mol Cell 2009; 34:155-67. [PMID: 19394293 PMCID: PMC2756231 DOI: 10.1016/j.molcel.2009.02.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 12/13/2008] [Accepted: 02/20/2009] [Indexed: 10/20/2022]
Abstract
RNA interference (RNAi) plays a pivotal role in the formation of heterochromatin at the fission yeast centromeres. The RNA-induced transcriptional silencing (RITS) complex, composed of heterochromatic small interfering RNAs (siRNAs), the siRNA-binding protein Ago1, the chromodomain protein Chp1, and the Ago1/Chp1-interacting protein Tas3, provides a physical tether between the RNAi and heterochromatin assembly pathways. Here, we report the structural and functional characterization of a C-terminal Tas3 alpha-helical motif (TAM), which self-associates into a helical polymer and is required for cis spreading of RITS in centromeric DNA regions. Site-directed mutations of key residues within the hydrophobic monomer-monomer interface disrupt Tas3-TAM polymeric self-association in vitro and result in loss of gene silencing, spreading of RITS, and a dramatic reduction in centromeric siRNAs in vivo. These results demonstrate that, in addition to the chromodomain of Chp1 and siRNA-loaded Ago1, Tas3 self-association is required for RITS spreading and efficient heterochromatic gene silencing at centromeric repeat regions.
Collapse
Affiliation(s)
- Haitao Li
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | - Calvin K. Yip
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhanxin Wang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Danesh Moazed
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
158
|
Schalch T, Job G, Noffsinger VJ, Shanker S, Kuscu C, Joshua-Tor L, Partridge. JF. High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin. Mol Cell 2009; 34:36-46. [PMID: 19362535 PMCID: PMC2705653 DOI: 10.1016/j.molcel.2009.02.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 01/02/2009] [Accepted: 02/20/2009] [Indexed: 10/20/2022]
Abstract
In fission yeast, assembly of centromeric heterochromatin requires the RITS complex, which consists of Ago1, Tas3, Chp1, and siRNAs derived from centromeric repeats. Recruitment of RITS to centromeres has been proposed to depend on siRNA-dependent targeting of Ago1 to centromeric sequences. Previously, we demonstrated that methylated lysine 9 of histone H3 (H3K9me) acts upstream of siRNAs during heterochromatin establishment. Our crystal structure of Chp1's chromodomain in complex with a trimethylated lysine 9 H3 peptide reveals extensive sites of contact that contribute to Chp1's high-affinity binding. We found that this high-affinity binding is critical for the efficient establishment of centromeric heterochromatin, but preassembled heterochromatin can be maintained when Chp1's affinity for H3K9me is greatly reduced.
Collapse
Affiliation(s)
- Thomas Schalch
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Godwin Job
- Department of Biochemistry, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Victoria J. Noffsinger
- Department of Biochemistry, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sreenath Shanker
- Department of Biochemistry, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Canan Kuscu
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY 11794
| | - Leemor Joshua-Tor
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Janet F. Partridge.
- Department of Biochemistry, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
159
|
Kim SI, Bultman SJ, Kiefer CM, Dean A, Bresnick EH. BRG1 requirement for long-range interaction of a locus control region with a downstream promoter. Proc Natl Acad Sci U S A 2009; 106:2259-2264. [PMID: 19171905 PMCID: PMC2650142 DOI: 10.1073/pnas.0806420106] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Indexed: 11/18/2022] Open
Abstract
The dynamic packaging of DNA into chromatin is a fundamental step in the control of diverse nuclear processes. Whereas certain transcription factors and chromosomal components promote the formation of higher-order chromatin loops, the co-regulator machinery mediating loop assembly and disassembly is unknown. Using mice bearing a hypomorphic allele of the BRG1 chromatin remodeler, we demonstrate that the Brg1 mutation abrogated a cell type-specific loop between the beta-globin locus control region and the downstream beta major promoter, despite trans-acting factor occupancy at both sites. By contrast, distinct loops were insensitive to the Brg1 mutation. Molecular analysis with a conditional allele of GATA-1, a key regulator of hematopoiesis, in a novel cell-based system provided additional evidence that BRG1 functions early in chromatin domain activation to mediate looping. Although the paradigm in which chromatin remodelers induce nucleosome structural transitions is well established, our results demonstrating an essential role of BRG1 in the genesis of specific chromatin loops expands the repertoire of their functions.
Collapse
Affiliation(s)
- Shin-Il Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599; and
| | - Christine M. Kiefer
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Emery H. Bresnick
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| |
Collapse
|
160
|
Two new chromodomain-containing proteins that associate with heterochromatin in Sciara coprophila chromosomes. Chromosoma 2009; 118:361-76. [DOI: 10.1007/s00412-009-0203-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 01/13/2009] [Accepted: 01/19/2009] [Indexed: 10/21/2022]
|
161
|
Riddle NC, Shaffer CD, Elgin SCR. A lot about a little dot - lessons learned from Drosophila melanogaster chromosome 4. Biochem Cell Biol 2009; 87:229-41. [PMID: 19234537 PMCID: PMC2950803 DOI: 10.1139/o08-119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The fourth chromosome of Drosophila melanogaster has a number of unique properties that make it a convenient model for the study of chromatin structure. Only 4.2 Mb overall, the 1.2 Mb distal arm of chromosome 4 seen in polytene chromosomes combines characteristics of heterochromatin and euchromatin. This domain has a repeat density of ~35%, comparable to some pericentric chromosome regions, while maintaining a gene density similar to that of the other euchromatic chromosome arms. Studies of position-effect variegation have revealed that heterochromatic and euchromatic domains are interspersed on chromosome 4, and both cytological and biochemical studies have demonstrated that chromosome 4 is associated with heterochromatic marks, such as heterochromatin protein 1 and histone 3 lysine 9 methylation. Chromosome 4 is also marked by POF (painting-of-fourth), a chromosome 4-specific chromosomal protein, and utilizes a dedicated histone methyltransferase, EGG. Studies of chromosome 4 have helped to shape our understanding of heterochromatin domains and their establishment and maintenance. In this review, we provide a synthesis of the work to date and an outlook to the future.
Collapse
Affiliation(s)
- Nicole C. Riddle
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Sarah C. R. Elgin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
162
|
Eissenberg JC, Reuter G. Cellular mechanism for targeting heterochromatin formation in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:1-47. [PMID: 19215901 DOI: 10.1016/s1937-6448(08)01801-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Near the end of their 1990 historical perspective article "60 Years of Mystery," Spradling and Karpen (1990) observe: "Recent progress in understanding variegation at the molecular level has encouraged some workers to conclude that the heterochromatization model is essentially correct and that position-effect variegation can now join the mainstream of molecular biology." In the 18 years since those words were written, heterochromatin and its associated position effects have indeed joined the mainstream of molecular biology. Here, we review the findings that led to our current understanding of heterochromatin formation in Drosophila and the mechanistic insights into heterochromatin structural and functional properties gained through molecular genetics and cytology.
Collapse
Affiliation(s)
- Joel C Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
163
|
Motamedi MR, Erica Hong EJ, Li X, Gerber S, Denison C, Gygi S, Moazed D. HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. Mol Cell 2008; 32:778-90. [PMID: 19111658 PMCID: PMC2735125 DOI: 10.1016/j.molcel.2008.10.026] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/23/2008] [Accepted: 10/23/2008] [Indexed: 12/22/2022]
Abstract
HP1 proteins are a highly conserved family of eukaryotic proteins that bind to methylated histone H3 lysine 9 (H3K9) and are required for heterochromatic gene silencing. In fission yeast, two HP1 homologs, Swi6 and Chp2, function in heterochromatic gene silencing, but their relative contribution to silencing remains unknown. Here we show that Swi6 and Chp2 exist in nonoverlapping complexes and make distinct contributions to silencing. Chp2 associates with the SHREC histone deacetylase complex (SHREC2), is required for histone H3 lysine 14 (H3K14) deacetylation, and mediates transcriptional repression by limiting RNA polymerase II access to heterochromatin. In contrast, Swi6 associates with a different set of nuclear proteins and with noncoding centromeric transcripts and is required for efficient RNAi-dependent processing of these transcripts. Our findings reveal an unexpected role for Swi6 in RNAi-mediated gene silencing and suggest that different HP1 proteins ensure full heterochromatic gene silencing through largely nonoverlapping inhibitory mechanisms.
