151
|
Zhao J, Gladieux P, Hutchison E, Bueche J, Hall C, Perraudeau F, Glass NL. Identification of Allorecognition Loci in Neurospora crassa by Genomics and Evolutionary Approaches. Mol Biol Evol 2015; 32:2417-32. [PMID: 26025978 PMCID: PMC4540973 DOI: 10.1093/molbev/msv125] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding the genetic and molecular bases of the ability to distinguish self from nonself (allorecognition) and mechanisms underlying evolution of allorecognition systems is an important endeavor for understanding cases where it becomes dysfunctional, such as in autoimmune disorders. In filamentous fungi, allorecognition can result in vegetative or heterokaryon incompatibility, which is a type of programmed cell death that occurs following fusion of genetically different cells. Allorecognition is genetically controlled by het loci, with coexpression of any combination of incompatible alleles triggering vegetative incompatibility. Herein, we identified, characterized, and inferred the evolutionary history of candidate het loci in the filamentous fungus Neurospora crassa. As characterized het loci encode proteins carrying an HET domain, we annotated HET domain genes in 25 isolates from a natural population along with the N. crassa reference genome using resequencing data. Because allorecognition systems can be affected by frequency-dependent selection favoring rare alleles (i.e., balancing selection), we mined resequencing data for HET domain loci whose alleles displayed elevated levels of variability, excess of intermediate frequency alleles, and deep gene genealogies. From these analyses, 34 HET domain loci were identified as likely to be under balancing selection. Using transformation, incompatibility assays and genetic analyses, we determined that one of these candidates functioned as a het locus (het-e). The het-e locus has three divergent allelic groups that showed signatures of positive selection, intra- and intergroup recombination, and trans-species polymorphism. Our findings represent a compelling case of balancing selection functioning on multiple alleles across multiple loci potentially involved in allorecognition.
Collapse
Affiliation(s)
- Jiuhai Zhao
- Plant and Microbial Biology Department, University of California, Berkeley
| | - Pierre Gladieux
- Plant and Microbial Biology Department, University of California, Berkeley INRA, UMR BGPI, TA A54/K, Montpellier, France; CIRAD, Montpellier, France
| | - Elizabeth Hutchison
- Plant and Microbial Biology Department, University of California, Berkeley Biology Department, 1 College Circle SUNY Geneseo, Geneseo, NY
| | - Joanna Bueche
- Plant and Microbial Biology Department, University of California, Berkeley
| | - Charles Hall
- Plant and Microbial Biology Department, University of California, Berkeley
| | - Fanny Perraudeau
- Plant and Microbial Biology Department, University of California, Berkeley Ecole Polytechnique, Palaiseau, France
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, Berkeley
| |
Collapse
|
152
|
Teixeira JC, de Filippo C, Weihmann A, Meneu JR, Racimo F, Dannemann M, Nickel B, Fischer A, Halbwax M, Andre C, Atencia R, Meyer M, Parra G, Pääbo S, Andrés AM. Long-Term Balancing Selection in LAD1 Maintains a Missense Trans-Species Polymorphism in Humans, Chimpanzees, and Bonobos. Mol Biol Evol 2015; 32:1186-96. [PMID: 25605789 DOI: 10.1093/molbev/msv007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Balancing selection maintains advantageous genetic and phenotypic diversity in populations. When selection acts for long evolutionary periods selected polymorphisms may survive species splits and segregate in present-day populations of different species. Here, we investigate the role of long-term balancing selection in the evolution of protein-coding sequences in the Homo-Pan clade. We sequenced the exome of 20 humans, 20 chimpanzees, and 20 bonobos and detected eight coding trans-species polymorphisms (trSNPs) that are shared among the three species and have segregated for approximately 14 My of independent evolution. Although the majority of these trSNPs were found in three genes of the major histocompatibility locus cluster, we also uncovered one coding trSNP (rs12088790) in the gene LAD1. All these trSNPs show clustering of sequences by allele rather than by species and also exhibit other signatures of long-term balancing selection, such as segregating at intermediate frequency and lying in a locus with high genetic diversity. Here, we focus on the trSNP in LAD1, a gene that encodes for Ladinin-1, a collagenous anchoring filament protein of basement membrane that is responsible for maintaining cohesion at the dermal-epidermal junction; the gene is also an autoantigen responsible for linear IgA disease. This trSNP results in a missense change (Leucine257Proline) and, besides altering the protein sequence, is associated with changes in gene expression of LAD1.
Collapse
Affiliation(s)
- João C Teixeira
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cesare de Filippo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Antje Weihmann
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Juan R Meneu
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fernando Racimo
- Department of Integrative Biology, University of California, Berkeley
| | - Michael Dannemann
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Fischer
- International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Michel Halbwax
- Clinique vétérinaire du Dr. Jacquemin, Maisons-Alfort, France
| | - Claudine Andre
- Lola Ya Bonobo sanctuary, Kinshasa, Democratic Republic Congo
| | - Rebeca Atencia
- Réserve Naturelle Sanctuaire à Chimpanzés de Tchimpounga, Jane Goodall Institute, Pointe-Noire, Republic of Congo
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Genís Parra
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Aida M Andrés
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
153
|
Lau Q, Chow N, Gray R, Gongora J, Higgins DP. Diversity of MHCDQBandDRBGenes in the Endangered Australian Sea Lion (Neophoca cinerea). J Hered 2015; 106:395-402. [DOI: 10.1093/jhered/esv022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/25/2015] [Indexed: 01/26/2023] Open
|
154
|
Wilkinson GS, Breden F, Mank JE, Ritchie MG, Higginson AD, Radwan J, Jaquiery J, Salzburger W, Arriero E, Barribeau SM, Phillips PC, Renn SCP, Rowe L. The locus of sexual selection: moving sexual selection studies into the post-genomics era. J Evol Biol 2015; 28:739-55. [PMID: 25789690 DOI: 10.1111/jeb.12621] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 02/07/2023]
Abstract
Sexual selection drives fundamental evolutionary processes such as trait elaboration and speciation. Despite this importance, there are surprisingly few examples of genes unequivocally responsible for variation in sexually selected phenotypes. This lack of information inhibits our ability to predict phenotypic change due to universal behaviours, such as fighting over mates and mate choice. Here, we discuss reasons for this apparent gap and provide recommendations for how it can be overcome by adopting contemporary genomic methods, exploiting underutilized taxa that may be ideal for detecting the effects of sexual selection and adopting appropriate experimental paradigms. Identifying genes that determine variation in sexually selected traits has the potential to improve theoretical models and reveal whether the genetic changes underlying phenotypic novelty utilize common or unique molecular mechanisms. Such a genomic approach to sexual selection will help answer questions in the evolution of sexually selected phenotypes that were first asked by Darwin and can furthermore serve as a model for the application of genomics in all areas of evolutionary biology.
Collapse
Affiliation(s)
- G S Wilkinson
- Department of Biology, University of Maryland, College Park, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Le M, Choi H, Choi MK, Cho H, Kim JH, Seo HG, Cha SY, Seo K, Dadi H, Park C. Development of a simultaneous high resolution typing method for three SLA class II genes, SLA-DQA, SLA-DQB1, and SLA-DRB1 and the analysis of SLA class II haplotypes. Gene 2015; 564:228-32. [PMID: 25824383 DOI: 10.1016/j.gene.2015.03.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 11/28/2022]
Abstract
The characterization of the genetic variations of major histocompatibility complex (MHC) is essential to understand the relationship between the genetic diversity of MHC molecules and disease resistance and susceptibility in adaptive immunity. We previously reported the development of high-resolution individual locus typing methods for three of the most polymorphic swine leukocyte antigens (SLA) class II loci, namely, SLA-DQA, SLA-DQB1, and SLA-DRB1. In this study, we extensively modified our previous protocols and developed a method for the simultaneous amplification of the three SLA class II genes and subsequent analysis of individual loci using direct sequencing. The unbiased and simultaneous amplification of alleles from the all three hyper-polymorphic and pseudogene containing genes such as MHC genes is extremely challenging. However, using this method, we demonstrated the successful typing of SLA-DQA, SLA-DQB1, and SLA-DRB1 for 31 selected individuals comprising 26 different SLA class II haplotypes which were identified from 700 animals using the single locus typing methods. The results were identical to the known genotypes from the individual locus typing. The new method has significant benefits over the individual locus typing, including lower typing cost, use of less biomaterial, less effort and fewer errors in handling large samples for multiple loci. We also extensively characterized the haplotypes of SLA class II genes and reported three new haplotypes. Our results should serve as a basis to investigate the possible association between polymorphisms of MHC class II and differences in immune responses to exogenous antigens.
