151
|
Acebo P, Martin-Galiano AJ, Navarro S, Zaballos Á, Amblar M. Identification of 88 regulatory small RNAs in the TIGR4 strain of the human pathogen Streptococcus pneumoniae. RNA (NEW YORK, N.Y.) 2012; 18:530-546. [PMID: 22274957 PMCID: PMC3285940 DOI: 10.1261/rna.027359.111] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 12/02/2011] [Indexed: 05/31/2023]
Abstract
Streptococcus pneumoniae is the main etiological agent of community-acquired pneumonia and a major cause of mortality and morbidity among children and the elderly. Genome sequencing of several pneumococcal strains revealed valuable information about the potential proteins and genetic diversity of this prevalent human pathogen. However, little is known about its transcriptional regulation and its small regulatory noncoding RNAs. In this study, we performed deep sequencing of the S. pneumoniae TIGR4 strain RNome to identify small regulatory RNA candidates expressed in this pathogen. We discovered 1047 potential small RNAs including intragenic, 5'- and/or 3'-overlapping RNAs and 88 small RNAs encoded in intergenic regions. With this approach, we recovered many of the previously identified intergenic small RNAs and identified 68 novel candidates, most of which are conserved in both sequence and genomic context in other S. pneumoniae strains. We confirmed the independent expression of 17 intergenic small RNAs and predicted putative mRNA targets for six of them using bioinformatics tools. Preliminary results suggest that one of these six is a key player in the regulation of competence development. This study is the biggest catalog of small noncoding RNAs reported to date in S. pneumoniae and provides a highly complete view of the small RNA network in this pathogen.
Collapse
Affiliation(s)
- Paloma Acebo
- Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Antonio J. Martin-Galiano
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Sara Navarro
- Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
- CIBER Enfermedades Respiratorias, 07110 Bunyola, Mallorca, Spain
| | - Ángel Zaballos
- Unidad de Genómica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Mónica Amblar
- Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
- CIBER Enfermedades Respiratorias, 07110 Bunyola, Mallorca, Spain
| |
Collapse
|
152
|
Patenge N, Fiedler T, Kreikemeyer B. Common regulators of virulence in streptococci. Curr Top Microbiol Immunol 2012; 368:111-53. [PMID: 23242855 DOI: 10.1007/82_2012_295] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Streptococcal species are a diverse group of bacteria which can be found in animals and humans. Their interactions with host organisms can vary from commensal to pathogenic. Many of the pathogenic species are causative agents of severe, invasive infections in their hosts, accounting for a high burden of morbidity and mortality, associated with high economic costs in industry and health care. Among them, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus pneumoniae, and Streptococcus suis are discussed here. An environmentally stimulated and tightly controlled expression of their virulence factors is of utmost importance for their pathogenic potential. Thus, the most universal and widespread regulators from the classes of stand-alone transcriptional regulators, two-component signal transduction systems (TCS), eukaryotic-like serine/threonine kinases, and small noncoding RNAs are the topic of this chapter. The regulatory levels are reviewed with respect to function, activity, and their role in pathogenesis. Understanding of and interfering with transcriptional regulation mechanisms and networks is a promising basis for the development of novel anti-infective therapies.
Collapse
Affiliation(s)
- Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Schillingallee 70, 18057 Rostock, Germany
| | | | | |
Collapse
|
153
|
Hemberger S, Pedrolli DB, Stolz J, Vogl C, Lehmann M, Mack M. RibM from Streptomyces davawensis is a riboflavin/roseoflavin transporter and may be useful for the optimization of riboflavin production strains. BMC Biotechnol 2011; 11:119. [PMID: 22136195 PMCID: PMC3239331 DOI: 10.1186/1472-6750-11-119] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/02/2011] [Indexed: 01/15/2023] Open
Abstract
Background The bacterium Bacillus subtilis, which is not a natural riboflavin overproducer, has been converted into an excellent production strain by classical mutagenesis and metabolic engineering. To our knowledge, the enhancement of riboflavin excretion from the cytoplasm of overproducing cells has not yet been considered as a target for (further) strain improvement. Here we evaluate the flavin transporter RibM from Streptomyces davawensis with respect to improvement of a riboflavin production strain. Results The gene ribM from S. davawensis, coding for a putative facilitator of riboflavin uptake, was codon optimized (ribMopt) for expression in B. subtilis. The gene ribMopt was functionally introduced into B. subtilis using the isopropyl-β-thiogalactopyranoside (IPTG)-inducible expression plasmid pHT01: Northern-blot analysis of total RNA from IPTG treated recombinant B. subtilis cells revealed a ribMopt specific transcript. Western blot analysis showed that the his6-tagged heterologous gene product RibM was present in the cytoplasmic membrane. Expression of ribM in Escherichia coli increased [14C]riboflavin uptake, which was not affected by the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP). Expression of ribMopt supported growth of a B. subtilis ΔribB::Ermr ΔribU::Kanr double mutant deficient in riboflavin synthesis (ΔribB) and also deficient with respect to riboflavin uptake (ΔribU). Expression of ribMopt increased roseoflavin (a toxic riboflavin analog produced by S. davawensis) sensitivity of a B. subtilis ΔribU::Kanr strain. Riboflavin synthesis by a model riboflavin B. subtilis production strain overproducing RibM was increased significantly depending on the amount of the inducer IPTG. Conclusions The energy independent flavin facilitator RibM could in principle catalyze riboflavin export and thus may be useful to increase the riboflavin yield in a riboflavin production process using a recombinant RibM overproducing B. subtilis strain (or any other microorganism).
Collapse
Affiliation(s)
- Sabrina Hemberger
- Institut für Technische Mikrobiologie, Hochschule Mannheim, Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
154
|
Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 2011; 93:41-8. [DOI: 10.1007/s00253-011-3653-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/27/2011] [Accepted: 10/17/2011] [Indexed: 10/15/2022]
|
155
|
Abstract
Riboflavin or vitamin B(2) is one of the constituents of energy drinks. Although this compound is known to be absorbed in the intestine and that it circulates throughout the body and is excreted in urine, the transporter(s) responsible for the process was only recently identified. Yamamoto et al. identified this transporter through functional expression of rat orthologues of a putative bacterial riboflavin transporter.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan.
| |
Collapse
|
156
|
Mansjö M, Johansson J. The riboflavin analog roseoflavin targets an FMN-riboswitch and blocks Listeria monocytogenes growth, but also stimulates virulence gene-expression and infection. RNA Biol 2011; 8:674-80. [PMID: 21593602 DOI: 10.4161/rna.8.4.15586] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
During recent years, riboswitches have emerged as potential targets for novel antibacterial substances. In this study, we investigated how one flavin analog, roseoflavin, affected the gene-expression, growth and infectivity of the human bacterial pathogen Listeria monocytogenes to determine the potential of this analog to function as an antibacterial substance. The results indicate that roseoflavin has a profound inhibiting effect on the growth of L. monocytogenes at very low concentrations. Also, expression of the gene located downstream of the FMN riboswitch, a riboflavin transporter, was blocked by the addition of roseoflavin. Base-substitution mutations in the FMN riboswitch allowed the bacteria to grow in the presence of roseoflavin, showing that roseoflavin targeted the FMN riboswitch directly. Surprisingly, we found that roseoflavin stimulated L. monocytogenes virulence gene expression and infection abilities in a mechanism independent of the FMN riboswitch. Our results suggest that roseoflavin can block growth but also enhance Listeria virulence.
