151
|
Park YW, Baba K, Furuta Y, Iida I, Sameshima K, Arai M, Hayashi T. Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Lett 2004; 564:183-7. [PMID: 15094064 DOI: 10.1016/s0014-5793(04)00346-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 03/19/2004] [Accepted: 03/19/2004] [Indexed: 10/26/2022]
Abstract
Because the loosening of xyloglucan in the cell wall promotes plant growth (Takeda et al. (2002) Proc. Natl. Acad. Sci. USA 99, 9055-9060; Park et al. (2003) Plant J. 33, 1099-1106), we expressed Aspergillus xyloglucanase constitutively in Populus alba. The expression increased the length of stem even in the presence of sucrose. Increased stem growth was accompanied by a decrease in Young's elastic modulus in the growth zone but an increased elasticity in mature tissue. The increased internode length corresponded to an increase in cellulose content as well as specific gravity, showing that the removal of xyloglucan might cause an increase in cellulose density in the secondary xylem.
Collapse
Affiliation(s)
- Yong Woo Park
- Wood Research Institute, Kyoto University, Gokasho, Uji 611-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
152
|
Doco T, Williams P, Pauly M, O'Neill MA, Pellerin P. Polysaccharides from grape berry cell walls. Part II. Structural characterization of the xyloglucan polysaccharides. Carbohydr Polym 2003. [DOI: 10.1016/s0144-8617(03)00072-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
153
|
Irwin DC, Cheng M, Xiang B, Rose JKC, Wilson DB. Cloning, expression and characterization of a family-74 xyloglucanase from Thermobifida fusca. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3083-91. [PMID: 12846842 DOI: 10.1046/j.1432-1033.2003.03695.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thermobifida fusca xyloglucan-specific endo-beta-1,4-glucanase (Xeg)74 and the Xeg74 catalytic domain (CD) were cloned, expressed in Escherichia coli, purified and characterized. This enzyme has a glycohydrolase family-74 CD that is a specific xyloglucanase followed by a family-2 carbohydrate binding module at the C terminus. The Michaelis constant (Km) and maximal rate (Vmax) values for hydrolysis of tamarind seed xyloglucan (tamXG) are 2.4 micro m and 966 micro mol xyloglucan oligosaccharides (XGOs) min-1. micro mol protein-1. More than 75% of the activity was retained after a 16-h incubation at temperatures up to 60 degrees C. The enzyme was most active at pH 6.0-9.4. NMR analysis showed that its catalytic mechanism is inverting. The oligosaccharide products from hydrolysis of tamXG were determined by MS analysis. Cel9B, an active carboxymethylcellulose (CMC)ase from T. fusca, was also found to have activity on xyloglucan (XG) at 49 micro mol.min-1. micro mol protein-1, but it could not hydrolyze XG units containing galactose. An XG/cellulose composite was prepared by growing Gluconacetobacterxylinus on glucose with tamXG in the medium. Although a mixture of purified cellulases was unable to degrade this material, the composite material was fully hydrolyzed when Xeg74 was added. T. fusca was not able to grow on tamXG, but Xeg74 was found in the culture supernatant at the same level as was found in cultures grown on Solka Floc. The function of this enzyme appears to be to break down the XG surrounding cellulose fibrils found in biomass so that T. fusca can utilize the cellulose as a carbon source.