Collapse
Affiliation(s)
- MinhThong Le
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Hojun Choi
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Min-Kyeung Choi
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Hyesun Cho
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Han Geuk Seo
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea
| | - Se-Yeon Cha
- College of Veterinary Medicine, Chonbuk National University, South Korea
| | - Kunho Seo
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Hailu Dadi
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea.
| | - Chankyu Park
- Department of Animal Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, South Korea.
| |
Collapse
|
156
|
|
157
|
Osborne AJ, Pearson J, Negro SS, Chilvers BL, Kennedy MA, Gemmell NJ. Heterozygote advantage at MHC DRB may influence response to infectious disease epizootics. Mol Ecol 2015; 24:1419-32. [PMID: 25728376 DOI: 10.1111/mec.13128] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 12/17/2022]
Abstract
The effect of MHC polymorphism on individual fitness variation in the wild remains equivocal; however, much evidence suggests that heterozygote advantage is a major determinant. To understand the contribution of MHC polymorphism to individual disease resistance or susceptibility in natural populations, we investigated two MHC class II B loci, DQB and DRB, in the New Zealand sea lion (NZSL, Phocarctos hookeri). The NZSL is a threatened species which is unusually susceptible to death by bacterial infection at an early age; it has suffered three bacterial induced epizootics resulting in high mortality levels of young pups since 1997. The MHC DQB and DRB haplotypes of dead NZSL pups with known cause of death (bacteria, enteritis or trauma) were sequenced and reconstructed, compared to pups that survived beyond 2 months of age, and distinct MHC DRB allele frequency and genotype differences were identified. Two findings were striking: (i) one DRB allele was present only in dead pups, and (ii) one heterozygous DRB genotype, common in live pups, was absent from dead pups. These results are consistent with some functional relationship with these variants and suggest heterozygote advantage is operating at DRB. We found no association between heterozygosity and fitness at 17 microsatellite loci, indicating that general heterozygosity is not responsible for the effect on fitness detected here. This result may be a consequence of recurrent selection by multiple pathogen assault over recent years and highlights the importance of heterozygote advantage at MHC as a potential mechanism for fitness differences in wild populations.
Collapse
Affiliation(s)
- Amy J Osborne
- Department of Anatomy, University of Otago, PO Box 913, Dunedin, 9054, New Zealand; Department of Pathology, University of Otago, Christchurch, 8140, New Zealand
| | | | | | | | | | | |
Collapse
|
158
|
|
159
|
Jones MR, Cheviron ZA, Carling MD. Spatially variable coevolution between a haemosporidian parasite and the MHC of a widely distributed passerine. Ecol Evol 2015; 5:1045-60. [PMID: 25798222 PMCID: PMC4364819 DOI: 10.1002/ece3.1391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/03/2014] [Accepted: 12/12/2014] [Indexed: 12/12/2022] Open
Abstract
The environment shapes host-parasite interactions, but how environmental variation affects the diversity and composition of parasite-defense genes of hosts is unresolved. In vertebrates, the highly variable major histocompatibility complex (MHC) gene family plays an essential role in the adaptive immune system by recognizing pathogen infection and initiating the cellular immune response. Investigating MHC-parasite associations across heterogeneous landscapes may elucidate the role of spatially fluctuating selection in the maintenance of high levels of genetic variation at the MHC. We studied patterns of association between an avian haemosporidian blood parasite and the MHC of rufous-collared sparrows (Zonotrichia capensis) that inhabit environments with widely varying haemosporidian infection prevalence in the Peruvian Andes. MHC diversity peaked in populations with high infection prevalence, although intra-individual MHC diversity was not associated with infection status. MHC nucleotide and protein sequences associated with infection absence tended to be rare, consistent with negative frequency-dependent selection. We found an MHC variant associated with a ∽26% decrease in infection probability at middle elevations (1501-3100 m) where prevalence was highest. Several other variants were associated with a significant increase in infection probability in low haemosporidian prevalence environments, which can be interpreted as susceptibility or quantitative resistance. Our study highlights important challenges in understanding MHC evolution in natural systems, but may point to a role of negative frequency-dependent selection and fluctuating spatial selection in the evolution of Z. capensisMHC.
Collapse
Affiliation(s)
- Matthew R Jones
- Department of Zoology and Physiology, Berry Biodiversity Conservation Center, University of Wyoming 1000 E. University Ave., Dept. 4304, Laramie, Wyoming, 82071
| | - Zachary A Cheviron
- Department of Animal Biology, School of Integrative Biology, University of Illinois Urbana-Champaign 505 South Goodwin Ave., Urbana, Illinois, 61801
| | - Matthew D Carling
- Department of Zoology and Physiology, Berry Biodiversity Conservation Center, University of Wyoming 1000 E. University Ave., Dept. 4304, Laramie, Wyoming, 82071
| |
Collapse
|
160
|
Jan Ejsmond M, Radwan J, Wilson AB. Sexual selection and the evolutionary dynamics of the major histocompatibility complex. Proc Biol Sci 2014; 281:20141662. [PMID: 25339723 PMCID: PMC4213641 DOI: 10.1098/rspb.2014.1662] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/22/2014] [Indexed: 12/27/2022] Open
Abstract
The genes of the major histocompatibility complex (MHC) are a key component of the adaptive immune system and among the most variable loci in the vertebrate genome. Pathogen-mediated natural selection and MHC-based disassortative mating are both thought to structure MHC polymorphism, but their effects have proven difficult to discriminate in natural systems. Using the first model of MHC dynamics incorporating both survival and reproduction, we demonstrate that natural and sexual selection produce distinctive signatures of MHC allelic diversity with critical implications for understanding host-pathogen dynamics. While natural selection produces the Red Queen dynamics characteristic of host-parasite interactions, disassortative mating stabilizes allele frequencies, damping major fluctuations in dominant alleles and protecting functional variants against drift. This subtle difference generates a complex interaction between MHC allelic diversity and population size. In small populations, the stabilizing effects of sexual selection moderate the effects of drift, whereas pathogen-mediated selection accelerates the loss of functionally important genetic diversity. Natural selection enhances MHC allelic variation in larger populations, with the highest levels of diversity generated by the combined action of pathogen-mediated selection and disassortative mating. MHC-based sexual selection may help to explain how functionally important genetic variation can be maintained in populations of conservation concern.
Collapse
Affiliation(s)
- Maciej Jan Ejsmond
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland Department of Arctic Biology, The University Centre in Svalbard, Box 156, 9171 Longyearbyen, Norway
| | - Jacek Radwan
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Anthony B Wilson
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland Department of Biology, Brooklyn College and The Graduate Center, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
161
|
Cammen KM, Wilcox LA, Rosel PE, Wells RS, Read AJ. From genome-wide to candidate gene: an investigation of variation at the major histocompatibility complex in common bottlenose dolphins exposed to harmful algal blooms. Immunogenetics 2014; 67:125-33. [DOI: 10.1007/s00251-014-0818-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/24/2014] [Indexed: 01/24/2023]
|
162
|
Kuduk K, Babik W, Bellemain E, Valentini A, Zedrosser A, Taberlet P, Kindberg J, Swenson JE, Radwan J. No evidence for the effect of MHC on male mating success in the brown bear. PLoS One 2014; 9:e113414. [PMID: 25470381 PMCID: PMC4254848 DOI: 10.1371/journal.pone.0113414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/23/2014] [Indexed: 11/19/2022] Open
Abstract
Mate choice is thought to contribute to the maintenance of the spectacularly high polymorphism of the Major Histocompatibility Complex (MHC) genes, along with balancing selection from parasites, but the relative contribution of the former mechanism is debated. Here, we investigated the association between male MHC genotype and mating success in the brown bear. We analysed fragments of sequences coding for the peptide-binding region of the highly polymorphic MHC class I and class II DRB genes, while controlling for genome-wide effects using a panel of 18 microsatellite markers. Male mating success did not depend on the number of alleles shared with the female or amino-acid distance between potential mates at either locus. Furthermore, we found no indication of female mating preferences for MHC similarity being contingent on the number of alleles the females carried. Finally, we found no significant association between the number of MHC alleles a male carried and his mating success. Thus, our results provided no support for the role of mate choice in shaping MHC polymorphism in the brown bear.
Collapse
Affiliation(s)
- Katarzyna Kuduk
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Wieslaw Babik
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Eva Bellemain
- SPYGEN, Savoie Technolac - Bât. Koala 17, rue du Lac Saint-André - BP 274, 73375, Le Bourget-du-Lac Cedex, France
| | - Alice Valentini
- SPYGEN, Savoie Technolac - Bât. Koala 17, rue du Lac Saint-André - BP 274, 73375, Le Bourget-du-Lac Cedex, France
| | - Andreas Zedrosser
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, NO-1432, Ås, Norway
- Institute for Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, AT-1180, Vienna, Austria
| | - Pierre Taberlet
- CNRS, LECA, F-38000, Grenoble, France
- Université Grenoble Alpes, LECA, F-38000, Grenoble, France
| | - Jonas Kindberg
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Jon E. Swenson
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, NO-1432, Ås, Norway
- Norwegian Institute for Nature Research, NO-7485, Trondheim, Norway
| | - Jacek Radwan
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
- * E-mail:
| |
Collapse
|
163
|
Radwan J, Kuduk K, Levy E, LeBas N, Babik W. Parasite load and MHC diversity in undisturbed and agriculturally modified habitats of the ornate dragon lizard. Mol Ecol 2014; 23:5966-78. [PMID: 25355141 DOI: 10.1111/mec.12984] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 11/26/2022]
Abstract
Major histocompatibility complex (MHC) gene polymorphism is thought to be driven by host-parasite co-evolution, but the evidence for an association between the selective pressure from parasites and the number of MHC alleles segregating in a population is scarce and inconsistent. Here, we characterized MHC class I polymorphism in a lizard whose habitat preferences (rock outcrops) lead to the formation of well-defined and stable populations. We investigated the association between the load of ticks, which were used as a proxy for the load of pathogens they transmit, and MHC class I polymorphism across populations in two types of habitat: undisturbed reserves and agricultural land. We hypothesized that the association would be positive across undisturbed reserve populations, but across fragmented agricultural land populations, the relationship would be distorted by the loss of MHC variation due to drift. After controlling for habitat, MHC diversity was not associated with tick number, and the habitats did not differ in this respect. Neither did we detect a difference between habitats in the relationship between MHC and neutral diversity, which was positive across all populations. However, there was extensive variation in the number of MHC alleles per individual, and we found that tick number was positively associated with the average number of alleles carried by lizards across reserve populations, but not across populations from disturbed agricultural land. Our results thus indicate that local differences in selection from parasites may contribute to MHC copy number variation within species, but habitat degradation can distort this relationship.
