151
|
Lok J, Leung W, Zhao S, Pallast S, van Leyen K, Guo S, Wang X, Yalcin A, Lo EH. γ-glutamylcysteine ethyl ester protects cerebral endothelial cells during injury and decreases blood-brain barrier permeability after experimental brain trauma. J Neurochem 2011; 118:248-55. [PMID: 21534958 PMCID: PMC3285992 DOI: 10.1111/j.1471-4159.2011.07294.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a pathway of injury that is common to almost all neurological conditions. Hence, methods to scavenge radicals have been extensively tested for neuroprotection. However, saving neurons alone may not be sufficient in treating CNS disease. In this study, we tested the cytoprotective actions of the glutathione precursor gamma-glutamylcysteine ethyl ester (GCEE) in brain endothelium. First, oxidative stress was induced in a human brain microvascular endothelial cell line by exposure to H(2)O(2). Addition of GCEE significantly reduced formation of reactive oxygen species, restored glutathione levels which were reduced in the presence of H(2)O(2), and decreased cell death during H(2)O(2)-mediated injury. Next, we asked whether GCEE can also protect brain endothelial cells against oxygen-glucose deprivation (OGD). As expected, OGD disrupted mitochondrial membrane potentials. GCEE was able to ameliorate these mitochondrial effects. Concomitantly, GCEE significantly decreased endothelial cell death after OGD. Lastly, our in vivo experiments using a mouse model of brain trauma show that post-trauma (10 min after controlled cortical impact) administration of GCEE by intraperitoneal injection results in a decrease in acute blood-brain barrier permeability. These data suggest that the beneficial effects of GCEE on brain endothelial cells and microvessels may contribute to its potential efficacy as a neuroprotective agent in traumatic brain injury.
Collapse
Affiliation(s)
- Josephine Lok
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Thompson CM, Proctor DM, Haws LC, Hébert CD, Grimes SD, Shertzer HG, Kopec AK, Hixon JG, Zacharewski TR, Harris MA. Investigation of the mode of action underlying the tumorigenic response induced in B6C3F1 mice exposed orally to hexavalent chromium. Toxicol Sci 2011; 123:58-70. [PMID: 21712504 PMCID: PMC3164443 DOI: 10.1093/toxsci/kfr164] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic ingestion of high concentrations of hexavalent chromium [Cr(VI)] in drinking water induces intestinal tumors in mice. To investigate the mode of action (MOA) underlying these tumors, a 90-day drinking water study was conducted using similar exposure conditions as in a previous cancer bioassay, as well as lower (heretofore unexamined) drinking water concentrations. Tissue samples were collected in mice exposed for 7 or 90 days and subjected to histopathological, biochemical, toxicogenomic, and toxicokinetic analyses. Described herein are the results of toxicokinetic, biochemical, and pathological findings. Following 90 days of exposure to 0.3–520 mg/l of sodium dichromate dihydrate (SDD), total chromium concentrations in the duodenum were significantly elevated at ≥ 14 mg/l. At these concentrations, significant decreases in the reduced-to-oxidized glutathione ratio (GSH/GSSG) were observed. Beginning at 60 mg/l, intestinal lesions were observed including villous cytoplasmic vacuolization. Atrophy, apoptosis, and crypt hyperplasia were evident at ≥ 170 mg/l. Protein carbonyls were elevated at concentrations ≥ 4 mg/l SDD, whereas oxidative DNA damage, as assessed by 8-hydroxydeoxyguanosine, was not increased in any treatment group. Significant decreases in the GSH/GSSG ratio and similar histopathological lesions as observed in the duodenum were also observed in the jejunum following 90 days of exposure. Cytokine levels (e.g., interleukin-1β) were generally depressed or unaltered at the termination of the study. Overall, the data suggest that Cr(VI) in drinking water can induce oxidative stress, villous cytotoxicity, and crypt hyperplasia in the mouse intestine and may underlie the MOA of intestinal carcinogenesis in mice.