Collapse
Affiliation(s)
- Mikael Mansjö
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
157
|
Abbas CA, Sibirny AA. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 2011; 75:321-60. [PMID: 21646432 PMCID: PMC3122625 DOI: 10.1128/mmbr.00030-10] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Riboflavin [7,8-dimethyl-10-(1'-d-ribityl)isoalloxazine, vitamin B₂] is an obligatory component of human and animal diets, as it serves as the precursor of flavin coenzymes, flavin mononucleotide, and flavin adenine dinucleotide, which are involved in oxidative metabolism and other processes. Commercially produced riboflavin is used in agriculture, medicine, and the food industry. Riboflavin synthesis starts from GTP and ribulose-5-phosphate and proceeds through pyrimidine and pteridine intermediates. Flavin nucleotides are synthesized in two consecutive reactions from riboflavin. Some microorganisms and all animal cells are capable of riboflavin uptake, whereas many microorganisms have distinct systems for riboflavin excretion to the medium. Regulation of riboflavin synthesis in bacteria occurs by repression at the transcriptional level by flavin mononucleotide, which binds to nascent noncoding mRNA and blocks further transcription (named the riboswitch). In flavinogenic molds, riboflavin overproduction starts at the stationary phase and is accompanied by derepression of enzymes involved in riboflavin synthesis, sporulation, and mycelial lysis. In flavinogenic yeasts, transcriptional repression of riboflavin synthesis is exerted by iron ions and not by flavins. The putative transcription factor encoded by SEF1 is somehow involved in this regulation. Most commercial riboflavin is currently produced or was produced earlier by microbial synthesis using special selected strains of Bacillus subtilis, Ashbya gossypii, and Candida famata. Whereas earlier RF overproducers were isolated by classical selection, current producers of riboflavin and flavin nucleotides have been developed using modern approaches of metabolic engineering that involve overexpression of structural and regulatory genes of the RF biosynthetic pathway as well as genes involved in the overproduction of the purine precursor of riboflavin, GTP.
Collapse
Affiliation(s)
| | - Andriy A. Sibirny
- Institute of Cell Biology, NAS of Ukraine, Lviv 79005, Ukraine
- University of Rzeszow, Rzeszow 35-601, Poland
| |
Collapse
|
158
|
Krauss U, Svensson V, Wirtz A, Knieps-Grünhagen E, Jaeger KE. Cofactor trapping, a new method to produce flavin mononucleotide. Appl Environ Microbiol 2011; 77:1097-100. [PMID: 21131527 PMCID: PMC3028748 DOI: 10.1128/aem.01541-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/08/2010] [Indexed: 01/01/2023] Open
Abstract
We have purified flavin mononucleotide (FMN) from a flavoprotein-overexpressing Escherichia coli strain by cofactor trapping. This approach uses an overexpressed flavoprotein to trap FMN, which is thus removed from the cascade regulating FMN production in E. coli. This, in turn, allows the isolation of highly pure FMN.
Collapse
Affiliation(s)
- Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich, D-52426 Jülich, Germany.
| | | | | | | | | |
Collapse
|
159
|
Eitinger T, Rodionov DA, Grote M, Schneider E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 2011; 35:3-67. [PMID: 20497229 DOI: 10.1111/j.1574-6976.2010.00230.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
160
|
Improving the Clostridium acetobutylicum butanol fermentation by engineering the strain for co-production of riboflavin. J Ind Microbiol Biotechnol 2010; 38:1013-25. [DOI: 10.1007/s10295-010-0875-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/13/2010] [Indexed: 11/25/2022]
|
161
|
Riccitelli NJ, Lupták A. Computational discovery of folded RNA domains in genomes and in vitro selected libraries. Methods 2010; 52:133-40. [PMID: 20554049 PMCID: PMC3137801 DOI: 10.1016/j.ymeth.2010.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 10/19/2022] Open
Abstract
Structured functional RNAs are conserved on the level of secondary and tertiary structure, rather than at sequence level, and so traditional sequence-based searches often fail to identify them. Structure-based searches are increasingly used to discover known RNA motifs in sequence databases. We describe the application of the program RNABOB, which performs such searches by allowing the user to define a desired motif's sequence, paired and spacer elements and then scans a sequence file for regions capable of assuming the prescribed fold. Structure descriptors of stem-loops, internal loops, three-way junctions, kissing loops, and the hammerhead and hepatitis delta virus ribozymes are shown as examples of implementation of structure-based searches.
Collapse
Affiliation(s)
| | - Andrej Lupták
- University of California, Department of Chemistry, Irvine, CA, USA
- University of California, Department of Pharmaceutical Sciences, Irvine, CA, USA
- University of California, Department of Molecular Biology & Biochemistry, 2141 Natural Sciences 2, Irvine, CA 92697, USA
| |
Collapse
|
162
|
Covington ED, Gelbmann CB, Kotloski NJ, Gralnick JA. An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Mol Microbiol 2010; 78:519-32. [PMID: 20807196 DOI: 10.1111/j.1365-2958.2010.07353.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The facultative anaerobe Shewanella oneidensis can reduce a number of insoluble extracellular metals. Direct adsorption of cells to the metal surface is not necessary, and it has been shown that S. oneidensis releases low concentrations flavins, including riboflavin and flavin mononucleotide (FMN), into the surrounding medium to act as extracellular electron shuttles. However, the mechanism of flavin release by Shewanella remains unknown. We have conducted a transposon mutagenesis screen to identify mutants deficient in extracellular flavin accumulation. Mutations in ushA, encoding a predicted 5'-nucleotidase, resulted in accumulation of flavin adenine dinucleotide (FAD) in culture supernatants, with a corresponding decrease in FMN and riboflavin. Cellular extracts of S. oneidensis convert FAD to FMN, whereas extracts of ushA mutants do not, and fractionation experiments show that UshA activity is periplasmic. We hypothesize that S. oneidensis secretes FAD into the periplasmic space, where it is hydrolysed by UshA to FMN and adenosine monophosphate (AMP). FMN diffuses through outer membrane porins where it accelerates extracellular electron transfer, and AMP is dephosphorylated by UshA and reassimilated by the cell. We predict that transport of FAD into the periplasm also satisfies the cofactor requirement of the unusual periplasmic fumarate reductase found in Shewanella.
Collapse
Affiliation(s)
- Elizabeth D Covington
- BioTechnology Institute and Department of Microbiology, University of Minnesota-Twin Cities, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
163
|
Abstract
The biosynthesis of riboflavin requires 1 equivalent of GTP and 2 equivalents of ribulose phosphate. The first committed reactions of the convergent pathway are catalyzed by GTP hydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase. The initial reaction steps afford 5-amino-6-ribitylaminopyrimidine 5'-phosphate, which needs to be dephosphorylated by a hitherto elusive hydrolase. The dephosphorylated pyrimidine is condensed with the carbohydrate precursor, 3,4-dihydroxy-2-butanone 4-phosphate. The resulting 6,7-dimethyl-8-ribityllumazine affords riboflavin by a mechanistically unique dismutation, i.e., by formation of a pentacyclic dimer that is subsequently fragmented.