Collapse
Affiliation(s)
- Jacek Radwan
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | | | | | | | | |
Collapse
|
164
|
Kamiya T, O'Dwyer K, Westerdahl H, Senior A, Nakagawa S. A quantitative review of MHC-based mating preference: the role of diversity and dissimilarity. Mol Ecol 2014; 23:5151-63. [DOI: 10.1111/mec.12934] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/04/2014] [Accepted: 09/17/2014] [Indexed: 11/30/2022]
Affiliation(s)
- T. Kamiya
- Laboratoire MIVEGEC (UMR CNRS 5290, UR IRD 224, UM1, UM2); 911 avenue Agropolis, BP 64501 Montpellier Cedex 5 34394 France
| | - K. O'Dwyer
- Department of Zoology; University of Otago; 360 Great King Street Dunedin New Zealand
| | - H. Westerdahl
- Molecular Ecology and Evolution Lab; Department of Biology; Lund University; SE-223 62 Lund Sweden
| | - A. Senior
- The Charles Perkins Center; The University of Sydney; Sydney NSW 2006 Australia
- School of Biological Sciences; The University of Sydney; Sydney NSW 2006 Australia
| | - S. Nakagawa
- Department of Zoology; University of Otago; 360 Great King Street Dunedin New Zealand
| |
Collapse
|
165
|
Sin YW, Annavi G, Dugdale HL, Newman C, Burke T, MacDonald DW. Pathogen burden, co-infection and major histocompatibility complex variability in the European badger (Meles meles). Mol Ecol 2014; 23:5072-88. [PMID: 25211523 DOI: 10.1111/mec.12917] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/07/2014] [Accepted: 09/08/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Yung Wa Sin
- Wildlife Conservation Research Unit; Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House, Abingdon Road Tubney Abingdon Oxfordshire OX13 5QL UK
- NERC Biomolecular Analysis Facility; Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
- Department of Organismic and Evolutionary Biology; Museum of Comparative Zoology; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| | - Geetha Annavi
- Wildlife Conservation Research Unit; Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House, Abingdon Road Tubney Abingdon Oxfordshire OX13 5QL UK
- NERC Biomolecular Analysis Facility; Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
- Faculty of Science; Department of Biology; University of Putra Malaysia; UPM 43400 Serdang Selangor Malaysia
| | - Hannah L. Dugdale
- NERC Biomolecular Analysis Facility; Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
- Behavioural Ecology and Self-Organization; University of Groningen; PO Box 11103 9700 CC Groningen the Netherlands
- Theoretical Biology; University of Groningen; PO Box 11103 9700 CC Groningen the Netherlands
| | - Chris Newman
- Wildlife Conservation Research Unit; Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House, Abingdon Road Tubney Abingdon Oxfordshire OX13 5QL UK
| | - Terry Burke
- NERC Biomolecular Analysis Facility; Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | - David W. MacDonald
- Wildlife Conservation Research Unit; Department of Zoology; Recanati-Kaplan Centre; University of Oxford; Tubney House, Abingdon Road Tubney Abingdon Oxfordshire OX13 5QL UK
| |
Collapse
|
166
|
Major histocompatibility complex alleles associated with parasite susceptibility in wild giant pandas. Heredity (Edinb) 2014; 114:85-93. [PMID: 25248466 DOI: 10.1038/hdy.2014.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 02/03/2023] Open
Abstract
Major histocompatibility complex (MHC) polymorphism is thought to be driven by antagonistic coevolution between pathogens and hosts, mediated through either overdominance or frequency-dependent selection. However, investigations under natural conditions are still rare for endangered mammals which often exhibit depleted variation, and the mechanism of selection underlying the maintenance of characteristics remains a considerable debate. In this study, 87 wild giant pandas were used to investigate MHC variation associated with parasite load. With the knowledge of the MHC profile provided by the genomic data of the giant panda, seven DRB1, seven DQA1 and eight DQA2 alleles were identified at each single locus. Positive selection evidenced by a significantly higher number of non-synonymous substitutions per non-synonymous codon site relative to synonymous substitutions per synonymous codon site could only be detected at the DRB1 locus, which leads to the speculation that DRB1 may have a more important role in dealing with parasite infection for pandas. Coprological analyses revealed that 55.17% of individuals exhibited infection with 1-2 helminthes and 95.3% of infected pandas carried Baylisascaris shroederi. Using a generalized linear model, we found that Aime-DRB1*10 was significantly associated with parasite infection, but no resistant alleles could be detected. MHC heterozygosity of the pandas was found to be uncorrelated with the infection status or the infection intensity. These results suggested that the possible selection mechanisms in extant wild pandas may be frequency dependent rather than being determined by overdominance selection. Our findings could guide the candidate selection for the ongoing reintroduction or translocation of pandas.
Collapse
|
167
|
Herdegen M, Babik W, Radwan J. Selective pressures on MHC class II genes in the guppy (Poecilia reticulata) as inferred by hierarchical analysis of population structure. J Evol Biol 2014; 27:2347-59. [PMID: 25244157 DOI: 10.1111/jeb.12476] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/29/2022]
Abstract
Genes of the major histocompatibility complex, which are the most polymorphic of all vertebrate genes, are a pre-eminent system for the study of selective pressures that arise from host-pathogen interactions. Balancing selection capable of maintaining high polymorphism should lead to the homogenization of MHC allele frequencies among populations, but there is some evidence to suggest that diversifying selection also operates on the MHC. However, the pattern of population structure observed at MHC loci is likely to depend on the spatial and/or temporal scale examined. Here, we investigated selection acting on MHC genes at different geographic scales using Venezuelan guppy populations inhabiting four regions. We found a significant correlation between MHC and microsatellite allelic richness across populations, which suggests the role of genetic drift in shaping MHC diversity. However, compared to microsatellites, more MHC variation was explained by differences between populations within larger geographic regions and less by the differences between the regions. Furthermore, among proximate populations, variation in MHC allele frequencies was significantly higher compared to microsatellites, indicating that selection acting on MHC may increase population structure at small spatial scales. However, in populations that have significantly diverged at neutral markers, the population-genetic signature of diversifying selection may be eradicated in the long term by that of balancing selection, which acts to preserve rare alleles and thus maintain a common pool of MHC alleles.
Collapse
Affiliation(s)
- M Herdegen
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | | | | |
Collapse
|
168
|
Sheehan MJ, Nachman MW. Morphological and population genomic evidence that human faces have evolved to signal individual identity. Nat Commun 2014; 5:4800. [PMID: 25226282 PMCID: PMC4257785 DOI: 10.1038/ncomms5800] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022] Open
Abstract
Facial recognition plays a key role in human interactions, and there has been great interest in understanding the evolution of human abilities for individual recognition and tracking social relationships. Individual recognition requires sufficient cognitive abilities and phenotypic diversity within a population for discrimination to be possible. Despite the importance of facial recognition in humans, the evolution of facial identity has received little attention. Here we demonstrate that faces evolved to signal individual identity under negative frequency-dependent selection. Faces show elevated phenotypic variation and lower between-trait correlations compared with other traits. Regions surrounding face-associated single nucleotide polymorphisms show elevated diversity consistent with frequency-dependent selection. Genetic variation maintained by identity signalling tends to be shared across populations and, for some loci, predates the origin of Homo sapiens. Studies of human social evolution tend to emphasize cognitive adaptations, but we show that social evolution has shaped patterns of human phenotypic and genetic diversity as well.
Collapse
Affiliation(s)
- Michael J Sheehan
- Museum of Comparative Zoology and Integrative Biology, University of California, 3101 Valley Life Science Building, Berkeley, California 94720, USA
| | - Michael W Nachman
- Museum of Comparative Zoology and Integrative Biology, University of California, 3101 Valley Life Science Building, Berkeley, California 94720, USA
| |
Collapse
|
169
|
Jones MR, Cheviron ZA, Carling MD. Variation in positively selected major histocompatibility complex class I loci in rufous-collared sparrows (Zonotrichia capensis). Immunogenetics 2014; 66:693-704. [DOI: 10.1007/s00251-014-0800-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/25/2014] [Indexed: 11/25/2022]
|
170
|
DeGiorgio M, Lohmueller KE, Nielsen R. A model-based approach for identifying signatures of ancient balancing selection in genetic data. PLoS Genet 2014; 10:e1004561. [PMID: 25144706 PMCID: PMC4140648 DOI: 10.1371/journal.pgen.1004561] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/26/2014] [Indexed: 01/19/2023] Open
Abstract
While much effort has focused on detecting positive and negative directional selection in the human genome, relatively little work has been devoted to balancing selection. This lack of attention is likely due to the paucity of sophisticated methods for identifying sites under balancing selection. Here we develop two composite likelihood ratio tests for detecting balancing selection. Using simulations, we show that these methods outperform competing methods under a variety of assumptions and demographic models. We apply the new methods to whole-genome human data, and find a number of previously-identified loci with strong evidence of balancing selection, including several HLA genes. Additionally, we find evidence for many novel candidates, the strongest of which is FANK1, an imprinted gene that suppresses apoptosis, is expressed during meiosis in males, and displays marginal signs of segregation distortion. We hypothesize that balancing selection acts on this locus to stabilize the segregation distortion and negative fitness effects of the distorter allele. Thus, our methods are able to reproduce many previously-hypothesized signals of balancing selection, as well as discover novel interesting candidates. In the past, balancing selection was a topic of great theoretical interest that received much attention. However, there has been little focus toward developing methods to identify regions of the genome that are under balancing selection. In this article, we present the first set of likelihood-based methods that explicitly model the spatial distribution of polymorphism expected near a site under long-term balancing selection. Simulation results show that our methods outperform commonly-used summary statistics for identifying regions under balancing selection. Finally, we performed a scan for balancing selection in Africans and Europeans using our new methods and identified a gene called FANK1 as our top candidate outside the HLA region. We hypothesize that the maintenance of polymorphism at FANK1 is the result of segregation distortion.