Collapse
Affiliation(s)
- Mohammad R. Motamedi
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
- Department of Cell biology, Harvard Medical School, Boston, MA 02115
| | - Eun-Jin Erica Hong
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
- Department of Cell biology, Harvard Medical School, Boston, MA 02115
| | - Xue Li
- Department of Cell biology, Harvard Medical School, Boston, MA 02115
| | - Scott Gerber
- Department of Cell biology, Harvard Medical School, Boston, MA 02115
| | - Carilee Denison
- Department of Cell biology, Harvard Medical School, Boston, MA 02115
| | - Steven Gygi
- Department of Cell biology, Harvard Medical School, Boston, MA 02115
| | - Danesh Moazed
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
- Department of Cell biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
164
|
Lin CH, Li B, Swanson S, Zhang Y, Florens L, Washburn MP, Abmayr SM, Workman JL. Heterochromatin protein 1a stimulates histone H3 lysine 36 demethylation by the Drosophila KDM4A demethylase. Mol Cell 2008; 32:696-706. [PMID: 19061644 PMCID: PMC2642969 DOI: 10.1016/j.molcel.2008.11.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 07/23/2008] [Accepted: 11/01/2008] [Indexed: 01/01/2023]
Abstract
Recent discoveries of histone demethylases demonstrate that histone methylation is reversible. However, mechanisms governing the targeting and regulation of histone demethylation remain elusive. Here we report that a Drosophila melanogaster JmjC domain-containing protein, dKDM4A, is a histone H3K36 demethylase. dKDM4A specifically demethylates H3K36me2 and H3K36me3 both in vitro and in vivo. Affinity purification and mass spectrometry analysis revealed that heterochromatin protein 1a (HP1a) associates with dKDMA4A. We found that the chromo shadow domain of HP1a and a HP1-interacting motif of dKDM4A are responsible for this interaction. HP1a stimulates the histone H3K36 demethylation activity of dKDM4A, and this stimulation depends on the H3K9me-binding motif of HP1a. Finally, we provide in vivo evidence suggesting that HP1a and dKDM4A interact with each other and that loss of HP1a leads to an increased level of histone H3K36me3. Collectively, these results suggest a function of HP1a in transcription facilitating H3K36 demethylation at transcribed and/or heterochromatin regions.
Collapse
Affiliation(s)
- Chia-Hui Lin
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110
| | | | - Selene Swanson
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110
| | - Ying Zhang
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110
| | - Michael P. Washburn
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110
| | - Susan M. Abmayr
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110
| | - Jerry L. Workman
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110
| |
Collapse
|
165
|
|
166
|
Abstract
All cells of a given organism contain nearly identical genetic information, yet tissues display unique gene expression profiles. This specificity is in part due to transcriptional control by epigenetic mechanisms that involve post-translational modifications of histones. These modifications affect the folding of the chromatin fiber and serve as binding sites for non-histone chromosomal proteins. Here we discuss functions of the Heterochromatin Protein 1 (HP1) family of proteins that recognize H3K9me, an epigenetic mark generated by the histone methyltransferases SU(VAR)3-9 and orthologues. Loss of HP1 proteins causes chromosome segregation defects and lethality in some organisms; a reduction in levels of HP1 family members is associated with cancer progression in humans. These consequences are likely due to the role of HP1 in centromere stability, telomere capping and the regulation of euchromatic and heterochromatic gene expression.
Collapse
Affiliation(s)
| | | | - Lori L. Wallrath
- Department of Biochemistry, 3136 MERF, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
167
|
Xu C, Cui G, Botuyan MV, Mer G. Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S. Structure 2008; 16:1740-50. [PMID: 18818090 PMCID: PMC2582589 DOI: 10.1016/j.str.2008.08.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 08/09/2008] [Accepted: 08/29/2008] [Indexed: 12/16/2022]
Abstract
Deacetylation of nucleosomes by the Rpd3S histone deacetylase along the path of transcribing RNA polymerase II regulates access to DNA, contributing to faithful gene transcription. The association of Rpd3S with chromatin requires its Eaf3 subunit, which binds histone H3 methylated at lysine 36 (H3K36). Eaf3 is also part of NuA4 acetyltransferase that recognizes methylated H3K4. Here we show that Eaf3 in Saccharomyces cerevisiae contains a chromo barrel-related domain that binds methylated peptides, including H3K36 and H3K4, with low specificity and millimolar-range affinity. Nuclear magnetic resonance structure determination of Eaf3 bound to methylated H3K36 was accomplished by engineering a linked Eaf3-H3K36 molecule with a chemically incorporated methyllysine analog. Our study uncovers the molecular details of Eaf3-methylated H3K36 complex formation, and suggests that, in the cell, Eaf3 can only function within a framework of combinatorial interactions. This work also provides a general method for structure determination of low-affinity protein complexes implicated in methyllysine recognition.
Collapse
Affiliation(s)
- Chao Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
168
|
Expression of Histone H3 Tails with Combinatorial Lysine Modifications under the Reprogrammed Genetic Code for the Investigation on Epigenetic Markers. ACTA ACUST UNITED AC 2008; 15:1166-74. [DOI: 10.1016/j.chembiol.2008.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 09/25/2008] [Accepted: 09/29/2008] [Indexed: 12/16/2022]
|
169
|
Abstract
While heterochromatic gene silencing in cis is often accompanied by nucleosomal compaction, characteristic histone modifications, and recruitment of heterochromatin proteins, little is known concerning genes silenced by heterochromatin in trans. An insertion of heterochromatic satellite DNA in the euchromatic brown (bw) gene of Drosophila melanogaster results in bwDominant (bwD), which can inactivate loci on the homolog by relocation near the centric heterochromatin (trans-inactivation). Nucleosomal compaction was found to accompany trans-inactivation, but stereotypical heterochromatic histone modifications were mostly absent on silenced reporter genes. HP1 was enriched on trans-inactivated reporter constructs and this enrichment was more pronounced on adult chromatin than on larval chromatin. Interestingly, this HP1 enrichment in trans was unaccompanied by an increase in the 2MeH3K9 mark, which is generally thought to be the docking site for HP1 in heterochromatin. However, a substantial increase in the 2MeH3K9 mark was found on or near the bwD satellite insertion in cis, but did not spread further. These observations suggest that the interaction of HP1 with chromatin in cis is fundamentally different from that in trans. Our molecular data agree well with the differential phenotypic effect on bwD trans-inactivation of various genes known to be involved in histone modification and cis gene silencing.
Collapse
|
170
|
Nady N, Min J, Kareta MS, Chédin F, Arrowsmith CH. A SPOT on the chromatin landscape? Histone peptide arrays as a tool for epigenetic research. Trends Biochem Sci 2008; 33:305-13. [PMID: 18538573 DOI: 10.1016/j.tibs.2008.04.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 04/18/2008] [Accepted: 04/23/2008] [Indexed: 12/23/2022]
Abstract
Post-translational modifications of histones serve as docking sites and signals for effector proteins and chromatin-remodeling enzymes, thereby influencing many fundamental cellular processes. Nevertheless, there are huge gaps in the knowledge of which proteins read and write the 'histone code'. Several techniques have been used to decipher complex histone-modification patterns. However, none is entirely satisfactory owing to the inherent limitations of in vitro studies of histones, such as deficits in the knowledge of the proteins involved, and the associated difficulties in the consistent and quantitative generation of histone marks. An alternative technique that could prove to be a useful tool in the study of the histone code is the use of synthetic peptide arrays (SPOT blot analysis) as a screening approach to characterize macromolecules that interact with specific covalent modifications of histone tails.