Collapse
|
164
|
Schröder J, Tauch A. Transcriptional regulation of gene expression inCorynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 2010; 34:685-737. [DOI: 10.1111/j.1574-6976.2010.00228.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
165
|
Yao Y, Yonezawa A, Yoshimatsu H, Masuda S, Katsura T, Inui KI. Identification and comparative functional characterization of a new human riboflavin transporter hRFT3 expressed in the brain. J Nutr 2010; 140:1220-6. [PMID: 20463145 DOI: 10.3945/jn.110.122911] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We isolated cDNA coding a new human riboflavin transporter (hRFT)3, which exhibits 86.7 and 44.1% amino acid identity with hRFT1 and hRFT2, respectively. It was predicted to have 10 putative membrane-spanning domains. The functional characteristics of hRFT3 were examined and compared with those of its isoforms, hRFT1 and hRFT2. Real-time PCR revealed that hRFT3 mRNA was strongly expressed in the brain and salivary gland. hRFT1 mRNA was strongly expressed in the placenta and small intestine, whereas hRFT2 mRNA was most abundantly expressed in the testis and strongly in the small intestine and prostate. hRFT-mediated uptake of [3H]riboflavin was evaluated using human embryonic kidney 293 cells transiently transfected with the cDNA coding each hRFT. The apparent Michaelis-Menten constants of hRFT1, hRFT2, and hRFT3 for riboflavin were 1.38, 0.98, and 0.33 micromol/L, respectively. The hRFT-mediated [3H]riboflavin uptake was independent of extracellular Na+ and Cl(-). Specific uptake of [3H]riboflavin by hRFT2, but not hRFT1 and hRFT3, decreased as extracellular pH was changed from 5.4 to 8.4. The substrate specificities of the hRFT family were similar. hRFT-mediated uptake of [3H]riboflavin was inhibited by some riboflavin analogs, but not D-ribose, organic ions, or other vitamins. The newly isolated hRFT3 may play an important role in brain riboflavin homeostasis. Its amino acid sequence and functional characteristics are similar to those of hRFT1, but not hRFT2.
Collapse
Affiliation(s)
- Yoshiaki Yao
- Department of Pharmacy, Kyoto University Hospital, Faculty of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
166
|
Kallifidas D, Thomas D, Doughty P, Paget MSB. The sigmaR regulon of Streptomyces coelicolor A32 reveals a key role in protein quality control during disulphide stress. MICROBIOLOGY (READING, ENGLAND) 2010; 156:1661-1672. [PMID: 20185507 DOI: 10.1099/mic.0.037804-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Diamide is an artificial disulphide-generating electrophile that mimics an oxidative shift in the cellular thiol-disulphide redox state (disulphide stress). The Gram-positive bacterium Streptomyces coelicolor senses and responds to disulphide stress through the sigma(R)-RsrA system, which comprises an extracytoplasmic function (ECF) sigma factor and a redox-active anti-sigma factor. Known targets that aid in the protection and recovery from disulphide stress include the thioredoxin system and genes involved in producing the major thiol buffer mycothiol. Here we determine the global response to diamide in wild-type and sigR mutant backgrounds to understand the role of sigma(R) in this response and to reveal additional regulatory pathways that allow cells to cope with disulphide stress. In addition to thiol oxidation, diamide was found to cause protein misfolding and aggregation, which elicited the induction of the HspR heat-shock regulon. Although this response is sigma(R)-independent, sigma(R) does directly control Clp and Lon ATP-dependent AAA(+) proteases, which may partly explain the reduced ability of a sigR mutant to resolubilize protein aggregates. sigma(R) also controls msrA and msrB methionine sulphoxide reductase genes, implying that sigma(R)-RsrA is responsible for the maintenance of both cysteine and methionine residues during oxidative stress. This work shows that the sigma(R)-RsrA system plays a more significant role in protein quality control than previously realized, and emphasizes the importance of controlling the cellular thiol-disulphide redox balance.
Collapse
Affiliation(s)
- Dimitris Kallifidas
- Department of Chemistry and Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Derek Thomas
- Department of Chemistry and Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Phillip Doughty
- Department of Chemistry and Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Mark S B Paget
- Department of Chemistry and Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
167
|
Gene expression modulation by chalcopyrite and bornite in Acidithiobacillus ferrooxidans. Arch Microbiol 2010; 192:531-40. [DOI: 10.1007/s00203-010-0584-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/28/2010] [Accepted: 04/30/2010] [Indexed: 11/27/2022]
|
168
|
Long Q, Ji L, Wang H, Xie J. Riboflavin Biosynthetic and Regulatory Factors as Potential Novel Anti-Infective Drug Targets. Chem Biol Drug Des 2010; 75:339-47. [DOI: 10.1111/j.1747-0285.2010.00946.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
169
|
Alsaker KV, Paredes C, Papoutsakis ET. Metabolite stress and tolerance in the production of biofuels and chemicals: Gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobeClostridium acetobutylicum. Biotechnol Bioeng 2010; 105:1131-47. [DOI: 10.1002/bit.22628] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
170
|
Serganov A, Patel DJ. Amino acid recognition and gene regulation by riboswitches. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:592-611. [PMID: 19619684 PMCID: PMC3744886 DOI: 10.1016/j.bbagrm.2009.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 01/06/2023]
Abstract
Riboswitches specifically control expression of genes predominantly involved in biosynthesis, catabolism and transport of various cellular metabolites in organisms from all three kingdoms of life. Among many classes of identified riboswitches, two riboswitches respond to amino acids lysine and glycine to date. Though these riboswitches recognize small compounds, they both belong to the largest riboswitches and have unique structural and functional characteristics. In this review, we attempt to characterize molecular recognition principles employed by amino acid-responsive riboswitches to selectively bind their cognate ligands and to effectively perform a gene regulation function. We summarize up-to-date biochemical and genetic data available for the lysine and glycine riboswitches and correlate these results with recent high-resolution structural information obtained for the lysine riboswitch. We also discuss the contribution of lysine riboswitches to antibiotic resistance and outline potential applications of riboswitches in biotechnology and medicine.
Collapse
Affiliation(s)
- Alexander Serganov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
171
|
Rho directs widespread termination of intragenic and stable RNA transcription. Proc Natl Acad Sci U S A 2009; 106:15406-11. [PMID: 19706412 DOI: 10.1073/pnas.0903846106] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The transcription termination factor Rho is a global regulator of RNA polymerase (RNAP). Although individual Rho-dependent terminators have been studied extensively, less is known about the sites of RNAP regulation by Rho on a genome-wide scale. Using chromatin immunoprecipitation and microarrays (ChIP-chip), we examined changes in the distribution of Escherichia coli RNAP in response to the Rho-specific inhibitor bicyclomycin (BCM). We found approximately 200 Rho-terminated loci that were divided evenly into 2 classes: intergenic (at the ends of genes) and intragenic (within genes). The intergenic class contained noncoding RNAs such as small RNAs (sRNAs) and transfer RNAs (tRNAs), establishing a previously unappreciated role of Rho in termination of stable RNA synthesis. The intragenic class of terminators included a previously uncharacterized set of short antisense transcripts, as judged by a shift in the distribution of RNAP in BCM-treated cells that was opposite to the direction of the corresponding gene. These Rho-terminated antisense transcripts point to a role of noncoding transcription in E. coli gene regulation that may resemble the ubiquitous noncoding transcription recently found to play myriad roles in eukaryotic gene regulation.