Collapse
|
153
|
Smoliga JM, Baur JA, Hausenblas HA. Resveratrol and health--a comprehensive review of human clinical trials. Mol Nutr Food Res 2011; 55:1129-41. [PMID: 21688389 DOI: 10.1002/mnfr.201100143] [Citation(s) in RCA: 390] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 12/22/2022]
Abstract
In the past decade, the small polyphenol resveratrol has received widespread attention as either a potential therapy or as a preventive agent for numerous diseases. Studies using purified enzymes, cultured cells, and laboratory animals have suggested that resveratrol has anti-aging, anti-carcinogenic, anti-inflammatory, and anti-oxidant properties that might be relevant to chronic diseases and/or longevity in humans. Although the supporting research in laboratory models is quite substantial, only recently data has emerged to describe the effects of resveratrol supplementation on physiological responses in humans. The limited number of human clinical trials that are available has largely described various aspects of resveratrol's safety and bioavailability, reaching a consensus that it is generally well-tolerated, but have poor bioavailability. Very few published human studies have explored the ability of resveratrol to achieve the physiological benefits that have been observed in laboratory models, although many clinical trials have recently been initiated. This review aims to examine the current state of knowledge on the effects of resveratrol on humans and to utilize this information to develop further guidelines for the implementation of human clinical trials.
Collapse
Affiliation(s)
- James M Smoliga
- Human Physiology Laboratory, Department of Health and Physical Education, Marywood University, Scranton, PA 18509, USA.
| | | | | |
Collapse
|
154
|
Hulo S, Tiesset H, Lancel S, Edmé JL, Viollet B, Sobaszek A, Nevière R. AMP-activated protein kinase deficiency reduces ozone-induced lung injury and oxidative stress in mice. Respir Res 2011; 12:64. [PMID: 21595935 PMCID: PMC3120668 DOI: 10.1186/1465-9921-12-64] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 05/19/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Acute ozone exposure causes lung oxidative stress and inflammation leading to lung injury. At least one mechanism underlying the lung toxicity of ozone involves excessive production of reactive oxygen and nitrogen intermediates such as peroxynitrite. In addition and beyond its major prooxidant properties, peroxynitrite may nitrate tyrosine residues altering phosphorylation of many protein kinases involved in cell signalling. It was recently proposed that peroxynitrite activates 5'-AMP-activated kinase (AMPK), which regulates metabolic pathways and the response to cell stress. AMPK activation as a consequence of ozone exposure has not been previously evaluated. First, we tested whether acute ozone exposure in mice would impair alveolar fluid clearance, increase lung tissue peroxynitrite production and activate AMPK. Second, we tested whether loss of AMP-activated protein kinase alpha1 subunit in mouse would prevent enhanced oxidative stress and lung injury induced by ozone exposure. METHODS Control and AMPKα1 deficient mice were exposed to ozone at a concentration of 2.0 ppm for 3 h in glass cages. Evaluation was performed 24 h after ozone exposure. Alveolar fluid clearance (AFC) was evaluated using fluorescein isothiocyanate tagged albumin. Differential cell counts, total protein levels, cytokine concentrations, myeloperoxidase activity and markers of oxidative stress, i.e. malondialdehyde and peroxynitrite, were determined in bronchoalveolar lavage (BAL) and lung homogenates (LH). Levels of AMPK-Thr172 phosphorylation and basolateral membrane Na(+)-K(+)-ATPase abundance were determined by Western blot. RESULTS In control mice, ozone exposure induced lung inflammation as evidence by increased leukocyte count, protein concentration in BAL and myeloperoxidase activity, pro-inflammatory cytokine levels in LH. Increases in peroxynitrite levels (3 vs 4.4 nM, p = 0.02) and malondialdehyde concentrations (110 vs 230 μmole/g wet tissue) were detected in LH obtained from ozone-exposed control mice. Ozone exposure consistently increased phosphorylated AMPK-Thr172 to total AMPK ratio by 80% in control mice. Ozone exposure causes increases in AFC and basolateral membrane Na(+)-K(+)-ATPase abundance in control mice which did not occur in AMPKα1 deficient mice. CONCLUSIONS Our results collectively suggest that AMPK activation participates in ozone-induced increases in AFC, inflammation and oxidative stress. Further studies are needed to understand how the AMPK pathway may provide a novel approach for the prevention of ozone-induced lung injury.