Collapse
Affiliation(s)
- Nataliya Nady
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | | | | | | | | |
Collapse
|
171
|
Van Duyne R, Easley R, Wu W, Berro R, Pedati C, Klase Z, Kehn-Hall K, Flynn EK, Symer DE, Kashanchi F. Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR. Retrovirology 2008; 5:40. [PMID: 18498648 PMCID: PMC2412914 DOI: 10.1186/1742-4690-5-40] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 05/22/2008] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The rate of transcription of the HIV-1 viral genome is mediated by the interaction of the viral protein Tat with the LTR and other transcriptional machinery. These specific interactions can be affected by the state of post-translational modifications on Tat. Previously, we have shown that Tat can be phosphorylated and acetylated in vivo resulting in an increase in the rate of transcription. In the present study, we investigated whether Tat could be methylated on lysine residues, specifically on lysine 50 and 51, and whether this modification resulted in a decrease of viral transcription from the LTR. RESULTS We analyzed the association of Tat with histone methyltransferases of the SUV39-family of SET domain containing proteins in vitro. Tat was found to associate with both SETDB1 and SETDB2, two enzymes which exhibit methyltransferase activity. siRNA against SETDB1 transfected into cell systems with both transient and integrated LTR reporter genes resulted in an increase in transcription of the HIV-LTR in the presence of suboptimal levels of Tat. In vitro methylation assays with Tat peptides containing point mutations at lysines 50 and 51 showed an increased incorporation of methyl groups on lysine 51, however, both residues indicated susceptibility for methylation. CONCLUSION The association of Tat with histone methyltransferases and the ability for Tat to be methylated suggests an interesting mechanism of transcriptional regulation through the recruitment of chromatin remodeling proteins to the HIV-1 promoter.
Collapse
Affiliation(s)
- Rachel Van Duyne
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Rebecca Easley
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Weilin Wu
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Reem Berro
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Caitlin Pedati
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Zachary Klase
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Kylene Kehn-Hall
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| | - Elizabeth K Flynn
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - David E Symer
- Basic Research Laboratory, and Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Fatah Kashanchi
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
- W.M. Keck Institute for Proteomics Technology and Applications, Washington, DC 20037, USA
| |
Collapse
|
172
|
Yoon J, Lee KS, Park JS, Yu K, Paik SG, Kang YK. dSETDB1 and SU(VAR)3-9 sequentially function during germline-stem cell differentiation in Drosophila melanogaster. PLoS One 2008; 3:e2234. [PMID: 18493619 PMCID: PMC2377335 DOI: 10.1371/journal.pone.0002234] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/11/2008] [Indexed: 11/18/2022] Open
Abstract
Germline-stem cells (GSCs) produce gametes and are thus true “immortal stem cells”. In Drosophila ovaries, GSCs divide asymmetrically to produce daughter GSCs and cystoblasts, and the latter differentiate into germline cysts. Here we show that the histone-lysine methyltransferase dSETDB1, located in pericentric heterochromatin, catalyzes H3-K9 trimethylation in GSCs and their immediate descendants. As germline cysts differentiate into egg chambers, the dSETDB1 function is gradually taken over by another H3-K9-specific methyltransferase, SU(VAR)3–9. Loss-of-function mutations in dsetdb1 or Su(var)3–9 abolish both H3K9me3 and heterochromatin protein-1 (HP1) signals from the anterior germarium and the developing egg chambers, respectively, and cause localization of H3K9me3 away from DNA-dense regions in most posterior germarium cells. These results indicate that dSETDB1 and SU(VAR)3–9 act together with distinct roles during oogenesis, with dsetdb1 being of particular importance due to its GSC-specific function and more severe mutant phenotype.
Collapse
Affiliation(s)
- Jeongheon Yoon
- Center for Regenerative Medicine, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Biology, Chungnam National University, Daejon, Korea
| | - Kyu-Sun Lee
- Center for Regenerative Medicine, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Jung Sun Park
- Center for Regenerative Medicine, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Kweon Yu
- Center for Regenerative Medicine, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Sang-Gi Paik
- Department of Biology, Chungnam National University, Daejon, Korea
| | - Yong-Kook Kang
- Center for Regenerative Medicine, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- * E-mail:
| |
Collapse
|
173
|
Spierer A, Begeot F, Spierer P, Delattre M. SU(VAR)3-7 links heterochromatin and dosage compensation in Drosophila. PLoS Genet 2008; 4:e1000066. [PMID: 18451980 PMCID: PMC2320979 DOI: 10.1371/journal.pgen.1000066] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 04/04/2008] [Indexed: 01/03/2023] Open
Abstract
In Drosophila, dosage compensation augments X chromosome-linked transcription in males relative to females. This process is achieved by the Dosage Compensation Complex (DCC), which associates specifically with the male X chromosome. We previously found that the morphology of this chromosome is sensitive to the amounts of the heterochromatin-associated protein SU(VAR)3-7. In this study, we examine the impact of change in levels of SU(VAR)3-7 on dosage compensation. We first demonstrate that the DCC makes the X chromosome a preferential target for heterochromatic markers. In addition, reduced or increased amounts of SU(VAR)3-7 result in redistribution of the DCC proteins MSL1 and MSL2, and of Histone 4 acetylation of lysine 16, indicating that a wild-type dose of SU(VAR)3-7 is required for X-restricted DCC targeting. SU(VAR)3-7 is also involved in the dosage compensated expression of the X-linked white gene. Finally, we show that absence of maternally provided SU(VAR)3-7 renders dosage compensation toxic in males, and that global amounts of heterochromatin affect viability of ectopic MSL2-expressing females. Taken together, these results bring to light a link between heterochromatin and dosage compensation. In Drosophila, females have two X chromosomes and males only one. The difference in the dose of X-associated genes is compensated by male-specific protein machinery, the Dosage Compensation Complex (DCC), which augments the activity of genes of the single male X. We report that the specific targeting of the DCC on the male X chromosome depends critically on the correct dose of the SU(VAR)3-7 protein. This protein was previously known to associate with condensed and silenced regions of the chromosomes called heterochromatin by contrast with the active form of chromatin called euchromatin. Loss of SU(VAR)3-7 in males causes displacement of the DCC to heterochromatin and bloating of the X chromosome. In contrast, excess of SU(VAR)3-7 leads to a delocalization of the DCC to other chromosomes and to massive shrinking of the X chromosome. We show that SU(VAR)3-7 is involved in the dosage compensated expression of the X-linked white gene and in the viability of dosage compensated flies. Altogether, these results bring to light a link between silencing mechanisms of heterochromatin and mechanisms controlling the balance of sex-chromosome activity (dosage compensation). This opens new perspectives on how complexes that control the global chromosome organisation impact the fine tuning of gene expression.
Collapse
Affiliation(s)
- Anne Spierer
- NCCR “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| | - Flora Begeot
- NCCR “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| | - Pierre Spierer
- NCCR “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
- * E-mail:
| | - Marion Delattre
- NCCR “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
174
|
Fischle W, Franz H, Jacobs SA, Allis CD, Khorasanizadeh S. Specificity of the chromodomain Y chromosome family of chromodomains for lysine-methylated ARK(S/T) motifs. J Biol Chem 2008; 283:19626-35. [PMID: 18450745 DOI: 10.1074/jbc.m802655200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Previous studies have shown two homologous chromodomain modules in the HP1 and Polycomb proteins exhibit discriminatory binding to related methyllysine residues (embedded in ARKS motifs) of the histone H3 tail. Methylated ARK(S/T) motifs have recently been identified in other chromatin factors (e.g. linker histone H1.4 and lysine methyltransferase G9a). These are thought to function as peripheral docking sites for the HP1 chromodomain. In vertebrates, HP1-like chromodomains are also present in the chromodomain Y chromosome (CDY) family of proteins adjacent to a putative catalytic motif. The human genome encodes three CDY family proteins, CDY, CDYL, and CDYL2. These have putative functions ranging from establishment of histone H4 acetylation during spermiogenesis to regulation of transcription co-repressor complexes. To delineate the biochemical functions of the CDY family chromodomains, we analyzed their specificity of methyllysine recognition. We detected substantial differences among these factors. The CDY chromodomain exhibits discriminatory binding to lysine-methylated ARK(S/T) motifs, whereas the CDYL2 chromodomain binds with comparable strength to multiple ARK(S/T) motifs. Interestingly, subtle amino acid changes in the CDYL chromodomain prohibit such binding interactions in vitro and in vivo. However, point mutations can rescue binding. In support of the in vitro binding properties of the chromodomains, the full-length CDY family proteins exhibit substantial variability in chromatin localization. Our studies underscore the significance of subtle sequence differences in a conserved signaling module for diverse epigenetic regulatory pathways.
