151
|
Bhalla AD, Khodadadi-Jamayran A, Li Y, Lynch DR, Napierala M. Deep sequencing of mitochondrial genomes reveals increased mutation load in Friedreich's ataxia. Ann Clin Transl Neurol 2016; 3:523-36. [PMID: 27386501 PMCID: PMC4931717 DOI: 10.1002/acn3.322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 12/02/2022] Open
Abstract
Objective Friedreich's ataxia (FRDA) is an autosomal recessive trinucleotide repeat expansion disorder caused by epigenetic silencing of the frataxin gene (FXN). Current research suggests that damage and variation of mitochondrial DNA (mtDNA) contribute to the molecular pathogenesis of FRDA. We sought to establish the extent of the mutation burden across the mitochondrial genome in FRDA cells and investigate the molecular mechanisms connecting FXN downregulation and the acquisition of mtDNA damage. Methods Damage and mutation load in mtDNA of a panel of FRDA and control fibroblasts were determined using qPCR and next‐generation MiSeq sequencing, respectively. The capacity of FRDA and control cells to repair oxidative lesions in their mtDNA was measured using a quantitative DNA damage assay. Comprehensive RNA sequencing gene expression analyses were conducted to assess the status of DNA repair and metabolism genes in FRDA cells. Results Acute or prolonged downregulation of FXN expression resulted in a significant increase in mtDNA damage that translated to a significant elevation of mutation load in mtDNA. The predominant mutations identified throughout the mtDNA were C>T, G>A transitions (P = 0.007). Low FXN expression reduced capacity to repair oxidative damage in mtDNA. Downregulation of FXN expression strongly correlated (r = 0.73) with decreased levels of base excision repair (BER) DNA glycosylase NTHL1. Interpretation Downregulation of FXN expression in FRDA cells elevates mtDNA damage, increases mutation load of the mitochondrial genome, and diminishes DNA repair capacity. Progressive accumulation of mtDNA mutations in vulnerable FRDA patient cells reduces mitochondrial fitness ultimately leading to cell death.
Collapse
Affiliation(s)
- Angela D Bhalla
- Department of Biochemistry and Molecular Genetics University of Alabama at Birmingham UAB Stem Cell Institute 1825 University Blvd. Birmingham Alabama 35294
| | - Alireza Khodadadi-Jamayran
- Department of Biochemistry and Molecular Genetics University of Alabama at Birmingham UAB Stem Cell Institute 1825 University Blvd. Birmingham Alabama 35294
| | - Yanjie Li
- Department of Biochemistry and Molecular Genetics University of Alabama at Birmingham UAB Stem Cell Institute 1825 University Blvd. Birmingham Alabama 35294
| | - David R Lynch
- Division of Neurology and Pediatrics Children's Hospital of Philadelphia Abramson Research Center Room 502 Philadelphia Pennsylvania 19104
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics University of Alabama at Birmingham UAB Stem Cell Institute 1825 University Blvd. Birmingham Alabama 35294; Department of Molecular Biomedicine Institute of Bioorganic Chemistry Polish Academy of Sciences Poznan 61-704 Poland
| |
Collapse
|
152
|
Kemp KC, Cook AJ, Redondo J, Kurian KM, Scolding NJ, Wilkins A. Purkinje cell injury, structural plasticity and fusion in patients with Friedreich's ataxia. Acta Neuropathol Commun 2016; 4:53. [PMID: 27215193 PMCID: PMC4877974 DOI: 10.1186/s40478-016-0326-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/11/2016] [Indexed: 12/05/2022] Open
Abstract
Purkinje cell pathology is a common finding in a range of inherited and acquired cerebellar disorders, with the degree of Purkinje cell injury dependent on the underlying aetiology. Purkinje cells have an unparalleled resistance to insult and display unique regenerative capabilities within the central nervous system. Their response to cell injury is not typical of most neurons and likely represents both degenerative, compensatory and regenerative mechanisms. Here we present a pathological study showing novel and fundamental insights into Purkinje cell injury, remodelling and repair in Friedreich’s ataxia; the most common inherited ataxia. Analysing post-mortem cerebellum tissue from patients who had Friedreich's ataxia, we provide evidence of significant injury to the Purkinje cell axonal compartment with relative preservation of both the perikaryon and its extensive dendritic arborisation. Axonal remodelling of Purkinje cells was clearly elevated in the disease. For the first time in a genetic condition, we have also shown a disease-related increase in the frequency of Purkinje cell fusion and heterokaryon formation in Friedreich's ataxia cases; with evidence that underlying levels of cerebellar inflammation influence heterokaryon formation. Our results together further demonstrate the Purkinje cell’s unique plasticity and regenerative potential. Elucidating the biological mechanisms behind these phenomena could have significant clinical implications for manipulating neuronal repair in response to neurological injury.
Collapse
|
153
|
Koeppen AH, Ramirez RL, Becker AB, Mazurkiewicz JE. Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation. Acta Neuropathol Commun 2016; 4:46. [PMID: 27142428 PMCID: PMC4855486 DOI: 10.1186/s40478-016-0288-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/13/2016] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Dorsal root ganglia (DRG) are highly vulnerable to frataxin deficiency in Friedreich ataxia (FA), an autosomal recessive disease due to pathogenic homozygous guanine-adenine-adenine trinucleotide repeat expansions in intron 1 of the FXN gene (chromosome 9q21.11). An immunohistochemical and immunofluorescence study of DRG in 15 FA cases and 12 controls revealed that FA causes major primary changes in satellite cells and inflammatory destruction of neurons. A panel of antibodies was used to reveal the cytoplasm of satellite cells (glutamine synthetase, S100, metabotropic glutamate receptors 2/3, excitatory amino acid transporter 1, ATP-sensitive inward rectifier potassium channel 10, and cytosolic ferritin), gap junctions (connexin 43), basement membranes (laminin), mitochondria (ATP synthase subunit beta and frataxin), and monocytes (CD68 and IBA1). RESULTS Reaction product of the cytoplasmic markers and laminin confirmed proliferation of satellite cells and processes into multiple perineuronal layers and residual nodules. The formation of connexin 43-reactive gap junctions between satellite cells was strongly upregulated. Proliferating satellite cells in FA displayed many more frataxin- and ATP5B-reactive mitochondria than normal. Monocytes entered into the satellite cell layer, appeared to penetrate neuronal plasma membranes, and infiltrated residual nodules. Satellite cells and IBA1-reactive monocytes displayed upregulated ferritin biosynthesis, which was most likely due to leakage of iron from dying neurons. CONCLUSIONS We conclude that FA differentially affects the key cellular elements of DRG, and postulate that the disease causes loss of bidirectional trophic support between satellite cells and neurons.
Collapse
Affiliation(s)
- Arnulf H Koeppen
- Research Service, Veterans Affairs Medical Center, Albany, NY, USA.
- Departments of Neurology and Pathology, Albany Medical College, Albany, NY, USA.
| | - R Liane Ramirez
- Research Service, Veterans Affairs Medical Center, Albany, NY, USA
| | - Alyssa B Becker
- Research Service, Veterans Affairs Medical Center, Albany, NY, USA
| | - Joseph E Mazurkiewicz
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA
| |
Collapse
|
154
|
Katsu-Jiménez Y, Loría F, Corona JC, Díaz-Nido J. Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency. Mol Ther 2016; 24:877-89. [PMID: 26849417 PMCID: PMC4881769 DOI: 10.1038/mt.2016.32] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/21/2016] [Indexed: 02/07/2023] Open
Abstract
Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration.
Collapse
Affiliation(s)
- Yurika Katsu-Jiménez
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Sanitarias Hospital Puerta de Hierro-Majadahonda (IDIPHIM), Madrid, Spain
| | - Frida Loría
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Sanitarias Hospital Puerta de Hierro-Majadahonda (IDIPHIM), Madrid, Spain
| | - Juan Carlos Corona
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Sanitarias Hospital Puerta de Hierro-Majadahonda (IDIPHIM), Madrid, Spain
- Current address: Hospital Infantil de México “Federico Gómez”, México, D.F., México
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Sanitarias Hospital Puerta de Hierro-Majadahonda (IDIPHIM), Madrid, Spain
| |
Collapse
|
155
|
Mollá B, Riveiro F, Bolinches-Amorós A, Muñoz-Lasso DC, Palau F, González-Cabo P. Two different pathogenic mechanisms, dying-back axonal neuropathy and pancreatic senescence, are present in the YG8R mouse model of Friedreich's ataxia. Dis Model Mech 2016; 9:647-57. [PMID: 27079523 PMCID: PMC4920149 DOI: 10.1242/dmm.024273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/03/2016] [Indexed: 12/16/2022] Open
Abstract
Frataxin (FXN) deficiency causes Friedreich’s ataxia (FRDA), a multisystem disorder with neurological and non-neurological symptoms. FRDA pathophysiology combines developmental and degenerative processes of dorsal root ganglia (DRG), sensory nerves, dorsal columns and other central nervous structures. A dying-back mechanism has been proposed to explain the peripheral neuropathy and neuropathology. In addition, affected individuals have non-neuronal symptoms such as diabetes mellitus or glucose intolerance. To go further in the understanding of the pathogenic mechanisms of neuropathy and diabetes associated with the disease, we have investigated the humanized mouse YG8R model of FRDA. By biochemical and histopathological studies, we observed abnormal changes involving muscle spindles, dorsal root axons and DRG neurons, but normal findings in the posterior columns and brain, which agree with the existence of a dying-back process similar to that described in individuals with FRDA. In YG8R mice, we observed a large number of degenerated axons surrounded by a sheath exhibiting enlarged adaxonal compartments or by a thin disrupted myelin sheath. Thus, both axonal damage and defects in Schwann cells might underlie the nerve pathology. In the pancreas, we found a high proportion of senescent islets of Langerhans in YG8R mice, which decreases the β-cell number and islet mass to pathological levels, being unable to maintain normoglycemia. As a whole, these results confirm that the lack of FXN induces different pathogenic mechanisms in the nervous system and pancreas in the mouse model of FRDA: dying back of the sensory nerves, and pancreatic senescence. Summary: Frataxin deficiency induces different pathogenic mechanisms in the nervous system and pancreas in a YG8R mouse model of Friedreich's ataxia (FRDA). Thus, the degenerative process in FRDA is determined by the cell type.