Collapse
Affiliation(s)
- Michael DeGiorgio
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Statistics, University of California, Berkeley, Berkeley, California, United States of America
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
171
|
Weyenberg G, Huggins PM, Schardl CL, Howe DK, Yoshida R. kdetrees: Non-parametric estimation of phylogenetic tree distributions. Bioinformatics 2014; 30:2280-7. [PMID: 24764459 PMCID: PMC4176058 DOI: 10.1093/bioinformatics/btu258] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/04/2014] [Accepted: 04/22/2014] [Indexed: 01/14/2023] Open
Abstract
MOTIVATION Although the majority of gene histories found in a clade of organisms are expected to be generated by a common process (e.g. the coalescent process), it is well known that numerous other coexisting processes (e.g. horizontal gene transfers, gene duplication and subsequent neofunctionalization) will cause some genes to exhibit a history distinct from those of the majority of genes. Such 'outlying' gene trees are considered to be biologically interesting, and identifying these genes has become an important problem in phylogenetics. RESULTS We propose and implement kdetrees, a non-parametric method for estimating distributions of phylogenetic trees, with the goal of identifying trees that are significantly different from the rest of the trees in the sample. Our method compares favorably with a similar recently published method, featuring an improvement of one polynomial order of computational complexity (to quadratic in the number of trees analyzed), with simulation studies suggesting only a small penalty to classification accuracy. Application of kdetrees to a set of Apicomplexa genes identified several unreliable sequence alignments that had escaped previous detection, as well as a gene independently reported as a possible case of horizontal gene transfer. We also analyze a set of Epichloë genes, fungi symbiotic with grasses, successfully identifying a contrived instance of paralogy. AVAILABILITY AND IMPLEMENTATION Our method for estimating tree distributions and identifying outlying trees is implemented as the R package kdetrees and is available for download from CRAN.
Collapse
Affiliation(s)
- Grady Weyenberg
- Department of Statistics, University of Kentucky, Lexington, KY 40536, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, Plant Pathology Department and Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Peter M Huggins
- Department of Statistics, University of Kentucky, Lexington, KY 40536, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, Plant Pathology Department and Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Christopher L Schardl
- Department of Statistics, University of Kentucky, Lexington, KY 40536, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, Plant Pathology Department and Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Daniel K Howe
- Department of Statistics, University of Kentucky, Lexington, KY 40536, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, Plant Pathology Department and Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Ruriko Yoshida
- Department of Statistics, University of Kentucky, Lexington, KY 40536, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, Plant Pathology Department and Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
172
|
Stutz WE, Bolnick DI. Stepwise threshold clustering: a new method for genotyping MHC loci using next-generation sequencing technology. PLoS One 2014; 9:e100587. [PMID: 25036866 PMCID: PMC4103772 DOI: 10.1371/journal.pone.0100587] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/26/2014] [Indexed: 12/26/2022] Open
Abstract
Genes of the vertebrate major histocompatibility complex (MHC) are of great interest to biologists because of their important role in immunity and disease, and their extremely high levels of genetic diversity. Next generation sequencing (NGS) technologies are quickly becoming the method of choice for high-throughput genotyping of multi-locus templates like MHC in non-model organisms. Previous approaches to genotyping MHC genes using NGS technologies suffer from two problems:1) a "gray zone" where low frequency alleles and high frequency artifacts can be difficult to disentangle and 2) a similar sequence problem, where very similar alleles can be difficult to distinguish as two distinct alleles. Here were present a new method for genotyping MHC loci--Stepwise Threshold Clustering (STC)--that addresses these problems by taking full advantage of the increase in sequence data provided by NGS technologies. Unlike previous approaches for genotyping MHC with NGS data that attempt to classify individual sequences as alleles or artifacts, STC uses a quasi-Dirichlet clustering algorithm to cluster similar sequences at increasing levels of sequence similarity. By applying frequency and similarity based criteria to clusters rather than individual sequences, STC is able to successfully identify clusters of sequences that correspond to individual or similar alleles present in the genomes of individual samples. Furthermore, STC does not require duplicate runs of all samples, increasing the number of samples that can be genotyped in a given project. We show how the STC method works using a single sample library. We then apply STC to 295 threespine stickleback (Gasterosteus aculeatus) samples from four populations and show that neighboring populations differ significantly in MHC allele pools. We show that STC is a reliable, accurate, efficient, and flexible method for genotyping MHC that will be of use to biologists interested in a variety of downstream applications.
Collapse
Affiliation(s)
- William E. Stutz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| | - Daniel I. Bolnick
- Howard Hughes Medical Institute & Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
173
|
Yasukochi Y, Satta Y. A human-specific allelic group of the MHC DRB1 gene in primates. J Physiol Anthropol 2014; 33:14. [PMID: 24928070 PMCID: PMC4072476 DOI: 10.1186/1880-6805-33-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/27/2014] [Indexed: 11/22/2022] Open
Abstract
Background Diversity among human leukocyte antigen (HLA) molecules has been maintained by host-pathogen coevolution over a long period of time. Reflecting this diversity, the HLA loci are the most polymorphic in the human genome. One characteristic of HLA diversity is long-term persistence of allelic lineages, which causes trans-species polymorphisms to be shared among closely related species. Modern humans have disseminated across the world after their exodus from Africa, while chimpanzees have remained in Africa since the speciation event between humans and chimpanzees. It is thought that modern humans have recently acquired resistance to novel pathogens outside Africa. In the present study, we investigated HLA alleles that could contribute to this local adaptation in humans and also studied the contribution of natural selection to human evolution by using molecular data. Results Phylogenetic analysis of HLA-DRB1 genes identified two major groups, HLA Groups A and B. Group A formed a monophyletic clade distinct from DRB1 alleles in other Catarrhini, suggesting that Group A is a human-specific allelic group. Our estimates of divergence time suggested that seven HLA-DRB1 Group A allelic lineages in humans have been maintained since before the speciation event between humans and chimpanzees, while chimpanzees possess only one DRB1 allelic lineage (Patr-DRB1*03), which is a sister group to Group A. Experimental data showed that some Group A alleles bound to peptides derived from human-specific pathogens. Of the Group A alleles, three exist at high frequencies in several local populations outside Africa. Conclusions HLA Group A alleles are likely to have been retained in human lineages for a long period of time and have not expanded since the divergence of humans and chimpanzees. On the other hand, most orthologs of HLA Group A alleles may have been lost in the chimpanzee due to differences in selective pressures. The presence of alleles with high frequency outside of Africa suggests these HLA molecules result from the local adaptations of humans. Our study helps elucidate the mechanism by which the human adaptive immune system has coevolved with pathogens over a long period of time.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Molecular and Genetic Epidemiology, Faculty of Medicine, University of Tsukuba, 305-8575 Tsukuba, Ibaraki, Japan.
| | | |
Collapse
|
174
|
Nowak MD, Haller BC, Yoder AD. The founding of Mauritian endemic coffee trees by a synchronous long-distance dispersal event. J Evol Biol 2014; 27:1229-39. [PMID: 24797428 DOI: 10.1111/jeb.12396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/14/2014] [Accepted: 04/01/2014] [Indexed: 12/27/2022]
Abstract
The stochastic process of long-distance dispersal is the exclusive means by which plants colonize oceanic islands. Baker's rule posits that self-incompatible plant lineages are unlikely to successfully colonize oceanic islands because they must achieve a coordinated long-distance dispersal of sufficiently numerous individuals to establish an outcrossing founder population. Here, we show for the first time that Mauritian Coffea species are self-incompatible and thus represent an exception to Baker's rule. The genus Coffea (Rubiaceae) is composed of approximately 124 species with a paleotropical distribution. Phylogenetic evidence strongly supports a single colonization of the oceanic island of Mauritius from either Madagascar or Africa. We employ Bayesian divergence time analyses to show that the colonization of Mauritius was not a recent event. We genotype S-RNase alleles from Mauritian endemic Coffea, and using S-allele gene genealogies, we show that the Mauritian allelic diversity is confined to just seven deeply divergent Coffea S-RNase allelic lineages. Based on these data, we developed an individual-based model and performed a simulation study to estimate the most likely number of founding individuals involved in the colonization of Mauritius. Our simulations show that to explain the observed S-RNase allelic diversity, the founding population was likely composed of fewer than 31 seeds that were likely synchronously dispersed from an ancestral mainland species.