Collapse
|
172
|
Gorbunov KY, Lyubetskaya EV, Asarin EA, Lyubetsky VA. Modeling evolution of the bacterial regulatory signals involving secondary structure. Mol Biol 2009. [DOI: 10.1134/s0026893309030170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
173
|
Zhang S, Xu M, Li S, Su Z. Genome-wide de novo prediction of cis-regulatory binding sites in prokaryotes. Nucleic Acids Res 2009; 37:e72. [PMID: 19383880 PMCID: PMC2691844 DOI: 10.1093/nar/gkp248] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although cis-regulatory binding sites (CRBSs) are at least as important as the coding sequences in a genome, our general understanding of them in most sequenced genomes is very limited due to the lack of efficient and accurate experimental and computational methods for their characterization, which has largely hindered our understanding of many important biological processes. In this article, we describe a novel algorithm for genome-wide de novo prediction of CRBSs with high accuracy. We designed our algorithm to circumvent three identified difficulties for CRBS prediction using comparative genomics principles based on a new method for the selection of reference genomes, a new metric for measuring the similarity of CRBSs, and a new graph clustering procedure. When operon structures are correctly predicted, our algorithm can predict 81% of known individual binding sites belonging to 94% of known cis-regulatory motifs in the Escherichia coli K12 genome, while achieving high prediction specificity. Our algorithm has also achieved similar prediction accuracy in the Bacillus subtilis genome, suggesting that it is very robust, and thus can be applied to any other sequenced prokaryotic genome. When compared with the prior state-of-the-art algorithms, our algorithm outperforms them in both prediction sensitivity and specificity.
Collapse
Affiliation(s)
- Shaoqiang Zhang
- Department of Bioinformatics and Genomics, Bioinformatics Research Center, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | | | |
Collapse
|
174
|
Bacterial vitamin B2, B11 and B12 overproduction: An overview. Int J Food Microbiol 2009; 133:1-7. [PMID: 19467724 DOI: 10.1016/j.ijfoodmicro.2009.04.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 04/12/2009] [Accepted: 04/14/2009] [Indexed: 11/20/2022]
Abstract
Consumers are becoming increasingly health conscious and therefore more discerning in their food choices. The production of fermented food products with elevated levels of B-vitamins increase both their commercial and nutritional value, and eliminate the need for subsequent fortification with these essential vitamins. Such novel products could reduce the incidence of inadequate vitamin intake which is common in many parts of the world, not only in developing countries, but also in many industrialised countries. Moreover, the concept of in situ fortification by bacterial fermentation opens the way for development of food products targeted at specific groups in society such as the elderly and adolescents. This review looks at how vitamin overproduction strategies have been developed, some of which have successfully been tested in animal models. Such innovative strategies could be relatively easily adapted by the food industry to develop novel vitamin-enhanced functional foods with enhanced consumer appeal.
Collapse
|
175
|
Yatsyshyn VY, Fedorovych DV, Sibirny AA. The microbial synthesis of flavin nucleotides: A review. APPL BIOCHEM MICRO+ 2009. [DOI: 10.1134/s000368380902001x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
176
|
Grininger M, Staudt H, Johansson P, Wachtveitl J, Oesterhelt D. Dodecin is the key player in flavin homeostasis of archaea. J Biol Chem 2009; 284:13068-76. [PMID: 19224924 DOI: 10.1074/jbc.m808063200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flavins are employed to transform physical input into biological output signals. In this function, flavins catalyze a variety of light-induced reactions and redox processes. However, nature also provides flavoproteins with the ability to uncouple the mediation of signals. Such proteins are the riboflavin-binding proteins (RfBPs) with their function to store riboflavin for fast delivery of FMN and FAD. Here we present in vitro and in vivo data showing that the recently discovered archaeal dodecin is an RfBP, and we reveal that riboflavin storage is not restricted to eukaryotes. However, the function of the prokaryotic RfBP dodecin seems to be adapted to the requirement of a monocellular organism. While in eukaryotes RfBPs are involved in trafficking riboflavin, and dodecin is responsible for the flavin homeostasis of the cell. Although only 68 amino acids in length, dodecin is of high functional versatility in neutralizing riboflavin to protect the cellular environment from uncontrolled flavin reactivity. Besides the predominant ultrafast quenching of excited states, dodecin prevents light-induced riboflavin reactivity by the selective degradation of riboflavin to lumichrome. Coordinated with the high affinity for lumichrome, the directed degradation reaction is neutral to the cellular environment and provides an alternative pathway for suppressing uncontrolled riboflavin reactivity. Intriguingly, the different structural and functional properties of a homologous bacterial dodecin suggest that dodecin has different roles in different kingdoms of life.
Collapse
Affiliation(s)
- Martin Grininger
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | | | | | | | | |
Collapse
|
177
|
Serganov A, Huang L, Patel DJ. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature 2009; 458:233-7. [PMID: 19169240 DOI: 10.1038/nature07642] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Accepted: 11/13/2008] [Indexed: 12/22/2022]
Abstract
The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches, also known as RFN elements, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B(2)) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg(2+)-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.
Collapse
Affiliation(s)
- Alexander Serganov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | | | |
Collapse
|
178
|
Yamamoto S, Inoue K, Ohta KY, Fukatsu R, Maeda JY, Yoshida Y, Yuasa H. Identification and functional characterization of rat riboflavin transporter 2. J Biochem 2009; 145:437-43. [PMID: 19122205 DOI: 10.1093/jb/mvn181] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have newly identified rat riboflavin transporter 2 (rRFT2) and its human orthologue (hRFT2), and carried out detailed functional characterization of rRFT2. The mRNA of rRFT2 was highly expressed in jejunum and ileum. When transiently expressed in human embryonic kidney (HEK) 293 cells, rRFT2 could transport riboflavin efficiently. Riboflavin transport mediated by rRFT2 was Na(+)-independent but moderately pH-sensitive, being more efficient in acidic conditions than in neutral and basic conditions. Kinetic analysis indicated that rRFT2-mediated riboflavin transport was saturable with a Michaelis constant (K(m)) of 0.21 microM. Furthermore, it was specifically and strongly inhibited by lumiflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), and to a lesser extent by amiloride. Such ability to transport riboflavin in a specific manner, together with its high expression in the small intestine, indicates that RFT2 may play a role in the intestinal absorption of riboflavin.
Collapse
Affiliation(s)
- Syunsuke Yamamoto
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | | | | | | | | | | | | |
Collapse
|
179
|
Abstract
Riboswitches are RNA elements that undergo a shift in structure in response to binding of a regulatory molecule. These elements are encoded within the transcript they regulate, and act in cis to control expression of the coding sequence(s) within that transcript; their function is therefore distinct from that of small regulatory RNAs (sRNAs) that act in trans to regulate the activity of other RNA transcripts. Riboswitch RNAs control a broad range of genes in bacterial species, including those involved in metabolism or uptake of amino acids, cofactors, nucleotides, and metal ions. Regulation occurs as a consequence of direct binding of an effector molecule, or through sensing of a physical parameter such as temperature. Here we review the global role of riboswitch RNAs in bacterial cell metabolism.
Collapse
Affiliation(s)
- Tina M Henkin
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
180
|
The proline-dependent transcription factor Put3 regulates the expression of the riboflavin transporter MCH5 in Saccharomyces cerevisiae. Genetics 2008; 180:2007-17. [PMID: 18940788 DOI: 10.1534/genetics.108.094458] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Like most microorganisms, the yeast Saccharomyces cerevisiae is prototrophic for riboflavin (vitamin B2). Riboflavin auxotrophic mutants with deletions in any of the RIB genes frequently segregate colonies with improved growth. We demonstrate by reporter assays and Western blots that these suppressor mutants overexpress the plasma-membrane riboflavin transporter MCH5. Frequently, this overexpression is mediated by the transcription factor Put3, which also regulates the proline catabolic genes PUT1 and PUT2. The increased expression of MCH5 may increase the concentrations of FAD, which is the coenzyme required for the activity of proline oxidase, encoded by PUT1. Thus, Put3 regulates proline oxidase activity by synchronizing the biosynthesis of the apoenzyme and the coenzyme FAD. Put3 is known to bind to the promoters of PUT1 and PUT2 constitutively, and we demonstrate by gel-shift assays that it also binds to the promoter of MCH5. Put3-mediated transcriptional activation requires proline as an inducer. We find that the increased activity of Put3 in one of the suppressor mutants is caused by increased intracellular levels of proline. Alternative PUT3-dependent and -independent mechanisms might operate in other suppressed strains.