Collapse
Affiliation(s)
- Belén Mollá
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit at CIPF, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain CIBER de Enfermedades Raras (CIBERER), Valencia 28029, Spain
| | - Fátima Riveiro
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit at CIPF, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain CIBER de Enfermedades Raras (CIBERER), Valencia 28029, Spain
| | - Arantxa Bolinches-Amorós
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit at CIPF, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain Cell Therapy Program, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain
| | - Diana C Muñoz-Lasso
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit at CIPF, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain CIBER de Enfermedades Raras (CIBERER), Valencia 28029, Spain
| | - Francesc Palau
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit at CIPF, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain CIBER de Enfermedades Raras (CIBERER), Valencia 28029, Spain Department of Genetic and Molecular Medicine, Institut de Recerca Pediàtrica Hospital San Joan de Déu, Barcelona 08950, Spain Department of Pediatrics, University of Barcelona School of Medicine, Barcelona 08036, Spain
| | - Pilar González-Cabo
- Program in Rare and Genetic Diseases and IBV/CSIC Associated Unit at CIPF, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain CIBER de Enfermedades Raras (CIBERER), Valencia 28029, Spain Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
156
|
Kontoghiorghe CN, Kontoghiorghes GJ. New developments and controversies in iron metabolism and iron chelation therapy. World J Methodol 2016; 6:1-19. [PMID: 27019793 PMCID: PMC4804243 DOI: 10.5662/wjm.v6.i1.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 11/17/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023] Open
Abstract
Iron is essential for all organisms including microbial, cancer and human cells. More than a quarter of the human population is affected by abnormalities of iron metabolism, mainly from iron deficiency and iron overload. Iron also plays an important role in free radical pathology and oxidative damage which is observed in almost all major diseases, cancer and ageing. New developments include the complete treatment of iron overload and reduction of morbidity and mortality in thalassaemia using deferiprone and selected deferiprone/deferoxamine combinations and also the use of the maltol iron complex in the treatment of iron deficiency anaemia. There is also a prospect of using deferiprone as a universal antioxidant in non iron overloaded diseases such as neurodegenerative, cardiovascular, renal, infectious diseases and cancer. New regulatory molecules of iron metabolism such as endogenous and dietary chelating molecules, hepcidin, mitochondrial ferritin and their role in health and disease is under evaluation. Similarly, new mechanisms of iron deposition, removal, distribution and toxicity have been identified using new techniques such as magnetic resonance imaging increasing our understanding of iron metabolic processes and the targeted treatment of related diseases. The uniform distribution of iron in iron overload between organs and within each organ is no longer valid. Several other controversies such as the toxicity impact of non transferrin bound iron vs injected iron, the excess levels of iron in tissues causing toxicity and the role of chelation on iron absorption need further investigation. Commercial interests of pharmaceutical companies and connections to leading journals are playing a crucial role in shaping worldwide medical opinion on drug sales and use but also patients' therapeutic outcome and safety. Major controversies include the selection criteria and risk/benefit assessment in the use of deferasirox in thalassaemia and more so in idiopathic haemochromatosis, thalassaemia intermedia and ex-thalassaemia transplanted patients who are safely treated with venesection. Iron chelating drugs can override normal regulatory pathways, correct iron imbalance and minimise iron toxicity. The use of iron chelating drugs as main, alternative or adjuvant therapy is in progress in many conditions, especially those with non established or effective therapies.
Collapse
|
157
|
Milne SC, Corben LA, Yiu E, Delatycki MB, Georgiou-Karistianis N. Gastrocnemius and soleus spasticity and muscle length in Friedreich's ataxia. J Clin Neurosci 2016; 29:29-34. [PMID: 27021226 DOI: 10.1016/j.jocn.2016.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 01/17/2016] [Indexed: 10/22/2022]
Abstract
Lower limb spasticity compromises the independence of people with Friedreich's ataxia (FRDA). This study sought to examine lower limb spasticity in FRDA in order to offer new insight as to the best approach and timing of spasticity management. Gastrocnemius and soleus spasticity and muscle length were measured by the Modified Tardieu Scale (MTS) in 31 participants with typical and late-onset FRDA. Relationships between the MTS and the Friedreich Ataxia Rating Scale (FARS), Functional Independence Measure (FIM), and disease duration were analysed. Differences between ambulant (n=18) and non-ambulant (n=13) participants were also examined. All participants had spasticity in at least one muscle, and 38.9% of ambulant and 69.2% of non-ambulant participants had contracture in one or both of their gastrocnemius muscles. Significant negative correlations were found between both gastrocnemius and soleus angle of catch and the FARS score. The FIM score also demonstrated significant correlations with gastrocnemius muscle length and angle of catch. Gastrocnemius and soleus spasticity and contracture is apparent in people with FRDA. Spasticity is evident early in the disease and in ambulant participants. Management of spasticity and reduced muscle length should be considered in people with FRDA at disease onset to optimise function.
Collapse
Affiliation(s)
- Sarah C Milne
- Physiotherapy Department, Monash Health, Cheltenham, VIC, Australia; School of Psychological Sciences, Monash University, Clayton, VIC, Australia; Bruce Lefroy Centre, Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia
| | - Louise A Corben
- School of Psychological Sciences, Monash University, Clayton, VIC, Australia; Bruce Lefroy Centre, Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Monash Medical Centre, Monash Health, 246 Clayton Road, Clayton, VIC, Australia.
| | - Eppie Yiu
- Bruce Lefroy Centre, Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Neurology, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Martin B Delatycki
- School of Psychological Sciences, Monash University, Clayton, VIC, Australia; Bruce Lefroy Centre, Murdoch Childrens Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Clinical Genetics, Austin Health, Heidelberg, VIC, Australia
| | | |
Collapse
|
158
|
Gramegna LL, Tonon C, Manners DN, Pini A, Rinaldi R, Zanigni S, Bianchini C, Evangelisti S, Fortuna F, Carelli V, Testa C, Lodi R. Combined Cerebellar Proton MR Spectroscopy and DWI Study of Patients with Friedreich’s Ataxia. THE CEREBELLUM 2016; 16:82-88. [DOI: 10.1007/s12311-016-0767-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
159
|
Kovacs GG. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine. Int J Mol Sci 2016; 17:ijms17020189. [PMID: 26848654 PMCID: PMC4783923 DOI: 10.3390/ijms17020189] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by selective dysfunction and loss of neurons associated with pathologically altered proteins that deposit in the human brain but also in peripheral organs. These proteins and their biochemical modifications can be potentially targeted for therapy or used as biomarkers. Despite a plethora of modifications demonstrated for different neurodegeneration-related proteins, such as amyloid-β, prion protein, tau, α-synuclein, TAR DNA-binding protein 43 (TDP-43), or fused in sarcoma protein (FUS), molecular classification of NDDs relies on detailed morphological evaluation of protein deposits, their distribution in the brain, and their correlation to clinical symptoms together with specific genetic alterations. A further facet of the neuropathology-based classification is the fact that many protein deposits show a hierarchical involvement of brain regions. This has been shown for Alzheimer and Parkinson disease and some forms of tauopathies and TDP-43 proteinopathies. The present paper aims to summarize current molecular classification of NDDs, focusing on the most relevant biochemical and morphological aspects. Since the combination of proteinopathies is frequent, definition of novel clusters of patients with NDDs needs to be considered in the era of precision medicine. Optimally, neuropathological categorizing of NDDs should be translated into in vivo detectable biomarkers to support better prediction of prognosis and stratification of patients for therapy trials.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
160
|
Rezende TJR, Silva CB, Yassuda CL, Campos BM, D'Abreu A, Cendes F, Lopes-Cendes I, França MC. Longitudinal magnetic resonance imaging study shows progressive pyramidal and callosal damage in Friedreich's ataxia. Mov Disord 2015; 31:70-8. [PMID: 26688047 DOI: 10.1002/mds.26436] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 08/21/2015] [Accepted: 08/30/2015] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Spinal cord and peripheral nerves are classically known to be damaged in Friedreich's ataxia, but the extent of cerebral involvement in the disease and its progression over time are not yet characterized. The aim of this study was to evaluate longitudinally cerebral damage in Friedreich's ataxia. METHODS We enrolled 31 patients and 40 controls, which were evaluated at baseline and after 1 and 2 years. To assess gray matter, we employed voxel-based morphometry and cortical thickness measurements. White matter was evaluated using diffusion tensor imaging. Statistical analyses were both cross-sectional and longitudinal (corrected for multiple comparisons). RESULTS Group comparison between patients and controls revealed widespread macrostructural differences at baseline: gray matter atrophy in the dentate nuclei, brainstem, and precentral gyri; and white matter atrophy in the cerebellum and superior cerebellar peduncles, brainstem, and periventricular areas. We did not identify any longitudinal volumetric change over time. There were extensive microstructural alterations, including superior cerebellar peduncles, corpus callosum, and pyramidal tracts. Longitudinal analyses identified progressive microstructural abnormalities at the corpus callosum, pyramidal tracts, and superior cerebellar peduncles after 1 year of follow-up. CONCLUSION Patients with Friedreich's ataxia present more widespread gray and white matter damage than previously reported, including not only infratentorial areas, but also supratentorial structures. Furthermore, patients with Friedreich's ataxia have progressive microstructural abnormalities amenable to detection in a short-term follow-up.
Collapse
Affiliation(s)
- Thiago J R Rezende
- Department of Neurology and Neuroimaging Laboratory, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Cynthia B Silva
- Department of Neurology and Neuroimaging Laboratory, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Clarissa L Yassuda
- Department of Neurology and Neuroimaging Laboratory, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Brunno M Campos
- Department of Neurology and Neuroimaging Laboratory, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Anelyssa D'Abreu
- Department of Neurology and Neuroimaging Laboratory, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Fernando Cendes
- Department of Neurology and Neuroimaging Laboratory, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Iscia Lopes-Cendes
- Medical Genetics, School of Medical Sciences, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Marcondes C França
- Department of Neurology and Neuroimaging Laboratory, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| |
Collapse
|
161
|
Santos TA, Maistro CEB, Silva CB, Oliveira MS, França MC, Castellano G. MRI Texture Analysis Reveals Bulbar Abnormalities in Friedreich Ataxia. AJNR Am J Neuroradiol 2015; 36:2214-8. [PMID: 26359147 PMCID: PMC7964265 DOI: 10.3174/ajnr.a4455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/18/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Texture analysis is an image processing technique that can be used to extract parameters able to describe meaningful features of an image or ROI. Texture analysis based on the gray level co-occurrence matrix gives a second-order statistical description of the image or ROI. In this work, the co-occurrence matrix texture approach was used to extract information from brain MR images of patients with Friedreich ataxia and a control group, to see whether texture parameters were different between these groups. A longitudinal analysis was also performed. MATERIALS AND METHODS Twenty patients and 21 healthy controls participated in the study. Both groups had 2 sets of T1-weighted MR images obtained 1 year apart for every subject. ROIs chosen for analysis were the medulla oblongata and pons. Texture parameters were obtained for these ROIs for every subject, for the 2 sets of images. These parameters were compared longitudinally within groups and transversally between groups. RESULTS The comparison between patients and the control group showed a significant differences for the medulla oblongata (t test, P < .05, Bonferroni-corrected) but did not show a statistically significant difference for the pons. Longitudinal comparison of images obtained 1 year apart did not show differences for either patients or for controls, in any of the analyzed structures. CONCLUSIONS Gray level co-occurrence matrix-based texture analysis showed statistically significant differences for the medulla oblongata of patients with Friedreich ataxia compared with controls. These results highlight the medulla as an important site of damage in Friedreich ataxia.