Collapse
|
155
|
Griselda CM. d-Arginine action against neurotoxicity induced by glucocorticoids in the brain. Neurosci Biobehav Rev 2011; 35:1353-62. [DOI: 10.1016/j.neubiorev.2011.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/13/2011] [Accepted: 02/15/2011] [Indexed: 11/30/2022]
|
156
|
Abstract
Autism spectrum disorder (ASD) is a devastating neurodevelopmental disorder. Over the past decade, evidence has emerged that some children with ASD suffer from undiagnosed comorbid medical conditions. One of the medical disorders that has been consistently associated with ASD is mitochondrial dysfunction. Individuals with mitochondrial disorders without concomitant ASD manifest dysfunction in multiple high-energy organ systems, such as the central nervous, muscular, and gastrointestinal (GI) systems. Interestingly, these are the identical organ systems affected in a significant number of children with ASD. This finding increases the possibility that mitochondrial dysfunction may be one of the keys that explains the many diverse symptoms observed in some children with ASD. This article will review the importance of mitochondria in human health and disease, the evidence for mitochondrial dysfunction in ASD, the potential role of mitochondrial dysfunction in the comorbid medical conditions associated with ASD, and how mitochondrial dysfunction can bridge the gap for understanding how these seemingly disparate medical conditions are related. We also review the limitations of this evidence and other possible explanations for these findings. This new understanding of ASD should provide researchers a pathway for understanding the etiopathogenesis of ASD and clinicians the potential to develop medical therapies.
Collapse
Affiliation(s)
- Richard E Frye
- Department of Pediatrics, The Children's Learning Institute, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| | | |
Collapse
|
157
|
Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T. Development of an Si-Rhodamine-Based Far-Red to Near-Infrared Fluorescence Probe Selective for Hypochlorous Acid and Its Applications for Biological Imaging. J Am Chem Soc 2011; 133:5680-2. [DOI: 10.1021/ja111470n] [Citation(s) in RCA: 411] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
158
|
Abstract
Aerobic life requires organisms to resist the damaging effects of ROS (reactive oxygen species), particularly during stress. Extensive research has established a detailed picture of how cells respond to oxidative stress. Attention is now focusing on identifying the key molecular targets of ROS, which cause killing when resistance is overwhelmed. Experimental criteria used to establish such targets have differing merits. Depending on the nature of the stress, ROS cause loss of essential cellular functions or gain of toxic functions. Essential targets on which life pivots during ROS stress include membrane lipid integrity and activity of ROS-susceptible proteins, including proteins required for faithful translation of mRNA. Protein oxidation also triggers accumulation of toxic protein aggregates or induction of apoptotic cell death. This burgeoning understanding of the principal ROS targets will offer new possibilities for therapy of ROS related diseases.