Collapse
Affiliation(s)
- M D Nowak
- National Centre for Biosystematics, Natural History Museum, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
175
|
Nonsynonymous substitution rate heterogeneity in the peptide-binding region among different HLA-DRB1 lineages in humans. G3-GENES GENOMES GENETICS 2014; 4:1217-26. [PMID: 24793785 PMCID: PMC4455771 DOI: 10.1534/g3.114.011726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An extraordinary diversity of amino acid sequences in the peptide-binding region (PBR) of human leukocyte antigen [HLA; human major histocompatibility complex (MHC)] molecules has been maintained by balancing selection. The process of accumulation of amino acid diversity in the PBR for six HLA genes (HLA-A, B, C, DRB1, DQB1, and DPB1) shows that the number of amino acid substitutions in the PBR among alleles does not linearly correlate with the divergence time of alleles at the six HLA loci. At these loci, some pairs of alleles show significantly less nonsynonymous substitutions at the PBR than expected from the divergence time. The same phenomenon was observed not only in the HLA but also in the rat MHC. To identify the cause for this, DRB1 sequences, a representative case of a typical nonlinear pattern of substitutions, were examined. When the amino acid substitutions in the PBR were placed with maximum parsimony on a maximum likelihood tree based on the non-PBR substitutions, heterogeneous rates of nonsynonymous substitutions in the PBR were observed on several branches. A computer simulation supported the hypothesis that allelic pairs with low PBR substitution rates were responsible for the stagnation of accumulation of PBR nonsynonymous substitutions. From these observations, we conclude that the nonsynonymous substitution rate at the PBR sites is not constant among the allelic lineages. The deceleration of the rate may be caused by the coexistence of certain pathogens for a substantially long time during HLA evolution.
Collapse
|
176
|
Winternitz JC, Wares JP, Yabsley MJ, Altizer S. Wild cyclic voles maintain high neutral and MHC diversity without strong evidence for parasite-mediated selection. Evol Ecol 2014. [DOI: 10.1007/s10682-014-9709-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
177
|
Kamath PL, Turner WC, Küsters M, Getz WM. Parasite-mediated selection drives an immunogenetic trade-off in plains zebras (Equus quagga). Proc Biol Sci 2014; 281:20140077. [PMID: 24718761 DOI: 10.1098/rspb.2014.0077] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pathogen evasion of the host immune system is a key force driving extreme polymorphism in genes of the major histocompatibility complex (MHC). Although this gene family is well characterized in structure and function, there is still much debate surrounding the mechanisms by which MHC diversity is selectively maintained. Many studies have investigated relationships between MHC variation and specific pathogens, and have found mixed support for and against the hypotheses of heterozygote advantage, frequency-dependent or fluctuating selection. Few, however, have focused on the selective effects of multiple parasite types on host immunogenetic patterns. Here, we examined relationships between variation in the equine MHC gene, ELA-DRA, and both gastrointestinal (GI) and ectoparasitism in plains zebras (Equus quagga). Specific alleles present at opposing population frequencies had antagonistic effects, with rare alleles associated with increased GI parasitism and common alleles with increased tick burdens. These results support a frequency-dependent mechanism, but are also consistent with fluctuating selection. Maladaptive GI parasite 'susceptibility alleles' were reduced in frequency, suggesting that these parasites may play a greater selective role at this locus. Heterozygote advantage, in terms of allele mutational divergence, also predicted decreased GI parasite burden in genotypes with a common allele. We conclude that an immunogenetic trade-off affects resistance/susceptibility to parasites in this system. Because GI and ectoparasites do not directly interact within hosts, our results uniquely show that antagonistic parasite interactions can be indirectly modulated through the host immune system. This study highlights the importance of investigating the role of multiple parasites in shaping patterns of host immunogenetic variation.
Collapse
Affiliation(s)
- Pauline L Kamath
- US Geological Survey, Northern Rocky Mountain Science Center, , 2327 University Way, Bozeman, MT 59715, USA, Department of Environmental Science, Policy, and Management, University of California, , 130 Mulford Hall No. 3114, Berkeley, CA 94720, USA, Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, , PO Box 1066 Blindern, Oslo 0361, Norway, Berkeley Etosha Anthrax Research Project, , Swakopmund, Namibia, School of Mathematical Sciences, University of KwaZulu-Natal, , Private Bag X54001, 14, Durban 4000, South Africa
| | | | | | | |
Collapse
|
178
|
Mitteldorf JJ. Adaptive aging in the context of evolutionary theory. BIOCHEMISTRY (MOSCOW) 2014; 77:716-25. [PMID: 22817534 DOI: 10.1134/s0006297912070036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Compelling evidence for an adaptive origin of aging has clashed with traditional evolutionary theory based on exclusively individual selection. The consensus view has been to try to understand aging in the context of a narrow, restrictive evolutionary paradigm, called the Modern Synthesis, or neo-Darwinism. But neo-Darwinism has shown itself to be inadequate in other ways, failing to account for stable ecosystems, for the evolution of sex and the maintenance of diversity and the architecture of the genome, which appears to be optimized for evolvability. Thus aging is not the only reason to consider overhauling the standard theoretical framework. Selection for stable ecosystems is rapid and efficient, and so it is the easiest modification of the neo-Darwinian paradigm to understand and to model. Aging may be understood in this context. More profound and more mysterious are the ways in which the process of evolution itself has been transformed in a bootstrapping process of selection for evolvability. Evolving organisms have learned to channel their variation in ways that are likely to enhance their long-term prospects. This is an expanded notion of fitness. Only in this context can the full spectrum of sophisticated adaptations be understood, including aging, sex, diversity, ecological interdependence, and the structure of the genome.
Collapse
Affiliation(s)
- J J Mitteldorf
- Department of Biology, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
179
|
Periasamy K, Pichler R, Poli M, Cristel S, Cetrá B, Medus D, Basar M, A. K. T, Ramasamy S, Ellahi MB, Mohammed F, Teneva A, Shamsuddin M, Podesta MG, Diallo A. Candidate gene approach for parasite resistance in sheep--variation in immune pathway genes and association with fecal egg count. PLoS One 2014; 9:e88337. [PMID: 24533078 PMCID: PMC3922807 DOI: 10.1371/journal.pone.0088337] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/07/2014] [Indexed: 01/23/2023] Open
Abstract
Sheep chromosome 3 (Oar3) has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs) within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF) did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05) in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have potential for future large scale association studies in naturally exposed sheep populations.
Collapse
Affiliation(s)
- Kathiravan Periasamy
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Rudolf Pichler
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Mario Poli
- Instituto de Genética “Ewald A. Favret”, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Silvina Cristel
- Anguil Experimental Station, Instituto Nacional de Tecnología Agropecuaria Santa Rosa, La Pampa, Argentina
| | - Bibiana Cetrá
- Mercedes Experimental Station, Instituto Nacional de Tecnología Agropecuaria Mercedes, Corrientes, Argentina
| | - Daniel Medus
- Concepción del Uruguay Experimental Station, Instituto Nacional de Tecnología Agropecuaria Concepción del Uruguay, Entre Ríos, Argentina
| | - Muladno Basar
- Department of Animal Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Thiruvenkadan A. K.
- Veterinary College and Research Institute-Namakkal, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Saravanan Ramasamy
- Veterinary College and Research Institute-Namakkal, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Masroor Babbar Ellahi
- Department of Animal Genetics and Breeding, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Faruque Mohammed
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Mohammed Shamsuddin
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Mario Garcia Podesta
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Adama Diallo
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
180
|
Jaratlerdsiri W, Isberg SR, Higgins DP, Miles LG, Gongora J. Selection and trans-species polymorphism of major histocompatibility complex class II genes in the order Crocodylia. PLoS One 2014; 9:e87534. [PMID: 24503938 PMCID: PMC3913596 DOI: 10.1371/journal.pone.0087534] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 12/30/2013] [Indexed: 12/26/2022] Open
Abstract
Major Histocompatibility Complex (MHC) class II genes encode for molecules that aid in the presentation of antigens to helper T cells. MHC characterisation within and between major vertebrate taxa has shed light on the evolutionary mechanisms shaping the diversity within this genomic region, though little characterisation has been performed within the Order Crocodylia. Here we investigate the extent and effect of selective pressures and trans-species polymorphism on MHC class II α and β evolution among 20 extant species of Crocodylia. Selection detection analyses showed that diversifying selection influenced MHC class II β diversity, whilst diversity within MHC class II α is the result of strong purifying selection. Comparison of translated sequences between species revealed the presence of twelve trans-species polymorphisms, some of which appear to be specific to the genera Crocodylus and Caiman. Phylogenetic reconstruction clustered MHC class II α sequences into two major clades representing the families Crocodilidae and Alligatoridae. However, no further subdivision within these clades was evident and, based on the observation that most MHC class II α sequences shared the same trans-species polymorphisms, it is possible that they correspond to the same gene lineage across species. In contrast, phylogenetic analyses of MHC class II β sequences showed a mixture of subclades containing sequences from Crocodilidae and/or Alligatoridae, illustrating orthologous relationships among those genes. Interestingly, two of the subclades containing sequences from both Crocodilidae and Alligatoridae shared specific trans-species polymorphisms, suggesting that they may belong to ancient lineages pre-dating the divergence of these two families from the common ancestor 85-90 million years ago. The results presented herein provide an immunogenetic resource that may be used to further assess MHC diversity and functionality in Crocodylia.