Collapse
Affiliation(s)
- T A Santos
- From the Neurophysics Group (T.A.S., C.E.B.M., M.S.O., G.C.), Gleb Wataghin Physics Institute Brazilian Institute of Neuroscience and Neurotechnology (BRAINN) (São Paulo Research Foundation) (T.A.S., C.E.B.M., C.B.S., M.S.O., M.C.F., G.C.), Campinas, São Paulo, Brazil
| | - C E B Maistro
- From the Neurophysics Group (T.A.S., C.E.B.M., M.S.O., G.C.), Gleb Wataghin Physics Institute Brazilian Institute of Neuroscience and Neurotechnology (BRAINN) (São Paulo Research Foundation) (T.A.S., C.E.B.M., C.B.S., M.S.O., M.C.F., G.C.), Campinas, São Paulo, Brazil
| | - C B Silva
- Department of Neurology (C.B.S., M.C.F.), Medical Sciences School, University of Campinas, Brazil Brazilian Institute of Neuroscience and Neurotechnology (BRAINN) (São Paulo Research Foundation) (T.A.S., C.E.B.M., C.B.S., M.S.O., M.C.F., G.C.), Campinas, São Paulo, Brazil
| | - M S Oliveira
- From the Neurophysics Group (T.A.S., C.E.B.M., M.S.O., G.C.), Gleb Wataghin Physics Institute Brazilian Institute of Neuroscience and Neurotechnology (BRAINN) (São Paulo Research Foundation) (T.A.S., C.E.B.M., C.B.S., M.S.O., M.C.F., G.C.), Campinas, São Paulo, Brazil
| | - M C França
- Department of Neurology (C.B.S., M.C.F.), Medical Sciences School, University of Campinas, Brazil Brazilian Institute of Neuroscience and Neurotechnology (BRAINN) (São Paulo Research Foundation) (T.A.S., C.E.B.M., C.B.S., M.S.O., M.C.F., G.C.), Campinas, São Paulo, Brazil
| | - G Castellano
- From the Neurophysics Group (T.A.S., C.E.B.M., M.S.O., G.C.), Gleb Wataghin Physics Institute Brazilian Institute of Neuroscience and Neurotechnology (BRAINN) (São Paulo Research Foundation) (T.A.S., C.E.B.M., C.B.S., M.S.O., M.C.F., G.C.), Campinas, São Paulo, Brazil.
| |
Collapse
|
162
|
Affiliation(s)
- Kelly Graham Gwathmey
- Department of Neurology; University of Virginia; P.O. Box 800394 Charlottesville Virginia 22908 USA
| |
Collapse
|
163
|
Structural and Functional Magnetic Resonance Imaging of the Cerebellum: Considerations for Assessing Cerebellar Ataxias. THE CEREBELLUM 2015; 15:21-25. [DOI: 10.1007/s12311-015-0738-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
164
|
Beutler BD, Cohen PR. Pseudocyst of the auricle in patients with movement disorders: report of two patients with ataxia-associated auricular pseudocysts. Dermatol Pract Concept 2015; 5:59-64. [PMID: 26693094 PMCID: PMC4667606 DOI: 10.5826/dpc.0504a15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 12/21/2022] Open
Abstract
Background: Pseudocyst of the auricle is a benign condition of the ear characterized by an asymptomatic, noninflammatory swelling on the lateral or anterior surface of the auricle. It typically presents as a 1 to 5 centimeter cystic lesion located within the scaphoid or triangular fossa. In most patients, the lesion develops spontaneously. However, pseudocyst of the auricle has also been associated with trauma to the ear. Purpose: We describe the clinical findings of two men who developed pseudocyst of the auricle associated with ataxia-induced trauma to their ear. We also summarize the differential diagnosis, the postulated pathogenesis, and the treatment options for this condition. Materials and methods: The features of two men with pseudocyst of the auricle are presented. Using PubMed, the following terms were searched and relevant citations assessed: ataxia, auricle, dyskinesia, ear, Friedreich’s, neurological, pinna, pseudocyst, spasticity, spinocerebellar, and trauma. In addition, the literature on pseudocyst of the auricle is reviewed. Results: Pseudocyst of the auricle was observed in two men with neurological disorders: a 33-year-old Asian man with spinocerebellar ataxia and a 47-year-old Caucasian man with Friedreich’s ataxia. Each patient had a history of ataxia-induced head and ear trauma. The clinical features of the lesions were sufficient to establish a diagnosis of pseudocyst of the auricle. Neither patient desired treatment. Conclusion: Pseudocyst of the auricle is a benign cystic lesion that is occasionally precipitated by trauma to the affected ear. Patients with neurological disorders, particularly those associated with ataxia and/or dyskinesias, may have an increased risk of developing the traumatic variant of the condition. Diagnosis can usually be established by clinical presentation. However, in some patients, a tissue specimen may be secured for microscopic evaluation to exclude infection or during surgical repair. Various treatment options exist for pseudocyst of the auricle, including: (1) needle aspiration—with or without subsequent injection of an irritant substance—followed by a pressure dressing and (2) surgical deroofing. Alternatively, reassurance of the benign nature of the condition and observation is a reasonable management alternative.
Collapse
Affiliation(s)
| | - Philip R Cohen
- Department of Dermatology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
165
|
Cotticelli MG, Acquaviva F, Xia S, Kaur A, Wang Y, Wilson RB. Phenotypic Screening for Friedreich Ataxia Using Random shRNA Selection. JOURNAL OF BIOMOLECULAR SCREENING 2015; 20:1084-90. [PMID: 26286937 DOI: 10.1177/1087057115600433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/22/2015] [Indexed: 11/17/2022]
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neuro- and cardio-degenerative disorder for which there are no proven effective treatments. FRDA is caused by decreased expression and/or function of the protein frataxin. Frataxin chaperones iron in the mitochondrial matrix and regulates the iron-sulfur cluster (ISC) assembly complex. ISCs are prosthetic groups critical for the function of the Krebs cycle and the mitochondrial electron transport chain. Decreased expression of frataxin is associated with decreased ISC assembly, mitochondrial iron accumulation, and increased oxidative stress, all of which contribute to mitochondrial dysfunction. In media with beta-hydroxybutyrate (BHB) as carbon source, primary FRDA fibroblasts grow poorly and/or lose viability over several days. We screened a random, short-hairpin-RNA (shRNA)-expressing library in primary FRDA fibroblasts and identified two shRNAs that reverse the growth/viability defect in BHB media. One of these two clones increases frataxin expression in primary FRDA fibroblasts, either as a vector-expressed shRNA or as a transfected short-interfering RNA (siRNA).
Collapse
Affiliation(s)
- M Grazia Cotticelli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA The Penn Medicine/CHOP Center of Excellence for Friedreich's Ataxia Research, Philadelphia, PA, USA
| | - Fabio Acquaviva
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II," Naples, Italy
| | - Shujuan Xia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Avinash Kaur
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA The Penn Medicine/CHOP Center of Excellence for Friedreich's Ataxia Research, Philadelphia, PA, USA
| | - Yongping Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Robert B Wilson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA The Penn Medicine/CHOP Center of Excellence for Friedreich's Ataxia Research, Philadelphia, PA, USA
| |
Collapse
|
166
|
Chutake YK, Costello WN, Lam CC, Parikh AC, Hughes TT, Michalopulos MG, Pook MA, Bidichandani SI. FXN Promoter Silencing in the Humanized Mouse Model of Friedreich Ataxia. PLoS One 2015; 10:e0138437. [PMID: 26393353 PMCID: PMC4579136 DOI: 10.1371/journal.pone.0138437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/31/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Friedreich ataxia is caused by an expanded GAA triplet-repeat sequence in intron 1 of the FXN gene that results in epigenetic silencing of the FXN promoter. This silencing mechanism is seen in patient-derived lymphoblastoid cells but it remains unknown if it is a widespread phenomenon affecting multiple cell types and tissues. METHODOLOGY / PRINCIPAL FINDINGS The humanized mouse model of Friedreich ataxia (YG8sR), which carries a single transgenic insert of the human FXN gene with an expanded GAA triplet-repeat in intron 1, is deficient for FXN transcript when compared to an isogenic transgenic mouse lacking the expanded repeat (Y47R). We found that in YG8sR the deficiency of FXN transcript extended both upstream and downstream of the expanded GAA triplet-repeat, suggestive of deficient transcriptional initiation. This pattern of deficiency was seen in all tissues tested, irrespective of whether they are known to be affected or spared in disease pathogenesis, in both neuronal and non-neuronal tissues, and in cultured primary fibroblasts. FXN promoter function was directly measured via metabolic labeling of newly synthesized transcripts in fibroblasts, which revealed that the YG8sR mouse was significantly deficient in transcriptional initiation compared to the Y47R mouse. CONCLUSIONS / SIGNIFICANCE Deficient transcriptional initiation accounts for FXN transcriptional deficiency in the humanized mouse model of Friedreich ataxia, similar to patient-derived cells, and the mechanism underlying promoter silencing in Friedreich ataxia is widespread across multiple cell types and tissues.
Collapse
Affiliation(s)
- Yogesh K. Chutake
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States of America
| | - Whitney N. Costello
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States of America
| | - Christina C. Lam
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States of America
| | - Aniruddha C. Parikh
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States of America
| | - Tamara T. Hughes
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States of America
| | - Michael G. Michalopulos
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States of America
| | - Mark A. Pook
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Sanjay I. Bidichandani
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States of America
- Department of Biochemistry & Molecular Biology, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, United States of America
| |
Collapse
|
167
|
Wedding IM, Kroken M, Henriksen SP, Selmer KK, Fiskerstrand T, Knappskog PM, Berge T, Tallaksen CME. Friedreich ataxia in Norway - an epidemiological, molecular and clinical study. Orphanet J Rare Dis 2015; 10:108. [PMID: 26338206 PMCID: PMC4559212 DOI: 10.1186/s13023-015-0328-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/25/2015] [Indexed: 01/06/2023] Open
Abstract
Background Friedreich ataxia is an autosomal recessive hereditary spinocerebellar disorder, characterized by progressive limb and gait ataxia due to proprioceptive loss, often complicated by cardiomyopathy, diabetes and skeletal deformities. Friedreich ataxia is the most common hereditary ataxia, with a reported prevalence of 1:20 000 – 1:50 000 in Central Europe. Previous reports from south Norway have found a prevalence varying from 1:100 000 – 1:1 350 000; no studies are previously done in the rest of the country. Methods In this cross-sectional study, Friedreich ataxia patients were identified through colleagues in neurological, pediatric and genetic departments, hospital archives searches, patients’ associations, and National Centre for Rare Disorders. All included patients, carriers and controls were investigated clinically and molecularly with genotype characterization including size determination of GAA repeat expansions and frataxin measurements. 1376 healthy blood donors were tested for GAA repeat expansion for carrier frequency analysis. Results Twenty-nine Friedreich ataxia patients were identified in Norway, of which 23 were ethnic Norwegian, corresponding to a prevalence of 1:176 000 and 1:191 000, respectively. The highest prevalence was seen in the north. Carrier frequency of 1:196 (95 % CI = [1:752–1:112]) was found. Homozygous GAA repeat expansions in the FXN gene were found in 27/29, while two patients were compound heterozygous with c.467 T < C, L157P and the deletion (g.120032_122808del) including exon 5a. Two additional patients were heterozygous for GAA repeat expansions only. Significant differences in the level of frataxin were found between the included patients (N = 27), carriers (N = 37) and controls (N = 27). Conclusions In this first thorough study of a complete national cohort of Friedreich ataxia patients, and first nation-wide study of Friedreich ataxia in Norway, the prevalence of Friedreich ataxia in Norway is lower than in Central Europe, but higher than in the last Norwegian report, and as expected from migration studies. A south–north prevalence gradient is present. Based on Hardy Weinberg’s equilibrium, the carrier frequency of 1:196 is consistent with the observed prevalence. All genotypes, and typical and atypical phenotypes were present in the Norwegian population. The patients were phenotypically similar to European cohorts. Frataxin was useful in the diagnostic work-up of heterozygous symptomatic cases. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0328-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iselin Marie Wedding
- Department of Neurology, Oslo University Hospital, Ullevaal, 0407, Oslo, Norway. .,University of Oslo, Faculty of Medicine, Oslo, Norway.