Collapse
|
181
|
Abstract
The specific and tightly controlled transport of numerous nutrients and metabolites across cellular membranes is crucial to all forms of life. However, many of the transporter proteins involved have yet to be identified, including the vitamin transporters in various human pathogens, whose growth depends strictly on vitamin uptake. Comparative analysis of the ever-growing collection of microbial genomes coupled with experimental validation enables the discovery of such transporters. Here, we used this approach to discover an abundant class of vitamin transporters in prokaryotes with an unprecedented architecture. These transporters have energy-coupling modules comprised of a conserved transmembrane protein and two nucleotide binding proteins similar to those of ATP binding cassette (ABC) transporters, but unlike ABC transporters, they use small integral membrane proteins to capture specific substrates. We identified 21 families of these substrate capture proteins, each with a different specificity predicted by genome context analyses. Roughly half of the substrate capture proteins (335 cases) have a dedicated energizing module, but in 459 cases distributed among almost 100 gram-positive bacteria, including numerous human pathogens, different and unrelated substrate capture proteins share the same energy-coupling module. The shared use of energy-coupling modules was experimentally confirmed for folate, thiamine, and riboflavin transporters. We propose the name energy-coupling factor transporters for the new class of membrane transporters.
Collapse
|
182
|
Jang HJ, Nde C, Toghrol F, Bentley WE. Microarray analysis of toxicogenomic effects of ortho-phenylphenol in Staphylococcus aureus. BMC Genomics 2008; 9:411. [PMID: 18793396 PMCID: PMC2562396 DOI: 10.1186/1471-2164-9-411] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 09/15/2008] [Indexed: 12/02/2022] Open
Abstract
Background Staphylococcus aureus (S. aureus), is responsible for many infectious diseases, ranging from benign skin infections to life-threatening endocarditis and toxic shock syndrome. Ortho-phenylphenol (OPP) is an antimicrobial agent and an active ingredient of EPA-registered disinfectants with wide human exposure in various agricultural, hospital and veterinary disinfectant products. Despite many uses, an understanding of a cellular response to OPP and it's mechanism of action, targeted genes, and the connectivity between targeted genes and the rest of cell metabolism remains obscure. Results Herein, we performed a genome-wide transcriptome analysis of the cellular responses of S. aureus when exposed to 0.82 mM of OPP for 20 and 60 min. Our data indicated that OPP downregulated the biosynthesis of many amino acids, which are required for protein synthesis. In particular, the genes encoding the enzymes of the diaminopimelate (DAP) pathway which results in lysine biosynthesis were significantly downregualted. Intriguingly, we revealed that the transcription of genes encoding ribosomal proteins was upregulated by OPP and at the same time, the genes encoding iron acquisition and transport were downregulated. The genes encoding virulence factors were upregulated and genes encoding phospholipids were downregulated upon 20 min exposure to OPP. Conclusion By using microarray analysis that enables us to simultaneously and globally examine the complete transcriptome during cellular responses, we have revealed novel information regarding the mode of action of OPP on Staphylococcus: OPP inhibits anabolism of many amino acids and highly downregulates the genes that encode the enzymes involved in the DAP pathway. Lysine and DAP are essential for building up the peptidoglycan cell wall. It was concluded that the mode of action of OPP is similar to the mechanism of action of some antibiotics. The discovery of this phenomenon provides useful information that will benefit further antimicrobial research on S. aureus.
Collapse
Affiliation(s)
- Hyeung-Jin Jang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA.
| | | | | | | |
Collapse
|
183
|
The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 2008; 8:R239. [PMID: 17997835 PMCID: PMC2258182 DOI: 10.1186/gb-2007-8-11-r239] [Citation(s) in RCA: 374] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/01/2007] [Accepted: 11/12/2007] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Riboswitches are noncoding RNA structures that appropriately regulate genes in response to changing cellular conditions. The expression of many proteins involved in fundamental metabolic processes is controlled by riboswitches that sense relevant small molecule ligands. Metabolite-binding riboswitches that recognize adenosylcobalamin (AdoCbl), thiamin pyrophosphate (TPP), lysine, glycine, flavin mononucleotide (FMN), guanine, adenine, glucosamine-6-phosphate (GlcN6P), 7-aminoethyl 7-deazaguanine (preQ1), and S-adenosylmethionine (SAM) have been reported. RESULTS We have used covariance model searches to identify examples of ten widespread riboswitch classes in the genomes of organisms from all three domains of life. This data set rigorously defines the phylogenetic distributions of these riboswitch classes and reveals how their gene control mechanisms vary across different microbial groups. By examining the expanded aptamer sequence alignments resulting from these searches, we have also re-evaluated and refined their consensus secondary structures. Updated riboswitch structure models highlight additional RNA structure motifs, including an unusual double T-loop arrangement common to AdoCbl and FMN riboswitch aptamers, and incorporate new, sometimes noncanonical, base-base interactions predicted by a mutual information analysis. CONCLUSION Riboswitches are vital components of many genomes. The additional riboswitch variants and updated aptamer structure models reported here will improve future efforts to annotate these widespread regulatory RNAs in genomic sequences and inform ongoing structural biology efforts. There remain significant questions about what physiological and evolutionary forces influence the distributions and mechanisms of riboswitches and about what forms of regulation substitute for riboswitches that appear to be missing in certain lineages.
Collapse
|
184
|
Knegt FHP, Mello LV, Reis FC, Santos MT, Vicentini R, Ferraz LFC, Ottoboni LMM. ribB and ribBA genes from Acidithiobacillus ferrooxidans: expression levels under different growth conditions and phylogenetic analysis. Res Microbiol 2008; 159:423-31. [PMID: 18534824 DOI: 10.1016/j.resmic.2008.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 04/04/2008] [Accepted: 04/08/2008] [Indexed: 10/22/2022]
Abstract
Acidithiobacillus ferrooxidans is a Gram-negative, chemolithoautotrophic bacterium involved in metal bioleaching. Using the RNA arbitrarily primed polymerase chain reaction (RAP-PCR), we have identified several cDNAs that were differentially expressed when A. ferrooxidans LR was submitted to potassium- and phosphate-limiting conditions. One of these cDNAs showed similarity with ribB. An analysis of the A. ferrooxidans ATCC 23270 genome, made available by The Institute for Genomic Research, showed that the ribB gene was not located in the rib operon, but a ribBA gene was present in this operon instead. The ribBA gene was isolated from A. ferrooxidans LR and expression of both ribB and ribBA was investigated. Transcript levels of both genes were enhanced in cells grown in the absence of K2HPO4, in the presence of zinc and copper sulfate and in different pHs. Transcript levels decreased upon exposure to a temperature higher than the ideal 30 degrees C and at pH 1.2. A comparative genomic analysis using the A. ferrooxidans ATCC 23270 genome revealed similar putative regulatory elements for both genes. Moreover, an RFN element was identified upstream from the ribB gene. Phylogenetic analysis of the distribution of RibB and RibBA in bacteria showed six different combinations. We suggest that the presence of duplicated riboflavin synthesis genes in bacteria must provide their host with some benefit in certain stressful situations.