Collapse
Affiliation(s)
| | - Sally R. Isberg
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
- Centre for Crocodile Research, Noonamah, Northern Territory, Australia
| | - Damien P. Higgins
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Lee G. Miles
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Jaime Gongora
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
181
|
Wan Y, Zhou CH, Ouyang S, Huang XC, Zhan Y, Zhou P, Rong J, Wu XP. Genetic diversity analysis of mitochondrial DNA control region in artificially propagated Chinese sucker Myxocyprinus asiaticus. MITOCHONDRIAL DNA 2014; 26:514-9. [PMID: 24409897 DOI: 10.3109/19401736.2013.861424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The genetic diversity of the three major artificially propagated populations of Chinese sucker, an endangered freshwater fish species, was investigated using the sequences of mitochondrial DNA (mtDNA) control regions. Among the 89 individuals tested, 66 variable sites (7.26%) and 10 haplotypes were detected (Haplotype diversity Hd = 0.805, Nucleotide diversity π = 0.0287). In general, genetic diversity was lower in artificially propagated populations than in wild populations. This reduction in genetic diversity may be due to population bottlenecks, genetic drift and human selection. A stepping-stone pattern of gene flow was detected in the populations studied, showing much higher gene flow between neighbouring populations. To increase the genetic diversity, wild lineages should be introduced, and more lineages should be shared among artificially propagated populations.
Collapse
Affiliation(s)
- Yuan Wan
- Center for Watershed Ecology, Institute of Life Science, Nanchang University , Nanchang , China
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Lechner S, Ferretti L, Schöning C, Kinuthia W, Willemsen D, Hasselmann M. Nucleotide variability at its limit? Insights into the number and evolutionary dynamics of the sex-determining specificities of the honey bee Apis mellifera. Mol Biol Evol 2013; 31:272-87. [PMID: 24170493 PMCID: PMC3907057 DOI: 10.1093/molbev/mst207] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deciphering the evolutionary processes driving nucleotide variation in multiallelic genes is limited by the number of genetic systems in which such genes occur. The complementary sex determiner (csd) gene in the honey bee Apis mellifera is an informative example for studying allelic diversity and the underlying evolutionary forces in a well-described model of balancing selection. Acting as the primary signal of sex determination, diploid individuals heterozygous for csd develop into females, whereas csd homozygotes are diploid males that have zero fitness. Examining 77 of the functional heterozygous csd allele pairs, we established a combinatorical criteria that provide insights into the minimum number of amino acid differences among those pairs. Given a data set of 244 csd sequences, we show that the total number of csd alleles found in A. mellifera ranges from 53 (locally) to 87 (worldwide), which is much higher than was previously reported (20). Using a coupon-collector model, we extrapolate the presence of in total 116–145 csd alleles worldwide. The hypervariable region (HVR) is of particular importance in determining csd allele specificity, and we provide for this region evidence of high evolutionary rate for length differences exceeding those of microsatellites. The proportion of amino acids driven by positive selection and the rate of nonsynonymous substitutions in the HVR-flanking regions reach values close to 1 but differ with respect to the HVR length. Using a model of csd coalescence, we identified the high originating rate of csd specificities as a major evolutionary force, leading to an origin of a novel csd allele every 400,000 years. The csd polymorphism frequencies in natural populations indicate an excess of new mutations, whereas signs of ancestral transspecies polymorphism can still be detected. This study provides a comprehensive view of the enormous diversity and the evolutionary forces shaping a multiallelic gene.
Collapse
Affiliation(s)
- Sarah Lechner
- Institute of Evolutionary Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
183
|
Iacovakis C, Mamuris Z, Moutou KA, Touloudi A, Hammer AS, Valiakos G, Giannoulis T, Stamatis C, Spyrou V, Athanasiou LV, Kantere M, Asferg T, Giannakopoulos A, Salomonsen CM, Bogdanos D, Birtsas P, Petrovska L, Hannant D, Billinis C. Polarisation of major histocompatibility complex II host genotype with pathogenesis of European Brown Hare syndrome virus. PLoS One 2013; 8:e74360. [PMID: 24069299 PMCID: PMC3778001 DOI: 10.1371/journal.pone.0074360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/31/2013] [Indexed: 11/18/2022] Open
Abstract
A study was conducted in order to determine the occurrence of European Brown Hare Syndrome virus (EBHSV) in Denmark and possible relation between disease pathogenesis and Major Histocompatibility Complex (MHC) host genotype. Liver samples were examined from 170 brown hares (hunted, found sick or dead), collected between 2004 and 2009. Macroscopical and histopathological findings consistent with EBHS were detected in 24 (14.1%) hares; 35 (20.6%) had liver lesions not typical of the syndrome, 50 (29.4%) had lesions in other tissues and 61 (35.9%) had no lesions. Sixty five (38.2%) of 170 samples were found to be EBHSV-positive (RT-PCR, VP60 gene). In order to investigate associations between viral pathogenesis and host genotype, variation within the exon 2 DQA gene of MHC was assessed. DQA exon 2 analysis revealed the occurrence of seven different alleles in Denmark. Consistent with other populations examined so far in Europe, observed heterozygosity of DQA (Ho = 0.1180) was lower than expected (He = 0.5835). The overall variation for both nucleotide and amino acid differences (2.9% and 14.9%, respectively) were lower in Denmark than those assessed in other European countries (8.3% and 16.9%, respectively). Within the peptide binding region codons the number of nonsynonymous substitutions (dN) was much higher than synonymous substitutions (dS), which would be expected for MHC alleles under balancing selection. Allele frequencies did not significantly differ between EBHSV-positive and -negative hares. However, allele Leeu-DQA*30 was detected in significantly higher (P = 0.000006) frequency among the positive hares found dead with severe histopathological lesions than among those found sick or apparently healthy. In contrast, the latter group was characterized by a higher frequency of the allele Leeu-DQA*14 as well as the proportion of heterozygous individuals (P = 0.000006 and P = 0.027). These data reveal a polarisation between EBHSV pathogenesis and MHC class II genotype within the European brown hare in Denmark.
Collapse
Affiliation(s)
- Christos Iacovakis
- Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
- Institute for Research & Technology-Thessaly, Larissa, Greece
| | - Zissis Mamuris
- Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Katerina A. Moutou
- Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Antonia Touloudi
- Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
- Institute for Research & Technology-Thessaly, Larissa, Greece
| | - Anne Sofie Hammer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - George Valiakos
- Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
- Institute for Research & Technology-Thessaly, Larissa, Greece
| | - Themis Giannoulis
- Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Costas Stamatis
- Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Vassiliki Spyrou
- Department of Animal Production, Technological Education Institute of Larissa, Larissa, Greece
| | - Labrini V. Athanasiou
- Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
- Institute for Research & Technology-Thessaly, Larissa, Greece
| | - Maria Kantere
- Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Tommy Asferg
- Institute for Bioscience, Aarhus University, Aarhus, Denmark
| | | | - Charlotte M. Salomonsen
- Section for Fur Animal and Wildlife Diseases, National Veterinary Institute, Technical University of Denmark, Aarhus, Denmark
| | - Dimitrios Bogdanos
- Department of Medicine, University of Thessaly, Larissa, Greece
- Institute of Liver Studies, King’s College London, London, United Kingdom
| | - Periklis Birtsas
- Department of Forestry and Natural Environment Administration, Technological Education Institute of Larissa, Karditsa, Greece
| | - Liljana Petrovska
- Department of Bacteriology, Veterinary Laboratories Agency, Weybridge, United Kingdom
| | - Duncan Hannant
- School of Veterinary Medicine & Science, University of Nottingham, Nottingham, United Kingdom
| | - Charalambos Billinis
- Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
- Institute for Research & Technology-Thessaly, Larissa, Greece
- * E-mail:
| |
Collapse
|
184
|
McClelland EK, Ming TJ, Tabata A, Kaukinen KH, Beacham TD, Withler RE, Miller KM. Patterns of selection and allele diversity of class I and class II major histocompatibility loci across the species range of sockeye salmon (Oncorhynchus nerka). Mol Ecol 2013; 22:4783-800. [DOI: 10.1111/mec.12424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Erin K. McClelland
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Tobi J. Ming
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Amy Tabata
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Karia H. Kaukinen
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Terry D. Beacham
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Ruth E. Withler
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| | - Kristina M. Miller
- Fisheries and Oceans Canada; Pacific Biological Station 3190 Hammond Bay Rd Nanaimo BC V9T 6N7 Canada
| |
Collapse
|
185
|
Shu YL, Hong P, Yang YW, Wu HL. An endemic frog harbors multiple expression loci with different patterns of variation in the MHC class II B gene. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:501-10. [DOI: 10.1002/jez.b.22525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 06/03/2013] [Accepted: 06/20/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Yi-Lin Shu
- College of Life Sciences; Anhui Normal University; Wuhu People's Republic of China
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province; Wuhu People's Republic of China
| | - Pei Hong
- College of Life Sciences; Anhui Normal University; Wuhu People's Republic of China
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province; Wuhu People's Republic of China
| | - Yi-Wen Yang
- College of Life Sciences; Anhui Normal University; Wuhu People's Republic of China
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province; Wuhu People's Republic of China
| | - Hai-Long Wu
- College of Life Sciences; Anhui Normal University; Wuhu People's Republic of China
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province; Wuhu People's Republic of China
| |
Collapse
|
186
|
Osborne AJ, Zavodna M, Chilvers BL, Robertson BC, Negro SS, Kennedy MA, Gemmell NJ. Extensive variation at MHC DRB in the New Zealand sea lion (Phocarctos hookeri) provides evidence for balancing selection. Heredity (Edinb) 2013; 111:44-56. [PMID: 23572124 PMCID: PMC3692317 DOI: 10.1038/hdy.2013.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 12/20/2012] [Accepted: 01/28/2013] [Indexed: 11/09/2022] Open
Abstract
Marine mammals are often reported to possess reduced variation of major histocompatibility complex (MHC) genes compared with their terrestrial counterparts. We evaluated diversity at two MHC class II B genes, DQB and DRB, in the New Zealand sea lion (Phocarctos hookeri, NZSL) a species that has suffered high mortality owing to bacterial epizootics, using Sanger sequencing and haplotype reconstruction, together with next-generation sequencing. Despite this species' prolonged history of small population size and highly restricted distribution, we demonstrate extensive diversity at MHC DRB with 26 alleles, whereas MHC DQB is dimorphic. We identify four DRB codons, predicted to be involved in antigen binding, that are evolving under adaptive evolution. Our data suggest diversity at DRB may be maintained by balancing selection, consistent with the role of this locus as an antigen-binding region and the species' recent history of mass mortality during a series of bacterial epizootics. Phylogenetic analyses of DQB and DRB sequences from pinnipeds and other carnivores revealed significant allelic diversity, but little phylogenetic depth or structure among pinniped alleles; thus, we could neither confirm nor refute the possibility of trans-species polymorphism in this group. The phylogenetic pattern observed however, suggests some significant evolutionary constraint on these loci in the recent past, with the pattern consistent with that expected following an epizootic event. These data may help further elucidate some of the genetic factors underlying the unusually high susceptibility to bacterial infection of the threatened NZSL, and help us to better understand the extent and pattern of MHC diversity in pinnipeds.