| | - Mette Kroken
- Department of Medical Genetics, Oslo University Hospital, Ullevaal, 0407, Oslo, Norway
| | | | - Kaja Kristine Selmer
- Department of Medical Genetics, Oslo University Hospital, Ullevaal, 0407, Oslo, Norway.,University of Oslo, Faculty of Medicine, Oslo, Norway
| | - Torunn Fiskerstrand
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Per Morten Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tone Berge
- Department of Neurology, Oslo University Hospital, Ullevaal, 0407, Oslo, Norway
| | - Chantal M E Tallaksen
- Department of Neurology, Oslo University Hospital, Ullevaal, 0407, Oslo, Norway.,University of Oslo, Faculty of Medicine, Oslo, Norway
| |
Collapse
|
168
|
Abeti R, Uzun E, Renganathan I, Honda T, Pook MA, Giunti P. Targeting lipid peroxidation and mitochondrial imbalance in Friedreich's ataxia. Pharmacol Res 2015; 99:344-50. [PMID: 26141703 DOI: 10.1016/j.phrs.2015.05.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/04/2015] [Accepted: 05/15/2015] [Indexed: 11/24/2022]
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive disorder, caused by reduced levels of the protein frataxin. This protein is located in the mitochondria, where it functions in the biogenesis of iron-sulphur clusters (ISCs), which are important for the function of the mitochondrial respiratory chain complexes. Moreover, disruption in iron biogenesis may lead to oxidative stress. Oxidative stress can be the cause and/or the consequence of mitochondrial energy imbalance, leading to cell death. Fibroblasts from two FRDA mouse models, YG8R and KIKO, were used to analyse two different categories of protective compounds: deuterised poly-unsaturated fatty acids (dPUFAs) and Nrf2-inducers. The former have been shown to protect the cell from damage induced by lipid peroxidation and the latter trigger the well-known Nrf2 antioxidant pathway. Our results show that the sensitivity to oxidative stress of YG8R and KIKO mouse fibroblasts, resulting in cell death and lipid peroxidation, can be prevented by d4-PUFA and Nrf2-inducers (SFN and TBE-31). The mitochondrial membrane potential (ΔΨm) of YG8R and KIKO fibroblasts revealed a difference in their mitochondrial pathophysiology, which may be due to the different genetic basis of the two models. This suggests that variable levels of reduced frataxin may act differently on mitochondrial pathophysiology and that these two cell models could be useful in recapitulating the observed differences in the FRDA phenotype. This may reflect a different modulatory effect towards cell death that will need to be investigated further.
Collapse
Affiliation(s)
- Rosella Abeti
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Ebru Uzun
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Indhushri Renganathan
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Tadashi Honda
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States
| | - Mark A Pook
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health & Life Sciences Synthetic Biology Theme, Institute of Environment, Health & Societies, Brunel University London, Uxbridge UB8 3PH, UK
| | - Paola Giunti
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, WC1N 3BG London, UK.
| |
Collapse
|
169
|
Abstract
PURPOSE OF REVIEW This article discusses recent advances in the understanding of clinical and genetic aspects of primary ataxias, including congenital, autosomal recessive, autosomal dominant, episodic, X-linked, and mitochondrial ataxias, as well as idiopathic degenerative and secondary ataxias. RECENT FINDINGS Many important observations have been published in recent years in connection with primary ataxias, particularly new loci and genes. The most commonly inherited ataxias may present with typical and atypical phenotypes. In the group of idiopathic degenerative ataxias, genes have been found in patients with multiple system atrophy type C. Secondary ataxias represent an important group of sporadic, cerebellar, and afferent/sensory ataxias. SUMMARY Knowledge of primary ataxias has been growing rapidly in recent years. Here we review different forms of primary ataxia, including inherited forms, which are subdivided into congenital, autosomal recessive cerebellar ataxias, autosomal dominant cerebellar ataxias, episodic ataxias, X-linked ataxias, and mitochondrial ataxias, as well as sporadic ataxias and idiopathic degenerative ataxias. Secondary or acquired ataxias are also reviewed and the most common causes are discussed.
Collapse
Affiliation(s)
- Hélio A.G. Teive
- Department of Internal Medicine, Movement Disorders Unit and Neurology Service, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil and
| | - Tetsuo Ashizawa
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
170
|
Pérez-Luz S, Gimenez-Cassina A, Fernández-Frías I, Wade-Martins R, Díaz-Nido J. Delivery of the 135 kb human frataxin genomic DNA locus gives rise to different frataxin isoforms. Genomics 2015; 106:76-82. [PMID: 26027909 DOI: 10.1016/j.ygeno.2015.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 11/25/2022]
Abstract
Friedreich's ataxia (FRDA) is the most common form of hereditary ataxia caused by recessive mutations in the FXN gene. Recent results have indicated the presence of different frataxin isoforms due to alternative gene expression mechanisms. Our previous studies demonstrated the advantages of using high-capacity herpes simplex virus type 1 (HSV-1) amplicon vectors containing the entire FXN genomic locus (iBAC-FXN) as a gene-delivery vehicle capable of ensuring physiologically-regulated and long-term persistence. Here we describe how expression from the 135 kb human FXN genomic locus produces the three frataxin isoforms both in cultured neuronal cells and also in vivo. Moreover, we also observed the correct expression of these frataxin isoforms in patient-derived cells after delivery of the iBAC-FXN. These results lend further support to the potential use of HSV-1 vectors containing entire genomic loci whose expression is mediated by complex transcriptional and posttranscriptional mechanisms for gene therapy applications.
Collapse
Affiliation(s)
- S Pérez-Luz
- Departamento Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda, Spain
| | | | - I Fernández-Frías
- Departamento Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda, Spain
| | | | - J Díaz-Nido
- Departamento Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Spain; Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda, Spain.
| |
Collapse
|
171
|
Lepcha A, Chandran RK, Alexander M, Agustine AM, Thenmozhi K, Balraj A. Neurological associations in auditory neuropathy spectrum disorder: Results from a tertiary hospital in South India. Ann Indian Acad Neurol 2015; 18:171-80. [PMID: 26019414 PMCID: PMC4445192 DOI: 10.4103/0972-2327.150578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/09/2014] [Accepted: 05/08/2014] [Indexed: 01/28/2023] Open
Abstract
Aims: To find out the prevalence and types of neurological abnormalities associated in auditory neuropathy spectrum disorder in a large tertiary referral center. Settings and Design: A prospective clinical study was conducted on all patients diagnosed with auditory neuropathy spectrum disorder in the ear, nose, and throat (ENT) and neurology departments during a 17-month period. Patients with neurological abnormalities on history and examination were further assessed by a neurologist to determine the type of disorder present. Results: The frequency of auditory neuropathy spectrum disorder was 1.12%. Sixty percent were found to have neurological involvement. This included cerebral palsy in children, peripheral neuropathy (PN), spinocerebellar ataxia, hereditary motor-sensory neuropathy, spastic paresis, and ponto-bulbar palsy. Neurological lesions did not present simultaneously with hearing loss in most patients. Sixty-six percent of patients with auditory neuropathy spectrum disorder were born of consanguineous marriages. Conclusions: There is a high prevalence of neurological lesions in auditory neuropathy spectrum disorder which has to be kept in mind while evaluating such patients. Follow-up and counselling regarding the appearance of neuropathies is therefore important in such patients. A hereditary etiology is indicated in a majority of cases of auditory neuropathy spectrum disorder.
Collapse
Affiliation(s)
- Anjali Lepcha
- Department of Ear, Nose and Throat, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Reni K Chandran
- Department of Otolaryngology, Head and Neck Surgery, Hamad Medical Corporation, Al Wakra Hospital, Doha, Qatar
| | - Mathew Alexander
- Department of Neurology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Ann Mary Agustine
- Department of Ear, Nose and Throat, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - K Thenmozhi
- Department of Ear, Nose and Throat, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Achamma Balraj
- Department of Ear, Nose and Throat, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| |
Collapse
|
172
|
Filali M, Lalonde R, Gérard C, Coulombe Z, Tremblay JP. Sensorimotor skills in Fxn KO/Mck mutants deficient for frataxin in muscle. Brain Res 2015; 1608:91-6. [PMID: 25765157 DOI: 10.1016/j.brainres.2015.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/17/2015] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
Friedreich ataxia is the most common autosomal recessive disorder of the cerebellum, causing degeneration of spinal sensory neurons and spinocerebellar tracts. The disease is caused by severely reduced levels of frataxin, a mitochondrial protein involved in iron metabolism. An experimental model has been generated by crossing mice homozygous for a conditional allele of the Fxn gene with mice heterozygous for a deleted exon 4 of Fxn carrying a tissue-specific Cre transgene under control of the muscle creatine kinase promoter. Relative to wild-type, Fxn null mutants were impaired on tests of motor coordination comprising horizontal bar, vertical pole, and the rotorod as well as displaying gait anomalies and the hindlimb clasping response. The Fxn KO/Mck model reproduces some key features of patients with Friedreich ataxia and provides an opportunity of ameliorating their symptoms with experimental therapies.