Collapse
Affiliation(s)
- Diana C Irwin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | | | | | | | | |
Collapse
|
154
|
Jia Z, Qin Q, Darvill AG, York WS. Structure of the xyloglucan produced by suspension-cultured tomato cells. Carbohydr Res 2003; 338:1197-208. [PMID: 12747862 DOI: 10.1016/s0008-6215(03)00079-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The xyloglucan secreted by suspension-cultured tomato (Lycopersicon esculentum) cells was structurally characterized by analysis of the oligosaccharides generated by treating the polysaccharide with a xyloglucan-specific endoglucanase (XEG). These oligosaccharide subunits were chemically reduced to form the corresponding oligoglycosyl alditols, which were isolated by high-performance liquid chromatography (HPLC). Thirteen of the oligoglycosyl alditols were structurally characterized by a combination of matrix-assisted laser-desorption ionization mass spectrometry and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. Nine of the oligoglycosyl alditols (GXGGol, XXGGol, GSGGol, XSGGol, LXGGol, XTGGol, LSGGol, LLGGol, and LTGGol, [see, Fry, S.C.; York, W.S., et al., Physiologia Plantarum 1993, 89, 1-3, for this nomenclature]) are derived from oligosaccharide subunits that have a cellotetraose backbone. Very small amounts of oligoglycosyl alditols (XGGol, XGGXXGGol, XXGGXGGol, and XGGXSGGol) derived from oligosaccharide subunits that have a cellotriose or celloheptaose backbone were also purified and characterized. The results demonstrate that the xyloglucan secreted by suspension-cultured tomato cells is very complex and is composed predominantly of 'XXGG-type' subunits with a cellotetraose backbone. The rigorous characterization of the oligoglycosyl alditols and assignment of their 1H and 13C NMR spectra constitute a robust data set that can be used as the basis for rapid and accurate structural profiling of xyloglucans produced by Solanaceous plant species and the characterization of enzymes involved in the synthesis, modification, and breakdown of these polysaccharides.
Collapse
Affiliation(s)
- Zhonghua Jia
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, 220 Riverbend Road, Athens, GA 30602-4712, USA
| | | | | | | |
Collapse
|
155
|
Qin Q, Bergmann CW, Rose JKC, Saladie M, Kolli VSK, Albersheim P, Darvill AG, York WS. Characterization of a tomato protein that inhibits a xyloglucan-specific endoglucanase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:327-338. [PMID: 12713539 DOI: 10.1046/j.1365-313x.2003.01726.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A basic, 51 kDa protein was purified from suspension-cultured tomato and shown to inhibit the hydrolytic activity of a xyloglucan-specific endoglucanase (XEG) from the fungus Aspergillus aculeatus. The tomato (Lycopersicon esculentum) protein, termed XEG inhibitor protein (XEGIP), inhibits XEG activity by forming a 1 : 1 protein:protein complex with a Ki approximately 0.5 nm. To our knowledge, XEGIP is the first reported proteinaceous inhibitor of any endo-beta-1,4-glucanase, including the cellulases. The cDNA encoding XEGIP was cloned and sequenced. Database analysis revealed homology with carrot extracellular dermal glycoprotein (EDGP), which has a putative role in plant defense. XEGIP also has sequence similarity to ESTs from a broad range of plant species, suggesting that XEGIP-like genes are widely distributed in the plant kingdom. Although Southern analysis detected only a single XEGIP gene in tomato, at least five other XEGIP-like tomato sequences have been identified. Similar small families of XEGIP-like sequences are present in other plants, including Arabidopsis. XEGIP also has some sequence similarity to two previously characterized proteins, basic globulin 7S protein from soybean and conglutin gamma from lupin. Several amino acids in the XEGIP sequence, notably 8 of the 12 cysteines, are generally conserved in all the XEGIP-like proteins we have encountered, suggesting a fundamental structural similarity. Northern analysis revealed that XEGIP is widely expressed in tomato vegetative tissues and is present in expanding and maturing fruit, but is downregulated during ripening.
Collapse
Affiliation(s)
- Qiang Qin
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, 220 Riverbend Road, University of Georgia, Athens 30602-4712, USA
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Yaoi K, Mitsuishi Y. Purification, characterization, cloning, and expression of a novel xyloglucan-specific glycosidase, oligoxyloglucan reducing end-specific cellobiohydrolase. J Biol Chem 2002; 277:48276-81. [PMID: 12374797 DOI: 10.1074/jbc.m208443200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel oligoxyloglucan-specific glycosidase, oligoxyloglucan reducing end-specific cellobiohydrolase (OXG-RCBH), with a molecular mass of 97 kDa and a pI of 6.1, was isolated from the fungus Geotrichum sp. M128. Analysis of substrate specificity using various xyloglucan oligosaccharide structures revealed that OXG-RCBH had exoglucanase activity. It recognized the reducing end of oligoxyloglucan and released two glucosyl residue segments from the main chain. The full-length cDNA encoding OXG-RCBH was cloned and sequenced, and it had a 2436-bp open reading frame encoding an 812amino acid protein. The deduced protein showed approximately 35% identity to members of glycoside hydrolase family 74. The cDNA encoding OXG-RCBH was then expressed in Escherichia coli. Although the recombinant protein was expressed as an inclusion body, renaturation was successful, and enzymatically active recombinant OXG-RCBH was obtained.