Collapse
|
159
|
Burns TA, Westerman T, Nuovo GJ, Watts MR, Pettigrew A, Yin C, Belknap JK. Role of oxidative tissue injury in the pathophysiology of experimentally induced equine laminitis: a comparison of 2 models. J Vet Intern Med 2011; 25:540-8. [PMID: 21418321 DOI: 10.1111/j.1939-1676.2011.0706.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Oxidative stress reportedly plays a role in sepsis-induced organ dysfunction and failure in many species. In septic horses, laminae are targeted; evidence of laminar oxidative stress has been reported experimentally in the black walnut extract (BWE) model. Carbohydrate (CHO)-induced laminitis may be more similar to clinical sepsis-related laminitis than the BWE model in that animals with CHO-induced disease commonly develop laminar failure. The role of oxidative stress in the CHO model remains unknown. HYPOTHESIS/OBJECTIVES Markers of oxidative stress will be increased in laminae from horses with BWE- and CHO-induced laminitis. ANIMALS Banked laminar tissue from various time points from animals subjected to BWE (n = 15) and CHO (n = 20) protocols. METHODS Laminar 4-hydroxynonenal (4-HNE) and protein carbonyl content were evaluated by slot blot analysis. Laminar 3-nitrotyrosine (3-NT) immunohistochemistry was performed. RESULTS The number of laminar 3-NT (+) cells was increased at developmental and Obel grade 1 (OG1) time points in the BWE model (versus control [CON]; P= .013) and lower in OG1 tissues than CON in the CHO model (P = .04). No change in 4-HNE content was observed in the CHO model, and no increase in laminar protein carbonyl content was present in either model (P > .05). CONCLUSIONS AND CLINICAL IMPORTANCE These results do not support a prominent role for oxidative stress at examined time points in CHO-overload laminitis and support transient oxidative stress in the BWE model. Tissue oxidation does not appear to be a central early pathophysiologic event in CHO-associated laminitis.
Collapse
Affiliation(s)
- T A Burns
- Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
160
|
Kedzierska M, Olas B, Wachowicz B, Stochmal A, Oleszek W, Jeziorski A, Piekarski J. The nitrative and oxidative stress in blood platelets isolated from breast cancer patients: the protectory action of aronia melanocarpa extract. Platelets 2011; 21:541-8. [PMID: 20624007 DOI: 10.3109/09537104.2010.492534] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Since mechanisms involved in the relationship between oxidative stress and breast cancer are still unclear, the aim of our present study was to evaluate oxidative/nitrative modifications of blood platelet proteins by measuring the level of biomarkers of oxidative/nitrative stress such as carbonyl groups, thiol groups and 3-nitrotyrosine in proteins in patients with benign breast diseases and in patients with invasive breast cancer, and compare with the control group. Levels of carbonyl groups and 3-nitrotyrosine residues in platelet proteins were measured by ELISA and a competition ELISA, respectively. The method with 5,5′-dithio-bis(2-nitro-benzoic acid) has been used to analyse free thiol groups in platelet proteins. Patients were hospitalized in the Department of Oncological Surgery, Medical University of Lodz, Poland. Exogenous antioxidants reduce oxidative stress, therefore we also investigated in a model system in vitro the effects of a polyphenol rich extract of Aronia melanocarpa (Rosaceae, final concentration of 50 µg/ml, 5 min, 37°C) on modified blood platelet proteins as well from patients with breast cancer and from the healthy group. We demonstrated in platelet proteins from patients with invasive breast cancer a higher level of carbonyl groups than in the control healthy group (p < 0.02). The level of 3-nitrotyrosine in platelet proteins from patients with invasive breast cancer was also significantly higher than in the healthy subject group (p < 0.001). In contrast, the amount of thiol groups in platelet proteins from patients was significantly lower (about < 50%) than in control blood platelets. In a model system in vitro we also observed that the extract from berries of A. melanocarpa (50 µg/ml, 5 min, 37°C) due to antioxidant action, significantly reduced the oxidative/nitrative stress (measured by thiol groups and 3-nitrotyrosine) in platelets, not only from the healthy group, but also from patients with benign breast diseases and in patients with invasive breast cancer.