Collapse
Affiliation(s)
- Mohammed Filali
- Plateforme d׳analyse fonctionnelle du comportement animal, Axe Neurosciences, Centre Hospitalier Universitaire de Québec, Département de Médecine Moléculaire, Faculté de Médecine Université Laval, Canada.
| | - Robert Lalonde
- Université de Rouen, Faculté de Sciences and Département de Psychologie, Laboratoire ICONES EA 4699, 76821 Mont-Saint-Aignan, France
| | - Catherine Gérard
- Plateforme d׳analyse fonctionnelle du comportement animal, Axe Neurosciences, Centre Hospitalier Universitaire de Québec, Département de Médecine Moléculaire, Faculté de Médecine Université Laval, Canada
| | - Zoé Coulombe
- Plateforme d׳analyse fonctionnelle du comportement animal, Axe Neurosciences, Centre Hospitalier Universitaire de Québec, Département de Médecine Moléculaire, Faculté de Médecine Université Laval, Canada
| | - Jacques P Tremblay
- Plateforme d׳analyse fonctionnelle du comportement animal, Axe Neurosciences, Centre Hospitalier Universitaire de Québec, Département de Médecine Moléculaire, Faculté de Médecine Université Laval, Canada
| |
Collapse
|
173
|
Bresgen N, Eckl PM. Oxidative stress and the homeodynamics of iron metabolism. Biomolecules 2015; 5:808-47. [PMID: 25970586 PMCID: PMC4496698 DOI: 10.3390/biom5020808] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022] Open
Abstract
Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| | - Peter M Eckl
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
174
|
Igoillo-Esteve M, Gurgul-Convey E, Hu A, Romagueira Bichara Dos Santos L, Abdulkarim B, Chintawar S, Marselli L, Marchetti P, Jonas JC, Eizirik DL, Pandolfo M, Cnop M. Unveiling a common mechanism of apoptosis in β-cells and neurons in Friedreich's ataxia. Hum Mol Genet 2015; 24:2274-86. [PMID: 25552656 DOI: 10.1093/hmg/ddu745] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disorder associated with cardiomyopathy and diabetes. Effective therapies for FRDA are an urgent unmet need; there are currently no options to prevent or treat this orphan disease. FRDA is caused by reduced expression of the mitochondrial protein frataxin. We have previously demonstrated that pancreatic β-cell dysfunction and death cause diabetes in FRDA. This is secondary to mitochondrial dysfunction and apoptosis but the underlying molecular mechanisms are not known. Here we show that β-cell demise in frataxin deficiency is the consequence of oxidative stress-mediated activation of the intrinsic pathway of apoptosis. The pro-apoptotic Bcl-2 family members Bad, DP5 and Bim are the key mediators of frataxin deficiency-induced β-cell death. Importantly, the intrinsic pathway of apoptosis is also activated in FRDA patients' induced pluripotent stem cell-derived neurons. Interestingly, cAMP induction normalizes mitochondrial oxidative status and fully prevents activation of the intrinsic pathway of apoptosis in frataxin-deficient β-cells and neurons. This preclinical study suggests that incretin analogs hold potential to prevent/delay both diabetes and neurodegeneration in FRDA.
Collapse
Affiliation(s)
| | - Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover 30625, Germany
| | - Amélie Hu
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Laila Romagueira Bichara Dos Santos
- Institut de Recherche Expérimentale et Clinique, Pôle d' Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Brussels 1200, Belgium
| | | | - Satyan Chintawar
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Lorella Marselli
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy and
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy and
| | - Jean-Christophe Jonas
- Institut de Recherche Expérimentale et Clinique, Pôle d' Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Brussels 1200, Belgium
| | | | - Massimo Pandolfo
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research and, Division of Endocrinology, Erasmus Hospital, 1070, Brussels, Belgium
| |
Collapse
|
175
|
Loría F, Díaz-Nido J. Frataxin knockdown in human astrocytes triggers cell death and the release of factors that cause neuronal toxicity. Neurobiol Dis 2015; 76:1-12. [PMID: 25554687 DOI: 10.1016/j.nbd.2014.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/15/2014] [Accepted: 12/21/2014] [Indexed: 01/27/2023] Open
Abstract
Friedreich's ataxia (FA) is a recessive, predominantly neurodegenerative disorder caused in most cases by mutations in the first intron of the frataxin (FXN) gene. This mutation drives the expansion of a homozygous GAA repeat that results in decreased levels of FXN transcription and frataxin protein. Frataxin (Fxn) is a ubiquitous mitochondrial protein involved in iron-sulfur cluster biogenesis, and a decrease in the levels of this protein is responsible for the symptoms observed in the disease. Although the pathological manifestations of FA are mainly observed in neurons of both the central and peripheral nervous system, it is not clear if changes in non-neuronal cells may also contribute to the pathogenesis of FA, as recently suggested for other neurodegenerative disorders. Therefore, the aims of this study were to generate and characterize a cell model of Fxn deficiency in human astrocytes (HAs) and to evaluate the possible involvement of non-cell autonomous processes in FA. To knockdown frataxin in vitro, we transduced HAs with a specific shRNA lentivirus (shRNA37), which produced a decrease in both frataxin mRNA and protein expression, along with mitochondrial superoxide production, and signs of p53-mediated cell cycle arrest and apoptotic cell death. To test for non-cell autonomous interactions we cultured wild-type mouse neurons in the presence of frataxin-deficient astrocyte conditioned medium, which provoked a delay in the maturation of these neurons, a decrease in neurite length and enhanced cell death. Our findings confirm a detrimental effect of frataxin silencing, not only for astrocytes, but also for neuron-glia interactions, underlining the need to take into account the role of non-cell autonomous processes in FA.
Collapse
Affiliation(s)
- Frida Loría
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain.
| |
Collapse
|
176
|
Stefanescu MR, Dohnalek M, Maderwald S, Thürling M, Minnerop M, Beck A, Schlamann M, Diedrichsen J, Ladd ME, Timmann D. Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich's ataxia. Brain 2015; 138:1182-97. [PMID: 25818870 DOI: 10.1093/brain/awv064] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/21/2015] [Indexed: 02/07/2023] Open
Abstract
Spinocerebellar ataxia type 3, spinocerebellar ataxia type 6 and Friedreich's ataxia are common hereditary ataxias. Different patterns of atrophy of the cerebellar cortex are well known. Data on cerebellar nuclei are sparse. Whereas cerebellar nuclei have long been thought to be preserved in spinocerebellar ataxia type 6, histology shows marked atrophy of the nuclei in Friedreich's ataxia and spinocerebellar ataxia type 3. In the present study susceptibility weighted imaging was used to assess atrophy of the cerebellar nuclei in patients with spinocerebellar ataxia type 6 (n = 12, age range 41-76 years, five female), Friedreich's ataxia (n = 12, age range 21-55 years, seven female), spinocerebellar ataxia type 3 (n = 10, age range 34-67 years, three female), and age- and gender-matched controls (total n = 23, age range 22-75 years, 10 female). T1-weighted magnetic resonance images were used to calculate the volume of the cerebellum. In addition, ultra-high field functional magnetic resonance imaging was performed with optimized normalization methods to assess function of the cerebellar cortex and nuclei during simple hand movements. As expected, the volume of the cerebellum was markedly reduced in spinocerebellar ataxia type 6, preserved in Friedreich's ataxia, and mildy reduced in spinocerebellar ataxia type 3. The volume of the cerebellar nuclei was reduced in the three patient groups compared to matched controls (P-values < 0.05; two-sample t-tests). Atrophy of the cerebellar nuclei was most pronounced in spinocerebellar ataxia type 6. On a functional level, hand-movement-related cerebellar activation was altered in all three disorders. Within the cerebellar cortex, functional magnetic resonance imaging signal was significantly reduced in spinocerebellar ataxia type 6 and Friedreich's ataxia compared to matched controls (P-values < 0.001, bootstrap-corrected cluster-size threshold; two-sample t-tests). The difference missed significance in spinocerebellar ataxia type 3. Within the cerebellar nuclei, reductions were significant when comparing spinocerebellar ataxia type 6 and Friedreich's ataxia to matched controls (P < 0.01, bootstrap-corrected cluster-size threshold; two-sample t-tests). Susceptibility weighted imaging allowed depiction of atrophy of the cerebellar nuclei in patients with Friedreich's ataxia and spinocerebellar ataxia type 3. In spinocerebellar ataxia type 6, pathology was not restricted to the cerebellar cortex but also involved the cerebellar nuclei. Functional magnetic resonance imaging data, on the other hand, revealed that pathology in Friedreich's ataxia and spinocerebellar ataxia type 3 is not restricted to the cerebellar nuclei. There was functional involvement of the cerebellar cortex despite no or little structural changes.
Collapse
Affiliation(s)
- Maria R Stefanescu
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany 2 Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Moritz Dohnalek
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Stefan Maderwald
- 2 Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Markus Thürling
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany 2 Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Martina Minnerop
- 3 Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany 4 Department of Neurology, University of Bonn, Bonn, Germany
| | - Andreas Beck
- 5 Department of Computer Sciences, University of Düsseldorf, Düsseldorf, Germany
| | - Marc Schlamann
- 6 Department of Diagnostic and Interventional Radiology and Neuroradiology, University of Duisburg-Essen, Essen, Germany
| | - Joern Diedrichsen
- 7 Institute of Cognitive Neuroscience, University College London, London, UK
| | - Mark E Ladd
- 2 Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany 6 Department of Diagnostic and Interventional Radiology and Neuroradiology, University of Duisburg-Essen, Essen, Germany 8 Division of Medical Physics in Radiology, University of Heidelberg and German Cancer Research Centre, Heidelberg, Germany
| | - Dagmar Timmann
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
177
|
Soragni E, Chou CJ, Rusche JR, Gottesfeld JM. Mechanism of Action of 2-Aminobenzamide HDAC Inhibitors in Reversing Gene Silencing in Friedreich's Ataxia. Front Neurol 2015; 6:44. [PMID: 25798128 PMCID: PMC4350406 DOI: 10.3389/fneur.2015.00044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/19/2015] [Indexed: 11/13/2022] Open
Abstract
The genetic defect in Friedreich’s ataxia (FRDA) is the hyperexpansion of a GAA•TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Histone post-translational modifications near the expanded repeats are consistent with heterochromatin formation and consequent FXN gene silencing. Using a newly developed human neuronal cell model, derived from patient-induced pluripotent stem cells, we find that 2-aminobenzamide histone deacetylase (HDAC) inhibitors increase FXN mRNA levels and frataxin protein in FRDA neuronal cells. However, only compounds targeting the class I HDACs 1 and 3 are active in increasing FXN mRNA in these cells. Structural analogs of the active HDAC inhibitors that selectively target either HDAC1 or HDAC3 do not show similar increases in FXN mRNA levels. To understand the mechanism of action of these compounds, we probed the kinetic properties of the active and inactive inhibitors, and found that only compounds that target HDACs 1 and 3 exhibited a slow-on/slow-off mechanism of action for the HDAC enzymes. HDAC1- and HDAC3-selective compounds did not show this activity. Using siRNA methods in the FRDA neuronal cells, we show increases in FXN mRNA upon silencing of either HDACs 1 or 3, suggesting the possibility that inhibition of each of these class I HDACs is necessary for activation of FXN mRNA synthesis, as there appears to be redundancy in the silencing mechanism caused by the GAA•TTC repeats. Moreover, inhibitors must have a long residence time on their target enzymes for this activity. By interrogating microarray data from neuronal cells treated with inhibitors of different specificity, we selected two genes encoding histone macroH2A (H2AFY2) and Polycomb group ring finger 2 (PCGF2) that were specifically down-regulated by the inhibitors targeting HDACs1 and 3 versus the more selective inhibitors for further investigation. Both genes are involved in transcriptional repression and we speculate their involvement in FXN gene silencing. Our results shed light on the mechanism whereby HDAC inhibitors increase FXN mRNA levels in FRDA neuronal cells.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Department of Cell and Molecular Biology, The Scripps Research Institute , La Jolla, CA , USA
| | - C James Chou
- Department of Cell and Molecular Biology, The Scripps Research Institute , La Jolla, CA , USA
| | | | - Joel M Gottesfeld
- Department of Cell and Molecular Biology, The Scripps Research Institute , La Jolla, CA , USA
| |
Collapse
|
178
|
Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Núñez MT. Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 2015; 21:92-105. [PMID: 25667951 DOI: 10.1016/j.mito.2015.02.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/13/2015] [Accepted: 02/02/2015] [Indexed: 12/17/2022]
Abstract
Synthesis of the iron-containing prosthetic groups-heme and iron-sulfur clusters-occurs in mitochondria. The mitochondrion is also an important producer of reactive oxygen species (ROS), which are derived from electrons leaking from the electron transport chain. The coexistence of both ROS and iron in the secluded space of the mitochondrion makes this organelle particularly prone to oxidative damage. Here, we review the elements that configure mitochondrial iron homeostasis and discuss the principles of iron-mediated ROS generation in mitochondria. We also review the evidence for mitochondrial dysfunction and iron accumulation in Alzheimer's disease, Huntington Disease, Friedreich's ataxia, and in particular Parkinson's disease. We postulate that a positive feedback loop of mitochondrial dysfunction, iron accumulation, and ROS production accounts for the process of cell death in various neurodegenerative diseases in which these features are present.