Collapse
Affiliation(s)
- Wolfgang Fischle
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908-0733, USA.
| | | | | | | | | |
Collapse
|
175
|
Abstract
Mammalian G9a is a euchromatic histone H3 lysine 9 (H3K9) methyltransferase essential for development. Here, we characterize the Drosophila homolog of G9a, dG9a. We generated a dG9a deletion allele by homologous recombination. Analysis of this allele revealed that, in contrast to recent findings, dG9a is not required for fly viability.
Collapse
|
176
|
Gao X, Hou Y, Ebina H, Levin HL, Voytas DF. Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res 2008; 18:359-69. [PMID: 18256242 DOI: 10.1101/gr.7146408] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The enrichment of mobile genetic elements in heterochromatin may be due, in part, to targeted integration. The chromoviruses are Ty3/gypsy retrotransposons with chromodomains at their integrase C termini. Chromodomains are logical determinants for targeting to heterochromatin, because the chromodomain of heterochromatin protein 1 (HP1) typically recognizes histone H3 K9 methylation, an epigenetic mark characteristic of heterochromatin. We describe three groups of chromoviruses based on amino acid sequence relationships of their integrase C termini. Genome sequence analysis indicates that representative chromoviruses from each group are enriched in gene-poor regions of the genome relative to other retrotransposons, and when fused to fluorescent marker proteins, the chromodomains target proteins to specific subnuclear foci coincident with heterochromatin. The chromodomain of the fungal element, MAGGY, interacts with histone H3 dimethyl- and trimethyl-K9, and when the MAGGY chromodomain is fused to integrase of the Schizosaccharomyces pombe Tf1 retrotransposon, new Tf1 insertions are directed to sites of H3 K9 methylation. Repetitive sequences such as transposable elements trigger the RNAi pathway resulting in their epigenetic modification. Our results suggest a dynamic interplay between retrotransposons and heterochromatin, wherein mobile elements recognize heterochromatin at the time of integration and then perpetuate the heterochromatic mark by triggering epigenetic modification.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
177
|
Wozniak RJ, Bresnick EH. Chapter 3 Epigenetic Control of Complex Loci During Erythropoiesis. Curr Top Dev Biol 2008; 82:55-83. [DOI: 10.1016/s0070-2153(07)00003-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
178
|
Girton JR, Johansen KM. Chromatin structure and the regulation of gene expression: the lessons of PEV in Drosophila. ADVANCES IN GENETICS 2008; 61:1-43. [PMID: 18282501 DOI: 10.1016/s0065-2660(07)00001-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Position-effect variegation (PEV) was discovered in 1930 in a study of X-ray-induced chromosomal rearrangements. Rearrangements that place euchromatic genes adjacent to a region of centromeric heterochromatin give a variegated phenotype that results from the inactivation of genes by heterochromatin spreading from the breakpoint. PEV can also result from P element insertions that place euchromatic genes into heterochromatic regions and rearrangements that position euchromatic chromosomal regions into heterochromatic nuclear compartments. More than 75 years of studies of PEV have revealed that PEV is a complex phenomenon that results from fundamental differences in the structure and function of heterochromatin and euchromatin with respect to gene expression. Molecular analysis of PEV began with the discovery that PEV phenotypes are altered by suppressor and enhancer mutations of a large number of modifier genes whose products are structural components of heterochromatin, enzymes that modify heterochromatic proteins, or are nuclear structural components. Analysis of these gene products has led to our current understanding that formation of heterochromatin involves specific modifications of histones leading to the binding of particular sets of heterochromatic proteins, and that this process may be the mechanism for repressing gene expression in PEV. Other modifier genes produce products whose function is part of an active mechanism of generation of euchromatin that resists heterochromatization. Current studies of PEV are focusing on defining the complex patterns of modifier gene activity and the sequence of events that leads to the dynamic interplay between heterochromatin and euchromatin.
Collapse
Affiliation(s)
- Jack R Girton
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
179
|
Cummings WJ, Yabuki M, Ordinario EC, Bednarski DW, Quay S, Maizels N. Chromatin structure regulates gene conversion. PLoS Biol 2007; 5:e246. [PMID: 17880262 PMCID: PMC1976632 DOI: 10.1371/journal.pbio.0050246] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 07/17/2007] [Indexed: 12/29/2022] Open
Abstract
Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vλ pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205), expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vλ donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vλ array, and altered the outcome of Vλ diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences. Homologous recombination promotes genetic exchange between regions containing identical or highly related sequences. This is useful in repairing damaged DNA, or in reassorting genes in meiosis, but uncontrolled homologous recombination can create genomic instability. Chromosomes are made up of a complex of DNA and protein, called chromatin. DNA within chromatin is packed tightly in order to fit the entire genome inside a cell; but chromatin structure may become relaxed to allow access to enzymes that regulate gene expression, transcribe genes into mesenger RNA, or carry out gene replication. We asked if chromatin packing regulates homologous recombination. To do this, we tethered a factor associated with compact chromatin, called HP1, adjacent to an immunoglobulin gene locus at which homologous recombination occurs constitutively, in order to produce a diverse repertoire of antibodies. We found that the compact, repressive chromatin structure produced by HP1 prevents homologous recombination. This finding suggests that regulated changes in chromatin structure may contribute to maintaining genomic stability by preventing recombination between repetitive sequences. Much of the chromosome is tightly packed (heterochromatic) and not transcribed. Here, the authors show that tight packing has another effect: it prevents recombination between homologous sequences.
Collapse
Affiliation(s)
- W. Jason Cummings
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Munehisa Yabuki
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ellen C Ordinario
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - David W Bednarski
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Simon Quay
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nancy Maizels
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
180
|
Mandrioli M, Borsatti F. Analysis of heterochromatic epigenetic markers in the holocentric chromosomes of the aphid Acyrthosiphon pisum. Chromosome Res 2007; 15:1015-22. [PMID: 18004669 DOI: 10.1007/s10577-007-1176-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 09/07/2007] [Accepted: 09/07/2007] [Indexed: 11/28/2022]
Abstract
Monomethylated-K9 H3 histones (Me9H3) and heterochromatin protein 1 (HP1) are reported as heterochromatin markers in several eukaryotes possessing monocentric chromosomes. In order to confirm that these epigenetic markers are evolutionarily conserved, we sequenced the HP1 cDNA and verified the distribution of Me9H3 histones and HP1 in the holocentric chromosomes of the aphid Acyrthosiphon pisum. Sequencing indicates that A. pisum HP1 cDNA (called ApHP1) is 1623 bp long, including a 170 bp long 5'UTR and a 688 bp long 3'UTR. The ApHP1 protein consists of 254 amino acidic residues, has a predicted molecular mass of 28 kDa and a net negative charge. At the structural level, it shows an N terminal chromo domain and a chromo shadow domain at the C terminus linked by a short hinge region. At the cytogenetic level, ApHP1 is located exclusively in the heterochromatic regions of the chromosomes. The same heterochromatic regions were labelled after immuno-staining with antibodies against Me9H3 histones, confirming that Hp1 and Me9H3 co-localize at heterochromatic chromosomal areas. Surprisingly, aphid heterochromatin lacks DNA methylation and methylated cytosine residues were mainly spread at euchromatic regions. Finally, the absence of DNA methylation is observed also in aphid rDNA genes that have been repeatedly described as mosaic of methylated and unmethylated units in vertebrates.