Collapse
Affiliation(s)
- Magdalena Kedzierska
- Department of General Biochemistry, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
161
|
Grimm S, Mvondo D, Grune T, Breusing N. The outcome of 5-ALA-mediated photodynamic treatment in melanoma cells is influenced by vitamin C and heme oxygenase-1. Biofactors 2011; 37:17-24. [PMID: 21328623 DOI: 10.1002/biof.129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/21/2010] [Indexed: 01/18/2023]
Abstract
Photodynamic therapy (PDT) is an important clinical approach for cancer treatment. It involves the administration of a photosensitizer, followed by its activation with light and induction of cell death. The underlying mechanism is an increased production of reactive oxygen species (ROS) leading to oxidative stress, which is followed by cell death. However, effectiveness of PDT is limited due to an initiation of endogenous rescue response systems like heme oxygenase-1 (HO-1) in tumor cells. In recent years, consuming of antioxidant supplements has become widespread, but the effect of exogenously applied antioxidants on cancer therapy outcome remains unclear. Thus, this study was aimed to investigate if exogenous antioxidants might decrease ROS-induced cytotoxicity in photodynamic treatment. Lycopene, β-carotene, vitamin C, N-acetylcysteine, trolox, and N-tert-butyl-α-phenylnitrone in different doses were administered to human melanoma cells prior exposure to photodynamic treatment. Supplementation with vitamin C resulted in a significant decrease of the cell death rate, whereas the other tested antioxidants had no effect on cell viability and oxidative stress markers. The simultaneous application of vitamin C with the HO-1 activity inhibitor zinc protoporphyrine IX (ZnPPIX) caused a considerable decrease of photodynamic treatment-induced cytotoxicity compared to ZnPPIX alone. It can be summarized that exogenously applied antioxidants do not have a leading role in the protective response against photodynamic treatment. However, further studies are necessary to investigate more antioxidants and other substances, which might affect the outcome of photodynamic treatment in cancer therapy.
Collapse
Affiliation(s)
- Stefanie Grimm
- Institute of Nutrition, Friedrich Schiller University of Jena, Dornburger Strasse 24, Jena, Germany
| | | | | | | |
Collapse
|
162
|
Rechenmacher C, Siebel AM, Goldoni A, Klauck CR, Sartori T, Rodrigues MT, Rodrigues MAS, Gehlen G, Ardenghi PG, Silva LB. A multibiomarker approach in rats to assess the impact of pollution on Sinos River, Southern Brazil. BRAZ J BIOL 2010; 70:1223-30. [DOI: 10.1590/s1519-69842010000600012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Accepted: 12/31/2010] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine the feasibility of combining water quality analysis with different biomarkers to characterise the relationship between anthropogenic contamination and biotic response in the Sinos River, southern Brazil. Wistar rats were studied using three biomarkers combined with physical, chemical and microbiological analysis to assess the effects of pollution at four sampling sites. The induction of oxidative stress was quantified by MDA levels in peripheral blood, lymphocyte DNA damage was determined using the comet assay, and histopathological changes were analysed in the liver. After sampling, animals were allowed to drink the river water during a 48 hours period. No increase in oxidative stress and DNA damage was observed. However, liver damage was observed in the animals exposed to water samples, indicating that the Sinos River is contaminated with hepatotoxic substances. Water analyses confirmed that water quality decreased downriver.
Collapse
|
163
|
Waldbaum S, Liang LP, Patel M. Persistent impairment of mitochondrial and tissue redox status during lithium-pilocarpine-induced epileptogenesis. J Neurochem 2010; 115:1172-82. [PMID: 21219330 DOI: 10.1111/j.1471-4159.2010.07013.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mitochondrial dysfunction and oxidative stress are known to occur following acute seizure activity but their contribution during epileptogenesis is largely unknown. The goal of this study was to determine the extent of mitochondrial oxidative stress, changes to redox status, and mitochondrial DNA (mtDNA) damage during epileptogenesis in the lithium-pilocarpine model of temporal lobe epilepsy. Mitochondrial oxidative stress, changes in tissue and mitochondrial redox status, and mtDNA damage were assessed in the hippocampus and neocortex of Sprague-Dawley rats at time points (24h to 3months) following lithium-pilocarpine administration. A time-dependent increase in mitochondrial hydrogen peroxide (H(2)O(2)) production coincident with increased mtDNA lesion frequency in the hippocampus was observed during epileptogenesis. Acute increases (24-48h) in H(2)O(2) production and mtDNA lesion frequency were dependent on the severity of convulsive seizure activity during initial status epilepticus. Tissue levels of GSH, GSH/GSSG, coenzyme A (CoASH), and CoASH/CoASSG were persistently impaired at all measured time points throughout epileptogenesis, that is, acutely (24-48h), during the 'latent period' (48h to 7days), and chronic epilepsy (21days to 3months). Together with our previous work, these results demonstrate the model independence of mitochondrial oxidative stress, genomic instability, and persistent impairment of mitochondrial specific redox status during epileptogenesis. Lasting impairment of mitochondrial and tissue redox status during the latent period, in addition to the acute and chronic phases of epileptogenesis, suggests that redox-dependent processes may contribute to the progression of epileptogenesis in experimental temporal lobe epilepsy.