Collapse
Affiliation(s)
- Natalia P Mena
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Pamela J Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Fernanda Lourido
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Carlos M Carrasco
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Marco T Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
179
|
Koeppen AH, Ramirez L, Becker AB, Feustel PJ, Mazurkiewicz JE. Friedreich ataxia: failure of GABA-ergic and glycinergic synaptic transmission in the dentate nucleus. J Neuropathol Exp Neurol 2015; 74:166-76. [PMID: 25575136 PMCID: PMC4294979 DOI: 10.1097/nen.0000000000000160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Atrophy of large neurons in the dentate nucleus (DN) is an important pathologic correlate of neurologic disability in patients with Friedreich ataxia (FA). Thinning of the DN was quantified in 29 autopsy cases of FA and 2 carriers by measuring the thickness of the gray matter ribbon on stains with anti-glutamic acid decarboxylase, the rate-limiting enzyme in the biosynthesis of γ-amino-butyric acid (GABA). The DN was thinner than normal in all cases of FA, and atrophy correlated inversely with disease duration but not with age at onset or length of the homozygous guanine-adenine-adenine trinucleotide expansions. In 13 of the FA cases, frozen DN tissue was available for assay of frataxin. Dentate nucleus atrophy was more severe when frataxin was very low. Immunohistochemical staining for glutamic acid decarboxylase revealed grumose reaction and preservation of small GABA-ergic neurons in the DN of FA patients. Residual small DN neurons and varicose axons also contained the glycine transporter 2, identifying them as glycinergic. Immunohistochemistry also confirmed severe loss of GABA-A and glycine receptors in the DN with comparable depletion of the receptor-anchoring protein gephyrin. Thus, loss of gephyrin and failure to position GABA-A and glycine receptors correctly may reduce trophic support of large DN neurons and contribute to their atrophy. By contrast, Purkinje cells may escape retrograde atrophy in FA by issuing new axonal sprouts to small surviving DN neurons where they form reparative grumose clusters.
Collapse
Affiliation(s)
- Arnulf H. Koeppen
- Research Service, VA Medical Center, Albany, New York
- Department of Neurology, Albany Medical College, Albany, New York
- Department of Pathology, Albany Medical College, Albany, New York
| | - Liane Ramirez
- Research Service, VA Medical Center, Albany, New York
| | | | - Paul J. Feustel
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York
| | | |
Collapse
|
180
|
Kolnagou A, Kontoghiorghe CN, Kontoghiorghes GJ. Transition of Thalassaemia and Friedreich ataxia from fatal to chronic diseases. World J Methodol 2014; 4:197-218. [PMID: 25541601 PMCID: PMC4274580 DOI: 10.5662/wjm.v4.i4.197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 07/22/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Thalassaemia major (TM) and Friedreich’s ataxia (FA) are autosomal recessive inherited diseases related to the proteins haemoglobin and frataxin respectively. In both diseases abnormalities in iron metabolism is the main cause of iron toxicity leading to increased morbidity and mortality. Major efforts are directed towards the prevention of these diseases and also in their treatment using iron chelation therapy. Both TM and FA are endemic in Cyprus, where the frequency per total population of asymptomatic heterozygote carriers and patients is the highest worldwide. Cyprus has been a pioneering nation in preventing and nearly eliminating the birth of TM and FA patients by introducing an organized health structure, including prenatal and antenatal diagnosis. Effective iron chelation therapy, improved diagnostic methods and transfusion techniques as well as supportive therapy from other clinical specializations have improved the survival and quality of life of TM patients. Despite the tiresome clinical management regimes many TM patients are successful in their professional lives, have families with children and some are now living well into their fifties. The introduction of deferiprone led to the elimination of cardiac failure induced by iron overload toxicity, which was the major cause of mortality in TM. Effective combinations of deferiprone with deferoxamine in TM patients caused the fall of body iron to normal physiological ranges. In FA different mechanisms of iron metabolism and toxicity apply to that of TM, which can be targeted with specific iron chelation protocols. Preliminary findings from the introduction of deferiprone in FA patients have increased the hopes for improved and effective therapy in this untreatable condition. New and personalised treatments are proposed in TM and FA. Overall, advances in treatments and in particular of chelation therapy using deferiprone are transforming TM and FA from fatal to chronic conditions. The paradigm of Cyprus in the prevention and treatment of TM can be used for application worldwide.
Collapse
|
181
|
Milne SC, Hocking DR, Georgiou-Karistianis N, Murphy A, Delatycki MB, Corben LA. Sensitivity of spatiotemporal gait parameters in measuring disease severity in Friedreich ataxia. CEREBELLUM (LONDON, ENGLAND) 2014; 13:677-88. [PMID: 25022367 DOI: 10.1007/s12311-014-0583-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive disease with gait ataxia being the main source of morbidity. Mobility progressively declines, from initial symptom onset at approximately 10-15 years of age to being unable to ambulate 10-15 years later. Here, we sought to investigate the relationship between spatiotemporal gait parameters and clinical markers of disease severity. Thirteen people with FRDA walked along an 8.3-m GAITRite® mat six times each at their preferred fast and slow speeds. Relationships between spatiotemporal gait parameters and a range of clinical and disease characteristics were examined. Significant correlations were found between spatiotemporal gait characteristics at each of the walking speeds and Friedreich Ataxia Rating Scale (FARS) score and disease duration. During the fast-walking condition, gait speed and cadence decreased with an increase in disease duration and the FARS score. GAA1 repeat expansion negatively correlated with double-support percentage of the gait cycle in all speed conditions demonstrating a relationship between the genetic mutation and compensatory strategies for impaired dynamic balance. In all speed conditions, there were correlations between a range of spatiotemporal gait characteristics and the timed 25-ft walk test, a well-established measure of gait mobility. These findings suggest that spatiotemporal gait parameters are a sensitive measure of gait decline in individuals with FRDA and should be considered for inclusion in intervention studies whilst participants are still ambulant.
Collapse
Affiliation(s)
- Sarah C Milne
- Physiotherapy Department, Kingston Centre, Monash Health, Cheltenham, VIC, Australia
| | | | | | | | | | | |
Collapse
|
182
|
Neuroanatomy, neurophysiology, and dysfunction of the female lower urinary tract: a review. Female Pelvic Med Reconstr Surg 2014; 20:65-75. [PMID: 24566208 DOI: 10.1097/spv.0000000000000058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The 2 major functions of the lower urinary tract are the storage and emptying of urine. These processes are controlled by complex neurophysiologic mechanisms and are subject to injury and disease. When there is disruption of the neurologic control centers, dysfunction of the lower urinary tract may occur. This is sometimes referred to as the "neurogenic bladder." The manifestation of dysfunction depends on the level of injury and severity of disruption. Patients with lesions above the spinal cord often have detrusor overactivity with no disruption in detrusor-sphincter coordination. Patients with well-defined suprasacral spinal cord injuries usually present with intact reflex detrusor activity but have detrusor sphincter dyssynergia, whereas injuries to or below the sacral spinal cord usually lead to persistent detrusor areflexia. A complete gynecologic, urologic, and neurologic examination should be performed when evaluating patients with neurologic lower urinary tract dysfunction. In addition, urodynamic studies and neurophysiologic testing can be used in certain circumstances to help establish diagnosis or to achieve better understanding of a patient's vesicourethral functioning. In the management of neurogenic lower urinary tract dysfunction, the primary goal is improvement of a patient's quality of life. Second to this is the prevention of chronic damage to the bladder and kidneys, which can lead to worsening impairment and symptoms. Treatment is often multifactorial, including behavioral modifications, bladder training programs, and pharmacotherapy. Surgical procedures are often a last resort option for management. An understanding of the basic neurophysiologic mechanisms of the lower urinary tract can guide providers in their evaluation and treatment of patients who present with lower urinary tract disorders. As neurologic diseases progress, voiding function often changes or worsens, necessitating a good understanding of the underlying physiology in question.
Collapse
|
183
|
Friedreich's Ataxia: A Neuronal Point of View on the Oxidative Stress Hypothesis. Antioxidants (Basel) 2014; 3:592-603. [PMID: 26785073 PMCID: PMC4665420 DOI: 10.3390/antiox3030592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/06/2014] [Accepted: 05/16/2014] [Indexed: 12/02/2022] Open
Abstract
A prominent feature of Friedreich’s ataxia (FRDA) is the neurodegeneration of the central and peripheral nervous systems, but little information is available about the mechanisms leading to neuronal damage in this pathology. Currently, no treatments delay, prevent, or reverse the inexorable decline that occurs in this condition. Evidence of oxidative damage has been demonstrated in Friedreich’s ataxia, and this damage has been proposed as the origin of the disease. Nevertheless, the role of oxidative stress in FRDA remains debatable. The lack of direct evidence of reactive oxygen species overproduction in FRDA cells and tissues and the failure of exogenous antioxidants to rescue FRDA phenotypes questions the role of oxidative stress in this pathology. For example, the antioxidant “idebenone” ameliorates cardiomyopathy in FRDA patients, but this therapy does not improve neurodegeneration. To date, no known pharmacological treatment with antioxidant properties cures or delays FRDA neuropathology. This review reports and discusses the evidence of oxidative stress in FRDA and focuses on the existing knowledge of the apparent ineffectiveness of antioxidants for the treatment of neuronal damage.