Collapse
Affiliation(s)
- Mauro Mandrioli
- Dipartimento di Biologia Animale, Università di Modena e Reggio Emilia, Via Campi 213/D, 41100 Modena, Italy.
| | | |
Collapse
|
181
|
Clark SJ. Action at a distance: epigenetic silencing of large chromosomal regions in carcinogenesis. Hum Mol Genet 2007; 16 Spec No 1:R88-95. [PMID: 17613553 DOI: 10.1093/hmg/ddm051] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the completion of the Human Genome Project, we are still far from understanding the molecular events underlying epigenetic change in cancer. Cancer is a disease of the DNA with both genetic and epigenetic changes contributing to changes in gene expression. Epigenetics involves the interplay between DNA methylation, histone modifications and expression of non-coding RNAs in the regulation of gene transcription. We now know that tumour suppressor genes, with CpG island-associated promoters, are commonly hypermethylated and silenced in cancer, but we do not understood what triggers this process or when it occurs during carcinogenesis. Epigenetic gene silencing has always been envisaged as a local event silencing discrete genes, but recent data now indicates that large regions of chromosomes can be co-coordinately suppressed; a process termed long range epigenetic silencing (LRES). LRES can span megabases of DNA and involves broad heterochromatin formation accompanied by hypermethylation of clusters of contiguous CpG islands within the region. It is not clear if LRES is initiated by one critical gene target that spreads and conscripts innocent bystanders, analogous to large genetic deletions or if coordinate silencing of multiple genes is important in carcinogenesis? Over the next decade with the exciting new genomic approaches to epigenome analysis and the initiation of a Human Epigenome Project, we will understand more about the interplay between DNA methylation and chromatin modifications and the expression of non-coding RNAs, promising a new range of molecular diagnostic cancer markers and molecular targets for cancer epigenetic therapy.
Collapse
Affiliation(s)
- Susan J Clark
- Cancer Program, Garvan Institute of Medical Research, Darlinghurst Sydney, 2010 NSW, Australia.
| |
Collapse
|
182
|
Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 2007; 14:1025-1040. [PMID: 17984965 PMCID: PMC4691843 DOI: 10.1038/nsmb1338] [Citation(s) in RCA: 1112] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Histones comprise the major protein component of chromatin, the scaffold in which the eukaryotic genome is packaged, and are subject to many types of post-translational modifications (PTMs), especially on their flexible tails. These modifications may constitute a 'histone code' and could be used to manage epigenetic information that helps extend the genetic message beyond DNA sequences. This proposed code, read in part by histone PTM-binding 'effector' modules and their associated complexes, is predicted to define unique functional states of chromatin and/or regulate various chromatin-templated processes. A wealth of structural and functional data show how chromatin effector modules target their cognate covalent histone modifications. Here we summarize key features in molecular recognition of histone PTMs by a diverse family of 'reader pockets', highlighting specific readout mechanisms for individual marks, common themes and insights into the downstream functional consequences of the interactions. Changes in these interactions may have far-reaching implications for human biology and disease, notably cancer.
Collapse
Affiliation(s)
- Sean D Taverna
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - Haitao Li
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Alexander J Ruthenburg
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - C David Allis
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| |
Collapse
|
183
|
Simonet T, Dulermo R, Schott S, Palladino F. Antagonistic functions of SET-2/SET1 and HPL/HP1 proteins in C. elegans development. Dev Biol 2007; 312:367-83. [PMID: 17967446 DOI: 10.1016/j.ydbio.2007.09.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 09/13/2007] [Accepted: 09/18/2007] [Indexed: 11/28/2022]
Abstract
Cellular identity during metazoan development is maintained by epigenetic modifications of chromatin structure brought about by the activity of specific proteins which mediate histone variant incorporation, histone modifications, and nucleosome remodeling. HP1 proteins directly influence gene expression by modifying chromatin structure. We previously showed that the Caenorhabditis elegans HP1 proteins HPL-1 and HPL-2 are required for several aspects of post-embryonic development. To gain insight into how HPL proteins influence gene expression in a developmental context, we carried out a candidate RNAi screen to identify suppressors of hpl-1 and hpl-2 phenotypes. We identified SET-2, the homologue of yeast and mammalian SET1, as an antagonist of HPL-1 and HPL-2 activity in growth and somatic gonad development. Yeast Set1 and its mammalian counterparts SET1/MLL are H3 lysine 4 (H3K4) histone methyltransferases associated with gene activation as part of large multisubunit complexes. We show that the nematode counterparts of SET1/MLL complex subunits also antagonize HPL function in post-embryonic development. Genetic analysis is consistent with SET1/MLL complex subunits having both shared and unique functions in development. Furthermore, as observed in other species, we find that SET1/MLL complex homologues differentially affect global H3K4 methylation. Our results suggest that HP1 and a SET1/MLL-related complex may play antagonistic roles in the epigenetic regulation of specific developmental programs.
Collapse
Affiliation(s)
- T Simonet
- Laboratory of Molecular and Cellular Biology, Ecole Normale Superieure de Lyon, IFR 128, Lyon, France
| | | | | | | |
Collapse
|
184
|
Brower-Toland B, Findley SD, Jiang L, Liu L, Yin H, Dus M, Zhou P, Elgin SC, Lin H. Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev 2007; 21:2300-11. [PMID: 17875665 PMCID: PMC1973144 DOI: 10.1101/gad.1564307] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The interface between cellular systems involving small noncoding RNAs and epigenetic change remains largely unexplored in metazoans. RNA-induced silencing systems have the potential to target particular regions of the genome for epigenetic change by locating specific sequences and recruiting chromatin modifiers. Noting that several genes encoding RNA silencing components have been implicated in epigenetic regulation in Drosophila, we sought a direct link between the RNA silencing system and heterochromatin components. Here we show that PIWI, an ARGONAUTE/PIWI protein family member that binds to Piwi-interacting RNAs (piRNAs), strongly and specifically interacts with heterochromatin protein 1a (HP1a), a central player in heterochromatic gene silencing. The HP1a dimer binds a PxVxL-type motif in the N-terminal domain of PIWI. This motif is required in fruit flies for normal silencing of transgenes embedded in heterochromatin. We also demonstrate that PIWI, like HP1a, is itself a chromatin-associated protein whose distribution in polytene chromosomes overlaps with HP1a and appears to be RNA dependent. These findings implicate a direct interaction between the PIWI-mediated small RNA mechanism and heterochromatin-forming pathways in determining the epigenetic state of the fly genome.
Collapse
Affiliation(s)
- Brent Brower-Toland
- Department of Biology, Washington University, Saint Louis, Missouri 63130, USA
| | - Seth D. Findley
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina 27710, USA
| | - Ling Jiang
- Department of Biochemistry, Duke University Medical School, Durham, North Carolina 27710, USA
| | - Li Liu
- Yale Stem Cell Center, Yale University School of Medicine, Connecticut 06509, USA
| | - Hang Yin
- Yale Stem Cell Center, Yale University School of Medicine, Connecticut 06509, USA
| | - Monica Dus
- Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University Medical School, Durham, North Carolina 27710, USA
| | - Sarah C.R. Elgin
- Department of Biology, Washington University, Saint Louis, Missouri 63130, USA
- E-MAIL ; FAX (314) 935-5348
| | - Haifan Lin
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina 27710, USA
- Yale Stem Cell Center, Yale University School of Medicine, Connecticut 06509, USA
- Corresponding authors.E-MAIL ; FAX (203) 785-4305
| |
Collapse
|
185
|
Chin HG, Estève PO, Pradhan M, Benner J, Patnaik D, Carey MF, Pradhan S. Automethylation of G9a and its implication in wider substrate specificity and HP1 binding. Nucleic Acids Res 2007; 35:7313-23. [PMID: 17962312 PMCID: PMC2175347 DOI: 10.1093/nar/gkm726] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Methylation of lysine residues on histones participates in transcriptional gene regulation. Lysine 9 methylation of histone H3 is a transcriptional repression signal, mediated by a family of SET domain containing AdoMet-dependent enzymes. G9a methyltransferase is a euchromatic histone H3 lysine 9 methyltransferase. Here, G9a is shown to methylate other cellular proteins, apart from histone H3, including automethylation of K239 residue. Automethylation of G9a did not impair or activate the enzymatic activity in vitro. The automethylation motif of G9a flanking target K239 (ARKT) has similarity with histone H3 lysine 9 regions (ARKS), and is identical to amino acids residues in EuHMT (ARKT) and mAM (ARKT). Under steady-state kinetic assay conditions, full-length G9a methylates peptides representing ARKS/T motif of H3, G9a, mAM and EuHMT efficiently. Automethylation of G9a at ARKT motif creates a binding site for HP1 class of protein and mutation of lysine in the motif impairs this binding. In COS-7 cells GFP fusion of the wild-type G9a co-localized with HP1α and HP1γ isoforms whereas the G9a mutant with K239A displayed poor co-localization. Thus, apart from transcriptional repression and regulatory roles of lysine methylation, the non-histone protein methylation may create binding sites for cellular protein–protein interactions.