Collapse
Affiliation(s)
- A J Osborne
- Centre for Reproduction and Genomics, Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
187
|
Collin H, Burri R, Comtesse F, Fumagalli L. Combining molecular evolution and environmental genomics to unravel adaptive processes of MHC class IIB diversity in European minnows (Phoxinus phoxinus). Ecol Evol 2013; 3:2568-85. [PMID: 24567825 PMCID: PMC3930049 DOI: 10.1002/ece3.650] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 11/10/2022] Open
Abstract
Host-pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1'665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen-mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host-pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context. Using next-generation sequencing, the present manuscript identifies the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of a cyprinid fish: the European minnow (Phoxinus phoxinus). We highlight that the relative importance of neutral versus adaptive processes in shaping immune competence may differ between duplicates as a consequence of alternative selective regimes or different genomic contexts.
Collapse
Affiliation(s)
- Helene Collin
- Department of Ecology and Evolution Laboratory for Conservation Biology, University of Lausanne Biophore, 1015, Lausanne, Switzerland ; Institute of Integrative Biology, University of Liverpool Biosciences Building, Crown St., Liverpool L69 7ZB, U.K
| | - Reto Burri
- Department of Ecology and Evolution Laboratory for Conservation Biology, University of Lausanne Biophore, 1015, Lausanne, Switzerland ; Department of Evolutionary Biology Evolutionary Biology Centre, Uppsala University Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Fabien Comtesse
- Department of Ecology and Evolution Laboratory for Conservation Biology, University of Lausanne Biophore, 1015, Lausanne, Switzerland
| | - Luca Fumagalli
- Department of Ecology and Evolution Laboratory for Conservation Biology, University of Lausanne Biophore, 1015, Lausanne, Switzerland
| |
Collapse
|
188
|
Winternitz JC, Wares JP. Duplication and population dynamics shape historic patterns of selection and genetic variation at the major histocompatibility complex in rodents. Ecol Evol 2013; 3:1552-68. [PMID: 23789067 PMCID: PMC3686191 DOI: 10.1002/ece3.567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/15/2013] [Indexed: 11/07/2022] Open
Abstract
Genetic variation at the major histocompatibility complex (MHC) is vitally important for wildlife populations to respond to pathogen threats. As natural populations can fluctuate greatly in size, a key issue concerns how population cycles and bottlenecks that could reduce genetic diversity will influence MHC genes. Using 454 sequencing, we characterized genetic diversity at the DRB Class II locus in montane voles (Microtus montanus), a North American rodent that regularly undergoes high-amplitude fluctuations in population size. We tested for evidence of historic balancing selection, recombination, and gene duplication to identify mechanisms maintaining allelic diversity. Counter to our expectations, we found strong evidence of purifying selection acting on the DRB locus in montane voles. We speculate that the interplay between population fluctuations and gene duplication might be responsible for the weak evidence of historic balancing selection and strong evidence of purifying selection detected. To further explore this idea, we conducted a phylogenetically controlled comparative analysis across 16 rodent species with varying demographic histories and MHC duplication events (based on the maximum number of alleles detected per individual). On the basis of phylogenetic generalized linear model-averaging, we found evidence that the estimated number of duplicated loci was positively related to allelic diversity and, surprisingly, to the strength of purifying selection at the DRB locus. Our analyses also revealed that species that had undergone population bottlenecks had lower allelic richness than stable species. This study highlights the need to consider demographic history and genetic structure alongside patterns of natural selection to understand resulting patterns of genetic variation at the MHC.
Collapse
|
189
|
|
190
|
Arbanasić H, Galov A, Ambriović-Ristov A, Grizelj J, Arsenos G, Marković B, Dovenski T, Vince S, Curik I. Extensive polymorphism of the major histocompatibility complex DRA gene in Balkan donkeys: perspectives on selection and genealogy. Anim Genet 2013; 44:711-6. [PMID: 23621397 DOI: 10.1111/age.12054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2013] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex (MHC) contains genes important for immune response in mammals, and these genes exhibit high polymorphism and diversity. The DRA gene, a member of the MHC class II family, is highly conserved across a large number of mammalian species, but it displays exceptionally rich sequence variations in Equidae members. We analyzed allelic polymorphism of the DRA locus in 248 donkeys sampled across the Balkan Peninsula (Albania, Bulgaria, Croatia, Macedonia, Greece and Montenegro). Five known alleles and two new alleles were identified. The new allele Eqas-DRA*0601 was found to carry a synonymous mutation, and new allele Eqas-DRA*0701, a non-synonymous mutation. We further analyzed the historical selection and allele genealogy at the DRA locus in equids. Signals of positive selection obtained by various tests were ambiguous. A conservative conclusion is that DRA polymorphism occurred relatively recently and that positive selection has been acting on the DRA locus for a relatively brief period.
Collapse
Affiliation(s)
- Haidi Arbanasić
- Division of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Califf KJ, Ratzloff EK, Wagner AP, Holekamp KE, Williams BL. Forces shaping major histocompatibility complex evolution in two hyena species. J Mammal 2013. [DOI: 10.1644/12-mamm-a-054.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
192
|
Yasukochi Y, Satta Y. Current perspectives on the intensity of natural selection of MHC loci. Immunogenetics 2013; 65:479-83. [PMID: 23549729 PMCID: PMC3651823 DOI: 10.1007/s00251-013-0693-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 03/05/2013] [Indexed: 12/24/2022]
Abstract
Polymorphism of genes in the major histocompatibility complex (MHC) is believed to be maintained by balancing selection. However, direct evidence of selection has proven difficult to demonstrate. In 1994, Satta and colleagues estimated the selection intensity of the human MHC (human leukocyte antigen (HLA)) loci; however, at that time the number of HLA sequences was limited. By comparing five different methods, this study demonstrated the best way to calculate the selection coefficient, through a computer simulation study. Since the study, many HLA nucleotide sequences have been made available. Our new analysis takes advantage of these newly available sequences and compares new estimates with those of the previous study. Generally, our new results are consistent with those of the 1994 study. Our results show that, even after 20 years of exhaustive sequencing of human HLA, the number of dominant HLA alleles, on which our original estimate of selection intensity depended, appears to be conserved. Indeed, according to the frequency distribution for each HLA allele, most sequences in the database were minor or private alleles; therefore, we conclude that the selection intensities of HLA loci are at most 4.4 % even though the HLA is the prominent example on which the natural selection has been operating.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa, Japan.
| | | |
Collapse
|
193
|
Sepil I, Lachish S, Hinks AE, Sheldon BC. Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population. Proc Biol Sci 2013; 280:20130134. [PMID: 23516242 DOI: 10.1098/rspb.2013.0134] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Major histocompatibility complex (Mhc) genes are believed to play a key role in the genetic basis of disease control. Although numerous studies have sought links between Mhc and disease prevalence, many have ignored the ecological and epidemiological aspects of the host-parasite interaction. Consequently, interpreting associations between prevalence and Mhc has been difficult, whereas discriminating alleles for qualitative resistance, quantitative resistance and susceptibility remains challenging. Moreover, most studies to date have quantified associations between genotypes and disease status, overlooking the complex relationship between genotype and the properties of the Mhc molecule that interacts with parasites. Here, we address these problems and demonstrate avian malaria (Plasmodium) parasite species-specific associations with functional properties of Mhc molecules (Mhc supertypes) in a wild great tit (Parus major) population. We further show that correctly interpreting these associations depends crucially on understanding the spatial variation in risk of infection and the fitness effects of infection. We report that a single Mhc supertype confers qualitative resistance to Plasmodium relictum, whereas a different Mhc supertype confers quantitative resistance to Plasmodium circumflexum infections. Furthermore, we demonstrate common functional properties of Plasmodium-resistance alleles in passerine birds, suggesting this is a model system for parasite-Mhc associations in the wild.