Collapse
|
184
|
Tajiri N, Staples M, Kaneko Y, Kim SU, Zesiewicz TA, Borlongan CV. Autologous stem cell transplant with gene therapy for Friedreich ataxia. Med Hypotheses 2014; 83:296-8. [PMID: 24962209 PMCID: PMC4145018 DOI: 10.1016/j.mehy.2014.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 11/25/2022]
Abstract
We advance the overarching hypothesis that stem cell therapy is a potent treatment for Friedreich's ataxia (FRDA). Here, we discuss the feasibility of autologous transplantation in FRDA, highlighting the need for the successful isolation of the FRDA patient's bone marrow-derived mesenchymal stem cells, followed by characterization that these cells maintain the GAA repeat expansion and the reduced FXN mRNA expression, both hallmark features of FRDA. Next, we discuss the need for assessment of the proliferative capability and pluripotency of FRDA patient's bone marrow-derived mesenchymal stem cells. In particular, we view the need for characterizing the in vitro differentiation of bone marrow-derived mesenchymal stem cells into the two cell types primarily affected in FRDA, peripheral neurons and cardiomyocytes. Finally, we discuss the need to test the application of bone marrow-derived mesenchymal stem cells as potent autologous donor cells for FRDA. The demonstration of the functional correction of the mutated gene in these cells will be a critical endpoint of determining the potential of stem cell therapy in FRDA. We envision a gene-based cell transplant strategy as a likely therapeutic approach for FRDA, involving stable insertion of functional human bacterial artificial chromosomes or BACs containing the intact FXN gene into stem cells, thereafter leading to the expression of frataxin protein in differentiated neurons/cardiomyocytes.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Meaghan Staples
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Yuji Kaneko
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Seung U Kim
- Department of Neurology, University of British Columbia, Vancouver, Canada
| | - Theresa A Zesiewicz
- University of South Florida Ataxia Research Center, Department of Neurology, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
185
|
Solbach K, Kraff O, Minnerop M, Beck A, Schöls L, Gizewski E, Ladd M, Timmann D. Cerebellar pathology in Friedreich's ataxia: atrophied dentate nuclei with normal iron content. Neuroimage Clin 2014; 6:93-9. [PMID: 25379420 PMCID: PMC4215469 DOI: 10.1016/j.nicl.2014.08.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 08/06/2014] [Accepted: 08/21/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND In Friedreich's ataxia (FA) the genetically decreased expression of the mitochondrial protein frataxin leads to disturbance of the mitochondrial iron metabolism. Within the cerebellum the dentate nuclei (DN) are primarily affected. Histopathological studies show atrophy and accumulation of mitochondrial iron in DN. Dentate iron content has been suggested as a biomarker to measure the effects of siderophores/antioxidant treatment of FA. We assessed the iron content and the volume of DN in FA patients and controls based on ultra-high-field MRI (7 Tesla) images. METHODS Fourteen FA patients (mean age 38.1 yrs) and 14 age- and gender-matched controls participated. Multi-echo gradient echo and susceptibility weighted imaging (SWI) sequences were acquired on a 7 T whole-body scanner. For comparison SWI images were acquired on a 1.5 T MR scanner. Volumes of the DN and cerebellum were assessed at 7 and 1.5 T, respectively. Parametric maps of T2 and T2* sequences were created and proton transverse relaxation rates were estimated as a measure of iron content. RESULTS In FA, the DN and the cerebellum were significantly smaller compared to controls. However, proton transverse relaxation rates of the DN were not significantly different between both groups. CONCLUSIONS Applying in vivo MRI methods we could demonstrate significant atrophy of the DN in the presence of normal iron content. The findings suggest that relaxation rates are not reliable biomarkers in clinical trials evaluating the potential effect of FA therapy.
Collapse
Affiliation(s)
- K. Solbach
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| | - O. Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Arendahls Wiese 199, Essen 45141, Germany
| | - M. Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich 52425, Germany
- Department of Neurology, University Hospital Bonn, Sigmund-Freud-straße 25, Bonn 53127, Germany
| | - A. Beck
- Department of Computer Sciences, University of Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - L. Schöls
- Department of Neurology, Eberhard Karls-University, Geschwister-Scholl-platz, Tübingen, Tübingen 72074, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls-University Tübingen, Hoppe-Seyler-straße 3, Tübingen 72076, Germany
- German Research Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-straße 27, Tübingen 72076, Germany
| | - E.R. Gizewski
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| | - M.E. Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Arendahls Wiese 199, Essen 45141, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| | - D. Timmann
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| |
Collapse
|
186
|
Martelli A, Puccio H. Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation. Front Pharmacol 2014; 5:130. [PMID: 24917819 PMCID: PMC4042101 DOI: 10.3389/fphar.2014.00130] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/14/2014] [Indexed: 01/25/2023] Open
Abstract
Friedreich ataxia (FRDA) is the most common recessive ataxia in the Caucasian population and is characterized by a mixed spinocerebellar and sensory ataxia frequently associating cardiomyopathy. The disease results from decreased expression of the FXN gene coding for the mitochondrial protein frataxin. Early histological and biochemical study of the pathophysiology in patient's samples revealed that dysregulation of iron metabolism is a key feature of the disease, mainly characterized by mitochondrial iron accumulation and by decreased activity of iron-sulfur cluster enzymes. In the recent past years, considerable progress in understanding the function of frataxin has been provided through cellular and biochemical approaches, pointing to the primary role of frataxin in iron-sulfur cluster biogenesis. However, why and how the impact of frataxin deficiency on this essential biosynthetic pathway leads to mitochondrial iron accumulation is still poorly understood. Herein, we review data on both the primary function of frataxin and the nature of the iron metabolism dysregulation in FRDA. To date, the pathophysiological implication of the mitochondrial iron overload in FRDA remains to be clarified.
Collapse
Affiliation(s)
- Alain Martelli
- Department of Translational Medecine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, France ; INSERM, U596 Illkirch, France ; CNRS, UMR7104 Illkirch, France ; Université de Strasbourg Strasbourg, France ; Chaire de Génétique Humaine, Collège de France Illkirch, France
| | - Hélène Puccio
- Department of Translational Medecine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, France ; INSERM, U596 Illkirch, France ; CNRS, UMR7104 Illkirch, France ; Université de Strasbourg Strasbourg, France ; Chaire de Génétique Humaine, Collège de France Illkirch, France
| |
Collapse
|
187
|
Quik M, Zhang D, Perez XA, Bordia T. Role for the nicotinic cholinergic system in movement disorders; therapeutic implications. Pharmacol Ther 2014; 144:50-9. [PMID: 24836728 DOI: 10.1016/j.pharmthera.2014.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 01/04/2023]
Abstract
A large body of evidence using experimental animal models shows that the nicotinic cholinergic system is involved in the control of movement under physiological conditions. This work raised the question whether dysregulation of this system may contribute to motor dysfunction and whether drugs targeting nicotinic acetylcholine receptors (nAChRs) may be of therapeutic benefit in movement disorders. Accumulating preclinical studies now show that drugs acting at nAChRs improve drug-induced dyskinesias. The general nAChR agonist nicotine, as well as several nAChR agonists (varenicline, ABT-089 and ABT-894), reduces l-dopa-induced abnormal involuntary movements or dyskinesias up to 60% in parkinsonian nonhuman primates and rodents. These dyskinesias are potentially debilitating abnormal involuntary movements that arise as a complication of l-dopa therapy for Parkinson's disease. In addition, nicotine and varenicline decrease antipsychotic-induced abnormal involuntary movements in rodent models of tardive dyskinesia. Antipsychotic-induced dyskinesias frequently arise as a side effect of chronic drug treatment for schizophrenia, psychosis and other psychiatric disorders. Preclinical and clinical studies also show that the nAChR agonist varenicline improves balance and coordination in various ataxias. Lastly, nicotine has been reported to attenuate the dyskinetic symptoms of Tourette's disorder. Several nAChR subtypes appear to be involved in these beneficial effects of nicotine and nAChR drugs including α4β2*, α6β2* and α7 nAChRs (the asterisk indicates the possible presence of other subunits in the receptor). Overall, the above findings, coupled with nicotine's neuroprotective effects, suggest that nAChR drugs have potential for future drug development for movement disorders.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA.
| | - Danhui Zhang
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Xiomara A Perez
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| |
Collapse
|
188
|
Bolinches-Amorós A, Mollá B, Pla-Martín D, Palau F, González-Cabo P. Mitochondrial dysfunction induced by frataxin deficiency is associated with cellular senescence and abnormal calcium metabolism. Front Cell Neurosci 2014; 8:124. [PMID: 24860428 PMCID: PMC4026758 DOI: 10.3389/fncel.2014.00124] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/21/2014] [Indexed: 01/01/2023] Open
Abstract
Friedreich ataxia is considered a neurodegenerative disorder involving both the peripheral and central nervous systems. Dorsal root ganglia (DRG) are the major target tissue structures. This neuropathy is caused by mutations in the FXN gene that encodes frataxin. Here, we investigated the mitochondrial and cell consequences of frataxin depletion in a cellular model based on frataxin silencing in SH-SY5Y human neuroblastoma cells, a cell line that has been used widely as in vitro models for studies on neurological diseases. We showed that the reduction of frataxin induced mitochondrial dysfunction due to a bioenergetic deficit and abnormal Ca2+ homeostasis in the mitochondria that were associated with oxidative and endoplasmic reticulum stresses. The depletion of frataxin did not cause cell death but increased autophagy, which may have a cytoprotective effect against cellular insults such as oxidative stress. Frataxin silencing provoked slow cell growth associated with cellular senescence, as demonstrated by increased SA-βgal activity and cell cycle arrest at the G1 phase. We postulate that cellular senescence might be related to a hypoplastic defect in the DRG during neurodevelopment, as suggested by necropsy studies.
Collapse
Affiliation(s)
- Arantxa Bolinches-Amorós
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe Valencia, Spain ; IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe Valencia, Spain ; CIBER de Enfermedades Raras Valencia, Spain
| | - Belén Mollá
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe Valencia, Spain ; IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe Valencia, Spain ; CIBER de Enfermedades Raras Valencia, Spain
| | - David Pla-Martín
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe Valencia, Spain ; IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe Valencia, Spain ; CIBER de Enfermedades Raras Valencia, Spain
| | - Francesc Palau
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe Valencia, Spain ; IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe Valencia, Spain ; CIBER de Enfermedades Raras Valencia, Spain ; Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha Ciudad Real, Spain
| | - Pilar González-Cabo
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe Valencia, Spain ; IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe Valencia, Spain ; CIBER de Enfermedades Raras Valencia, Spain
| |
Collapse
|
189
|
Puccio H, Anheim M, Tranchant C. Pathophysiogical and therapeutic progress in Friedreich ataxia. Rev Neurol (Paris) 2014; 170:355-65. [PMID: 24792433 DOI: 10.1016/j.neurol.2014.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 01/10/2023]
Abstract
Friedreich ataxia (FRDA) is the most common hereditary autosomal recessive ataxia, but is also a multisystemic condition with frequent presence of cardiomyopathy or diabetes. It has been linked to expansion of a GAA-triplet repeat in the first intron of the FXN gene, leading to a reduced level of frataxin, a mitochondrial protein which, by controlling both iron entry and/or sulfide production, is essential to properly assemble and protect the Fe-S cluster during the initial stage of biogenesis. Several data emphasize the role of oxidative damage in FRDA, but better understanding of pathophysiological consequences of FXN mutations has led to develop animal models. Conditional knockout models recapitulate important features of the human disease but lack the genetic context, GAA repeat expansion-based knock-in and transgenic models carry a GAA repeat expansion but they only show a very mild phenotype. Cells derived from FRDA patients constitute the most relevant frataxin-deficient cell model as they carry the complete frataxin locus together with GAA repeat expansions and regulatory sequences. Induced pluripotent stem cell (iPSC)-derived neurons present a maturation delay and lower mitochondrial membrane potential, while cardiomyocytes exhibit progressive mitochondrial degeneration, with frequent dark mitochondria and proliferation/accumulation of normal mitochondria. Efforts in developing therapeutic strategies can be divided into three categories: iron chelators, antioxidants and/or stimulants of mitochondrial biogenesis, and frataxin level modifiers. A promising therapeutic strategy that is currently the subject of intense research is to directly target the heterochromatin state of the GAA repeat expansion with histone deacytelase inhibitors (HDACi) to restore frataxin levels.