Collapse
Affiliation(s)
- Simon Waldbaum
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
164
|
Thompson CM, Haws LC, Harris MA, Gatto NM, Proctor DM. Application of the U.S. EPA mode of action Framework for purposes of guiding future research: a case study involving the oral carcinogenicity of hexavalent chromium. Toxicol Sci 2010; 119:20-40. [PMID: 20947717 PMCID: PMC3003834 DOI: 10.1093/toxsci/kfq320] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mode of action (MOA) analysis provides a systematic description of key events leading to adverse health effects in animal bioassays for the purpose of informing human health risk assessment. Uncertainties and data gaps identified in the MOA analysis may also be used to guide future research to improve understanding of the MOAs underlying a specific toxic response and foster development of toxicokinetic and toxicodynamic models. An MOA analysis, consistent with approaches outlined in the MOA Framework as described in the Guidelines for Carcinogen Risk Assessment, was conducted to evaluate small intestinal tumors observed in mice chronically exposed to relatively high concentrations of hexavalent chromium (Cr(VI)) in drinking water. Based on review of the literature, key events in the MOA are hypothesized to include saturation of the reductive capacity of the upper gastrointestinal tract, absorption of Cr(VI) into the intestinal epithelium, oxidative stress and inflammation, cell proliferation, direct and/or indirect DNA modification, and mutagenesis. Although available data generally support the plausibility of these key events, several unresolved questions and data gaps were identified, highlighting the need for obtaining critical toxicokinetic and toxicodynamic data in the target tissue and in the low-dose range. Experimental assays that can address these data gaps are discussed along with strategies for comparisons between responsive and nonresponsive tissues and species. This analysis provides a practical application of MOA Framework guidance and is instructive for the design of studies to improve upon the information available for quantitative risk assessment.
Collapse
|
165
|
Roberts RA, Smith RA, Safe S, Szabo C, Tjalkens RB, Robertson FM. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology 2010; 276:85-94. [PMID: 20643181 PMCID: PMC8237863 DOI: 10.1016/j.tox.2010.07.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/23/2010] [Accepted: 07/11/2010] [Indexed: 01/20/2023]
Abstract
'Oxidative and Nitrative Stress in Toxicology and Disease' was the subject of a symposium held at the EUROTOX meeting in Dresden 15th September 2009. Reactive oxygen (ROS) and reactive nitrogen species (RNS) produced during tissue pathogenesis and in response to viral or chemical toxicants, induce a complex series of downstream adaptive and reparative events driven by the associated oxidative and nitrative stress. As highlighted by all the speakers, ROS and RNS can promote diverse biological responses associated with a spectrum of disorders including neurodegenerative/neuropsychiatric and cardiovascular diseases. Similar pathways are implicated during the process of liver and skin carcinogenesis. Mechanistically, reactive oxygen and nitrogen species drive sustained cell proliferation, cell death including both apoptosis and necrosis, formation of nuclear and mitochondrial DNA mutations, and in some cases stimulation of a pro-angiogenic environment. Here we illustrate the pivotal role played by oxidative and nitrative stress in cell death, inflammation and pain and its consequences for toxicology and disease pathogenesis. Examples are presented from five different perspectives ranging from in vitro model systems through to in vivo animal model systems and clinical outcomes.