Collapse
Affiliation(s)
- Fábio H P Knegt
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), C.P. 6010, 13083-875 Campinas, S.P., Brazil
| | | | | | | | | | | | | |
Collapse
|
185
|
González N, Heeb S, Valverde C, Kay E, Reimmann C, Junier T, Haas D. Genome-wide search reveals a novel GacA-regulated small RNA in Pseudomonas species. BMC Genomics 2008; 9:167. [PMID: 18405392 PMCID: PMC2375449 DOI: 10.1186/1471-2164-9-167] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 04/13/2008] [Indexed: 11/10/2022] Open
Abstract
Background Small RNAs (sRNAs) are widespread among bacteria and have diverse regulatory roles. Most of these sRNAs have been discovered by a combination of computational and experimental methods. In Pseudomonas aeruginosa, a ubiquitous Gram-negative bacterium and opportunistic human pathogen, the GacS/GacA two-component system positively controls the transcription of two sRNAs (RsmY, RsmZ), which are crucial for the expression of genes involved in virulence. In the biocontrol bacterium Pseudomonas fluorescens CHA0, three GacA-controlled sRNAs (RsmX, RsmY, RsmZ) regulate the response to oxidative stress and the expression of extracellular products including biocontrol factors. RsmX, RsmY and RsmZ contain multiple unpaired GGA motifs and control the expression of target mRNAs at the translational level, by sequestration of translational repressor proteins of the RsmA family. Results A combined computational and experimental approach enabled us to identify 14 intergenic regions encoding sRNAs in P. aeruginosa. Eight of these regions encode newly identified sRNAs. The intergenic region 1698 was found to specify a novel GacA-controlled sRNA termed RgsA. GacA regulation appeared to be indirect. In P. fluorescens CHA0, an RgsA homolog was also expressed under positive GacA control. This 120-nt sRNA contained a single GGA motif and, unlike RsmX, RsmY and RsmZ, was unable to derepress translation of the hcnA gene (involved in the biosynthesis of the biocontrol factor hydrogen cyanide), but contributed to the bacterium's resistance to hydrogen peroxide. In both P. aeruginosa and P. fluorescens the stress sigma factor RpoS was essential for RgsA expression. Conclusion The discovery of an additional sRNA expressed under GacA control in two Pseudomonas species highlights the complexity of this global regulatory system and suggests that the mode of action of GacA control may be more elaborate than previously suspected. Our results also confirm that several GGA motifs are required in an sRNA for sequestration of the RsmA protein.
Collapse
Affiliation(s)
- Nicolas González
- Département de Microbiologie Fondamentale, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
186
|
|
187
|
Crossley RA, Gaskin DJH, Holmes K, Mulholland F, Wells JM, Kelly DJ, van Vliet AHM, Walton NJ. Riboflavin biosynthesis is associated with assimilatory ferric reduction and iron acquisition by Campylobacter jejuni. Appl Environ Microbiol 2007; 73:7819-25. [PMID: 17965203 PMCID: PMC2168145 DOI: 10.1128/aem.01919-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 10/19/2007] [Indexed: 11/20/2022] Open
Abstract
One of the pathways involved in the acquisition of the essential metal iron by bacteria involves the reduction of insoluble Fe(3+) to soluble Fe(2+), followed by transport of Fe(2+) to the cytoplasm. Flavins have been implicated as electron donors in this poorly understood process. Ferrous iron uptake is essential for intestinal colonization by the important pathogen Campylobacter jejuni and may be of particular importance under low-oxygen conditions. In this study, the links among riboflavin biosynthesis, ferric reduction, and iron acquisition in C. jejuni NCTC11168 have been investigated. A riboflavin auxotroph was generated by inactivation of the ribB riboflavin biosynthesis gene (Cj0572), and the resulting isogenic ribB mutant only grew in the presence of exogenous riboflavin or the riboflavin precursor diacetyl but not in the presence of the downstream products flavin adenine dinucleotide and flavin mononucleotide. Riboflavin uptake was unaffected in the ribB mutant under iron-limited conditions but was lower in both the wild-type strain and the ribB mutant under iron-replete conditions. Mutation of the fur gene, which encodes an iron uptake regulator of C. jejuni, resulted in an increase in riboflavin uptake which was independent of the iron content of the medium, suggesting a role for Fur in the regulation of the as-yet-unknown riboflavin transport system. Finally, ferric reduction activity was independent of iron availability in the growth medium but was lowered in the ribB mutant compared to the wild-type strain and, conversely, increased in the fur mutant. Taken together, the findings confirm close relationships among iron acquisition, riboflavin production, and riboflavin uptake in C. jejuni.
Collapse
Affiliation(s)
- Rachel A Crossley
- Institute of Food Research, Office E410, Norwich Research Park, Colney Lane, Norwich NR4 7UA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Vogl C, Grill S, Schilling O, Stülke J, Mack M, Stolz J. Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. J Bacteriol 2007; 189:7367-75. [PMID: 17693491 PMCID: PMC2168442 DOI: 10.1128/jb.00590-07] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 08/03/2007] [Indexed: 01/12/2023] Open
Abstract
Riboflavin (vitamin B(2)) is the direct precursor of the flavin cofactors flavin mononucleotide and flavin adenine dinucleotide, essential components of cellular biochemistry. In this work we investigated the unrelated proteins YpaA from Bacillus subtilis and PnuX from Corynebacterium glutamicum for a role in riboflavin uptake. Based on the regulation of the corresponding genes by a riboswitch mechanism, both proteins have been predicted to be involved in flavin metabolism. Moreover, their primary structures suggested that these proteins integrate into the cytoplasmic membrane. We provide experimental evidence that YpaA is a plasma membrane protein with five transmembrane domains and a cytoplasmic C terminus. In B. subtilis, riboflavin uptake was increased when ypaA was overexpressed and abolished when ypaA was deleted. Riboflavin uptake activity and the abundance of the YpaA protein were also increased when riboflavin auxotrophic mutants were grown in limiting amounts of riboflavin. YpaA-mediated riboflavin uptake was sensitive to protonophors and reduced in the absence of glucose, demonstrating that the protein requires metabolic energy for substrate translocation. In addition, we demonstrate that PnuX from C. glutamicum also is a riboflavin transporter. Transport by PnuX was not energy dependent and had high apparent affinity for riboflavin (K(m) 11 microM). Roseoflavin, a toxic riboflavin analog, appears to be a substrate of PnuX and YpaA. We propose to designate the gene names ribU for ypaA and ribM for pnuX to reflect that the encoded proteins function in riboflavin uptake and that the genes have different phylogenetic origins.
Collapse
Affiliation(s)
- Christian Vogl
- Lehrstuhl für Ernährungsphysiologie, Technische Universität München, Am Forum 5, 85350, Freising-Weihenstephan, Germany
| | | | | | | | | | | |
Collapse
|
189
|
Kazanov MD, Vitreschak AG, Gelfand MS. Abundance and functional diversity of riboswitches in microbial communities. BMC Genomics 2007; 8:347. [PMID: 17908319 PMCID: PMC2211319 DOI: 10.1186/1471-2164-8-347] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 10/01/2007] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Several recently completed large-scale enviromental sequencing projects produced a large amount of genetic information about microbial communities ('metagenomes') which is not biased towards cultured organisms. It is a good source for estimation of the abundance of genes and regulatory structures in both known and unknown members of microbial communities. In this study we consider the distribution of RNA regulatory structures, riboswitches, in the Sargasso Sea, Minnesota Soil and Whale Falls metagenomes. RESULTS Over three hundred riboswitches were found in about 2 Gbp metagenome DNA sequences. The abundabce of riboswitches in metagenomes was highest for the TPP, B12 and GCVT riboswitches; the S-box, RFN, YKKC/YXKD, YYBP/YKOY regulatory elements showed lower but significant abundance, while the LYS, G-box, GLMS and YKOK riboswitches were rare. Regions downstream of identified riboswitches were scanned for open reading frames. Comparative analysis of identified ORFs revealed new riboswitch-regulated functions for several classes of riboswitches. In particular, we have observed phosphoserine aminotransferase serC (COG1932) and malate synthase glcB (COG2225) to be regulated by the glycine (GCVT) riboswitch; fatty acid desaturase ole1 (COG1398), by the cobalamin (B12) riboswitch; 5-methylthioribose-1-phosphate isomerase ykrS (COG0182), by the SAM-riboswitch. We also identified conserved riboswitches upstream of genes of unknown function: thiamine (TPP), cobalamine (B12), and glycine (GCVT, upstream of genes from COG4198). CONCLUSION This study demonstrates applicability of bioinformatics to the analysis of RNA regulatory structures in metagenomes.