Collapse
Affiliation(s)
- H Puccio
- Translational medicine and neurogenetics, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), 1, rue Laurent-Fries, BP 10142, 67404 Illkirch cedex, France; Inserm, U596, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; CNRS, UMR7104, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; Université de Strasbourg, 4, rue Blaise-Pascal, 67400 Strasbourg, France; Collège de France, chaire de génétique humaine, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France
| | - M Anheim
- Translational medicine and neurogenetics, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), 1, rue Laurent-Fries, BP 10142, 67404 Illkirch cedex, France; Inserm, U596, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; CNRS, UMR7104, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; Université de Strasbourg, 4, rue Blaise-Pascal, 67400 Strasbourg, France; Service de neurologie, unité des pathologies du mouvement, hôpital de Hautepierre, hôpital universitaire, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - C Tranchant
- Translational medicine and neurogenetics, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), 1, rue Laurent-Fries, BP 10142, 67404 Illkirch cedex, France; Inserm, U596, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; CNRS, UMR7104, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; Université de Strasbourg, 4, rue Blaise-Pascal, 67400 Strasbourg, France; Service de neurologie, unité des pathologies du mouvement, hôpital de Hautepierre, hôpital universitaire, 1, place de l'Hôpital, 67000 Strasbourg, France.
| |
Collapse
|
190
|
Anzovino A, Lane DJR, Huang MLH, Richardson DR. Fixing frataxin: 'ironing out' the metabolic defect in Friedreich's ataxia. Br J Pharmacol 2014; 171:2174-90. [PMID: 24138602 PMCID: PMC3976629 DOI: 10.1111/bph.12470] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/17/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022] Open
Abstract
The metabolically active and redox-active mitochondrion appears to play a major role in the cellular metabolism of the transition metal, iron. Frataxin, a mitochondrial matrix protein, has been identified as playing a key role in the iron metabolism of this organelle due to its iron-binding properties and is known to be essential for iron-sulphur cluster formation. However, the precise function of frataxin remains elusive. The decrease in frataxin expression, as seen in the inherited disorder Friedreich's ataxia, markedly alters cellular and mitochondrial iron metabolism in both the mitochondrion and the cell. The resulting dysregulation of iron trafficking damages affects tissues leading to neuro- and cardiodegeneration. This disease underscores the importance of iron homeostasis in the redox-active environment of the mitochondrion and the molecular players involved. Unravelling the mechanisms of altered iron metabolism in Friedreich's ataxia will help elucidate a biochemical function for frataxin. Consequently, this will enable the development of more effective and rationally designed treatments. This review will focus on the emerging function of frataxin in relation to the observed alterations in mitochondrial iron metabolism in Friedreich's ataxia. Tissue-specific alterations due to frataxin loss will also be discussed, as well as current and emerging therapeutic strategies.
Collapse
Affiliation(s)
- A Anzovino
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of SydneySydney, NSW, Australia
| | - D J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of SydneySydney, NSW, Australia
| | | | - D R Richardson
- Correspondence Professor D R Richardson, Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia. E-mail:
| |
Collapse
|
191
|
Eigentler A, Boesch S, Schneider R, Dechant G, Nat R. Induced pluripotent stem cells from friedreich ataxia patients fail to upregulate frataxin during in vitro differentiation to peripheral sensory neurons. Stem Cells Dev 2013; 22:3271-82. [PMID: 23879205 DOI: 10.1089/scd.2013.0126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The value of human disease models, which are based on induced pluripotent stem cells (iPSCs), depends on the capacity to generate specifically those cell types affected by pathology. We describe a new iPSC-based model of Friedreich ataxia (FRDA), an autosomal recessive neurodegenerative disorder with an intronic GAA repeat expansion in the frataxin gene. As the peripheral sensory neurons are particularly susceptible to neurodegeneration in FRDA, we applied a development-based differentiation protocol to generate specifically these cells. FRDA and control iPSC lines were efficiently differentiated toward neural crest progenitors and peripheral sensory neurons. The progress of the cell lines through discrete steps of in vitro differentiation was closely monitored by expression levels of key markers for peripheral neural development. Since it had been suggested that FRDA pathology might start early during ontogenesis, we investigated frataxin expression in our development-related model. A pronounced frataxin deficit was found in FRDA iPSCs and neural crest cells compared to controls. Whereas we identified an upregulation of frataxin expression during sensory specification for control cells, this increase was not observed for FRDA peripheral sensory neurons. This early failure, aggravating frataxin deficiency in a specifically vulnerable human cell population, indicates a developmental component in FRDA.
Collapse
Affiliation(s)
- Andreas Eigentler
- 1 Department of Neurology, Innsbruck Medical University , Innsbruck, Austria
| | | | | | | | | |
Collapse
|
192
|
González-Cabo P, Palau F. Mitochondrial pathophysiology in Friedreich's ataxia. J Neurochem 2013; 126 Suppl 1:53-64. [PMID: 23859341 DOI: 10.1111/jnc.12303] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/09/2013] [Accepted: 05/08/2013] [Indexed: 12/01/2022]
Abstract
Neurological examination indicates that Friedreich's ataxia corresponds to a mixed sensory and cerebellar ataxia, which affects the proprioceptive pathways. Neuropathology and pathophysiology of Friedreich's ataxia involves the peripheral sensory nerves, dorsal root ganglia, posterior columns, the spinocerebellar, and corticospinal tracts of the spinal cord, gracile and cuneate nuclei, dorsal nuclei of Clarke, and the dentate nucleus. Involvement of the myocardium and pancreatic islets of Langerhans indicates that it is also a systemic disease. The pathophysiology of the disease is the consequence of frataxin deficiency in the mitochondria and cells. Some of the biological consequences are currently recognized such as the effects on iron-sulfur cluster biogenesis or the oxidative status, but others deserve to be studied in depth. Among physiological aspects of mitochondria that have been associated with neurodegeneration and may be interesting to investigate in Friedreich's ataxia we can include mitochondrial dynamics and movement, communication with other organelles especially the endoplasmic reticulum, calcium homeostasis, apoptosis, and mitochondrial biogenesis and quality control. Changes in the mitochondrial physiology and transport in peripheral and central axons and mitochondrial metabolic functions such as bioenergetics and energy delivery in the synapses are also relevant functions to be considered. Thus, to understand the general pathophysiology of the disease and fundamental pathogenic mechanisms such as dying-back axonopathy, and determine molecular, cellular and tissue therapeutic targets, we need to discover the effect of frataxin depletion on mitochondrial properties and on specific cell susceptibility in the nervous system and other affected organs.
Collapse
Affiliation(s)
- Pilar González-Cabo
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | |
Collapse
|
193
|
Koeppen AH, Kuntzsch EC, Bjork ST, Ramirez RL, Mazurkiewicz JE, Feustel PJ. Friedreich ataxia: metal dysmetabolism in dorsal root ganglia. Acta Neuropathol Commun 2013; 1:26. [PMID: 24252376 PMCID: PMC3893523 DOI: 10.1186/2051-5960-1-26] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 06/16/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Friedreich ataxia (FA) causes distinctive lesions of dorsal root ganglia (DRG), including neuronal atrophy, satellite cell hyperplasia, and absorption of dying nerve cells into residual nodules. Two mechanisms may be involved: hypoplasia of DRG neurons from birth and superimposed iron (Fe)- and zinc (Zn)-mediated oxidative injury. This report presents a systematic analysis of DRG in 7 FA patients and 13 normal controls by X-ray fluorescence (XRF) of polyethylene glycol-embedded DRG; double-label confocal immunofluorescence microscopy of Zn- and Fe-related proteins; and immunohistochemistry of frataxin and the mitochondrial marker, ATP synthase F1 complex V β-polypeptide (ATP5B). RESULTS XRF revealed normal total Zn- and Fe-levels in the neural tissue of DRG in FA (mean ± standard deviation): Zn=5.46±2.29 μg/ml, Fe=19.99±13.26 μg/ml in FA; Zn=8.16±6.19 μg/ml, Fe=23.85±12.23 μg/ml in controls. Despite these unchanged total metal concentrations, Zn- and Fe-related proteins displayed major shifts in their cellular localization. The Zn transporter Zip14 that is normally expressed in DRG neurons and satellite cells became more prominent in hyperplastic satellite cells and residual nodules. Metallothionein 3 (MT3) stains confirmed reduction of neuronal size in FA, but MT3 expression remained low in hyperplastic satellite cells. In contrast, MT1/2 immunofluorescence was prominent in proliferating satellite cells. Neuronal ferritin immunofluorescence declined but remained strong in hyperplastic satellite cells and residual nodules. Satellite cells in FA showed a larger number of mitochondria expressing ATB5B. Frataxin immunohistochemistry in FA confirmed small neuronal sizes, irregular distribution of reaction product beneath the plasma membrane, and enhanced expression in hyperplastic satellite cells. CONCLUSIONS The pool of total cellular Zn in normal DRG equals 124.8 μM, which is much higher than needed for the proper function of Zn ion-dependent proteins. It is likely that any disturbance of Zn buffering by Zip14 and MT3 causes mitochondrial damage and cell death. In contrast to Zn, sequestration of Fe in hyperplastic satellite cells may represent a protective mechanism. The changes in the cellular localization of Zn- and Fe-handling proteins suggest metal transfer from degenerating DRG neurons to activated satellite cells and connect neuronal metal dysmetabolism with the pathogenesis of the DRG lesion in FA.
Collapse
Affiliation(s)
- Arnulf H Koeppen
- Research Services, Veterans Affairs Medical Center, 113 Holland Ave, Albany, NY 12208, USA
- Neurology Service, Veterans Affairs Medical Center, Albany, NY 12208, USA
- Department of Neurology, Albany Medical College, Albany, NY 12208, USA
- Department of Pathology, Albany Medical College, Albany, NY 12208, USA
| | - Erik C Kuntzsch
- Research Services, Veterans Affairs Medical Center, 113 Holland Ave, Albany, NY 12208, USA
| | - Sarah T Bjork
- Research Services, Veterans Affairs Medical Center, 113 Holland Ave, Albany, NY 12208, USA
| | - R Liane Ramirez
- Research Services, Veterans Affairs Medical Center, 113 Holland Ave, Albany, NY 12208, USA
| | - Joseph E Mazurkiewicz
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Paul J Feustel
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
194
|
|