Collapse
Affiliation(s)
- Ruth A Roberts
- AstraZeneca, Alderley Park, Cheshire SK9 IDG, [corrected] UK.
| | | | | | | | | | | |
Collapse
|
166
|
Abstract
Nitric oxide is a pleiotropic ancestral molecule, which elicits beneficial effect in many physiological settings but is also tenaciously expressed in numerous pathological conditions, particularly breast tumors. Nitric oxide is particularly harmful in adipogenic milieu of the breast, where it initiates and promotes tumorigenesis. Epidemiological studies have associated populations at a greater risk for developing breast cancer, predominantly estrogen receptor positive tumors, to express specific polymorphic forms of endothelial nitric oxide synthase, that produce sustained low levels of nitric oxide. Low sustained nitric oxide generates oxidative stress and inflammatory conditions at susceptible sites in the heterogeneous microenvironment of the breast, where it promotes cancer related events in specific cell types. Inflammatory conditions also stimulate inducible nitric oxide synthase expression, which dependent on the microenvironment, could promote or inhibit mammary tumors. In this review we re-examine the mechanisms by which nitric oxide promotes initiation and progression of breast cancer and address some of the controversies in the field.
Collapse
Affiliation(s)
- Shehla Pervin
- Division of Endocrinology and Metabolism at Charles Drew University of Medicine and Science, Los Angeles, California 90059, USA.
| | | | | |
Collapse
|
167
|
Cauwe B, Opdenakker G. Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 2010; 45:351-423. [DOI: 10.3109/10409238.2010.501783] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
168
|
Liu SY, Wen CY, Lee YJ, Lee TC. XPC silencing sensitizes glioma cells to arsenic trioxide via increased oxidative damage. Toxicol Sci 2010; 116:183-93. [PMID: 20403967 DOI: 10.1093/toxsci/kfq113] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arsenic exerts its cytotoxicity via the generation of reactive oxygen species and inhibition of DNA repair. How arsenic disturbs oxidative DNA damage repair is, however, unclear. We found that arsenic trioxide (ATO), like ultraviolet (UV) irradiation, induced the expression of xeroderma pigmentosum group C (XPC) but not of xeroderma pigmentosum A in a human glioma cell line, U87. To explore the role of XPC in the toxic effects of ATO, small interfering RNA was used to silence XPC (siXPC) in U87 cells. siXPC cells were more susceptible to UV irradiation and ATO-induced cell death than control cells. Increased siXPC cell death induced by ATO was accompanied by increased senescence and autophagy. Because increased DNA strand breaks in siXPC cells were observed only when cells were concomitantly treated with ATO and DNA repair inhibitors, XPC silencing apparently did not interfere with repair of ATO-induced DNA damage. Although intracellular ROS levels were not significantly enhanced in siXPC cells, ATO treatment did result in increased 8-hydroxy-2'-deoxyguanosine and hyperoxidized peroxiredoxin. Enhanced superoxide production and autophagy by ATO in siXPC cells were suppressed by co-incubation with N-acetylcysteine (NAC). Furthermore, XPC silencing caused decreased glutathione levels and increased catalase and Mn-superoxide dismutase activities. Increased catalase activity in siXPC cells was suppressed by ATO treatment. XPC silencing also enhanced reporter activity of activator protein-1, whereas enhanced activity was suppressed by NAC. Taken together, our results indicate that XPC silencing causes increased ATO susceptibility by disturbing redox homeostasis rather than reducing DNA repair.
Collapse
Affiliation(s)
- Shin-Yi Liu
- Department of Biomedical Image and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
169
|
Hu R, Guille M, Arbault S, Lin CJ, Amatore C. In situ electrochemical monitoring of reactive oxygen and nitrogen species released by single MG63 osteosarcoma cell submitted to a mechanical stress. Phys Chem Chem Phys 2010; 12:10048-54. [DOI: 10.1039/c0cp00398k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|