Collapse
Affiliation(s)
- Marat D Kazanov
- Institute for Information Transmission Problems (the Kharkevich Institute) RAS, Bolshoi Karetnyi per. 19, Moscow, 127994, Russia
| | - Alexey G Vitreschak
- Institute for Information Transmission Problems (the Kharkevich Institute) RAS, Bolshoi Karetnyi per. 19, Moscow, 127994, Russia
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems (the Kharkevich Institute) RAS, Bolshoi Karetnyi per. 19, Moscow, 127994, Russia
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow 119992, Russia
| |
Collapse
|
190
|
Meissner B, Schleicher E, Weber S, Essen LO. The dodecin from Thermus thermophilus, a bifunctional cofactor storage protein. J Biol Chem 2007; 282:33142-54. [PMID: 17855371 DOI: 10.1074/jbc.m704951200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dodecins are so far the smallest known flavoproteins (68-71 amino acids) and are most likely involved in prokaryotic flavin storage. The dodecin monomers adopt a simple betaalphabetabeta-fold and assemble to hollow sphere-like dodecameric complexes. Flavin binding by the dodecin from Thermus thermophilus showed a 1:1 stoichiometry and apparent dissociation constants in the submicromolar to nanomolar range as characterized by isothermal titration calorimetry and fluorescence titrations. The x-ray structures of the flavin-prebound and FMN-reconstituted state of the T. thermophilus dodecin revealed binding of FMN dimers in a novel si-si- rather than the re-re- orientation of their isoalloxazine moieties as found before in an archaeal dodecin. Electron paramagnetic resonance studies demonstrated that upon reduction the excess electron is localized only on one flavin, thus making dodecin-bound flavins highly refractory to redox chemistry. Besides FMN dimers, trimers of coenzyme A are additionally bound to this eubacterial dodecin along the 3-fold symmetry face II of the dodecin complex. Therefore, dodecins can act as bifunctional cofactor storage proteins that sequester catalytic cofactors in prokaryotes very efficiently in an aggregated and unreactive state.
Collapse
Affiliation(s)
- Britta Meissner
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, Marburg, Germany
| | | | | | | |
Collapse
|
191
|
Famulok M, Hartig JS, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 2007; 107:3715-43. [PMID: 17715981 DOI: 10.1021/cr0306743] [Citation(s) in RCA: 690] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael Famulok
- LIMES Institute, Program Unit Chemical Biology and Medicinal Chemistry, c/o Kekulé-Institut für Organische Chemie und Biochemie, Gerhard Domagk-Strasse 1, 53121 Bonn, Germany.
| | | | | |
Collapse
|
192
|
Klinke S, Zylberman V, Bonomi HR, Haase I, Guimarães BG, Braden BC, Bacher A, Fischer M, Goldbaum FA. Structural and kinetic properties of lumazine synthase isoenzymes in the order Rhizobiales. J Mol Biol 2007; 373:664-80. [PMID: 17854827 DOI: 10.1016/j.jmb.2007.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 08/06/2007] [Accepted: 08/09/2007] [Indexed: 11/27/2022]
Abstract
6,7-Dimethyl-8-ribityllumazine synthase (lumazine synthase; LS) catalyzes the penultimate step in the biosynthesis of riboflavin in plants and microorganisms. This protein is known to exhibit different quaternary assemblies between species, existing as free pentamers, decamers (dimers of pentamers) and icosahedrally arranged dodecamers of pentamers. A phylogenetic analysis on eubacterial, fungal and plant LSs allowed us to classify them into two categories: Type I LSs (pentameric or icosahedral) and Type II LSs (decameric). The Rhizobiales represent an order of alpha-proteobacteria that includes, among others, the genera Mesorhizobium, Agrobacterium and Brucella. Here, we present structural and kinetic studies on several LSs from Rhizobiales. Interestingly, Mesorhizobium and Brucella encode both a Type-I LS and a Type-II LS called RibH1 and RibH2, respectively. We show that Type II LSs appear to be almost inactive, whereas Type I LSs present a highly variable catalytic activity according to the genus. Additionally, we have solved four RibH1/RibH2 crystallographic structures from the genera Mesorhizobium and Brucella. The relationship between the active-site architecture and catalytic properties in these isoenzymes is discussed, and a model that describes the enzymatic behavior is proposed. Furthermore, sequence alignment studies allowed us to extend our results to the genus Agrobacterium. Our results suggest that the selective pressure controlling the riboflavin pathway favored the evolution of catalysts with low reaction rates, since the excess of flavins in the intracellular pool in Rhizobiales could act as a negative factor when these bacteria are exposed to oxidative or nitrosative stress.
Collapse
Affiliation(s)
- Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, C1405BWE, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Affiliation(s)
- Dmitry A Rodionov
- Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| |
Collapse
|
194
|
Lyubetsky VA, Pirogov SA, Rubanov LI, Seliverstov AV. Modeling classic attenuation regulation of gene expression in bacteria. J Bioinform Comput Biol 2007; 5:155-80. [PMID: 17477496 DOI: 10.1142/s0219720007002576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 11/21/2006] [Accepted: 11/28/2006] [Indexed: 12/13/2022]
Abstract
A model is proposed primarily for the classical RNA attenuation regulation of gene expression through premature transcription termination. The model is based on the concept of the RNA secondary structure macrostate within the regulatory region between the ribosome and RNA-polymerase, on hypothetical equation describing deceleration of RNA-polymerase by a macrostate and on views of transcription and translation initiation and elongation, under different values of the four basic model parameters which were varied. A special effort was made to select adequate model parameters. We first discuss kinetics of RNA folding and define the concept of the macrostate as a specific parentheses structure used to construct a conventional set of hairpins. The originally developed software that realizes the proposed model offers functionality to fully model RNA secondary folding kinetics. Its performance is compared to that of a public server described in Ref. 1. We then describe the delay in RNA-polymerase shifting to the next base or its premature termination caused by an RNA secondary structure or, herefrom, a macrostate. In this description, essential concepts are the basic and excited states of the polymerase first introduced in Ref. 2: the polymerase shifting to the next base can occur only in the basic state, and its detachment from DNA strand - only in excited state. As to the authors' knowledge, such a model incorporating the above-mentioned attenuation characteristics is not published elsewhere. The model was implemented in an application with command line interface for running in batch mode in Windows and Linux environments, as well as a public web server.(3) The model was tested with a conventional Monte Carlo procedure. In these simulations, the estimate of correlation between the premature transcription termination probability p and concentration c of charged amino acyl-tRNA was obtained as function p(c) for many regulatory regions in many bacterial genomes, as well as for local mutations in these regions.