Collapse
Affiliation(s)
- Hang Gyeong Chin
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | | | | | | | | | | | | |
Collapse
|
186
|
Trojer P, Li G, Sims RJ, Vaquero A, Kalakonda N, Boccuni P, Lee D, Erdjument-Bromage H, Tempst P, Nimer SD, Wang YH, Reinberg D. L3MBTL1, a histone-methylation-dependent chromatin lock. Cell 2007; 129:915-28. [PMID: 17540172 DOI: 10.1016/j.cell.2007.03.048] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 12/27/2006] [Accepted: 03/12/2007] [Indexed: 12/31/2022]
Abstract
Distinct histone lysine methylation marks are involved in transcriptional repression linked to the formation and maintenance of facultative heterochromatin, although the underlying mechanisms remain unclear. We demonstrate that the malignant-brain-tumor (MBT) protein L3MBTL1 is in a complex with core histones, histone H1b, HP1gamma, and Rb. The MBT domain is structurally related to protein domains that directly bind methylated histone residues. Consistent with this, we found that the L3MBTL1 MBT domains compact nucleosomal arrays dependent on mono- and dimethylation of histone H4 lysine 20 and of histone H1b lysine 26. The MBT domains bind at least two nucleosomes simultaneously, linking repression of transcription to recognition of different histone marks by L3MBTL1. Consistently, L3MBTL1 was found to negatively regulate the expression of a subset of genes regulated by E2F, a factor that interacts with Rb.
Collapse
Affiliation(s)
- Patrick Trojer
- Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey, 683 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Seum C, Reo E, Peng H, Rauscher FJ, Spierer P, Bontron S. Drosophila SETDB1 is required for chromosome 4 silencing. PLoS Genet 2007; 3:e76. [PMID: 17500594 PMCID: PMC1866353 DOI: 10.1371/journal.pgen.0030076] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 04/03/2007] [Indexed: 01/08/2023] Open
Abstract
Histone H3 lysine 9 (H3K9) methylation is associated with gene repression and heterochromatin formation. In Drosophila, SU(VAR)3–9 is responsible for H3K9 methylation mainly at pericentric heterochromatin. However, the histone methyltransferases responsible for H3K9 methylation at euchromatic sites, telomeres, and at the peculiar Chromosome 4 have not yet been identified. Here, we show that DmSETDB1 is involved in nonpericentric H3K9 methylation. Analysis of two DmSetdb1 alleles generated by homologous recombination, a deletion, and an allele where the 3HA tag is fused to the endogenous DmSetdb1, reveals that this gene is essential for fly viability and that DmSETDB1 localizes mainly at Chromosome 4. It also shows that DmSETDB1 is responsible for some of the H3K9 mono- and dimethyl marks in euchromatin and for H3K9 dimethylation on Chromosome 4. Moreover, DmSETDB1 is required for variegated repression of transgenes inserted on Chromosome 4. This study defines DmSETDB1 as a H3K9 methyltransferase that specifically targets euchromatin and the autosomal Chromosome 4 and shows that it is an essential factor for Chromosome 4 silencing. DNA is the basic unit carrying genetic information. Within the nucleus, DNA is wrapped around an eight-histone complex to form the nucleosome. The nucleosomes and other associated proteins assemble to a higher order structure called chromatin. The histones are mainly globular, excepted for their tails that protrude from the nucleosome core. The amino acids of the histone tails are often modified. For example, several conserved lysine residues can be methylated. Methylation of lysine 9 on histone H3 (H3K9) is important for proper chromatin structure and gene regulation. Here, we characterize Drosophila DmSETDB1 as a histone methyltransferase responsible for H3K9 methylation of the chromosome arms and Chromosome 4. In addition, we show that in the absence of DmSETDB1, silencing of Chromosome 4 is abolished. This study is an important step towards the understanding of the differential chromatin domain specificity and mode of action of H3K9 methyltransferases.
Collapse
Affiliation(s)
- Carole Seum
- Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| | - Emanuela Reo
- Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| | - Hongzhuang Peng
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Frank J Rauscher
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Pierre Spierer
- Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| | - Séverine Bontron
- Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
188
|
Carchilan M, Delgado M, Ribeiro T, Costa-Nunes P, Caperta A, Morais-Cecílio L, Jones RN, Viegas W, Houben A. Transcriptionally active heterochromatin in rye B chromosomes. THE PLANT CELL 2007; 19:1738-49. [PMID: 17586652 PMCID: PMC1955731 DOI: 10.1105/tpc.106.046946] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 05/23/2007] [Accepted: 05/31/2007] [Indexed: 05/02/2023]
Abstract
B chromosomes (Bs) are dispensable components of the genomes of numerous species. Thus far, there is a lack of evidence for any transcripts of Bs in plants, with the exception of some rDNA sequences. Here, we show that the Giemsa banding-positive heterochromatic subterminal domain of rye (Secale cereale) Bs undergoes decondensation during interphase. Contrary to the heterochromatic regions of A chromosomes, this domain is simultaneously marked by trimethylated H3K4 and by trimethylated H3K27, an unusual combination of apparently conflicting histone modifications. Notably, both types of B-specific high copy repeat families (E3900 and D1100) of the subterminal domain are transcriptionally active, although with different tissue type-dependent activity. No small RNAs were detected specifically for the presence of Bs. The lack of any significant open reading frame and the highly heterogeneous size of mainly polyadenylated transcripts indicate that the noncoding RNA may function as structural or catalytic RNA.
Collapse
Affiliation(s)
- Mariana Carchilan
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Smallwood A, Estève PO, Pradhan S, Carey M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev 2007; 21:1169-78. [PMID: 17470536 PMCID: PMC1865489 DOI: 10.1101/gad.1536807] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mammalian euchromatic gene silencing results from the combined repressive effects of histone and DNA methyltransferases. Little is known of the mechanism by which these enzymes cooperate to induce silencing. Here we show that mammalian HP1 family members mediate communication between histone and DNA methyltransferases. In vitro, methylation of histone 3 Lys 9 by G9a creates a binding platform for HP1alpha, beta, and gamma. DNMT1 interacts with HP1 resulting in increased DNA methylation on DNA and chromatin templates in vitro. The functional and physical interaction can be recapitulated in vivo. Binding of GAL4-HP1 to a reporter construct is sufficient to induce repression and DNA methylation in DNMT1 wild-type but not DNMT1-null cells. Additionally, silencing of the Survivin gene coincides with recruitment of G9a and HP1 in DNMT1 wild-type but not null cells. We conclude that direct interactions between HP1 and DNMT1 mediate silencing of euchromatic genes.
Collapse
Affiliation(s)
- Andrea Smallwood
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | - Michael Carey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
- Corresponding author.E-MAIL ; FAX (310) 206-9598
| |
Collapse
|
190
|
Marschner S, Kumke K, Houben A. B chromosomes of B. dichromosomatica show a reduced level of euchromatic histone H3 methylation marks. Chromosome Res 2007; 15:215-22. [PMID: 17285253 DOI: 10.1007/s10577-006-1114-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 11/27/2006] [Accepted: 11/27/2006] [Indexed: 12/28/2022]
Abstract
B chromosomes (Bs) are dispensable, less-transcriptionally active components of the genomes of numerous species. Little information is available on the chromatin composition of Bs and whether it differs in any way from that of the A chromosomes. Methylated isoforms of histone H3 are of particular interest because of their role in eu/heterochromatin formation. Immunofluorescence using site-specific antibodies demonstrates that the chromatin in A and both types of Bs of B. dichromosomatica differs markedly in euchromatic histone H3 methylation marks. While A chromosomes are labelled brightly, the micro B and large B chromosomes are faintly labelled with antibodies against H3K4me2/3, H3K9me3 and H3K27me2/3. The heteropycnotic, tandem-repeat enriched micro Bs were even less labelled with euchromatic histone H3 methylation marks than large Bs, most probably due to different DNA composition. No differences in immunolabelling intensity between A and B chromosomes were found as to the heterochromatic marks H3K9me1/2 and H3K27me1, indicating that Bs are not additionally labelled by heterochromatin typical histone H3 modifications. Analysis of DNA replication timing suggests that micro Bs are replicating throughout S-phase.