Collapse
Affiliation(s)
- Katsuro Yaoi
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Ibaraki 305-8566, Japan.
| | | |
Collapse
|
157
|
Lerouxel O, Choo TS, Séveno M, Usadel B, Faye L, Lerouge P, Pauly M. Rapid structural phenotyping of plant cell wall mutants by enzymatic oligosaccharide fingerprinting. PLANT PHYSIOLOGY 2002; 130:1754-63. [PMID: 12481058 PMCID: PMC1540271 DOI: 10.1104/pp.011965] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Various biochemical, chemical, and microspectroscopic methods have been developed throughout the years for the screening and identification of mutants with altered cell wall structure. However, these procedures fail to provide the insight into structural aspects of the cell wall polymers. In this paper, we present various methods for rapidly screening Arabidopsis cell wall mutants. The enzymatic fingerprinting procedures using high-performance anion-exchange-pulsed-amperometric detection liquid chromatography, fluorophore-assisted carbohydrate electrophoresis, and matrix-assisted laser-desorption ionization time of flight (MALDI-TOF) mass spectrometry (MS) were exemplified by the structural analysis of the hemicellulose xyloglucan. All three techniques are able to identify structural alterations of wall xyloglucans in mur1, mur2, and mur3, which in comparison with the wild type have side chain defects in their xyloglucan structure. The quickest analysis was provided by MALDI-TOF MS. Although MALDI-TOF MS per se is not quantitative, it is possible to reproducibly obtain relative abundance information of the various oligosaccharides present in the extract. The lack of absolute quantitation by MALDI-TOF MS was compensated for with a xyloglucan-specific endoglucanase and simple colorimetric assay. In view of the potential for mass screening using MALDI-TOF MS, a PERL-based program was developed to process the spectra obtained from MALDI-TOF MS automatically. Outliers can be identified very rapidly according to a set of defined parameters based on data collected from the wild-type plants. The methods presented here can easily be adopted for the analysis of other wall polysaccharides. MALDI-TOF MS offers a powerful tool to screen and identify cell wall mutants rapidly and efficiently and, more importantly, is able to give initial insights into the structural composition and/or modification that occurs in these mutants.
Collapse
Affiliation(s)
- Olivier Lerouxel
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 6037, Institute Federative de Recherche Multidisciplinaire sur les Peptides 23, University of Rouen, 76821 Mont Saint Aignan, France
| | | | | | | | | | | | | |
Collapse
|
158
|
de Vries RP, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 2001; 65:497-522, table of contents. [PMID: 11729262 PMCID: PMC99039 DOI: 10.1128/mmbr.65.4.497-522.2001] [Citation(s) in RCA: 558] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Degradation of plant cell wall polysaccharides is of major importance in the food and feed, beverage, textile, and paper and pulp industries, as well as in several other industrial production processes. Enzymatic degradation of these polymers has received attention for many years and is becoming a more and more attractive alternative to chemical and mechanical processes. Over the past 15 years, much progress has been made in elucidating the structural characteristics of these polysaccharides and in characterizing the enzymes involved in their degradation and the genes of biotechnologically relevant microorganisms encoding these enzymes. The members of the fungal genus Aspergillus are commonly used for the production of polysaccharide-degrading enzymes. This genus produces a wide spectrum of cell wall-degrading enzymes, allowing not only complete degradation of the polysaccharides but also tailored modifications by using specific enzymes purified from these fungi. This review summarizes our current knowledge of the cell wall polysaccharide-degrading enzymes from aspergilli and the genes by which they are encoded.