Collapse
Affiliation(s)
- Vassily A Lyubetsky
- Institute for Information Transmission Problems RAS, Moscow, 127994, Russia.
| | | | | | | |
Collapse
|
195
|
Higashitsuji Y, Angerer A, Berghaus S, Hobl B, Mack M. RibR, a possible regulator of the Bacillus subtilis riboflavin biosynthetic operon, in vivo interacts with the 5'-untranslated leader of rib mRNA. FEMS Microbiol Lett 2007; 274:48-54. [PMID: 17590224 DOI: 10.1111/j.1574-6968.2007.00817.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
RibR is a minor cryptic flavokinase (EC 2.7.1.26) of the Gram-positive bacterium Bacillus subtilis with an unknown cellular function. The flavokinase activity appears to be localized to the N-terminal domain of the protein. Using the yeast three-hybrid system, it was shown that RibR specifically interacts in vivo with the nontranslated wild-type leader of the mRNA of the riboflavin biosynthetic operon. This interaction is lost partially when a leader containing known cis-acting deregulatory mutations in the so-called RFN element is tested. The RFN element is a sequence within the rib-leader mRNA reported to serve as a receptor for an FMN-dependent 'riboswitch'. In RibR itself, interaction was localized to the carboxy-terminate part of the protein, a segment of unknown function that does not show similarity to other proteins in the public databases. Analysis of a ribR-defective strain revealed a mild deregulation with respect to flavin (riboflavin, FMN and FAD) biosynthesis. The results indicate that the RNA-binding protein RibR may be involved in the regulation of the rib genes.
Collapse
Affiliation(s)
- Yuhei Higashitsuji
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, Windeckstr, Mannheim, Germany
| | | | | | | | | |
Collapse
|
196
|
Kertsburg A, Winkler WC. Genetic control by cis-acting regulatory RNAs in Bacillus subtilis: general principles and prospects for discovery. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:239-49. [PMID: 17381303 DOI: 10.1101/sqb.2006.71.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In recent years, Bacillus subtilis, the model organism for gram-positive bacteria, has been a focal point for study of posttranscriptional regulation. In this bacterium, more than 70 regulatory RNAs have been discovered that respond to intracellular proteins, tRNAs, and small-molecule metabolites. In total, these RNA elements are responsible for genetic control of more than 4.1% of the genome-coding capacity. This pool of RNA-based regulatory elements is now large enough that it has become a worthwhile endeavor to examine their general features and to extrapolate these simple observations to the remaining genome in an effort to predict how many more may remain unidentified. Furthermore, both metabolite- and tRNA-sensing regulatory RNAs are remarkably widespread throughout eubacteria, and it is therefore becoming increasingly clear that some of the observations for B. subtilis gene regulation will be generally applicable to many different species.
Collapse
|
197
|
Gilbert SD, Montange RK, Stoddard CD, Batey RT. Structural studies of the purine and SAM binding riboswitches. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:259-68. [PMID: 17381305 DOI: 10.1101/sqb.2006.71.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Riboswitches are recently discovered genetic regulatory elements found in the 5'-untranslated regions of bacterial mRNAs that act through their ability to specifically bind small-molecule metabolites. Binding of the ligand to the aptamer domain of the riboswitch is communicated to a second domain, the expression platform, which directs transcription or translation of the mRNA. To understand this process on a molecular level, structures of three of these riboswitches bound to their cognate ligands have been solved by X-ray crystallography: the purine, thiamine pyrophosphate (TPP), and S-adenosylmethionine (SAM-I) binding aptamer domains. These studies have uncovered three common themes between the otherwise different molecules. First, the natural RNA aptamers recognize directly or indirectly almost every feature of their ligand to achieve extraordinary specificity. Second, all of these RNAs use a complex tertiary architecture to establish the binding pocket. Finally, in each case, ligand binding serves to stabilize a helix that communicates the binding event to the expression platform. Here, we discuss these properties of riboswitches in the context of the purine and SAM-I riboswitches.
Collapse
Affiliation(s)
- S D Gilbert
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | | | |
Collapse
|
198
|
Lizama G, Moguel-Salazar F, Peraza-Luna F, Ortiz-Vázquez E. Riboflavin production from mutants ofAshbya gossypii utilising orange rind as a substrate. ANN MICROBIOL 2007. [DOI: 10.1007/bf03175201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
199
|
Grill S, Yamaguchi H, Wagner H, Zwahlen L, Kusch U, Mack M. Identification and characterization of two Streptomyces davawensis riboflavin biosynthesis gene clusters. Arch Microbiol 2007; 188:377-87. [PMID: 17541777 DOI: 10.1007/s00203-007-0258-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 04/19/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
In Streptomyces davawensis roseoflavin is synthesized from GTP and ribulose-5-phosphate through riboflavin. As a first step towards the molecular analysis of flavin metabolism in S. davawensis the genes involved in riboflavin biosynthesis were cloned by hybridization of heterologous probes to a genomic library on a high-density colony-array. The genes ribB (riboflavin synthase, alpha-chain; EC 2.5.1.9), ribM (putative membrane protein), ribA (bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone-4-phosphate synthase; EC 3.5.4.25) and ribH (lumazine synthase; EC 2.5.1.9) are organized in an operon-like cluster. Northern blot analysis of this cluster revealed two transcripts of 1.7 and 3.1 kb, respectively. The gene ribB was overexpressed in Escherichia coli. The specific riboflavin synthase activity in a cell-free extract of a recombinant strain was 0.246 nmol mg(-1 )min(-1). Overexpression of ribM enhanced the transport of riboflavin in the corresponding recombinant E. coli strain. Furthermore, overexpression of ribM increased roseoflavin sensitivity of E. coli. On another subgenomic fragment a putative S. davawensis ribG gene coding for the missing pyrimidine deaminase/reductase (EC 3.5.4.26 and EC 1.1.1.193) of the riboflavin biosynthetic pathway and ribY coding for a second (monofunctional) GTP cyclohydrolase II were identified.
Collapse
Affiliation(s)
- Simon Grill
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
200
|
Welz R, Breaker RR. Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis. RNA (NEW YORK, N.Y.) 2007; 13:573-82. [PMID: 17307816 PMCID: PMC1831863 DOI: 10.1261/rna.407707] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Most riboswitches are composed of a single metabolite-binding aptamer and a single expression platform that function together to regulate genes in response to changing metabolite concentrations. In rare instances, two aptamers or sometimes two complete riboswitches reside adjacent to each other in untranslated regions (UTRs) of mRNAs. We have examined an example of a tandem riboswitch in the Gram-positive bacterium Bacillus anthracis that includes two complete riboswitches for thiamine pyrophosphate (TPP). Unlike other complex riboswitch systems described recently, tandem TPP riboswitches do not exhibit cooperative ligand binding and do not detect two different types of metabolites. In contrast, both riboswitches respond independently to TPP and are predicted to function in concert to mimic the more "digital" gene control outcome observed when two aptamers bind ligands cooperatively. Our findings further demonstrate that simple gene control elements made only of RNA can be assembled in different architectures to yield more complex gene control outcomes.
Collapse
MESH Headings
- 5' Untranslated Regions
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/metabolism
- Bacillus anthracis/genetics
- Bacillus anthracis/growth & development
- Bacillus anthracis/metabolism
- Base Sequence
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Genes, Reporter
- Genes, Switch
- Ligands
- Luciferases/metabolism
- Mathematics
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Thiamine Pyrophosphate/genetics
- Thiamine Pyrophosphate/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Rüdiger Welz
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|