Collapse
Affiliation(s)
- Irem Sepil
- Edward Grey Institute, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | | | | | |
Collapse
|
194
|
Pathogen-driven selection in the human genome. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2013; 2013:204240. [PMID: 23533945 PMCID: PMC3603197 DOI: 10.1155/2013/204240] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/31/2013] [Indexed: 01/19/2023]
Abstract
Infectious diseases and epidemics have always accompanied and characterized human history, representing one of the main causes of death. Even today, despite progress in sanitation and medical research, infections are estimated to account for about 15% of deaths. The hypothesis whereby infectious diseases have been acting as a powerful selective pressure was formulated long ago, but it was not until the availability of large-scale genetic data and the development of novel methods to study molecular evolution that we could assess how pervasively infectious agents have shaped human genetic diversity. Indeed, recent evidences indicated that among the diverse environmental factors that acted as selective pressures during the evolution of our species, pathogen load had the strongest influence. Beside the textbook example of the major histocompatibility complex, selection signatures left by pathogen-exerted pressure can be identified at several human loci, including genes not directly involved in immune response. In the future, high-throughput technologies and the availability of genetic data from different populations are likely to provide novel insights into the evolutionary relationships between the human host and its pathogens. Hopefully, this will help identify the genetic determinants modulating the susceptibility to infectious diseases and will translate into new treatment strategies.
Collapse
|
195
|
Domestication does not narrow MHC diversity in Sus scrofa. Immunogenetics 2012; 65:195-209. [PMID: 23239371 DOI: 10.1007/s00251-012-0671-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/21/2012] [Indexed: 10/27/2022]
Abstract
The Major Histocompatibility Complex (MHC) is a multigene family of outstanding polymorphism. MHC molecules bind antigenic peptides in the peptide-binding region (PBR) that consists of five binding pockets (P). In this study, we compared the genetic diversity of domestic pigs to that of the modern representatives of their wild ancestors, the wild boar, in two MHC loci, the oligomorphic DQA and the polymorphic DRB1. MHC nucleotide polymorphism was compared with the actual functional polymorphism in the PBR and the binding pockets P1, P4, P6, P7, and P9. The analysis of approximately 200 wild boars collected throughout Europe and 120 domestic pigs from four breeds (three pureblood, Pietrain, Leicoma, and Landrace, and one mixed Danbred) revealed that wild boars and domestic pigs share the same levels of nucleotide and amino acid polymorphism, allelic richness, and heterozygosity. Domestication did not appear to act as a bottleneck that would narrow MHC diversity. Although the pattern of polymorphism was uniform between the two loci, the magnitude of polymorphism was different. For both loci, most of the polymorphism was located in the PBR region and the presence of positive selection was supported by a statistically significant excess of nonsynonymous substitutions over synonymous substitutions in the PBR. P4 and P6 were the most polymorphic binding pockets. Functional polymorphism, i.e., the number and the distribution of pocket variants within and among populations, was significantly narrower than genetic polymorphism, indicative of a hierarchical action of selection pressures on MHC loci.
Collapse
|
196
|
Kamath PL, Getz WM. Unraveling the effects of selection and demography on immune gene variation in free-ranging plains zebra (Equus quagga) populations. PLoS One 2012; 7:e50971. [PMID: 23251409 PMCID: PMC3522668 DOI: 10.1371/journal.pone.0050971] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
Demography, migration and natural selection are predominant processes affecting the distribution of genetic variation among natural populations. Many studies use neutral genetic markers to make inferences about population history. However, the investigation of functional coding loci, which directly reflect fitness, is critical to our understanding of species' ecology and evolution. Immune genes, such as those of the Major Histocompatibility Complex (MHC), play an important role in pathogen recognition and provide a potent model system for studying selection. We contrasted diversity patterns of neutral data with MHC loci, ELA-DRA and -DQA, in two southern African plains zebra (Equus quagga) populations: Etosha National Park, Namibia, and Kruger National Park, South Africa. Results from neutrality tests, along with observations of elevated diversity and low differentiation across populations, supported previous genus-level evidence for balancing selection at these loci. Despite being low, MHC divergence across populations was significant and may be attributed to drift effects typical of geographically separated populations experiencing little to no gene flow, or alternatively to shifting allele frequency distributions driven by spatially variable and fluctuating pathogen communities. At the DRA, zebra exhibited geographic differentiation concordant with microsatellites and reduced levels of diversity in Etosha due to highly skewed allele frequencies that could not be explained by demography, suggestive of spatially heterogeneous selection and local adaptation. This study highlights the complexity in which selection affects immune gene diversity and warrants the need for further research on the ecological mechanisms shaping patterns of adaptive variation among natural populations.
Collapse
Affiliation(s)
- Pauline L Kamath
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, United States of America.
| | | |
Collapse
|
197
|
Yasukochi Y, Kurosaki T, Yoneda M, Koike H, Satta Y. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus. BMC Evol Biol 2012. [PMID: 23190438 PMCID: PMC3575356 DOI: 10.1186/1471-2148-12-230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Results Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. Conclusions The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian species. This result suggests that the Japanese black bears may also retain more potential resistance against pathogens than other endangered mammalian species. To prevent further decline of potential resistance against pathogens, a conservation policy for the Japanese black bear should be designed to maintain MHC rare variants in each local population.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Evolutionary Studies of Biosystems, the Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan.
| | | | | | | | | |
Collapse
|
198
|
Sepil I, Lachish S, Sheldon BC. Mhc-linked survival and lifetime reproductive success in a wild population of great tits. Mol Ecol 2012. [DOI: 10.1111/mec.12123] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Irem Sepil
- Department of Zoology; Edward Grey Institute; University of Oxford; South Parks Road Oxford OX1 3PS UK
| | - Shelly Lachish
- Department of Zoology; Edward Grey Institute; University of Oxford; South Parks Road Oxford OX1 3PS UK
| | - Ben C. Sheldon
- Department of Zoology; Edward Grey Institute; University of Oxford; South Parks Road Oxford OX1 3PS UK
| |
Collapse
|
199
|
Axtner J, Sommer S. The functional importance of sequence versus expression variability of MHC alleles in parasite resistance. Genetica 2012. [PMID: 23180005 DOI: 10.1007/s10709-012-9689-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding selection processes driving the pronounced allelic polymorphism of the major histocompatibility complex (MHC) genes and its functional associations to parasite load have been the focus of many recent wildlife studies. Two main selection scenarios are currently debated which explain the susceptibility or resistance to parasite infections either by the effects of (1) specific MHC alleles which are selected frequency-dependent in space and time or (2) a heterozygote or divergent allele advantage. So far, most studies have focused only on structural variance in co-evolutionary processes although this might not be the only trait subject to natural selection. In the present study, we analysed structural variance stretching from exon1 through exon3 of MHC class II DRB genes as well as genotypic expression variance in relation to the gastrointestinal helminth prevalence and infection intensity in wild yellow-necked mice (Apodemus flavicollis). We found support for the functional importance of specific alleles both on the sequence and expression level. By resampling a previously investigated study population we identified specific MHC alleles affected by temporal shifts in parasite pressure and recorded associated changes in allele frequencies. The allele Apfl-DRB*23 was associated with resistance to infections by the oxyurid nematode Syphacia stroma and at the same time with susceptibility to cestode infection intensity. In line with our expectation, MHC mRNA transcript levels tended to be higher in cestode-infected animals carrying the allele Apfl-DRB*23. However, no support for a heterozygote or divergent allele advantage on the sequence or expression level was detected. The individual amino acid distance of genotypes did not explain individual differences in parasite loads and the genetic distance had no effect on MHC genotype expression. For ongoing studies on the functional importance of expression variance in parasite resistance, allele-specific expression data would be preferable.
Collapse
Affiliation(s)
- Jan Axtner
- Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 15, 10315, Berlin, Germany.
| | | |
Collapse
|
200
|
Castro-Prieto A, Wachter B, Melzheimer J, Thalwitzer S, Hofer H, Sommer S. Immunogenetic variation and differential pathogen exposure in free-ranging cheetahs across Namibian farmlands. PLoS One 2012; 7:e49129. [PMID: 23145096 PMCID: PMC3492310 DOI: 10.1371/journal.pone.0049129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 10/09/2012] [Indexed: 11/18/2022] Open
Abstract
Background Genes under selection provide ecologically important information useful for conservation issues. Major histocompatibility complex (MHC) class I and II genes are essential for the immune defence against pathogens from intracellular (e.g. viruses) and extracellular (e.g. helminths) origins, respectively. Serosurvey studies in Namibian cheetahs (Acinonyx juabuts) revealed higher exposure to viral pathogens in individuals from north-central than east-central regions. Here we examined whether the observed differences in exposure to viruses influence the patterns of genetic variation and differentiation at MHC loci in 88 free-ranging Namibian cheetahs. Methodology/Principal Findings Genetic variation at MHC I and II loci was assessed through single-stranded conformation polymorphism (SSCP) analysis and sequencing. While the overall allelic diversity did not differ, we observed a high genetic differentiation at MHC class I loci between cheetahs from north-central and east-central Namibia. No such differentiation in MHC class II and neutral markers were found. Conclusions/Significance Our results suggest that MHC class I variation mirrors the variation in selection pressure imposed by viruses in free-ranging cheetahs across Namibian farmland. This is of high significance for future management and conservation programs of this species.
Collapse
Affiliation(s)
- Aines Castro-Prieto
- Evolutionary Genetics Research Group, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Bettina Wachter
- Evolutionary Ecology Research Group, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Joerg Melzheimer
- Evolutionary Ecology Research Group, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Susanne Thalwitzer
- Evolutionary Ecology Research Group, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Heribert Hofer
- Evolutionary Ecology Research Group, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Simone Sommer
- Evolutionary Genetics Research Group, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- * E-mail:
| |
Collapse
|