Collapse
Affiliation(s)
- R P de Vries
- Molecular Genetics of Industrial Microorganisms, Wageningen University, 6703 HA Wageningen, The Netherlands.
| | | |
Collapse
|
159
|
Catalá C, Rose JK, York WS, Albersheim P, Darvill AG, Bennett AB. Characterization of a tomato xyloglucan endotransglycosylase gene that is down-regulated by auxin in etiolated hypocotyls. PLANT PHYSIOLOGY 2001; 127:1180-92. [PMID: 11706197 PMCID: PMC129286 DOI: 10.1104/pp.010481] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2001] [Accepted: 08/13/2001] [Indexed: 05/18/2023]
Abstract
The reorganization of the cellulose-xyloglucan matrix is proposed to serve as an important mechanism in the control of strength and extensibility of the plant primary cell wall. One of the key enzymes associated with xyloglucan metabolism is xyloglucan endotransglycosylase (XET), which catalyzes the endocleavage and religation of xyloglucan molecules. As with other plant species, XETs are encoded by a gene family in tomato (Lycopersicon esculentum cv T5). In a previous study, we demonstrated that the tomato XET gene LeEXT was abundantly expressed in the rapidly expanding region of the etiolated hypocotyl and was induced to higher levels by auxin. Here, we report the identification of a new tomato XET gene, LeXET2, that shows a different spatial expression and diametrically opposite pattern of auxin regulation from LeEXT. LeXET2 was expressed more abundantly in the mature nonelongating regions of the hypocotyl, and its mRNA abundance decreased dramatically following auxin treatment of etiolated hypocotyl segments. Analysis of the effect of several plant hormones on LeXET2 expression revealed that the inhibition of LeXET2 mRNA accumulation also occurred with cytokinin treatment. LeXET2 mRNA levels increased significantly in hypocotyl segments treated with gibberellin, but this increase could be prevented by adding auxin or cytokinin to the incubation media. Recombinant LeXET2 protein obtained by heterologous expression in Pichia pastoris exhibited greater XET activity against xyloglucan from tomato than that from three other species. The opposite patterns of expression and differential auxin regulation of LeXET2 and LeEXT suggest that they encode XETs with distinct roles during plant growth and development.
Collapse
Affiliation(s)
- C Catalá
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, 220 Riverbend Road, Athens, GA 30602-4712, USA.
| | | | | | | | | | | |
Collapse
|
160
|
Molecular transformation, gene cloning, and gene expression systems for filamentous fungi. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1874-5334(01)80010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
161
|
Pauly M, Albersheim P, Darvill A, York WS. Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:629-39. [PMID: 10652135 DOI: 10.1046/j.1365-313x.1999.00630.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cellulose and xyloglucan (XG) assemble to form the cellulose/XG network, which is considered to be the dominant load-bearing structure in the growing cell walls of non-graminaceous land plants. We have extended the most commonly accepted model for the macromolecular organization of XG in this network, based on the structural and quantitative analysis of three distinct XG fractions that can be differentially extracted from the cell walls isolated from etiolated pea stems. Approximately 8% of the dry weight of these cell walls consists of XG that can be solubilized by treatment of the walls with a XG-specific endoglucanase (XEG). This material corresponds to an enzyme-susceptible XG domain, proposed to form the cross-links between cellulose microfibrils. Another 10% of the cell wall consists of XG that can be solubilized by concentrated KOH after XEG treatment. This material constitutes another XG domain, proposed to be closely associated with the surface of the cellulose microfibrils. An additional 3% of the cell wall consists of XG that can be solubilized only when the XEG- and KOH-treated cell walls are treated with cellulase. This material constitutes a third XG domain, proposed to be entrapped within or between cellulose microfibrils. Analysis of the three fractions indicates that metabolism is essentially limited to the enzyme-susceptible domain. These results support the hypothesis that enzyme-catalyzed modification of XG cross-links in the cellulose/XG network is required for the growth and development of the primary plant cell wall, and demonstrate that the structural consequences of these metabolic events can be analyzed in detail.
Collapse
Affiliation(s)
- M Pauly
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, 220 Riverbend Road, Athens, GA 30602-4712, USA
| | | | | | | |
Collapse
|