Collapse
Affiliation(s)
- Sylvia Marschner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | | | | |
Collapse
|
191
|
Ting AH, McGarvey KM, Baylin SB. The cancer epigenome--components and functional correlates. Genes Dev 2007; 20:3215-31. [PMID: 17158741 DOI: 10.1101/gad.1464906] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is increasingly apparent that cancer development not only depends on genetic alterations but on an abnormal cellular memory, or epigenetic changes, which convey heritable gene expression patterns critical for neoplastic initiation and progression. These aberrant epigenetic mechanisms are manifest in both global changes in chromatin packaging and in localized gene promoter changes that influence the transcription of genes important to the cancer process. An exciting emerging theme is that an understanding of stem cell chromatin control of gene expression, including relationships between histone modifications and DNA methylation, may hold a key to understanding the origins of cancer epigenetic changes. This possibility, coupled with the reversible nature of epigenetics, has enormous significance for the prevention and control of cancer.
Collapse
Affiliation(s)
- Angela H Ting
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| | | | | |
Collapse
|
192
|
Vos LJ, Famulski JK, Chan GKT. How to build a centromere: from centromeric and pericentromeric chromatin to kinetochore assembly. Biochem Cell Biol 2007; 84:619-39. [PMID: 16936833 DOI: 10.1139/o06-078] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The assembly of the centromere, a specialized region of DNA along with a constitutive protein complex which resides at the primary constriction and is the site of kinetochore formation, has been puzzling biologists for many years. Recent advances in the fields of chromatin, microscopy, and proteomics have shed a new light on this complex and essential process. Here we review recently discovered mechanisms and proteins involved in determining mammalian centromere location and assembly. The centromeric core protein CENP-A, a histone H3 variant, is hypothesized to designate centromere localization by incorporation into centromere-specific nucleosomes and is essential for the formation of a functional kinetochore. It has been found that centromere localization of centromere protein A (CENP-A), and therefore centromere determination, requires proteins involved in histone deacetylation, as well as base excision DNA repair pathways and proteolysis. In addition to the incorporation of CENP-A at the centromere, the formation of heterochromatin through histone methylation and RNA interference is also crucial for centromere formation. The assembly of the centromere and kinetochore is complex and interdependent, involving epigenetics and hierarchical protein-protein interactions.
Collapse
Affiliation(s)
- Larissa J Vos
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | | | | |
Collapse
|
193
|
Chadwick BP. Variation in Xi chromatin organization and correlation of the H3K27me3 chromatin territories to transcribed sequences by microarray analysis. Chromosoma 2006; 116:147-57. [PMID: 17103221 DOI: 10.1007/s00412-006-0085-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/15/2006] [Accepted: 10/06/2006] [Indexed: 11/26/2022]
Abstract
The heterochromatin of the inactive X chromosome (Xi) is organized into nonoverlapping bands of trimethylated lysine-9 of histone H3 (H3K9me3) and trimethylated lysine-27 of histone H3 (H3K27me3). H3K27me3 chromatin of the Xi is further characterized by ubiquitylated H2A and H4 monomethylated at lysine-20. A detailed examination of the metaphase H3K9me3 pattern revealed that banding along the chromosome arms is not a consistent feature of the Xi in all cell lines, but instead is generally restricted to the centromere and telomeres. However, H3K9me3 does form a reproducible band centered at Xq13 of the active X. In contrast, H3K27me3 banding is a feature of all Xi, but the precise combination and frequency of bands is not consistent. One notable exception is a common band at Xq22-23 that spans 12-15 Mb. The detailed examination of the chromatin territory by microarray analysis refined the H3K27me3 band as well as revealed numerous less extensive clusters of H3K27me3 signals. Furthermore, the microarray analysis indicates that H3K27me3 bands are directly correlated with gene density. The reexamination of the chromosome wide banding indicates that other major H3K27me3 bands closely align with regions of highest gene density.
Collapse
Affiliation(s)
- Brian P Chadwick
- Department of Cell Biology, Duke University Medical Center and Institute for Genome Science and Policy, Durham, NC 27710, USA.
| |
Collapse
|
194
|
Zhang R, Liu ST, Chen W, Bonner M, Pehrson J, Yen TJ, Adams PD. HP1 proteins are essential for a dynamic nuclear response that rescues the function of perturbed heterochromatin in primary human cells. Mol Cell Biol 2006; 27:949-62. [PMID: 17101789 PMCID: PMC1800672 DOI: 10.1128/mcb.01639-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cellular information is encoded genetically in the DNA nucleotide sequence and epigenetically by the "histone code," DNA methylation, and higher-order packaging of DNA into chromatin. Cells possess intricate mechanisms to sense and repair damage to DNA and the genetic code. However, nothing is known of the mechanisms, if any, that repair and/or compensate for damage to epigenetically encoded information, predicted to result from perturbation of DNA and histone modifications or other changes in chromatin structure. Here we show that primary human cells respond to a variety of small molecules that perturb DNA and histone modifications by recruiting HP1 proteins to sites of altered pericentromeric heterochromatin. This response is essential to maintain the HP1-binding kinetochore protein hMis12 at kinetochores and to suppress catastrophic mitotic defects. Recruitment of HP1 proteins to pericentromeres depends on histone H3.3 variant deposition, mediated by the HIRA histone chaperone. These data indicate that defects in pericentromeric epigenetic heterochromatin modifications initiate a dynamic HP1-dependent response that rescues pericentromeric heterochromatin function and is essential for viable progression through mitosis.
Collapse
Affiliation(s)
- Rugang Zhang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | |
Collapse
|
195
|
Eskeland R, Eberharter A, Imhof A. HP1 binding to chromatin methylated at H3K9 is enhanced by auxiliary factors. Mol Cell Biol 2006; 27:453-65. [PMID: 17101786 PMCID: PMC1800810 DOI: 10.1128/mcb.01576-06] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large portion of the eukaryotic genome is packaged into transcriptionally silent heterochromatin. Several factors that play important roles during the establishment and maintenance of this condensed form have been identified. Methylation of lysine 9 within histone H3 and the subsequent binding of the chromodomain protein heterochromatin protein 1 (HP1) are thought to initiate heterochromatin formation in vivo and to propagate a heterochromatic state lasting through several cell divisions. For the present study we analyzed the binding of HP1 to methylated chromatin in a fully reconstituted system. In contrast to its strong binding to methylated peptides, HP1 binds only weakly to methylated chromatin. However, the addition of recombinant SU(VAR) protein, such as ACF1 or SU(VAR)3-9, facilitates HP1 binding to chromatin methylated at lysine 9 within the H3 N terminus (H3K9). We propose that HP1 has multiple target sites that contribute to its recognition of chromatin, only one of them being methylated at H3K9. These findings have implications for the mechanisms of recognition of specific chromatin modifications in vivo.
Collapse
Affiliation(s)
- Ragnhild Eskeland
- Histone Modifications Group, Adolf-Butenandt Institut, University of Munich, Schillerstrasse 44, 80336 Munich, Germany
| | | | | |
Collapse
|
196
|
Roh TY, Cuddapah S, Cui K, Zhao K. The genomic landscape of histone modifications in human T cells. Proc Natl Acad Sci U S A 2006; 103:15782-7. [PMID: 17043231 PMCID: PMC1613230 DOI: 10.1073/pnas.0607617103] [Citation(s) in RCA: 377] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
To understand the molecular basis that supports the dynamic gene expression programs unique to T cells, we investigated the genomic landscape of activating histone modifications, including histone H3 K9/K14 diacetylation (H3K9acK14ac), H3 K4 trimethylation (H3K4me3), and the repressive histone modification H3 K27 trimethylation (H3K27me3) in primary human T cells. We show that H3K9acK14ac and H3K4me3 are associated with active genes required for T cell function and development, whereas H3K27me3 is associated with silent genes that are involved in development in other cell types. Unexpectedly, we find that 3,330 gene promoters are associated with all of these histone modifications. The gene expression levels are correlated with both the absolute and relative levels of the activating H3K4me3 and the repressive H3K27me3 modifications. Our data reveal that rapidly inducible genes are associated with the H3 acetylation and H3K4me3 modifications, suggesting they assume a chromatin structure poised for activation. In addition, we identified a subpopulation of chromatin regions that are associated with high levels of H3K4me3 and H3K27me3 but low levels of H3K9acK14ac. Therefore, these regions have a distinctive chromatin modification pattern and thus may represent a distinct class of chromatin domains.
Collapse
Affiliation(s)
- Tae-Young Roh
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Suresh Cuddapah
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kairong Cui
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Keji Zhao
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
- *To whom correspondence should be addressed at:
Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10, Room 7N311, 9000 Rockville Pike, Bethesda, MD 20892. E-mail:
| |
Collapse
|
197
|
Yamada N, Hamada T, Goto M, Tsutsumida H, Higashi M, Nomoto M, Yonezawa S. MUC2 expression is regulated by histone H3 modification and DNA methylation in pancreatic cancer. Int J Cancer 2006; 119:1850-7. [PMID: 16721789 DOI: 10.1002/ijc.22047] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mucins are highly glycosylated proteins that play important roles in carcinogenesis. In pancreatic neoplasia, MUC2 mucin has been demonstrated as a tumor suppressor and we have reported that MUC2 is a favorable prognostic factor. Regulation of MUC2 gene expression is known to be controlled by DNA methylation, but the role of histone modification for MUC2 gene expression has yet to be clarified. Herein, we provide the first report that the histone H3 modification of the MUC2 promoter region regulates MUC2 gene expression. To investigate the histone modification and DNA methylation of the promoter region of the MUC2 gene, we treated 2 human pancreatic cancer cell lines, PANC1 (MUC2-negative) and BxPC3 (MUC2-positive) with the DNA methyltransferase inhibitor 5-azacytidine (5-aza), the histone deacetylase inhibitor trichostatin A (TSA), and a combination of these agents. The DNA methylation level of PANC1 cells was decreased by all 3 treatments, whereas histone H3-K4/K9 methylation and H3-K9/K27 acetylation in PANC1 cells was changed to the level in BxPC3 cells by treatment with TSA alone and with the 5-aza/TSA combination. The expression level of MUC2 mRNA in PANC1 cells exhibited a definite increase when treated with TSA and 5-aza/TSA, whereas 5-aza alone induced only a slight increase. Our results suggest that histone H3 modification in the 5' flanking region play an important role in MUC2 gene expression, possibly affecting DNA methylation. An understanding of these intimately correlated epigenetic changes may be of importance for predicting the outcome of patients with pancreatic neoplasms.
Collapse
Affiliation(s)
- Norishige Yamada
- Department of Human Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | | | | | |
Collapse
|
198
|
Vogel MJ, Guelen L, de Wit E, Hupkes DP, Lodén M, Talhout W, Feenstra M, Abbas B, Classen AK, van Steensel B. Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Res 2006; 16:1493-504. [PMID: 17038565 PMCID: PMC1665633 DOI: 10.1101/gr.5391806] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heterochromatin is important for gene regulation and chromosome structure, but the genes that are occupied by heterochromatin proteins in the mammalian genome are largely unknown. We have adapted the DamID method to systematically identify target genes of the heterochromatin proteins HP1 and SUV39H1 in human and mouse cells. Unexpectedly, we found that CBX1 (formerly HP1beta) and SUV39H1 bind to genes encoding KRAB domain containing zinc finger (KRAB-ZNF) transcriptional repressors. These genes constitute one of the largest gene families and are organized in clusters in the human genome. Preference of CBX1 for this gene family was observed in both human and mouse cells. High-resolution mapping on human chromosome 19 revealed that CBX1 coats large domains 0.1-4 Mb in size, which coincide with the position of KRAB-ZNF gene clusters. These domains show an intricate CBX1 binding pattern: While CBX1 is globally elevated throughout the domains, it is absent from the promoters and binds more strongly to the 3' ends of KRAB-ZNF genes. KRAB-ZNF domains contain large numbers of LINE elements, which may contribute to CBX1 recruitment. These results uncover a surprising link between heterochromatin and a large family of regulatory genes in mammals. We suggest a role for heterochromatin in the evolution of the KRAB-ZNF gene family.
Collapse
Affiliation(s)
- Maartje J. Vogel
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lars Guelen
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Elzo de Wit
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daniel Peric Hupkes
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Martin Lodén
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wendy Talhout
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marike Feenstra
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ben Abbas
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anne-Kathrin Classen
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas van Steensel
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Corresponding author.E-mail ; fax +31.20.669.1383
| |
Collapse
|
199
|
Hsieh MJ, Yao YL, Lai IL, Yang WM. Transcriptional repression activity of PAX3 is modulated by competition between corepressor KAP1 and heterochromatin protein 1. Biochem Biophys Res Commun 2006; 349:573-81. [PMID: 16945326 DOI: 10.1016/j.bbrc.2006.08.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 08/12/2006] [Indexed: 11/26/2022]
Abstract
Pax3 is a transcription factor crucial for normal development and tumorigenesis. Pax3 has been known to cause Waardenburg syndrome and pediatric alveolar rhabdomyosarcoma, but how Pax3 regulates transcription is not clear. Here, we report that Pax3 represses transcription and selectively interacts with heterochromatin protein 1 (HP1) and KAP1. KAP1 functions as a transcriptional corepressor by recruiting HP1 to facilitate the formation of a closed chromatin through histone deacetylation and methylation. We found that KAP1 is a corepressor for Pax3 by augmenting the repressional activity of Pax3. Unexpectedly, HP1gamma diminishes the repressional activity of Pax3. On target promoters, KAP1 and HP1gamma compete for binding with Pax3 on the N-terminal paired domain, and the C-terminal domain of Pax3 governs the subcellular localization of Pax3. Taken together, our results indicate that Pax3 represses transcription through a novel mechanism involving competition between corepressor KAP1 and the heterochromatin-binding protein HP1gamma.
Collapse
Affiliation(s)
- Mei-Ju Hsieh
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | |
Collapse
|
200
|
Schuetz A, Allali-Hassani A, Martín F, Loppnau P, Vedadi M, Bochkarev A, Plotnikov AN, Arrowsmith CH, Min J. Structural basis for molecular recognition and presentation of histone H3 by WDR5. EMBO J 2006; 25:4245-52. [PMID: 16946699 PMCID: PMC1570438 DOI: 10.1038/sj.emboj.7601316] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 08/08/2006] [Indexed: 01/12/2023] Open
Abstract
Histone methylation at specific lysine residues brings about various downstream events that are mediated by different effector proteins. The WD40 domain of WDR5 represents a new class of histone methyl-lysine recognition domains that is important for recruiting H3K4 methyltransferases to K4-dimethylated histone H3 tail as well as for global and gene-specific K4 trimethylation. Here we report the crystal structures of full-length WDR5, WDR5Delta23 and its complexes with unmodified, mono-, di- and trimethylated histone H3K4 peptides. The structures reveal that WDR5 is able to bind all of these histone H3 peptides, but only H3K4me2 peptide forms extra interactions with WDR5 by use of both water-mediated hydrogen bonding and the altered hydrophilicity of the modified lysine 4. We propose a mechanism for the involvement of WDR5 in binding and presenting histone H3K4 for further methylation as a component of MLL complexes.
Collapse
Affiliation(s)
- Anja Schuetz
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Fernando Martín
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Alexey Bochkarev
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|